SlideShare a Scribd company logo
1 of 58
Download to read offline
International Journal of Modern Engineering Research (IJMER)
                www.ijmer.com              Vol.2, Issue.4, July-Aug 2012 pp-2110-2167        ISSN: 2249-6645

                   Shell Matricies and Fermion Verticies-Predicational
                     Anteriority and Character Constitution Thereof
            1
             Dr. K. N. Prasanna Kumar, 2Prof. B. S. Kiranagi, 3Prof. C. S. Bagewadi

Abstract: In quantum physics, in order to quantize a gauge theory, like for example Yang-Mills theory, Chern-Simons or BF
model, one method is to perform a gauge fixing. This is done in the BRST and Batalin-Vilkovisky formulation. Another is to
factor out the symmetry by dispensing with vector potentials altogether (they're not physically observable anyway) and work
directly with Wilson loops, Wilson lines contracted with other charged fields at its endpoints and spin networks Presently
renormalization prescriptions of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix have been investigated by
many authors like Yong Zhou. Based on one prescription which is formulated by comparing with the fictitious case of no
mixing of quark generations, they have proposed the substantive limits, singular pauses, general rests, logical attributes and
real relations therefore a new prescription intermodal manifestation which can make the physical amplitude involving
quark's mixing gauge independent and ultraviolet finite. Compared with the previous prescriptions this prescription is very
simple and suitable for actual calculations. Through analytical calculations we also give a strong Proof for the important
hypothesis that in order to keep the CKM matrix gauge independent the unitarity of the CKM matrix must be preserved.
Mass-shell renormalization of fermion mixing matrices have also been delineated and investigated upon by K.-P.O
Diener, B.A Kniehl wherein they consider favorable extensions of the standard model (SM) where the lepton sector contains
Majorana neutrinos with vanishing left-handed mass terms, thus allowing for the see-saw mechanism to operate, and
propose physical on-mass-shell (OS) renormalization conditions for the lepton mixing matrices that comply with ultraviolet
finiteness, gauge-parameter independence, and (pseudo)unitarity This is an important result that motivated us to draw up
the consolidation of some of the most important variables in Fermion and graviton vertices.. A crucial feature is that the
texture zero in the neutrino mass matrix is preserved by renormalization, which is not automatically the case for possible
generalizations of existing renormalization prescriptions for the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix
in the SM. Our renormalization prescription also applies to the special case of the SM and leads to a physical OS definition
of the renormalized CKM matrix. A consummate and link model is built for the variables like gravity, matter field, virtual
photons and other important variables. Nevertheless the stormy petrel Neutrino seems to rule the roost with its own
disnormative prescriptions for itself. Rich IN ITS twists and turns, the Model seems to offer a parade of variables bent on
aggrandizement agenda.

                                                    I.    Introduction:
Ward–Takahashi identity
         In quantum field theory, a Ward-Takahashi identity is an identity between correlation functions that follows from
the global or gauged symmetries of the theory, and which remains valid after renormalization.
         The Ward-Takahashi identity of quantum electrodynamics was originally used by John Clive Ward and Yasushi
Takahashi to relate the wave function renormalization of the electron to its vertex renormalization factor F1(0), guaranteeing
the cancellation of the ultraviolet divergence to all orders of perturbation theory. Later uses include the extension of the
proof of Goldstone's theorem to all orders of perturbation theory.
         The Ward-Takahashi identity is a quantum version of the classical Noether's theorem, and any symmetry in a
quantum field theory can lead to an equation of motion for correlation functions..
The Ward-Takahashi identity applies to correlation functions in momentum space, which do not necessarily have all their
external momenta on-shell. Let


be a QED correlation function involving an external photon with momentum k (where               is the polarization vector of
the photon), n initial-state electrons with momenta              , and n final-state electrons with momenta                 .
Also define         to be the simpler amplitude that is obtained by removing the photon with momentum k from original
amplitude. Then the Ward-Takahashi identity reads




where βˆ’e is the charge of the electron. Note that if       has its external electrons on-shell, then the amplitudes on the right-
hand side of this identity each had one external particle off-shell, and therefore they do not contribute to S-matrix elements.

The Ward identity
The Ward identity is a specialization of the Ward-Takahashi identity to S-matrix elements, which describe physically
possible scattering processes and thus have all their external particles on-shell. Again let

                                                   www.ijmer.com                                                 2110 | P a g e
International Journal of Modern Engineering Research (IJMER)
              www.ijmer.com               Vol.2, Issue.4, July-Aug 2012 pp-2110-2167        ISSN: 2249-6645
 be the amplitude for some QED process involving an external photon with momentum , where                     is the polarization
vector of the photon. Then the Ward identity reads:

Physically, what this identity means is the longitudinal polarization of the photon which arises in the ΞΎ gauge is unphysical
and disappears from the S-matrix.

                                                  II.    Some Reviews:
          Flavor Changing Fermion-Graviton Vertices (SEE FOR DETAILS G. Degrassi, E. Gabrielli, L. Trentadue-
emphasis mine)Authors study the flavor-changing quark-graviton vertex that is induced at the one-loop level when
gravitational interactions are coupled to the standard model. Because of the conservation of the energy-momentum tensor the
corresponding form factors turn out to be finite and gauge-invariant. Analytical expressions of the form factors are provided
at leading order in the external masses. Authors show that flavor-changing interactions in gravity are local if the graviton is
strictly massless while if the graviton has a small mass long-range interactions inducing a flavor-changing contribution in the
Newton potential appear. Flavor-changing processes with massive spin-2 particles are also briefly discussed in the paper. .
These results can be generalized to the case of the lepton-graviton coupling.
          Examples of its use include constraining the tensor structure of the vacuum polarization and of the electron vertex
function in QED. Gauge dependence of the on-shell renormalized mixing matrices WAS STUDIED BY Youichi Yamada It
was recently pointed out that the on-shell renormalization of the CabibboKobayashi-Maskawa (CKM) matrix in the method
by Denner and Sack causes a gauge parameter dependence of the amplitudes. Authors analyze the gauge dependence of the
on-shell renormalization of the mixing matrices both for fermions and scalars in general cases, at the one-loop level. It is also
shown that this gauge dependence can be avoided by fixing the counterterm for the mixing matrices in terms of the off-
diagonal wave function corrections for fermions and scalars after a rearrangement, in a similar manner to the pinch technique
for gauge bosons. Particles in the same representation under unbroken symmetries can mix with each other. The neutral
gauge bosons, quarks, and massive neutrinos in the Standard Model (SM) are well-known examples. New particles in
extensions of the Standard Model also show the mixings. For example, in the minimal supersymmetric (SUSY) standard
model (MSSM), a very promising extension, super partners of most SM particles show the mixing .The mixing of particles is
expressed in terms of the mixing matrix, which represents the relations between the gauge eigenstates and the mass
eigenstates of the particles. The mixing matrices always appear at the couplings of these particles in the mass eigenbasis.
Because of the fact that mass eigenstates at the tree-level mix with each other by radiative corrections, (it calls for) the
mixing matrices have to be renormalized to obtain ultraviolet (UV) finite amplitudes. Denner and Sack have proposed a
simple scheme to renormalize the mixing matrix of Dirac fermions at the one-loop level, which is usually called the on-shell
renormalization scheme. They have required the counterterm for the renormalized mixing matrix to completely absorb the
anti-Hermitian part of the wave function correction δZijfor the external on-shell fields*

