C
r
e
a
d
o
c
o
n
P
T
C
M
a
t
h
c
a
d
E
x
p
r
e
s
s
.
C
o
n
s
u
l
t
e
w
w
w
.
m
a
t
h
c
a
d
.
c
o
m
p
a
r
a
o
b
t
e
n
e
r
m
á
s
i
n
f
o
r
m
a
c
i
ó
n
.
UNIVERSIDAD POLITÉCNICA SALESIANA
NOMBRE:FREDDY GUSTAVO CUCHIPARTE PASTUÑA
FECHA:16/01/2022
DISEÑO DE CORTANTE
CORTANTES ≔
ϕc 0.75
≔
VA =
―――
⋅
qu Ln1
2
20.337 tonnef
≔
VBi =
―――――
⋅
1.15 qu Ln1
2
23.387 tonnef
≔
VBd =
―――
⋅
qu Ln2
2
21.963 tonnef
≔
VB =
max⎛
⎝ ,
VBi VBd
⎞
⎠ 23.387 tonnef
≔
VCi =
―――
⋅
qu Ln2
2
21.963 tonnef
≔
VCd =
―――――
⋅
1.15 qu Ln3
2
23.387 tonnef
≔
VC =
max⎛
⎝ ,
VCi VCd
⎞
⎠ 23.387 tonnef
≔
VD =
―――
⋅
qu Ln3
2
20.337 tonnef
CORTANTE MODIFICADOS =
Fc 1.102
≔
VAm =
⋅
VA Fc 22.416 tonnef
≔
VBm =
⋅
VB Fc 25.778 tonnef
≔
VCm =
⋅
VC Fc 25.778 tonnef
≔
VDm =
⋅
VD Fc 22.416 tonnef
≔
VMAX =
max⎛
⎝ ,
,
,
VAm VBm VCm VDm
⎞
⎠ 25.778 tonnef
≔
d =
d2existente 47.886 cm
≔
Ln =
max(
( ,
,
Ln1 Ln2 Ln3)
) 8.1 m
≔
ϕLmemor =
ϕLB2 20 mm
C
r
e
a
d
o
c
o
n
P
T
C
M
a
t
h
c
a
d
E
x
p
r
e
s
s
.
C
o
n
s
u
l
t
e
w
w
w
.
m
a
t
h
c
a
d
.
c
o
m
p
a
r
a
o
b
t
e
n
e
r
m
á
s
i
n
f
o
r
m
a
c
i
ó
n
.
≔
ϕLmemor =
ϕLB2 20 mm
≔
z =
――
VMAX
――
Ln
2
d2existente 3.048 tonnef d2existente es el menor de todos
≔
Vu =
-
VMAX z 22.73 tonnef
≔
λ 0.85 Hormigón liviano
Hormigón de peso normal
≔
λ 1
≔
Vc =
⋅
⋅
⋅
0.53 λ
‾‾‾‾‾‾‾
⋅
f'c ――
kgf
cm2
b d2existente 11.795 tonnef ≔
Vs =
-
――
Vu
ϕc
Vc 18.511 tonnef
≔
Av_s_diseño =
―――――
-
――
Vu
ϕc
Vc
⋅
fy d2existente
0.092 ――
cm2
cm
Acero mínimo a cortante
≔
Av_s_min1 =
⋅
⋅
0.2
‾‾‾‾‾‾‾
⋅
f'c ――
kgf
cm2
―
b
fy
0.022 ――
cm2
cm
――
Av
s
min1
≔
Av_s_min2 =
⋅
――
⋅
3.5 b
fy
――
kgf
cm2
0.025 ――
cm2
cm
――
Av
s
min2
≔
Av_s_min =
max(
( ,
Av_s_min1 Av_s_min2)
) 0.025 ――
cm2
cm
――
Av
s
min
C
r
e
a
d
o
c
o
n
P
T
C
M
a
t
h
c
a
d
E
x
p
r
e
s
s
.
C
o
n
s
u
l
t
e
w
w
w
.
m
a
t
h
c
a
d
.
c
o
m
p
a
r
a
o
b
t
e
n
e
r
m
á
s
i
n
f
o
r
m
a
c
i
ó
n
.
Av/s diseño
≔
Av_s =
max(
( ,
Av_s_diseño Av_s_min)
) 0.092 ――
cm2
cm
――
Av
s
diseño
1 =
≤
Vu ⋅
―
1
2
ϕc Vc 0
2 =
≤
Vu ⋅
ϕc Vc 0
3 =
>
Vu ⋅
ϕc Vc 1
3.1 =
≤
Vs ⋅
⋅
⋅
1.1
‾‾‾‾‾‾‾
⋅
f'c ――
kgf
cm2
b d 1 1:Estoy en el caso 3.1
3.2 =
≤
≤
⋅
⋅
⋅
1.1
‾‾‾‾‾‾‾
⋅
f'c ――
kgf
cm2
b d Vs ⋅
⋅
⋅
2.2
‾‾‾‾‾‾‾
⋅
f'c ――
kgf
cm2
b d 0 1:Estoy en el caso 3.2
3.3 =
>
Vs ⋅
⋅
⋅
2.2
‾‾‾‾‾‾‾
⋅
f'c ――
kgf
cm2
b d 0 1:Estoy en el caso 3.3
≔
Aest =
⋅
π
⎛
⎜
⎝
――
ϕest
2
⎞
⎟
⎠
2
0.785 cm2
=
ϕest 10 mm
≔
#ramales 2
≔
Av =
⋅
#ramales Aest 1.571 cm2
≔
s =
―――――
Av
Av_s_diseño
17.066 cm
≔
d d2existente
Zona Confinamiento (ACI 2019)
≔
s1 =
―
d
4
11.971 cm =
2 h 110 cm
≔
s2 =
⋅
8 ϕL 17.6 cm
≔
s3 =
24 ϕest 24 cm
≔
s4 30 cm
≔
smax =
min(
( ,
,
,
s1 s2 s3 s4)
) 11.971 cm
C
r
e
a
d
o
c
o
n
P
T
C
M
a
t
h
c
a
d
E
x
p
r
e
s
s
.
C
o
n
s
u
l
t
e
w
w
w
.
m
a
t
h
c
a
d
.
c
o
m
p
a
r
a
o
b
t
e
n
e
r
m
á
s
i
n
f
o
r
m
a
c
i
ó
n
.
≔
s =
min(
( ,
smax s)
) 11.971 cm
≔
s =
Trunc(
( ,
s 1 cm)
) 11 cm
1 =
ϕest 10 mm @ =
s 11 cm
Zona Confinamiento (NEC 15)
≔
s1 =
―
d
4
11.971 cm =
2 h 110 cm
≔
s2 =
⋅
6 ϕL 13.2 cm
≔
s3 20 cm
≔
smax =
min(
( ,
,
s1 s2 s3)
) 11.971 cm
≔
s =
min(
( ,
smax s)
) 11 cm
≔
s =
Trunc(
( ,
s 1 cm)
) 11 cm
1 =
ϕest 10 mm @ =
s 11 cm
Zona No confinada
≔
s =
―
d
2
23.943 cm
≔
s =
Trunc(
( ,
s 1 cm)
) 23 cm
1 =
ϕest 10 mm @ =
s 23 cm
CORTE POR CAPACIDAD ( ROTULAS PLASTICAS )
C
r
e
a
d
o
c
o
n
P
T
C
M
a
t
h
c
a
d
E
x
p
r
e
s
s
.
C
o
n
s
u
l
t
e
w
w
w
.
m
a
t
h
c
a
d
.
c
o
m
p
a
r
a
o
b
t
e
n
e
r
m
á
s
i
n
f
o
r
m
a
c
i
ó
n
.
CORTE POR CAPACIDAD ( ROTULAS PLASTICAS )
DATOS
≔
f'c 240 ――
kgf
cm2
≔
fy 4200 ――
kgf
cm2
Dimenciones de la viga Dimenciones de columnas
≔
b 30 cm ≔
bc 50 cm ≔
bcB 50 cm
≔
h 55 cm ≔
hcA 50 cm ≔
hcB 50 cm
≔
rec 3 cm
≔
ϕest 10 mm
≔
ϕL 20 mm
≔
Lv 8.6 m dimensión de a eje de la columna
≔
d =
-
-
-
lv rec ϕest ――
ϕL
2
? cm ≔
d 47.886 cm d correspondiente a doble
capa de varillas
CALCULO DE CORTANTES HIPERESTATICOS
Sentido Antihorario
≔
#1 4 ≔
ϕ1 22 mm
≔
#2 3 ≔
ϕ2 20 mm ≔
AstA =
+
⋅
⋅
#1 π
⎛
⎜
⎝
――
ϕ1
2
⎞
⎟
⎠
2
⋅
⋅
#2 π
⎛
⎜
⎝
――
ϕ2
2
⎞
⎟
⎠
2
24.63 cm2
≔
# 2 ≔
ϕ 22 mm ≔
AstB =
⋅
⋅
π
⎛
⎜
⎝
―
ϕ
2
⎞
⎟
⎠
2
# 7.603 cm2
C
r
e
a
d
o
c
o
n
P
T
C
M
a
t
h
c
a
d
E
x
p
r
e
s
s
.
C
o
n
s
u
l
t
e
w
w
w
.
m
a
t
h
c
a
d
.
c
o
m
p
a
r
a
o
b
t
e
n
e
r
m
á
s
i
n
f
o
r
m
a
c
i
ó
n
.
≔
Ln =
-
-
Lv ――
hcA
2
――
hcB
2
8.1 m
≔
a_traccionA =
―――――
⋅
⋅
AstA 1.25 fy
⋅
⋅
0.85 f'c b
21.129 cm
≔
MprA =
⋅
⋅
⋅
AstA 1.25 fy
⎛
⎜
⎝
-
d ――――
a_traccionA
2
⎞
⎟
⎠
48.26 ⋅
tonnef m
≔
a_traccionB =
―――――
⋅
⋅
AstB 1.25 fy
⋅
⋅
0.85 f'c b
6.522 cm
≔
MprB =
⋅
⋅
⋅
AstB 1.25 fy
⎛
⎜
⎝
-
d ―――――
a_traccionB
2
⎞
⎟
⎠
17.812 ⋅
tonnef m
≔
Vpr1 =
―――――
+
MprA MprB
Ln2
8.157 tonnef
Sentido Horario
SECCION B-B
≔
# 2 ≔
ϕ 22 mm ≔
AstA =
⋅
⋅
π
⎛
⎜
⎝
―
ϕ
2
⎞
⎟
⎠
2
# 7.603 cm2
≔
#1 4 ≔
ϕ1 22 mm
≔
#2 3 ≔
ϕ2 20 mm ≔
AstB =
+
⋅
⋅
#1 π
⎛
⎜
⎝
――
ϕ1
2
⎞
⎟
⎠
2
⋅
⋅
#2 π
⎛
⎜
⎝
――
ϕ2
2
⎞
⎟
⎠
2
24.63 cm2
C
r
e
a
d
o
c
o
n
P
T
C
M
a
t
h
c
a
d
E
x
p
r
e
s
s
.
C
o
n
s
u
l
t
e
w
w
w
.
m
a
t
h
c
a
d
.
c
o
m
p
a
r
a
o
b
t
e
n
e
r
m
á
s
i
n
f
o
r
m
a
c
i
ó
n
.
≔
ln =
-
-
Lv ――
hcA
2
――
hcB
2
8.1 m
≔
a_traccionA =
―――――
⋅
⋅
AstA 1.25 fy
⋅
⋅
0.85 f'c b
6.522 cm
≔
MprA =
⋅
⋅
⋅
AstA 1.25 fy
⎛
⎜
⎝
-
d ――――
a_traccionA
2
⎞
⎟
⎠
17.812 ⋅
tonnef m
≔
a_traccionB =
―――――
⋅
⋅
AstB 1.25 fy
⋅
⋅
0.85 f'c b
21.129 cm
≔
MprB =
⋅
⋅
⋅
AstB 1.25 fy
⎛
⎜
⎝
-
d ―――――
a_traccionB
2
⎞
⎟
⎠
48.26 ⋅
tonnef m
≔
Vpr2 =
―――――
+
MprA MprB
Ln
8.157 tonnef
≔
Vpr =
max(
( ,
Vpr1 Vpr2)
) 8.157 tonnef
Corte Gravitacional - Isostatico
≔
quT 5.999 ―――
tonnef
m
≔
VA =
―――
⋅
quT Ln
2
24.296 tonnef =
――
Ln
2
4.05 m
≔
y =
⋅
――
VA
――
Ln
2
d 2.873 tonnef =
d 47.886 cm
Cortante de diseño
C
r
e
a
d
o
c
o
n
P
T
C
M
a
t
h
c
a
d
E
x
p
r
e
s
s
.
C
o
n
s
u
l
t
e
w
w
w
.
m
a
t
h
c
a
d
.
c
o
m
p
a
r
a
o
b
t
e
n
e
r
m
á
s
i
n
f
o
r
m
a
c
i
ó
n
.
Cortante de diseño
≔
Vdiseño =
+
Vpr Vu 30.887 tonnef
1: Vc=0
0: ≔
Vc ⋅
⋅
⋅
0.53 λ
‾‾‾‾‾‾‾
⋅
f'c ――
kgf
cm2
b d
=
≥
Vpr ―――
Vdiseño
2
0
=
Vc 11.795 tonnef
≔
Av_s_diseño =
―――――
-
―――
Vdiseño
ϕc
Vc
⋅
fy d
0.146 ――
cm2
cm
≔
Aest =
⋅
π
⎛
⎜
⎝
――
ϕest
2
⎞
⎟
⎠
2
0.008 ⋅
m ――
cm2
cm
=
ϕest 1 cm
≔
#ramales 2
≔
Av =
⋅
#ramales Aest 1.571 cm2
≔
s =
―――――
Av
Av_s_diseño
10.75 cm
Zona Confinamiento (ACI 2019)
≔
s1 =
―
d
4
11.972 cm =
2 h 110 cm
≔
s2 =
⋅
8 ϕL 16 cm
≔
s3 =
24 ϕest 24 cm
≔
s4 30 cm
≔
smax =
min(
( ,
,
,
s1 s2 s3 s4)
) 11.972 cm
≔
s =
min(
( ,
smax s)
) 10.75 cm
≔
s =
Trunc(
( ,
s 1 cm)
) 10 cm
1 =
ϕest 10 mm @ =
s 10 cm
Zona Confinamiento (NEC 15)
≔
s1 =
―
d
4
11.972 cm =
2 h 110 cm
≔
s2 =
⋅
6 ϕL 12 cm
≔
s3 20 cm
≔
smax =
min(
( ,
,
s1 s2 s3)
) 11.972 cm
≔
s =
min(
( ,
smax s)
) 10 cm
≔
s =
Trunc(
( ,
s 1 cm)
) 10 cm
1 =
ϕest 10 mm @ =
s 10 cm
C
r
e
a
d
o
c
o
n
P
T
C
M
a
t
h
c
a
d
E
x
p
r
e
s
s
.