                                   III.     GRAVITY AND MATTER FIELDS:
MODULE NUMBERED ONE NOTATION :
𝐺13 : CATEGORY ONE OF GRAVITY
𝐺14 : CATEGORY TWO OFGRAVITY
𝐺15 : CATEGORY THREE OF GRAVITY
𝑇13 : CATEGORY ONE OF MATTER FILEDS
𝑇14 : CATEGORY TWO OF MATTER FIELDS
𝑇15 :CATEGORY THREE OF MATTER FIELDS

GRAVITON FIELD AND CONSERVED MATTER ENERGY MOMENTUM TENSOR(LIKE IN A BANK THE RULE
THAT ASSETS AND LIABILITIES ARE EQUIVALENT IS APPLIED TO THE IBNDIVIDUAL SYSTEMS, THE
CONSERVATION OF ENERGY MOMENTUM TENSOR IS APPLICABLE TO VARIOUS SYSTEMS AND THE
CLASSIFICATION IS BASED ON THE CHARACTERSITICS OF THE SYSTEMS TO WHICH THE CONSERVATION
PRINCIPLE IS APPLIED):
MODULE NUMBERED TWO:
=============================================================================
 𝐺16 : CATEGORY ONE OF GRAVITON FIELD
 𝐺17 : CATEGORY TWO OF GRAVITON FIELD
 𝐺18 : CATEGORY THREE OF GRAVITON FIELD
 𝑇16 : CATEGORY ONE OF CONSERVED MATTER-ENERGY-MOMENTUM TENSOR(WE ARE HERE SPEAKING
OF SYSTEMS TO WHICH IT IS APPLICABLE. PLEASEE THE BANK EXAMPLE GIVEN ABOVE)
 𝑇17 : CATEGORY TWO OF CONSERVED MATTER-ENERGY-MOMENTUM TENSOR
 𝑇18 : CATEGORY THREE OF CONSERVED MATTER-ENERGY-MOMENTUM TENSOR
VIRTUAL PHOTONS AND GRAVITON PHOTON VERTEX:
MODULE NUMBERED THREE:
=============================================================================


                                                   www.ijmer.com                                                 2111 | P a g e
International Journal of Modern Engineering Research (IJMER)
           www.ijmer.com            Vol.2, Issue.4, July-Aug 2012 pp-2110-2167        ISSN: 2249-6645
𝐺20 : CATEGORY ONE OF VIRTUAL PHOTONS(WE HERE SPEAK OF THE CHARACTERISED SYSTEMS FOR
WHICH QUANTUM GAUGE THEORY IS APPLICABLE)
𝐺21 :CATEGORY TWO OF VIRTUAL PHOTONS
𝐺22 : CATEGORY THREE OF VIRTUAL PHOTONS
𝑇20 : CATEGORY ONE OF GRAVITON ELECTRON VERTEX
𝑇21 :CATEGORY TWO OF GRAVITON ELECTRON VERTEX
𝑇22 : CATEGORY THREE OF GRAVITON ELECTRON VERTEX

QUANTUM FIELD THEORY(AGAIN,PARAMETRICIZED SYSTEMS TO WHICH QFT COULD BE APPLIED
IS TAKEN IN TO CONSIDERATION AND RENORMALIZATION THEORY(BASED ON CERTAIN
VARAIBLES OF THE SYSTEM WHICH CONSEQUENTIALLY CLSSIFIABLE ON PARAMETERS)
: MODULE NUMBERED FOUR:
============================================================================

 𝐺24 : CATEGORY ONE OF QUANTUM FIELD THEORY(EVALUATIVE PARAMETRICIZATION OF SITUATIONAL
ORIENTATIONS AND ESSENTIAL COGNITIVE ORIENTATION AND CHOICE VARIABLES OF THE SYSTEM TO
WHICH QFT IS APPLICABLE)
 𝐺25 : CATEGORY TWO OF QUANTUM FIELD THEORY
 𝐺26 : CATEGORY THREE OF QUANTUM FIELD THEORY
 𝑇24 :CATEGORY ONE OF RENORMALIZATION THEORY
 𝑇25 :CATEGORY TWO OF RENORMALIZATION THEORY(SYSTEMIC INSTRUMENTAL CHARACTERISATIONS
AND ACTION ORIENTATIONS AND FUYNCTIONAL IMPERATIVES OF CHANGE MANIFESTED THEREIN )
 𝑇26 : CATEGORY THREE OF QUANTUM FIELD THEORY
VIRTUAL ELECTRONS AND GRAVITON PHOTON VERTEX
MODULE NUMBERED FIVE:
=============================================================================
 𝐺28 : CATEGORY ONE OF VIRTUAL ELECTRONS
 𝐺29 : CATEGORY TWO OFVIRTUAL ELECTRONS
 𝐺30 :CATEGORY THREE OF VIRTUAL ELECTRONS
 𝑇28 :CATEGORY ONE OF GRAVITON PHOTON VERTEX
 𝑇29 :CATEGORY TWO OF GRAVITON PHOTON VERTEX
 𝑇30 :CATEGORY THREE OF GRAVITON PHOTON VERTEX
=========================================================================
QUANTUM CORRECTIONS TO ON SHELL MATRIX (VIRTUAKL GRAVITONS ARE NOT INCLUDED IN
THE LOOPS) AND WARD IDENTITIES FROM MATTER ENERGY MOMENTUM CONSERVATION(LOT OF
SYSTEMS CONSERVE THE MASS ENERGY AND THE CLASSIFICATION IS BASED ON THE
PARAMETRICIZATION OF THE SYSTEMS)
MODULE NUMBERED SIX:

=============================================================================
 𝐺32 : CATEGORY ONE OF QUANTUM CORRECTION TO SHELL MATRIX
 𝐺33 : CATEGORY TWO OF QUANTUM CORRECTIONS TO SHELL MATRIX
 𝐺34 : CATEGORY THREE OFQUANTUM CORRECTIONS TO SHELL MATRIX
 𝑇32 : CATEGORY ONE OF WARD IDENTITIES FROM MASS-ENERGY-MOMENTUM CONSERVATION(AGAIN
WE RECAPITUALTE THE BANK EXAMPLES THERE ARE MILLIONS OF SYSTEMS FOR WHICH THE
CONSERVATION HOLDS AND WE ARE CLASSIFYING THE SYSTEMS AND WARD IDENTITIES THEREOF)
 𝑇33 : CATEGORY TWO OF WARD IDENTITIES
 𝑇34 : CATEGORY THREE OF WARD IDENTITIES
CHARGED WEAK CURRENTS AND ONE LOOP FLAVOUR CHANGING NEUTRAL CURRENTS(FCNC) IN
THE FERMION PORTFOLIO:
MODULE NUMBERED SEVEN
==========================================================================
 𝐺36 : CATEGORY ONE OF CHARGED WEAK CURRENTS
 𝐺37 : CATEGORY TWO OF CHARGED WEAK CURRENTS
 𝐺38 : CATEGORY THREE OF CHARGED WEAK CURRENTS (ENERGY EXCITATION OF THE VACUUM AND
CONCOMITANT GENERATION OF ENERGY DIFFERENTIAL-TIME LAG OR INSTANTANEOUSNESSMIGHT
EXISTS WHEREBY ACCENTUATION AND ATTRITIONS MODEL MAY ASSUME ZERO POSITIONS IS AN
EXAMPLE)
 𝑇36 : CATEGORY ONE OF FCNC IN THE FERMIONS SECTOR
 𝑇37 : CATEGORY TWO OF FCNC IN THE FERMIONS SECTOR
 𝑇38 : CATEGORY THREE OF FCNC IN THE FERMIONS SECTOR