C
o
n
s
u
l
t
e
w
w
w
.
m
a
t
h
c
a
d
.
c
o
m
p
a
r
a
o
b
t
e
n
e
r
m
á
s
i
n
f
o
r
m
a
c
i
ó
n
.
Zona No confinada
≔
s =
―
d
2
23.943 cm
≔
s =
Trunc(
( ,
s 1 cm)
) 23 cm
1 =
ϕest 10 mm @ =
s 23 cm
CASO PRECTICO CON VIGAS BANDA
≔
rec 3 cm ≔
ϕest 8 mm ≔
ϕL 12 mm
≔
d =
-
-
-
25 cm rec ϕest ――
ϕL
2
20.6 cm
Zona Confinamiento (ACI 2019)
≔
s1 =
―
d
4
5.15 cm =
2 h 110 cm
≔
s2 =
⋅
8 ϕL 9.6 cm
≔
s3 =
24 ϕest 19.2 cm
≔
s4 30 cm
≔
smax =
min(
( ,
,
,
s1 s2 s3 s4)
) 5.15 cm
≔
s =
min(
( ,
smax s)
) 5.15 cm
≔
s =
Trunc(
( ,
s 1 cm)
) 5 cm
1 =
ϕest 8 mm @ =
s 5 cm
Zona Confinamiento (NEC 15)
≔
s1 =
―
d
4
5.15 cm =
2 h 110 cm
≔
s2 =
⋅
6 ϕL 7.2 cm
≔
s3 20 cm
≔
smax =
min(
( ,
,
s1 s2 s3)
) 5.15 cm
≔
s =
min(
( ,
smax s)
) 5 cm
≔
s =
Trunc(
( ,
s 1 cm)
) 5 cm
1 =
ϕest 8 mm @ =
s 5 cm
C
r
e
a
d
o
c
o
n
P
T
C
M
a
t
h
c
a
d
E
x
p
r
e
s
s
.
C
o
n
s
u
l
t
e
w
w
w
.
m
a
t
h
c
a
d
.
c
o
m
p
a
r
a
o
b
t
e
n
e
r
m
á
s
i
n
f
o
r
m
a
c
i
ó
n
.
Zona No confinada
≔
s =
―
d
2
10.3 cm
≔
s =
Trunc(
( ,
s 1 cm)
) 10 cm
1 =
ϕest 8 mm @ =
s 10 cm
C
r
e
a
d
o
c
o
n
P
T
C
M
a
t
h
c
a
d
E
x
p
r
e
s
s
.
C
o
n
s
u
l
t
e
w
w
w
.
m
a
t
h
c
a
d
.
c
o
m
p
a
r
a
o
b
t
e
n
e
r
m
á
s
i
n
f
o
r
m
a
c
i
ó
n
.
DISEÑO POR TORSION
DATOS
≔
Tu ⋅
30 kN m ≔
#3 2 ≔
ϕL 22 mm
≔
#B1 2 =
ΦLB1 22 mm
≔
#B2 3 =
ΦLB2 20 mm
≔
Φt 0.75 ≔
Φc 0.75
requerido por Mu(-)
≔
As =
+
+
⋅
⋅
2 π
⎛
⎜
⎝
――
ϕL
2
⎞
⎟
⎠
2
⋅
⋅
2 π
⎛
⎜
⎝
――
ΦLB1
2
⎞
⎟
⎠
2
⋅
⋅
3 π
⎛
⎜
⎝
――
ΦLB2
2
⎞
⎟
⎠
2
24.63 cm2
Caluculo
Se necesita refuerzo de torsión
≔
Acp =
⋅
b h 227500 mm2
≔
Pcp =
2 (
( +
b h)
) 1700 mm
≔
λ 0.85 Hormigón liviano
≔
λ 1 Hormigón de peso normal
Compruebo si se puede obiviar los efectos de la torsión
Para Estructura Isostática (T. Equilibrio)
=
⋅
――――――
⋅
⋅
Φt λ ‾‾‾‾‾‾‾
⋅
f'c MPa
12
――
Acp2
Pcp
9.231 ⋅
kN m 0: No se cumple y se debe
tomar en cuenta la torsión
1: Se puede obiar los efectos de
la torsión
=
<
Tu ⋅
――――――
⋅
⋅
Φt λ ‾‾‾‾‾‾‾
⋅
f'c MPa
12
――
Acp2
Pcp
0
Para Estructura Hiperestatica (T. Compatibilidad)
=
⋅
――――――
⋅
⋅
Φt λ ‾‾‾‾‾‾‾
⋅
f'c MPa
3
⎛
⎜
⎝
――
Acp2
Pcp
⎞
⎟
⎠
36.925 ⋅
kN m 0: No se cumple y se debe tomar en
cuenta la torsión
1: Se puede obiar los efectos de la
torsión
=
<
Tu ⋅
――――――
⋅
⋅
Φt λ ‾‾‾‾‾‾‾
⋅
f'c MPa
3
⎛
⎜
⎝
――
Acp2
Pcp
⎞
⎟
⎠
1
C
r
e
a
d
o
c
o
n
P
T
C
M
a
t
h
c
a
d
E
x
p
r
e
s
s
.
C
o
n
s
u
l
t
e
w
w
w
.
m
a
t
h
c
a
d
.
c
o
m
p
a
r
a
o
b
t
e
n
e
r
m
á
s
i
n
f
o
r
m
a
c
i
ó
n
.
0: No se cumple y se debe tomar en
cuenta la torsión
1: Se puede obiar los efectos de la
torsión
=
<
Tu ⋅
――――――
⋅
⋅
Φt λ ‾‾‾‾‾‾‾
⋅
f'c MPa
3
⎛
⎜
⎝
――
Acp2
Pcp
⎞
⎟
⎠
1
Calculo de las propiedades de la siccióin
≔
x1 =
-
-
b (
( ⋅
2 rec)
) ϕest 230 mm
≔
y1 =
-
-
h 2 rec ϕest 480 mm
≔
Aoh =
⋅
x1 y1 110400 mm2
≔
Ph =
2 (
( +
x1 y1)
) 1420 mm
≔
Ao =
⋅
0.85 Aoh 93840 mm2
≔
d =
d2existente 47.886 cm
¿Es la sección de hormigón suficientemente grande como para soportaar
torsión?
≔
Vc =
⋅
⋅
―――――
⋅
λ ‾‾‾‾‾‾‾
⋅
f'c MPa
6
b d 116.156 kN ≔
Vc =
⋅
⋅
――――――
⋅
0.53 λ ‾‾‾‾‾‾‾
⋅
f'c MPa
6
b d 95.638 kN
Para secciónes solidas
=
‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
+
⎛
⎜
⎝
――
Vu
⋅
b d
⎞
⎟
⎠
2
⎛
⎜
⎝
――――
⋅
Tu Ph
⋅
1.7 Aoh2
⎞
⎟
⎠
2
2.576 ――
N
mm2
=
+
⋅
Φc ――
Vc
⋅
b d
⋅
Φt ―――――
⋅
2 ‾‾‾‾‾‾‾
⋅
f'c MPa
3
3.032 ――
N
mm2
1: La sección SI es
suficiente grande
0: La sección NO es
suficiente grande
=
≤
‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
+
⎛
⎜
⎝
――
Vu
⋅
b d
⎞
⎟
⎠
2
⎛
⎜
⎝
――――
⋅
Tu Ph
⋅
1.7 Aoh2
⎞
⎟
⎠
2
+
⋅
Φc ――
Vc
⋅
b d
⋅
Φt ―――――
⋅
2 ‾‾‾‾‾‾‾
⋅
f'c MPa
3
1
Para secciones huecas
=
≤
+
⎛
⎜
⎝
――
Vu
⋅
b d
⎞
⎟
⎠
⎛
⎜
⎝
――――
⋅
Tu Ph
⋅
1.7 Aoh2
⎞
⎟
⎠
+
⋅
Φc ――
Vc
⋅
b d
⋅
Φt ―――――
⋅
2 ‾‾‾‾‾‾‾
⋅
f'c MPa
3
0
≔
espesor 150 mm =
――
Aoh
Ph
77.746 mm =
<
espesor ――
Aoh
Ph
0
=
≤
+
⎛
⎜
⎝
――
Vu
⋅
b d
⎞
⎟
⎠
⎛
⎜
⎝
――――――
Tu
⋅
⋅
1.7 Aoh espesor
⎞
⎟
⎠
+
⋅
Φc ――
Vc
⋅
b d
⋅
Φt ―――――
⋅
2 ‾‾‾‾‾‾‾
⋅
f'c MPa
3
1
C
r
e
a
d
o
c
o
n
P
T
C
M
a
t
h
c
a
d
E
x
p
r
e
s
s
.
C
o
n
s
u
l
t
e
w
w
w
.
m
a
t
h
c
a
d
.
c
o
m
p
a
r
a
o
b
t
e
n
e
r
m
á
s
i
n
f
o
r
m
a
c
i
ó
n
.
Determinación del refuerzo transversal requerido por torsión
≔
Tn =
――
Tu
Φt
40 ⋅
kN m ≔
θ °
45 No debe ser menor que 30°
o mayor que 60°
≔
At_s =
――――――
Tn
⋅
⋅
⋅
2 Ao fy cot(
(θ)
)
0.517 ――
mm2
mm
para 1 rama de los estribos
Determinación del refuerzo transversal requerido por cortante
=
≥
Vdiseño ⋅
⋅
―
1
2
Φc Vc 1 1: Estribo mecesario
0:no se necesita estribos
≔
Vs =
――――――
-
Vdiseño ⋅
Φc Vc
Φc
287.708 kN
≔
Av_s =
――
Vs
⋅
fy d
0.146 ――
cm2
cm
para 2 ramas de estribos
≔
#ramales 2
=
+
⋅
#ramales At_s Av_s 0.249 ――
cm2
cm
≔
Aest =
⋅
π
⎛
⎜
⎝
――
ϕest
2
⎞
⎟
⎠
2
0.785 cm2
≔
Av =
⋅
#ramales Aest 1.571 cm2
≔
s =
――――――――
Av
+
#ramales At_s Av_s
6.299 cm
C
r
e
a
d
o
c
o
n
P
T
C
M
a
t
h
c
a
d
E
x
p
r
e
s
s
.
C
o
n
s
u
l
t
e
w
w
w
.
m
a
t
h
c
a
d
.
c
o
m
p
a
r
a
o
b
t
e
n
e
r
m
á
s
i
n
f
o
r
m
a
c
i
ó
n
.
Separación máxim permisible entre estribos
≔
s1 =
――
Ph
8
177.5 mm ≔
s2 300 mm
≔
smax =
min(
( ,
s1 s2)
) 177.5 mm
Zona Confinamiento (NEC 15)
≔
s1 =
―
d
4
11.971 cm =
2 h 110 cm
≔
s2 =
⋅
6 ϕLB2 12 cm
≔
s3 20 cm
≔
smax =
min(
( ,
,
s1 s2 s3)
) 11.971 cm
≔
s =
min(
( ,
smax s)
) 6.299 cm
≔
s =
Trunc(
( ,
s 1 cm)
) 6 cm
1 =
ϕest 10 mm @ =
s 6 cm
Zona No confinada
=
⋅
#ramales At_s 0.103 ――
cm2
cm
≔
Aest =
⋅
π
⎛
⎜
⎝
――
ϕest
2
⎞
⎟
⎠
2
0.785 cm2
≔
Av =
⋅
#ramales Aest 1.571 cm2
≔
s =
―――――
Av
#ramales At_s
15.178 cm
≔
smax =
―
d
2
23.943 cm
≔
s =
min(
( ,
smax s)
) 15.178 cm
≔
s =
Trunc(
( ,
s 1 cm)
) 15 cm
1 =
ϕest 10 mm @ =
s 15 cm
C
r
e
a
d
o
c
o
n
P
T
C
M
a
t
h
c
a
d
E
x
p
r
e
s
s
.
C
o
n
s
u
l
t
e
w
w
w
.
m
a
t
h
c
a
d
.
c
o
m
p
a
r
a
o
b
t
e
n
e
r
m
á
s
i
n
f
o
r
m
a
c
i
ó
n
.