                                        www.ijmer.com                                    2112 | P a g e
International Journal of Modern Engineering Research (IJMER)
          www.ijmer.com            Vol.2, Issue.4, July-Aug 2012 pp-2110-2167        ISSN: 2249-6645
===============================================================================

  π‘Ž13 1 , π‘Ž14 1 , π‘Ž15 1 ,              𝑏13 1 , 𝑏14 1 , 𝑏15 1                                   π‘Ž16    2
                                                                                                          , π‘Ž17    2
                                                                                                                       , π‘Ž18    2
                                                                                                                                               𝑏16    2
                                                                                                                                                              , 𝑏17       2
                                                                                                                                                                              , 𝑏18   2
                                                                                                                                                                                          :
       3        3        3            3
  π‘Ž20    , π‘Ž21    , π‘Ž22      , 𝑏20       , 𝑏21 3 , 𝑏22 3
       4        4        4          4
  π‘Ž24    , π‘Ž25    , π‘Ž26     , 𝑏24      , 𝑏25 4 , 𝑏26 4 , 𝑏28                       5
                                                                                       , 𝑏29    5
                                                                                                     , 𝑏30    5
                                                                                                                  , π‘Ž28    5
                                                                                                                               , π‘Ž29     5
                                                                                                                                             , π‘Ž30    5
                                                                                                                                                              ,
       6        6        6          6
  π‘Ž32    , π‘Ž33    , π‘Ž34     , 𝑏32      , 𝑏33 6 , 𝑏34 6
are Accentuation coefficients
                     β€²                                   β€²
  π‘Ž13 1 , π‘Ž14 1 , π‘Ž15 1 ,
   β€²        β€²
                                      𝑏13 1 , 𝑏14 1 , 𝑏15 1 ,
                                       β€²        β€²                                           β€²
                                                                                           π‘Ž16       2       β€²
                                                                                                          , π‘Ž17   2       β€²
                                                                                                                       , π‘Ž18   2
                                                                                                                                    ,            β€²
                                                                                                                                                𝑏16       2          β€²
                                                                                                                                                                  , 𝑏17   2      β€²
                                                                                                                                                                              , 𝑏18   2
     β€²  3     β€²  3     β€²   3      β€²  3       β€² 3      β€² 3
, π‘Ž20     , π‘Ž21    , π‘Ž22      , 𝑏20 , 𝑏21         , 𝑏22
            β€²                              β€²
  π‘Ž24 4 , π‘Ž25 4 , π‘Ž26 4 , 𝑏24 4 , 𝑏25 4 , 𝑏26 4 , 𝑏28
   β€²                 β€²          β€²                   β€²      β€²                       5      β€²
                                                                                       , 𝑏29    5       β€²
                                                                                                     , 𝑏30    5                     β€²
                                                                                                                                   π‘Ž28   5      β€²
                                                                                                                                             , π‘Ž29    5      β€²
                                                                                                                                                          , π‘Ž30           5
                                                                                                                                                                                          ,
  π‘Ž32 6 , π‘Ž33 6 , π‘Ž34 6 , 𝑏32 6 , 𝑏33 6 , 𝑏34 6
   β€²        β€²        β€²          β€²          β€²        β€²

are Dissipation coefficientsβˆ—

GRAVITY AND MATTER FIELDS:
MODULE NUMBERED ONE

The differential system of this model is now (Module Numbered one)*1
𝑑 𝐺13
      = π‘Ž13 1 𝐺14 βˆ’ π‘Ž13 1 + π‘Ž13 1 𝑇14 , 𝑑 𝐺13 *2
                         β€²          β€²β€²
  𝑑𝑑
𝑑 𝐺14            1            β€²    1      β€²β€²      1
        = π‘Ž14        𝐺13 βˆ’   π‘Ž14       + π‘Ž14               𝑇14 , 𝑑     𝐺14 *3
  𝑑𝑑
𝑑 𝐺15            1            β€²    1        β€²β€²    1
  𝑑𝑑
        = π‘Ž15        𝐺14 βˆ’   π‘Ž15       +   π‘Ž15             𝑇14 , 𝑑     𝐺15 *4
𝑑 𝑇13            1            β€²    1        β€²β€²    1
        = 𝑏13        𝑇14 βˆ’   𝑏13       βˆ’   𝑏13            𝐺, 𝑑       𝑇13 *5
  𝑑𝑑
𝑑 𝑇14            1            β€²    1      β€²β€²      1
        = 𝑏14        𝑇13 βˆ’   𝑏14       βˆ’ 𝑏14              𝐺, 𝑑       𝑇14 *6
  𝑑𝑑
𝑑 𝑇15            1            β€²    1      β€²β€²      1
        = 𝑏15        𝑇14 βˆ’   𝑏15       βˆ’ 𝑏15              𝐺, 𝑑       𝑇15 *7
 𝑑𝑑
       β€²β€²   1
+     π‘Ž13
       𝑇14 , 𝑑 = First augmentation factor *8
     1 β€²β€²
βˆ’     𝑏13
       𝐺, 𝑑 = First detritions factor*
GRAVITON FIELD AND CONSERVED MATTER ENERGY MOMENTUM TENSOR(LIKE IN A BANK THE
RULE THAT ASSETS AND LIABILITIES ARE EQUIVALENT IS APPLIED TO THE IBNDIVIDUAL SYSTEMS,
THE CONSERVATION OF ENERGY MOMENTUM TENSOR IS APPLICABLE TO VARIOUS SYSTEMS AND
THE CLASSIFICATION IS BASED ON THE CHARACTERSITICS OF THE SYSTEMS TO WHICH THE
CONSERVATION PRINCIPLE IS APPLIED):
 MODULE NUMBERED TWO:
:

The differential system of this model is now ( Module numbered two)*9
𝑑 𝐺16
  𝑑𝑑
      = π‘Ž16 2 𝐺17 βˆ’ π‘Ž16 2 + π‘Ž16 2 𝑇17 , 𝑑 𝐺16 *10
                         β€²          β€²β€²

𝑑 𝐺17            2            β€²    2      β€²β€²      2
  𝑑𝑑
        = π‘Ž17        𝐺16 βˆ’   π‘Ž17       + π‘Ž17               𝑇17 , 𝑑     𝐺17 *11
𝑑 𝐺18            2            β€²    2      β€²β€²      2
        = π‘Ž18        𝐺17 βˆ’   π‘Ž18       + π‘Ž18               𝑇17 , 𝑑     𝐺18 *12
  𝑑𝑑
𝑑 𝑇16            2            β€²    2        β€²β€²    2
  𝑑𝑑
        = 𝑏16        𝑇17 βˆ’   𝑏16       βˆ’   𝑏16             𝐺19 , 𝑑       𝑇16 *13
𝑑 𝑇17            2            β€²    2        β€²β€²    2
  𝑑𝑑
        = 𝑏17        𝑇16 βˆ’   𝑏17       βˆ’   𝑏17             𝐺19 , 𝑑       𝑇17 *14
𝑑 𝑇18            2            β€²    2      β€²β€²      2
 𝑑𝑑
        = 𝑏18        𝑇17 βˆ’   𝑏18       βˆ’ 𝑏18               𝐺19 , 𝑑       𝑇18 *15
       β€²β€²   2
+     π‘Ž16       𝑇17 , 𝑑 = First augmentation factor *16
       β€²β€²   2
βˆ’     𝑏16         𝐺19 , 𝑑 = First detritions factor *17