Área mínima de estribos
=
⋅
⋅
―
1
16
‾‾‾‾‾‾‾
⋅
f'c MPa ――
⋅
b s
fy
33.127 mm2
=
⋅
―
1
3
――
⋅
b s
fy
MPa 36.418 mm2
=
<
⋅
⋅
―
1
16
‾‾‾‾‾‾‾
⋅
f'c MPa ――
⋅
b s
fy
⋅
―
1
3
――
⋅
b s
fy
MPa 1
Selección del refuerzo longitudinal por torsión
≔
A_L =
⋅
⋅
⋅
At_s Ph
⎛
⎜
⎝
―
fy
fy
⎞
⎟
⎠
(
(cot(
(θ)
))
)
2
734.785 mm2
=
h 55 cm
≔
#lechos 3
≔
espaciamiento =
――――――――――
-
-
-
h ⋅
2 rec ϕest ⋅
#lechos ϕL
-
#lechos 1
20.7 cm
=
<
espaciamiento 30 cm 1
≔
ALecho1 =
+
――
A_L
3
As 27.079 cm2
≔
ALecho2 =
――
A_L
3
2.449 cm2
≔
#3 2 ≔
ϕL 22 mm
≔
#B1 2 =
ΦLB1 22 mm
≔
ALecho3 =
――
A_L
3
2.449 cm2
≔
#B2 3 =
ΦLB2 20 mm
Lecho 1
≔
#1 1 ≔
ϕ1 20 mm
≔
A1 =
+
+
+
⋅
⋅
π
⎛
⎜
⎝
――
ϕ1
2
⎞
⎟
⎠
2
#1 ⋅
⋅
2 π
⎛
⎜
⎝
――
ϕL
2
⎞
⎟
⎠
2
⋅
⋅
2 π
⎛
⎜
⎝
――
ΦLB1
2
⎞
⎟
⎠
2
⋅
⋅
3 π
⎛
⎜
⎝
――
ΦLB2
2
⎞
⎟
⎠
2
27.772 cm2
=
≤
ALecho1 A1 1
Lecho 2
≔
#2 2 ≔
ϕ2 14 mm ≔
A2 =
⋅
π
⎛
⎜
⎝
――
ϕ2
2
⎞
⎟
⎠
2
#2 3.079 cm2
=
≤
ALecho2 A2 1
Lecho 3
≔
#3 2 ≔
ϕ3 ϕL ≔
A3 =
⋅
⋅
π
⎛
⎜
⎝
――
ϕ3
2
⎞
⎟
⎠
2
#3 7.603 cm2
=
≤
ALecho3 A3 1

Deber corte

  • 1.
    C r e a d o c o n P T C M a t h c a d E x p r e s s . C o n s u l t e w w w . m a t h c a d . c o m p a r a o b t e n e r m á s i n f o r m a c i ó n . UNIVERSIDAD POLITÉCNICA SALESIANA NOMBRE:FREDDYGUSTAVO CUCHIPARTE PASTUÑA FECHA:16/01/2022 DISEÑO DE CORTANTE CORTANTES ≔ ϕc 0.75 ≔ VA = ――― ⋅ qu Ln1 2 20.337 tonnef ≔ VBi = ――――― ⋅ 1.15 qu Ln1 2 23.387 tonnef ≔ VBd = ――― ⋅ qu Ln2 2 21.963 tonnef ≔ VB = max⎛ ⎝ , VBi VBd ⎞ ⎠ 23.387 tonnef ≔ VCi = ――― ⋅ qu Ln2 2 21.963 tonnef ≔ VCd = ――――― ⋅ 1.15 qu Ln3 2 23.387 tonnef ≔ VC = max⎛ ⎝ , VCi VCd ⎞ ⎠ 23.387 tonnef ≔ VD = ――― ⋅ qu Ln3 2 20.337 tonnef CORTANTE MODIFICADOS = Fc 1.102 ≔ VAm = ⋅ VA Fc 22.416 tonnef ≔ VBm = ⋅ VB Fc 25.778 tonnef ≔ VCm = ⋅ VC Fc 25.778 tonnef ≔ VDm = ⋅ VD Fc 22.416 tonnef ≔ VMAX = max⎛ ⎝ , , , VAm VBm VCm VDm ⎞ ⎠ 25.778 tonnef ≔ d = d2existente 47.886 cm ≔ Ln = max( ( , , Ln1 Ln2 Ln3) ) 8.1 m ≔ ϕLmemor = ϕLB2 20 mm
  • 2.
    C r e a d o c o n P T C M a t h c a d E x p r e s s . C o n s u l t e w w w . m a t h c a d . c o m p a r a o b t e n e r m á s i n f o r m a c i ó n . ≔ ϕLmemor = ϕLB2 20mm ≔ z = ―― VMAX ―― Ln 2 d2existente 3.048 tonnef d2existente es el menor de todos ≔ Vu = - VMAX z 22.73 tonnef ≔ λ 0.85 Hormigón liviano Hormigón de peso normal ≔ λ 1 ≔ Vc = ⋅ ⋅ ⋅ 0.53 λ ‾‾‾‾‾‾‾ ⋅ f'c ―― kgf cm2 b d2existente 11.795 tonnef ≔ Vs = - ―― Vu ϕc Vc 18.511 tonnef ≔ Av_s_diseño = ――――― - ―― Vu ϕc Vc ⋅ fy d2existente 0.092 ―― cm2 cm Acero mínimo a cortante ≔ Av_s_min1 = ⋅ ⋅ 0.2 ‾‾‾‾‾‾‾ ⋅ f'c ―― kgf cm2 ― b fy 0.022 ―― cm2 cm ―― Av s min1 ≔ Av_s_min2 = ⋅ ―― ⋅ 3.5 b fy ―― kgf cm2 0.025 ―― cm2 cm ―― Av s min2 ≔ Av_s_min = max( ( , Av_s_min1 Av_s_min2) ) 0.025 ―― cm2 cm ―― Av s min
  • 3.
    C r e a d o c o n P T C M a t h c a d E x p r e s s . C o n s u l t e w w w . m a t h c a d . c o m p a r a o b t e n e r m á s i n f o r m a c i ó n . Av/s diseño ≔ Av_s = max( (, Av_s_diseño Av_s_min) ) 0.092 ―― cm2 cm ―― Av s diseño 1 = ≤ Vu ⋅ ― 1 2 ϕc Vc 0 2 = ≤ Vu ⋅ ϕc Vc 0 3 = > Vu ⋅ ϕc Vc 1 3.1 = ≤ Vs ⋅ ⋅ ⋅ 1.1 ‾‾‾‾‾‾‾ ⋅ f'c ―― kgf cm2 b d 1 1:Estoy en el caso 3.1 3.2 = ≤ ≤ ⋅ ⋅ ⋅ 1.1 ‾‾‾‾‾‾‾ ⋅ f'c ―― kgf cm2 b d Vs ⋅ ⋅ ⋅ 2.2 ‾‾‾‾‾‾‾ ⋅ f'c ―― kgf cm2 b d 0 1:Estoy en el caso 3.2 3.3 = > Vs ⋅ ⋅ ⋅ 2.2 ‾‾‾‾‾‾‾ ⋅ f'c ―― kgf cm2 b d 0 1:Estoy en el caso 3.3 ≔ Aest = ⋅ π ⎛ ⎜ ⎝ ―― ϕest 2 ⎞ ⎟ ⎠ 2 0.785 cm2 = ϕest 10 mm ≔ #ramales 2 ≔ Av = ⋅ #ramales Aest 1.571 cm2 ≔ s = ――――― Av Av_s_diseño 17.066 cm ≔ d d2existente Zona Confinamiento (ACI 2019) ≔ s1 = ― d 4 11.971 cm = 2 h 110 cm ≔ s2 = ⋅ 8 ϕL 17.6 cm ≔ s3 = 24 ϕest 24 cm ≔ s4 30 cm ≔ smax = min( ( , , , s1 s2 s3 s4) ) 11.971 cm
  • 4.
    C r e a d o c o n P T C M a t h c a d E x p r e s s . C o n s u l t e w w w . m a t h c a d . c o m p a r a o b t e n e r m á s i n f o r m a c i ó n . ≔ s = min( ( , smaxs) ) 11.971 cm ≔ s = Trunc( ( , s 1 cm) ) 11 cm 1 = ϕest 10 mm @ = s 11 cm Zona Confinamiento (NEC 15) ≔ s1 = ― d 4 11.971 cm = 2 h 110 cm ≔ s2 = ⋅ 6 ϕL 13.2 cm ≔ s3 20 cm ≔ smax = min( ( , , s1 s2 s3) ) 11.971 cm ≔ s = min( ( , smax s) ) 11 cm ≔ s = Trunc( ( , s 1 cm) ) 11 cm 1 = ϕest 10 mm @ = s 11 cm Zona No confinada ≔ s = ― d 2 23.943 cm ≔ s = Trunc( ( , s 1 cm) ) 23 cm 1 = ϕest 10 mm @ = s 23 cm CORTE POR CAPACIDAD ( ROTULAS PLASTICAS )
  • 5.
    C r e a d o c o n P T C M a t h c a d E x p r e s s . C o n s u l t e w w w . m a t h c a d . c o m p a r a o b t e n e r m á s i n f o r m a c i ó n . CORTE POR CAPACIDAD( ROTULAS PLASTICAS ) DATOS ≔ f'c 240 ―― kgf cm2 ≔ fy 4200 ―― kgf cm2 Dimenciones de la viga Dimenciones de columnas ≔ b 30 cm ≔ bc 50 cm ≔ bcB 50 cm ≔ h 55 cm ≔ hcA 50 cm ≔ hcB 50 cm ≔ rec 3 cm ≔ ϕest 10 mm ≔ ϕL 20 mm ≔ Lv 8.6 m dimensión de a eje de la columna ≔ d = - - - lv rec ϕest ―― ϕL 2 ? cm ≔ d 47.886 cm d correspondiente a doble capa de varillas CALCULO DE CORTANTES HIPERESTATICOS Sentido Antihorario ≔ #1 4 ≔ ϕ1 22 mm ≔ #2 3 ≔ ϕ2 20 mm ≔ AstA = + ⋅ ⋅ #1 π ⎛ ⎜ ⎝ ―― ϕ1 2 ⎞ ⎟ ⎠ 2 ⋅ ⋅ #2 π ⎛ ⎜ ⎝ ―― ϕ2 2 ⎞ ⎟ ⎠ 2 24.63 cm2 ≔ # 2 ≔ ϕ 22 mm ≔ AstB = ⋅ ⋅ π ⎛ ⎜ ⎝ ― ϕ 2 ⎞ ⎟ ⎠ 2 # 7.603 cm2
  • 6.
    C r e a d o c o n P T C M a t h c a d E x p r e s s . C o n s u l t e w w w . m a t h c a d . c o m p a r a o b t e n e r m á s i n f o r m a c i ó n . ≔ Ln = - - Lv ―― hcA 2 ―― hcB 2 8.1m ≔ a_traccionA = ――――― ⋅ ⋅ AstA 1.25 fy ⋅ ⋅ 0.85 f'c b 21.129 cm ≔ MprA = ⋅ ⋅ ⋅ AstA 1.25 fy ⎛ ⎜ ⎝ - d ―――― a_traccionA 2 ⎞ ⎟ ⎠ 48.26 ⋅ tonnef m ≔ a_traccionB = ――――― ⋅ ⋅ AstB 1.25 fy ⋅ ⋅ 0.85 f'c b 6.522 cm ≔ MprB = ⋅ ⋅ ⋅ AstB 1.25 fy ⎛ ⎜ ⎝ - d ――――― a_traccionB 2 ⎞ ⎟ ⎠ 17.812 ⋅ tonnef m ≔ Vpr1 = ――――― + MprA MprB Ln2 8.157 tonnef Sentido Horario SECCION B-B ≔ # 2 ≔ ϕ 22 mm ≔ AstA = ⋅ ⋅ π ⎛ ⎜ ⎝ ― ϕ 2 ⎞ ⎟ ⎠ 2 # 7.603 cm2 ≔ #1 4 ≔ ϕ1 22 mm ≔ #2 3 ≔ ϕ2 20 mm ≔ AstB = + ⋅ ⋅ #1 π ⎛ ⎜ ⎝ ―― ϕ1 2 ⎞ ⎟ ⎠ 2 ⋅ ⋅ #2 π ⎛ ⎜ ⎝ ―― ϕ2 2 ⎞ ⎟ ⎠ 2 24.63 cm2
  • 7.
    C r e a d o c o n P T C M a t h c a d E x p r e s s . C o n s u l t e w w w . m a t h c a d . c o m p a r a o b t e n e r m á s i n f o r m a c i ó n . ≔ ln = - - Lv ―― hcA 2 ―― hcB 2 8.1m ≔ a_traccionA = ――――― ⋅ ⋅ AstA 1.25 fy ⋅ ⋅ 0.85 f'c b 6.522 cm ≔ MprA = ⋅ ⋅ ⋅ AstA 1.25 fy ⎛ ⎜ ⎝ - d ―――― a_traccionA 2 ⎞ ⎟ ⎠ 17.812 ⋅ tonnef m ≔ a_traccionB = ――――― ⋅ ⋅ AstB 1.25 fy ⋅ ⋅ 0.85 f'c b 21.129 cm ≔ MprB = ⋅ ⋅ ⋅ AstB 1.25 fy ⎛ ⎜ ⎝ - d ――――― a_traccionB 2 ⎞ ⎟ ⎠ 48.26 ⋅ tonnef m ≔ Vpr2 = ――――― + MprA MprB Ln 8.157 tonnef ≔ Vpr = max( ( , Vpr1 Vpr2) ) 8.157 tonnef Corte Gravitacional - Isostatico ≔ quT 5.999 ――― tonnef m ≔ VA = ――― ⋅ quT Ln 2 24.296 tonnef = ―― Ln 2 4.05 m ≔ y = ⋅ ―― VA ―― Ln 2 d 2.873 tonnef = d 47.886 cm Cortante de diseño
  • 8.
    C r e a d o c o n P T C M a t h c a d E x p r e s s . C o n s u l t e w w w . m a t h c a d . c o m p a r a o b t e n e r m á s i n f o r m a c i ó n . Cortante de diseño ≔ Vdiseño= + Vpr Vu 30.887 tonnef 1: Vc=0 0: ≔ Vc ⋅ ⋅ ⋅ 0.53 λ ‾‾‾‾‾‾‾ ⋅ f'c ―― kgf cm2 b d = ≥ Vpr ――― Vdiseño 2 0 = Vc 11.795 tonnef ≔ Av_s_diseño = ――――― - ――― Vdiseño ϕc Vc ⋅ fy d 0.146 ―― cm2 cm ≔ Aest = ⋅ π ⎛ ⎜ ⎝ ―― ϕest 2 ⎞ ⎟ ⎠ 2 0.008 ⋅ m ―― cm2 cm = ϕest 1 cm ≔ #ramales 2 ≔ Av = ⋅ #ramales Aest 1.571 cm2 ≔ s = ――――― Av Av_s_diseño 10.75 cm Zona Confinamiento (ACI 2019) ≔ s1 = ― d 4 11.972 cm = 2 h 110 cm ≔ s2 = ⋅ 8 ϕL 16 cm ≔ s3 = 24 ϕest 24 cm ≔ s4 30 cm ≔ smax = min( ( , , , s1 s2 s3 s4) ) 11.972 cm ≔ s = min( ( , smax s) ) 10.75 cm ≔ s = Trunc( ( , s 1 cm) ) 10 cm 1 = ϕest 10 mm @ = s 10 cm Zona Confinamiento (NEC 15) ≔ s1 = ― d 4 11.972 cm = 2 h 110 cm ≔ s2 = ⋅ 6 ϕL 12 cm ≔ s3 20 cm ≔ smax = min( ( , , s1 s2 s3) ) 11.972 cm ≔ s = min( ( , smax s) ) 10 cm ≔ s = Trunc( ( , s 1 cm) ) 10 cm 1 = ϕest 10 mm @ = s 10 cm
  • 9.