VIRTUAL PHOTONS AND GRAVITON PHOTON VERTEX:
MODULE NUMBERED THREE

The differential system of this model is now (Module numbered three)*18
𝑑 𝐺20
  𝑑𝑑
      = π‘Ž20 3 𝐺21 βˆ’ π‘Ž20 3 + π‘Ž20 3 𝑇21 , 𝑑 𝐺20 *19
                          β€²         β€²β€²

𝑑 𝐺21            3            β€²    3      β€²β€²          3
  𝑑𝑑
        = π‘Ž21        𝐺20 βˆ’   π‘Ž21       + π‘Ž21               𝑇21 , 𝑑     𝐺21 *20
𝑑 𝐺22            3            β€²    3         β€²β€²       3
  𝑑𝑑
        = π‘Ž22        𝐺21 βˆ’   π‘Ž22       +    π‘Ž22            𝑇21 , 𝑑     𝐺22 *21
𝑑 𝑇20            3            β€²    3      β€²β€²      3
        = 𝑏20        𝑇21 βˆ’   𝑏20       βˆ’ 𝑏20              𝐺23 , 𝑑      𝑇20 *22
  𝑑𝑑
𝑑 𝑇21            3            β€²    3      β€²β€²      3
  𝑑𝑑
        = 𝑏21        𝑇20 βˆ’   𝑏21       βˆ’ 𝑏21              𝐺23 , 𝑑      𝑇21 *23
𝑑 𝑇22            3            β€²    3        β€²β€²    3
        = 𝑏22        𝑇21 βˆ’   𝑏22       βˆ’   𝑏22            𝐺23 , 𝑑      𝑇22 *24
 𝑑𝑑

                                                                      www.ijmer.com                                                                                  2113 | P a g e
International Journal of Modern Engineering Research (IJMER)
              www.ijmer.com                Vol.2, Issue.4, July-Aug 2012 pp-2110-2167        ISSN: 2249-6645
+ π‘Ž20 3 𝑇21 , 𝑑 = First augmentation factor*
       β€²β€²

βˆ’ 𝑏20 3 𝐺23 , 𝑑 = First detritions factor *25
       β€²β€²

QUANTUM FIELD THEORY(AGAIN,PARAMETRICIZED SYSTEMS TO WHICH QFT COULD BE APPLIED
IS TAKEN IN TO CONSIDERATION AND RENORMALIZATION THEORY(BASED ON CERTAIN
VARAIBLES OF THE SYSTEM WHICH CONSEQUENTIALLY CLSSIFIABLE ON PARAMETERS)
: MODULE NUMBERED FOUR
The differential system of this model is now (Module numbered Four)*26
 𝑑 𝐺24
   𝑑𝑑
        = π‘Ž24 4 𝐺25 βˆ’ π‘Ž24 4 + π‘Ž24 4 𝑇25 , 𝑑 𝐺24 *27
                          β€²           β€²β€²

𝑑 𝐺25            4            β€²    4      β€²β€²         4
        = π‘Ž25        𝐺24 βˆ’   π‘Ž25       + π‘Ž25             𝑇25 , 𝑑   𝐺25 *28
  𝑑𝑑
𝑑 𝐺26            4            β€²    4      β€²β€²         4
        = π‘Ž26        𝐺25 βˆ’   π‘Ž26       + π‘Ž26             𝑇25 , 𝑑   𝐺26 *29
  𝑑𝑑
𝑑 𝑇24            4            β€²    4      β€²β€²     4
        = 𝑏24        𝑇25 βˆ’   𝑏24       βˆ’ 𝑏24             𝐺27 , 𝑑     𝑇24 *30
  𝑑𝑑
𝑑 𝑇25            4            β€²    4        β€²β€²   4
        = 𝑏25        𝑇24 βˆ’   𝑏25       βˆ’   𝑏25           𝐺27 , 𝑑     𝑇25 *31
  𝑑𝑑
𝑑 𝑇26            4            β€²    4        β€²β€²   4
 𝑑𝑑
        = 𝑏26        𝑇25 βˆ’   𝑏26       βˆ’   𝑏26           𝐺27 , 𝑑     𝑇26 *32
       β€²β€²   4
+     π‘Ž24
        𝑇25 , 𝑑 = First augmentation factor*33
     4 β€²β€²
βˆ’     𝑏24 𝐺27 , 𝑑 = First detritions factor *34
VIRTUAL ELECTRONS AND GRAVITON PHOTON VERTEX
MODULE NUMBERED FIVE

The differential system of this model is now (Module number five)*35
𝑑 𝐺28
      = π‘Ž28 5 𝐺29 βˆ’ π‘Ž28 5 + π‘Ž28 5 𝑇29 , 𝑑 𝐺28 *36
                          β€²         β€²β€²
  𝑑𝑑
𝑑 𝐺29            5            β€²    5      β€²β€²     5
  𝑑𝑑
        = π‘Ž29        𝐺28 βˆ’   π‘Ž29       + π‘Ž29             𝑇29 , 𝑑   𝐺29 *37
𝑑 𝐺30            5            β€²    5        β€²β€²       5
        = π‘Ž30        𝐺29 βˆ’   π‘Ž30       +   π‘Ž30           𝑇29 , 𝑑   𝐺30 *38
  𝑑𝑑
𝑑 𝑇28            5            β€²    5        β€²β€²   5
        = 𝑏28        𝑇29 βˆ’   𝑏28       βˆ’   𝑏28           𝐺31 , 𝑑     𝑇28 *39
  𝑑𝑑
𝑑 𝑇29            5            β€²    5      β€²β€²     5
        = 𝑏29        𝑇28 βˆ’   𝑏29       βˆ’ 𝑏29             𝐺31 , 𝑑     𝑇29 *40
  𝑑𝑑
𝑑 𝑇30            5            β€²    5        β€²β€²   5
 𝑑𝑑
        = 𝑏30        𝑇29 βˆ’   𝑏30       βˆ’   𝑏30           𝐺31 , 𝑑     𝑇30 *41
       β€²β€²   5
+     π‘Ž28       𝑇29 , 𝑑 = First augmentation factor *42
       β€²β€²   5
βˆ’     𝑏28         𝐺31 , 𝑑 = First detritions factor *43

QUANTUM CORRECTIONS TO ON SHELL MATRIX (VIRTUAKL GRAVITONS ARE NOT INCLUDED IN
THE LOOPS) AND WARD IDENTITIES FROM MATTER ENERGY MOMENTUM CONSERVATION(LOT OF
SYSTEMS CONSERVE THE MASS ENERGY AND THE CLASSIFICATION IS BASED ON THE
PARAMETRICIZATION OF THE SYSTEMS)
MODULE NUMBERED SIX:

The differential system of this model is now (Module numbered Six)*44
45
𝑑 𝐺32
  𝑑𝑑
      = π‘Ž32 6 𝐺33 βˆ’ π‘Ž32 6 + π‘Ž32 6 𝑇33 , 𝑑 𝐺32 *46
                          β€²         β€²β€²

𝑑 𝐺33            6            β€²    6      β€²β€²         6
  𝑑𝑑
        = π‘Ž33        𝐺32 βˆ’   π‘Ž33       + π‘Ž33             𝑇33 , 𝑑   𝐺33 *47
𝑑 𝐺34            6            β€²    6        β€²β€²       6
  𝑑𝑑
        = π‘Ž34        𝐺33 βˆ’   π‘Ž34       +   π‘Ž34           𝑇33 , 𝑑   𝐺34 *48
𝑑 𝑇32            6            β€²    6        β€²β€²   6
  𝑑𝑑
        = 𝑏32        𝑇33 βˆ’   𝑏32       βˆ’   𝑏32           𝐺35 , 𝑑     𝑇32 *49
𝑑 𝑇33            6            β€²    6      β€²β€²     6
        = 𝑏33        𝑇32 βˆ’   𝑏33       βˆ’ 𝑏33             𝐺35 , 𝑑     𝑇33 *50
  𝑑𝑑
𝑑 𝑇34            6            β€²    6      β€²β€²     6
 𝑑𝑑
        = 𝑏34        𝑇33 βˆ’   𝑏34       βˆ’ 𝑏34             𝐺35 , 𝑑     𝑇34 *51
       β€²β€²   6
+     π‘Ž32       𝑇33 , 𝑑 = First augmentation factor*52

CHARGED WEAK CURRENTS AND ONE LOOP FLAVOUR CHANGING NEUTRAL CURRENTS(FCNC) IN
THE FERMION PORTFOLIO:
MODULE NUMBERED SEVEN
The differential system of this model is now (SEVENTH MODULE)*53
𝑑 𝐺36                     β€²         β€²β€²
  𝑑𝑑
      = π‘Ž36 7 𝐺37 βˆ’ π‘Ž36 7 + π‘Ž36 7 𝑇37 , 𝑑 𝐺36 *54
𝑑 𝐺37            7            β€²    7      β€²β€²         7
  𝑑𝑑
        = π‘Ž37        𝐺36 βˆ’   π‘Ž37       + π‘Ž37             𝑇37 , 𝑑   𝐺37 *55
𝑑 𝐺38            7            β€²    7        β€²β€²       7
 𝑑𝑑
        = π‘Ž38        𝐺37 βˆ’   π‘Ž38       +   π‘Ž38           𝑇37 , 𝑑   𝐺38 *56


                                                                   www.ijmer.com               2114 | P a g e
International Journal of Modern Engineering Research (IJMER)
                          www.ijmer.com            Vol.2, Issue.4, July-Aug 2012 pp-2110-2167        ISSN: 2249-6645
𝑑 𝑇36                    7        β€²          β€²β€²
        = 𝑏36              𝑇37 βˆ’ 𝑏36 7 βˆ’ 𝑏36 7        𝐺39 , 𝑑 𝑇36 *57
  𝑑𝑑
𝑑 𝑇37                    7                    β€²        7       β€²β€²               7
 𝑑𝑑
        = 𝑏37                  𝑇36 βˆ’         𝑏37            βˆ’ 𝑏37                           𝐺39 , 𝑑          𝑇37 *58

59
𝑑 𝑇38                    7                    β€²        7       β€²β€²               7
 𝑑𝑑
        = 𝑏38                  𝑇37 βˆ’         𝑏38            βˆ’ 𝑏38                           𝐺39 , 𝑑          𝑇38 *60
       β€²β€²     7
+     π‘Ž36
        𝑇37 , 𝑑 = First augmentation factor *61
      7β€²β€²
βˆ’     𝑏36 𝐺39 , 𝑑 = First detritions factor
FIRST MODULE CONCATENATION:
                      π‘Ž13 1 + π‘Ž13 1 𝑇14 , 𝑑 + π‘Ž16
                       β€²         β€²β€²             β€²β€²                                                                            2,2,
                                                                                                                                         𝑇17 , 𝑑           β€²β€²
                                                                                                                                                        + π‘Ž20     3,3,
                                                                                                                                                                            𝑇21 , 𝑑
𝑑 𝐺13                     1                     β€²β€²              4,4,4,4,                              β€²β€²            5,5,5,5,                              β€²β€²    6,6,6,6,
        = π‘Ž13                  𝐺14 βˆ’         + π‘Ž24                                𝑇25 , 𝑑          + π‘Ž28                               𝑇29 , 𝑑         + π‘Ž32                  𝑇33 , 𝑑    𝐺13
 𝑑𝑑
                                                                                                         β€²β€²             7
                                                                                                      + π‘Ž36                        𝑇37 , 𝑑
                                                 β€²         1               β€²β€²       1                                β€²β€²       2,2,                         β€²β€²     3,3,
                                                π‘Ž14                +      π‘Ž14               𝑇14 , 𝑑        +        π‘Ž17                  𝑇17 , 𝑑        + π‘Ž21               𝑇21 , 𝑑
𝑑 𝐺14                     1                     β€²β€²              4,4,4,4,                              β€²β€²            5,5,5,5,                              β€²β€²    6,6,6,6,
 𝑑𝑑
        = π‘Ž14                  𝐺13 βˆ’         + π‘Ž25                                𝑇25 , 𝑑          + π‘Ž29                               𝑇29 , 𝑑         + π‘Ž33                  𝑇33 , 𝑑    𝐺14
                                                                                                         β€²β€²               7
                                                                                                      + π‘Ž37                         𝑇37 , 𝑑
                                                 β€²         1               β€²β€²       1                                β€²β€²       2,2,                         β€²β€²     3,3,
                                                π‘Ž15                +      π‘Ž15               𝑇14 , 𝑑        +        π‘Ž18                  𝑇17 , 𝑑        + π‘Ž22               𝑇21 , 𝑑
𝑑 𝐺15                                           β€²β€²              4,4,4,4,                              β€²β€²            5,5,5,5,                              β€²β€²    6,6,6,6,
        = π‘Ž15             1
                               𝐺14 βˆ’         + π‘Ž26                                𝑇25 , 𝑑          + π‘Ž30                               𝑇29 , 𝑑         + π‘Ž34                  𝑇33 , 𝑑    𝐺15
 𝑑𝑑
                                                                                                         β€²β€²             7
                                                                                                      + π‘Ž38                        𝑇37 , 𝑑