    C r e a d o c o n P T C M a t h c a d E x p r e s s . C o n s u l t e w w w . m a t h c a d . c o m p a r a o b t e n e r m á s i n f o r m a c i ó n . Zona No confinada ≔ s= ― d 2 23.943 cm ≔ s = Trunc( ( , s 1 cm) ) 23 cm 1 = ϕest 10 mm @ = s 23 cm CASO PRECTICO CON VIGAS BANDA ≔ rec 3 cm ≔ ϕest 8 mm ≔ ϕL 12 mm ≔ d = - - - 25 cm rec ϕest ―― ϕL 2 20.6 cm Zona Confinamiento (ACI 2019) ≔ s1 = ― d 4 5.15 cm = 2 h 110 cm ≔ s2 = ⋅ 8 ϕL 9.6 cm ≔ s3 = 24 ϕest 19.2 cm ≔ s4 30 cm ≔ smax = min( ( , , , s1 s2 s3 s4) ) 5.15 cm ≔ s = min( ( , smax s) ) 5.15 cm ≔ s = Trunc( ( , s 1 cm) ) 5 cm 1 = ϕest 8 mm @ = s 5 cm Zona Confinamiento (NEC 15) ≔ s1 = ― d 4 5.15 cm = 2 h 110 cm ≔ s2 = ⋅ 6 ϕL 7.2 cm ≔ s3 20 cm ≔ smax = min( ( , , s1 s2 s3) ) 5.15 cm ≔ s = min( ( , smax s) ) 5 cm ≔ s = Trunc( ( , s 1 cm) ) 5 cm 1 = ϕest 8 mm @ = s 5 cm
  • 10.
  • 11.
    C r e a d o c o n P T C M a t h c a d E x p r e s s . C o n s u l t e w w w . m a t h c a d . c o m p a r a o b t e n e r m á s i n f o r m a c i ó n . DISEÑO POR TORSION DATOS ≔ Tu⋅ 30 kN m ≔ #3 2 ≔ ϕL 22 mm ≔ #B1 2 = ΦLB1 22 mm ≔ #B2 3 = ΦLB2 20 mm ≔ Φt 0.75 ≔ Φc 0.75 requerido por Mu(-) ≔ As = + + ⋅ ⋅ 2 π ⎛ ⎜ ⎝ ―― ϕL 2 ⎞ ⎟ ⎠ 2 ⋅ ⋅ 2 π ⎛ ⎜ ⎝ ―― ΦLB1 2 ⎞ ⎟ ⎠ 2 ⋅ ⋅ 3 π ⎛ ⎜ ⎝ ―― ΦLB2 2 ⎞ ⎟ ⎠ 2 24.63 cm2 Caluculo Se necesita refuerzo de torsión ≔ Acp = ⋅ b h 227500 mm2 ≔ Pcp = 2 ( ( + b h) ) 1700 mm ≔ λ 0.85 Hormigón liviano ≔ λ 1 Hormigón de peso normal Compruebo si se puede obiviar los efectos de la torsión Para Estructura Isostática (T. Equilibrio) = ⋅ ―――――― ⋅ ⋅ Φt λ ‾‾‾‾‾‾‾ ⋅ f'c MPa 12 ―― Acp2 Pcp 9.231 ⋅ kN m 0: No se cumple y se debe tomar en cuenta la torsión 1: Se puede obiar los efectos de la torsión = < Tu ⋅ ―――――― ⋅ ⋅ Φt λ ‾‾‾‾‾‾‾ ⋅ f'c MPa 12 ―― Acp2 Pcp 0 Para Estructura Hiperestatica (T. Compatibilidad) = ⋅ ―――――― ⋅ ⋅ Φt λ ‾‾‾‾‾‾‾ ⋅ f'c MPa 3 ⎛ ⎜ ⎝ ―― Acp2 Pcp ⎞ ⎟ ⎠ 36.925 ⋅ kN m 0: No se cumple y se debe tomar en cuenta la torsión 1: Se puede obiar los efectos de la torsión = < Tu ⋅ ―――――― ⋅ ⋅ Φt λ ‾‾‾‾‾‾‾ ⋅ f'c MPa 3 ⎛ ⎜ ⎝ ―― Acp2 Pcp ⎞ ⎟ ⎠ 1
  • 12.
    C r e a d o c o n P T C M a t h c a d E x p r e s s . C o n s u l t e w w w . m a t h c a d . c o m p a r a o b t e n e r m á s i n f o r m a c i ó n . 0: No secumple y se debe tomar en cuenta la torsión 1: Se puede obiar los efectos de la torsión = < Tu ⋅ ―――――― ⋅ ⋅ Φt λ ‾‾‾‾‾‾‾ ⋅ f'c MPa 3 ⎛ ⎜ ⎝ ―― Acp2 Pcp ⎞ ⎟ ⎠ 1 Calculo de las propiedades de la siccióin ≔ x1 = - - b ( ( ⋅ 2 rec) ) ϕest 230 mm ≔ y1 = - - h 2 rec ϕest 480 mm ≔ Aoh = ⋅ x1 y1 110400 mm2 ≔ Ph = 2 ( ( + x1 y1) ) 1420 mm ≔ Ao = ⋅ 0.85 Aoh 93840 mm2 ≔ d = d2existente 47.886 cm ¿Es la sección de hormigón suficientemente grande como para soportaar torsión? ≔ Vc = ⋅ ⋅ ――――― ⋅ λ ‾‾‾‾‾‾‾ ⋅ f'c MPa 6 b d 116.156 kN ≔ Vc = ⋅ ⋅ ―――――― ⋅ 0.53 λ ‾‾‾‾‾‾‾ ⋅ f'c MPa 6 b d 95.638 kN Para secciónes solidas = ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ + ⎛ ⎜ ⎝ ―― Vu ⋅ b d ⎞ ⎟ ⎠ 2 ⎛ ⎜ ⎝ ―――― ⋅ Tu Ph ⋅ 1.7 Aoh2 ⎞ ⎟ ⎠ 2 2.576 ―― N mm2 = + ⋅ Φc ―― Vc ⋅ b d ⋅ Φt ――――― ⋅ 2 ‾‾‾‾‾‾‾ ⋅ f'c MPa 3 3.032 ―― N mm2 1: La sección SI es suficiente grande 0: La sección NO es suficiente grande = ≤ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ + ⎛ ⎜ ⎝ ―― Vu ⋅ b d ⎞ ⎟ ⎠ 2 ⎛ ⎜ ⎝ ―――― ⋅ Tu Ph ⋅ 1.7 Aoh2 ⎞ ⎟ ⎠ 2 + ⋅ Φc ―― Vc ⋅ b d ⋅ Φt ――――― ⋅ 2 ‾‾‾‾‾‾‾ ⋅ f'c MPa 3 1 Para secciones huecas = ≤ + ⎛ ⎜ ⎝ ―― Vu ⋅ b d ⎞ ⎟ ⎠ ⎛ ⎜ ⎝ ―――― ⋅ Tu Ph ⋅ 1.7 Aoh2 ⎞ ⎟ ⎠ + ⋅ Φc ―― Vc ⋅ b d ⋅ Φt ――――― ⋅ 2 ‾‾‾‾‾‾‾ ⋅ f'c MPa 3 0 ≔ espesor 150 mm = ―― Aoh Ph 77.746 mm = < espesor ―― Aoh Ph 0 = ≤ + ⎛ ⎜ ⎝ ―― Vu ⋅ b d ⎞ ⎟ ⎠ ⎛ ⎜ ⎝ ―――――― Tu ⋅ ⋅ 1.7 Aoh espesor ⎞ ⎟ ⎠ + ⋅ Φc ―― Vc ⋅ b d ⋅ Φt ――――― ⋅ 2 ‾‾‾‾‾‾‾ ⋅ f'c MPa 3 1
  • 13.