                   β€²β€²      1                        β€²β€²          1                              β€²β€²      1
Where             π‘Ž13               𝑇14 , 𝑑 ,      π‘Ž14                    𝑇14 , 𝑑 ,           π‘Ž15               𝑇14 , 𝑑            are first augmentation coefficients for category 1, 2 and 3
         β€²β€²       2,2,                              β€²β€²         2,2,                                    β€²β€²       2,2,
 +      π‘Ž16                   𝑇17 , 𝑑 , +          π‘Ž17                     𝑇17 , 𝑑 , +                π‘Ž18                     𝑇17 , 𝑑 are second augmentation coefficient for category 1, 2 and
3
    β€²β€²            3,3,                     β€²β€²                  3,3,                    β€²β€²                    3,3,
 + π‘Ž20                        𝑇21 , 𝑑 , + π‘Ž21                             𝑇21 , 𝑑 , + π‘Ž22                                 𝑇21 , 𝑑 are third augmentation coefficient for category 1, 2 and 3
     β€²β€²       4,4,4,4,                                      β€²β€²         4,4,4,4,                       β€²β€²                      4,4,4,4,
+ π‘Ž24                              𝑇25 , 𝑑   , +           π‘Ž25                           𝑇25 , 𝑑 , + π‘Ž26                                       𝑇25 , 𝑑 are fourth augmentation coefficient for category 1,
2 and 3
     β€²β€²       5,5,5,5,                          β€²β€²                 5,5,5,5,                      β€²β€²                    5,5,5,5,
 + π‘Ž28                             𝑇29 , 𝑑 , + π‘Ž29                                  𝑇29 , 𝑑 , + π‘Ž30                                      𝑇29 , 𝑑        are fifth augmentation coefficient for category 1, 2
and 3
     β€²β€²       6,6,6,6,                          β€²β€²                  6,6,6,6,                     β€²β€²                       6,6,6,6,
 + π‘Ž32                             𝑇33 , 𝑑 , + π‘Ž33                                  𝑇33 , 𝑑 , + π‘Ž34                                          𝑇33 , 𝑑     are sixth augmentation coefficient for category 1, 2
and 3
     β€²β€²       7                     β€²β€²             7                   β€²β€²                     7
 + π‘Ž36                   𝑇37 , 𝑑 + π‘Ž37                      𝑇37 , 𝑑 + π‘Ž38                             𝑇37 , 𝑑 ARESEVENTHAUGMENTATION COEFFICIENTS
                                                    β€²          1            β€²β€²          1                     β€²β€²              7,                          β€²β€²    3,3,
                                                   𝑏13              βˆ’      𝑏16               𝐺, 𝑑          βˆ’ 𝑏36                      𝐺39 , 𝑑          – 𝑏20              𝐺23 , 𝑑
𝑑 𝑇13                                           β€²β€²             4,4,4,4,                               β€²β€²           5,5,5,5,                               β€²β€²   6,6,6,6,
        = 𝑏13            1
                               𝑇14 βˆ’         βˆ’ 𝑏24                              𝐺27 , 𝑑            βˆ’ 𝑏28                              𝐺31 , 𝑑          – 𝑏32                 𝐺35 , 𝑑     𝑇13
 𝑑𝑑

                                                                                                         β€²β€²            7,
                                                                                                      βˆ’ 𝑏36                        𝐺39 , 𝑑
                                                 β€²         1               β€²β€²       1                            β€²β€²       2,2,                            β€²β€²    3,3,
                                                𝑏14                βˆ’      𝑏14               𝐺, 𝑑       βˆ’        𝑏17                   𝐺19 , 𝑑          – 𝑏21              𝐺23 , 𝑑
𝑑 𝑇14                    1                      β€²β€²             4,4,4,4,                               β€²β€²           5,5,5,5,                           β€²β€²       6,6,6,6,
        = 𝑏14                  𝑇13 βˆ’         βˆ’ 𝑏25                              𝐺27 , 𝑑            – 𝑏29                              𝐺31 , 𝑑      – 𝑏33                     𝐺35 , 𝑑    𝑇14
 𝑑𝑑
                                                                                                       β€²β€²              7,
                                                                                                    βˆ’ 𝑏37                          𝐺39 , 𝑑
                                                 β€²         1               β€²β€²       1                            β€²β€²         2,2,                          β€²β€²    3,3,
                                                𝑏15                βˆ’      𝑏15               𝐺, 𝑑         βˆ’      𝑏18                    𝐺19 , 𝑑         – 𝑏22              𝐺23 , 𝑑
𝑑 𝑇15                    1
 𝑑𝑑
        = 𝑏15                  𝑇14 βˆ’            β€²β€²
                                             – 𝑏26             4,4,4,4,
                                                                                𝐺27 , 𝑑               β€²β€²
                                                                                                   – 𝑏30         5,5,5,5,
                                                                                                                                     𝐺31 , 𝑑          β€²β€²
                                                                                                                                                   – 𝑏34       6,6,6,6,
                                                                                                                                                                             𝐺35 , 𝑑    𝑇15
                                                                                                         β€²β€²            7,
                                                                                                      βˆ’ 𝑏38                        𝐺39 , 𝑑
                      β€²β€²       1                            β€²β€²        1                             β€²β€²      1
Where βˆ’              𝑏13               𝐺, 𝑑 , βˆ’            𝑏14              𝐺, 𝑑 , βˆ’               𝑏15              𝐺, 𝑑 are first detritions coefficients for category 1, 2 and 3
   β€²β€²         2,2,                      β€²β€²                 2,2,                        β€²β€²                   2,2,
βˆ’ 𝑏16                      𝐺19 , 𝑑 , βˆ’ 𝑏17                                𝐺19 , 𝑑 , βˆ’ 𝑏18                              𝐺19 , 𝑑           are second detritions coefficients for category 1, 2 and 3
         β€²β€²   3,3,                               β€²β€²         3,3,                                    β€²β€²       3,3,
βˆ’       𝑏20                𝐺23 , 𝑑 , βˆ’          𝑏21                       𝐺23 , 𝑑 , βˆ’              𝑏22                    𝐺23 , 𝑑 are third detritions coefficients for category 1, 2 and 3
         β€²β€²   4,4,4,4,                                  β€²β€²          4,4,4,4,                                     β€²β€²       4,4,4,4,
 βˆ’      𝑏24                     𝐺27 , 𝑑 , βˆ’            𝑏25                              𝐺27 , 𝑑 , βˆ’             𝑏26                          𝐺27 , 𝑑 are fourth detritions coefficients for category 1, 2
and 3


                                                                                                       www.ijmer.com                                                                           2115 | P a g e
International Journal of Modern Engineering Research (IJMER)
                      www.ijmer.com              Vol.2, Issue.4, July-Aug 2012 pp-2110-2167            ISSN: 2249-6645
     β€²β€²       5,5,5,5,
 βˆ’ 𝑏28                  𝐺31 , 𝑑 , βˆ’ 𝑏29 5,5,5,5, 𝐺31 , 𝑑 , βˆ’ 𝑏30 5,5,5,5, 𝐺31 , 𝑑 are fifth detritions coefficients for category 1, 2
                                     β€²β€²                         β€²β€²