    C r e a d o c o n P T C M a t h c a d E x p r e s s . C o n s u l t e w w w . m a t h c a d . c o m p a r a o b t e n e r m á s i n f o r m a c i ó n . Determinación del refuerzotransversal requerido por torsión ≔ Tn = ―― Tu Φt 40 ⋅ kN m ≔ θ ° 45 No debe ser menor que 30° o mayor que 60° ≔ At_s = ―――――― Tn ⋅ ⋅ ⋅ 2 Ao fy cot( (θ) ) 0.517 ―― mm2 mm para 1 rama de los estribos Determinación del refuerzo transversal requerido por cortante = ≥ Vdiseño ⋅ ⋅ ― 1 2 Φc Vc 1 1: Estribo mecesario 0:no se necesita estribos ≔ Vs = ―――――― - Vdiseño ⋅ Φc Vc Φc 287.708 kN ≔ Av_s = ―― Vs ⋅ fy d 0.146 ―― cm2 cm para 2 ramas de estribos ≔ #ramales 2 = + ⋅ #ramales At_s Av_s 0.249 ―― cm2 cm ≔ Aest = ⋅ π ⎛ ⎜ ⎝ ―― ϕest 2 ⎞ ⎟ ⎠ 2 0.785 cm2 ≔ Av = ⋅ #ramales Aest 1.571 cm2 ≔ s = ―――――――― Av + #ramales At_s Av_s 6.299 cm
  • 14.
    C r e a d o c o n P T C M a t h c a d E x p r e s s . C o n s u l t e w w w . m a t h c a d . c o m p a r a o b t e n e r m á s i n f o r m a c i ó n . Separación máxim permisibleentre estribos ≔ s1 = ―― Ph 8 177.5 mm ≔ s2 300 mm ≔ smax = min( ( , s1 s2) ) 177.5 mm Zona Confinamiento (NEC 15) ≔ s1 = ― d 4 11.971 cm = 2 h 110 cm ≔ s2 = ⋅ 6 ϕLB2 12 cm ≔ s3 20 cm ≔ smax = min( ( , , s1 s2 s3) ) 11.971 cm ≔ s = min( ( , smax s) ) 6.299 cm ≔ s = Trunc( ( , s 1 cm) ) 6 cm 1 = ϕest 10 mm @ = s 6 cm Zona No confinada = ⋅ #ramales At_s 0.103 ―― cm2 cm ≔ Aest = ⋅ π ⎛ ⎜ ⎝ ―― ϕest 2 ⎞ ⎟ ⎠ 2 0.785 cm2 ≔ Av = ⋅ #ramales Aest 1.571 cm2 ≔ s = ――――― Av #ramales At_s 15.178 cm ≔ smax = ― d 2 23.943 cm ≔ s = min( ( , smax s) ) 15.178 cm ≔ s = Trunc( ( , s 1 cm) ) 15 cm 1 = ϕest 10 mm @ = s 15 cm
  • 15.
    C r e a d o c o n P T C M a t h c a d E x p r e s s . C o n s u l t e w w w . m a t h c a d . c o m p a r a o b t e n e r m á s i n f o r m a c i ó n . Área mínima deestribos = ⋅ ⋅ ― 1 16 ‾‾‾‾‾‾‾ ⋅ f'c MPa ―― ⋅ b s fy 33.127 mm2 = ⋅ ― 1 3 ―― ⋅ b s fy MPa 36.418 mm2 = < ⋅ ⋅ ― 1 16 ‾‾‾‾‾‾‾ ⋅ f'c MPa ―― ⋅ b s fy ⋅ ― 1 3 ―― ⋅ b s fy MPa 1 Selección del refuerzo longitudinal por torsión ≔ A_L = ⋅ ⋅ ⋅ At_s Ph ⎛ ⎜ ⎝ ― fy fy ⎞ ⎟ ⎠ ( (cot( (θ) )) ) 2 734.785 mm2 = h 55 cm ≔ #lechos 3 ≔ espaciamiento = ―――――――――― - - - h ⋅ 2 rec ϕest ⋅ #lechos ϕL - #lechos 1 20.7 cm = < espaciamiento 30 cm 1 ≔ ALecho1 = + ―― A_L 3 As 27.079 cm2 ≔ ALecho2 = ―― A_L 3 2.449 cm2 ≔ #3 2 ≔ ϕL 22 mm ≔ #B1 2 = ΦLB1 22 mm ≔ ALecho3 = ―― A_L 3 2.449 cm2 ≔ #B2 3 = ΦLB2 20 mm Lecho 1 ≔ #1 1 ≔ ϕ1 20 mm ≔ A1 = + + + ⋅ ⋅ π ⎛ ⎜ ⎝ ―― ϕ1 2 ⎞ ⎟ ⎠ 2 #1 ⋅ ⋅ 2 π ⎛ ⎜ ⎝ ―― ϕL 2 ⎞ ⎟ ⎠ 2 ⋅ ⋅ 2 π ⎛ ⎜ ⎝ ―― ΦLB1 2 ⎞ ⎟ ⎠ 2 ⋅ ⋅ 3 π ⎛ ⎜ ⎝ ―― ΦLB2 2 ⎞ ⎟ ⎠ 2 27.772 cm2 = ≤ ALecho1 A1 1 Lecho 2 ≔ #2 2 ≔ ϕ2 14 mm ≔ A2 = ⋅ π ⎛ ⎜ ⎝ ―― ϕ2 2 ⎞ ⎟ ⎠ 2 #2 3.079 cm2 = ≤ ALecho2 A2 1 Lecho 3 ≔ #3 2 ≔ ϕ3 ϕL ≔ A3 = ⋅ ⋅ π ⎛ ⎜ ⎝ ―― ϕ3 2 ⎞ ⎟ ⎠ 2 #3 7.603 cm2 = ≤ ALecho3 A3 1