and 3
     β€²β€²       6,6,6,6,                      β€²β€²              6,6,6,6,                                  β€²β€²              6,6,6,6,
 βˆ’ 𝑏32                       𝐺35 , 𝑑   , βˆ’ 𝑏33                                𝐺35 , 𝑑            , βˆ’ 𝑏34                                𝐺35 , 𝑑        are sixth detritions coefficients for category 1, 2
and 3
    β€²β€²        7,                      β€²β€²     7,                           β€²β€²                7,
βˆ’ 𝑏36                 𝐺39 , 𝑑      βˆ’ 𝑏36                𝐺39 , 𝑑        βˆ’ 𝑏36                        𝐺39 , 𝑑 ARE SEVENTH DETRITION COEFFICIENTS
*62
                                           β€²       1          β€²β€²          1                           β€²β€²              2,2,                         β€²β€²      3,3,
𝑑 𝑇15                                     𝑏15              βˆ’ 𝑏15                    𝐺, 𝑑           βˆ’ 𝑏18                           𝐺19 , 𝑑      – 𝑏22                 𝐺23 , 𝑑
                       1
  𝑑𝑑
        = 𝑏15               𝑇14 βˆ’                                                                                                                                                         𝑇15 *63
                                          β€²β€²          4,4,4,4,                             β€²β€²                  5,5,5,5,                            β€²β€²      6,6,6,6,
                                       βˆ’ 𝑏26                           𝐺27 , 𝑑          βˆ’ 𝑏30                                     𝐺31 , 𝑑       βˆ’ 𝑏34                      𝐺35 , 𝑑
         β€²β€²                 1               β€²β€²              1                 β€²β€²                        1
Where βˆ’ 𝑏13                       𝐺, 𝑑 , βˆ’ 𝑏14                      𝐺, 𝑑 , βˆ’ 𝑏15                               𝐺, 𝑑 are first detrition coefficients for category 1, 2 and 3
   β€²β€²         2,2,                      β€²β€²        2,2,                       β€²β€²                         2,2,
βˆ’ 𝑏16                      𝐺19 , 𝑑 , βˆ’ 𝑏17                      𝐺19 , 𝑑 , βˆ’ 𝑏18                                     𝐺19 , 𝑑         are second detritions coefficients for category 1, 2 and 3
         β€²β€²   3,3,                         β€²β€²      3,3,                                      β€²β€²         3,3,
βˆ’       𝑏20                𝐺23 , 𝑑 , βˆ’    𝑏21                   𝐺23 , 𝑑 , βˆ’                 𝑏22                     𝐺23 , 𝑑 are third detritions coefficients for category 1, 2 and 3
     β€²β€²       4,4,4,4,                           β€²β€²        4,4,4,4,                     β€²β€²                          4,4,4,4,
 βˆ’ 𝑏24                       𝐺27 , 𝑑 , βˆ’        𝑏25                        𝐺27 , 𝑑 , βˆ’ 𝑏26                                            𝐺27 , 𝑑 are fourth detritions coefficients for category 1, 2
and 3
     β€²β€²       5,5,5,5,                      β€²β€²              5,5,5,5,                                  β€²β€²               5,5,5,5,
 βˆ’ 𝑏28                       𝐺31 , 𝑑   , βˆ’ 𝑏29                                𝐺31 , 𝑑            , βˆ’ 𝑏30                                𝐺31 , 𝑑        are fifth detritions coefficients for category 1, 2
and 3
 βˆ’ 𝑏32 6,6,6,6, 𝐺35 , 𝑑 , βˆ’ 𝑏33 6,6,6,6, 𝐺35 , 𝑑 , βˆ’ 𝑏34 6,6,6,6, 𝐺35 , 𝑑 are sixth detritions coefficients for category 1, 2
     β€²β€²                       β€²β€²                      β€²β€²

and 3 *64
SECOND MODULE CONCATENATION:*65
                           π‘Ž16 2 + π‘Ž16 2 𝑇17 , 𝑑 + π‘Ž13 1,1, 𝑇14 , 𝑑 + π‘Ž20 3,3,3 𝑇21 , 𝑑
                            β€²         β€²β€²                 β€²β€²                  β€²β€²

𝑑 𝐺16                  2                    β€²β€²             4,4,4,4,4                            β€²β€²                  5,5,5,5,5                         β€²β€²        6,6,6,6,6
 𝑑𝑑
        = π‘Ž16                𝐺17 βˆ’       + π‘Ž24                             𝑇25 , 𝑑           + π‘Ž28                                    𝑇29 , 𝑑      + π‘Ž32                        𝑇33 , 𝑑      𝐺16 βˆ—66
                                                                                                             β€²β€²       7,7,
                                                                                                  +         π‘Ž36                    𝑇37 , 𝑑
                                            β€²      2           β€²β€²          2                               β€²β€²              1,1,                       β€²β€²        3,3,3
                                           π‘Ž17              + π‘Ž17                    𝑇17 , 𝑑            + π‘Ž14                        𝑇14 , 𝑑       + π‘Ž21                   𝑇21 , 𝑑
𝑑 𝐺17                                     β€²β€²            4,4,4,4,4                               β€²β€²              5,5,5,5,5                             β€²β€²       6,6,6,6,6
        = π‘Ž17          2
                             𝐺16 βˆ’     + π‘Ž25                               𝑇25 , 𝑑           + π‘Ž29                                   𝑇29 , 𝑑       + π‘Ž33                        𝑇33 , 𝑑     𝐺17 *67
 𝑑𝑑
                                                                                                     β€²β€²              7,7,
                                                                                                  + π‘Ž37                           𝑇37 , 𝑑
                                            β€²          2             β€²β€²       2                                  β€²β€²         1,1,                          β€²β€²     3,3,3
                                           π‘Ž18              +       π‘Ž18              𝑇17 , 𝑑             +      π‘Ž15                   𝑇14 , 𝑑          + π‘Ž22                𝑇21 , 𝑑
𝑑 𝐺18                  2                    β€²β€²             4,4,4,4,4                            β€²β€²                  5,5,5,5,5                         β€²β€²        6,6,6,6,6
        = π‘Ž18                𝐺17 βˆ’       + π‘Ž26                             𝑇25 , 𝑑           + π‘Ž30                                    𝑇29 , 𝑑      + π‘Ž34                        𝑇33 , 𝑑      𝐺18 *68
 𝑑𝑑
                                                                                                     β€²β€²               7,7,
                                                                                                  + π‘Ž38                            𝑇37 , 𝑑
                      β€²β€²     2                         β€²β€²       2                                    β€²β€²         2
Where +              π‘Ž16          𝑇17 , 𝑑 , +         π‘Ž17              𝑇17 , 𝑑 , +                  π‘Ž18                𝑇17 , 𝑑 are first augmentation coefficients for category 1, 2 and 3
   β€²β€²         1,1,                      β€²β€²         1,1,                                      β€²β€²         1,1,
+ π‘Ž13                      𝑇14 , 𝑑 , + π‘Ž14                      𝑇14 , 𝑑 , +                 π‘Ž15                      𝑇14 , 𝑑         are second augmentation coefficient for category 1, 2 and 3
   β€²β€²         3,3,3                      β€²β€²           3,3,3                      β€²β€²                         3,3,3
+ π‘Ž20                       𝑇21 , 𝑑 , + π‘Ž21                         𝑇21 , 𝑑 , + π‘Ž22                                        𝑇21 , 𝑑      are third augmentation coefficient for category 1, 2 and
3
                                              β€²β€²
+ π‘Ž24 4,4,4,4,4
      β€²β€²
                                 𝑇25 , 𝑑 , + π‘Ž25            4,4,4,4,4                       β€²β€²
                                                                               𝑇25 , 𝑑 , + π‘Ž26                       4,4,4,4,4
                                                                                                                                         𝑇25 , 𝑑        are fourth augmentation coefficient for category
1, 2 and 3
+ π‘Ž28 5,5,5,5,5
      β€²β€²                                      β€²β€²
                                 𝑇29 , 𝑑 , + π‘Ž29             5,5,5,5,5
                                                                                  𝑇29 , 𝑑              β€²β€²
                                                                                                  , + π‘Ž30               5,5,5,5,5
                                                                                                                                             𝑇29 , 𝑑     are fifth augmentation coefficient for category
1, 2 and 3
+ π‘Ž32 6,6,6,6,6
      β€²β€²                                      β€²β€²
                                 𝑇33 , 𝑑 , + π‘Ž33             6,6,6,6,6                         β€²β€²
                                                                                  𝑇33 , 𝑑 , + π‘Ž34                       6,6,6,6,6
                                                                                                                                             𝑇33 , 𝑑     are sixth augmentation coefficient for category
1, 2 and 3 *69

70
   β€²β€²         7,7,                    β€²β€²         7,7,                   β€²β€²                       7,7,
+ π‘Ž36                      𝑇37 , 𝑑 + π‘Ž37                     𝑇37 , 𝑑 + π‘Ž38                                  𝑇37 , 𝑑 ARE SEVENTH DETRITION COEFFICIENTS*71
                                            β€²      2          β€²β€²           2                                β€²β€²             1,1,                     β€²β€²      3,3,3,
                                           𝑏16             βˆ’ 𝑏16                    𝐺19 , 𝑑              βˆ’ 𝑏13                        𝐺, 𝑑       – 𝑏20                   𝐺23 , 𝑑
𝑑 𝑇16                  2
 𝑑𝑑
        = 𝑏16               𝑇17 βˆ’         β€²β€²
                                       βˆ’ 𝑏24          4,4,4,4,4
                                                                          𝐺27 , 𝑑              β€²β€²
                                                                                            – 𝑏28              5,5,5,5,5
                                                                                                                                    𝐺31 , 𝑑           β€²β€²
                                                                                                                                                   – 𝑏32       6,6,6,6,6
                                                                                                                                                                              𝐺35 , 𝑑       𝑇16 *72
                                                                                                    β€²β€²               7,7
                                                                                                 βˆ’ 𝑏36                         𝐺39 , 𝑑




                                                                                                  www.ijmer.com                                                                                        2116 | P a g e
International Journal of Modern Engineering Research (IJMER)
                       www.ijmer.com                           Vol.2, Issue.4, July-Aug 2012 pp-2110-2167        ISSN: 2249-6645
                                              β€²     2          β€²β€²        2                          β€²β€²            1,1,                     β€²β€²      3,3,3,
                                             𝑏17            βˆ’ 𝑏17                 𝐺19 , 𝑑        βˆ’ 𝑏14                       𝐺, 𝑑       – 𝑏21                  𝐺23 , 𝑑
𝑑 𝑇17                  2                      β€²β€²     4,4,4,4,4                            β€²β€²           5,5,5,5,5                           β€²β€²      6,6,6,6,6
        = 𝑏17              𝑇16 βˆ’      –      𝑏25                        𝐺27 , 𝑑        – 𝑏29                              𝐺31 , 𝑑       – 𝑏33                        𝐺35 , 𝑑         𝑇17 *73
 𝑑𝑑
                                                                                               β€²β€²         7,7
                                                                                            βˆ’ 𝑏37                    𝐺39 , 𝑑
                                            β€²       2          β€²β€²        2                          β€²β€²            1,1,                     β€²β€²     3,3,3,
                                           𝑏18              βˆ’ 𝑏18                 𝐺19 , 𝑑        βˆ’ 𝑏15                       𝐺, 𝑑       – 𝑏22                  𝐺23 , 𝑑
𝑑 𝑇18                  2
 𝑑𝑑
        = 𝑏18              𝑇17 βˆ’         β€²β€²
                                      βˆ’ 𝑏26           4,4,4,4,4
                                                                        𝐺27 , 𝑑            β€²β€²
                                                                                        – 𝑏30          5,5,5,5,5
                                                                                                                          𝐺31 , 𝑑           β€²β€²
                                                                                                                                         – 𝑏34     6,6,6,6,6
                                                                                                                                                                     𝐺35 , 𝑑          𝑇18 *74
                                                                                               β€²β€²         7,7
                                                                                            βˆ’ 𝑏38                    𝐺39 , 𝑑
         β€²β€²                 2                      β€²β€²             2                           β€²β€²             2
where βˆ’ b16                      G19 , t      , βˆ’ b17                   G19 , t          , βˆ’ b18                   G19 , t           are first detrition coefficients for category 1, 2 and 3
         β€²β€²   1,1,                      β€²β€²     1,1,                               β€²β€²    1,1,
βˆ’       𝑏13            𝐺, 𝑑 , βˆ’        𝑏14                  𝐺, 𝑑 , βˆ’             𝑏15               𝐺, 𝑑       are second detrition coefficients for category 1,2 and 3
         β€²β€²   3,3,3,                          β€²β€²        3,3,3,                                β€²β€²     3,3,3,
βˆ’       𝑏20                𝐺23 , 𝑑 , βˆ’       𝑏21                  𝐺23 , 𝑑 , βˆ’                𝑏22                    𝐺23 , 𝑑         are third detrition coefficients for category 1,2 and 3
     β€²β€²       4,4,4,4,4                      β€²β€²             4,4,4,4,4                     β€²β€²                 4,4,4,4,4
 βˆ’ 𝑏24                          𝐺27 , 𝑑 , βˆ’ 𝑏25                              𝐺27 , 𝑑 , βˆ’ 𝑏26                                   𝐺27 , 𝑑       are fourth detritions coefficients for category 1,2
and 3
     β€²β€²       5,5,5,5,5                      β€²β€²              5,5,5,5,5                        β€²β€²                  5,5,5,5,5
 βˆ’ 𝑏28                          𝐺31 , 𝑑 , βˆ’ 𝑏29                                  𝐺31 , 𝑑 , βˆ’ 𝑏30                                    𝐺31 , 𝑑 are fifth detritions coefficients for category 1,2
and 3
     β€²β€²       6,6,6,6,6                      β€²β€²             6,6,6,6,6                     β€²β€²                     6,6,6,6,6
 βˆ’ 𝑏32                          𝐺35 , 𝑑 , βˆ’ 𝑏33                              𝐺35 , 𝑑 , βˆ’ 𝑏34                                     𝐺35 , 𝑑      are sixth detritions coefficients for category 1,2
and 3
                          β€²β€²        7,7                 β€²β€²                7,7                     β€²β€²               7,7
                       βˆ’ 𝑏36                 𝐺39 , 𝑑 βˆ’ 𝑏36                             𝐺39 , 𝑑 βˆ’ 𝑏36                          𝐺39 , 𝑑 π‘Žπ‘Ÿπ‘’ 𝑠𝑒𝑣𝑒𝑛𝑑𝑕 π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘ 

THIRD MODULE CONCATENATION:*75
                 π‘Ž20 3 + π‘Ž20 3 𝑇21 , 𝑑
                  β€²       β€²β€²                                                                          β€²β€²
                                                                                                   + π‘Ž16            2,2,2
                                                                                                                                𝑇17 , 𝑑         β€²β€²
                                                                                                                                             + π‘Ž13          1,1,1,
                                                                                                                                                                       𝑇14 , 𝑑
𝑑 𝐺20                                     β€²β€²            4,4,4,4,4,4                            β€²β€²         5,5,5,5,5,5                           β€²β€²          6,6,6,6,6,6
        = π‘Ž20          3
                            𝐺21 βˆ’      + π‘Ž24                                 𝑇25 , 𝑑        + π‘Ž28                               𝑇29 , 𝑑      + π‘Ž32                              𝑇33 , 𝑑    𝐺20 *76
 𝑑𝑑

                                                                                                   β€²β€²            7.7.7.
                                                                                                + π‘Ž36                         𝑇37 , 𝑑
                                               β€²        3      β€²β€²            3                        β€²β€²           2,2,2                       β€²β€²       1,1,1,
                                              π‘Ž21           + π‘Ž21                  𝑇21 , 𝑑         + π‘Ž17                       𝑇17 , 𝑑      + π‘Ž14                     𝑇14 , 𝑑
𝑑 𝐺21                  3                      β€²β€²      4,4,4,4,4,4                                 β€²β€²      5,5,5,5,5,5                              β€²β€²   6,6,6,6,6,6
        = π‘Ž21               𝐺20 βˆ’ +          π‘Ž25                          𝑇25 , 𝑑           +    π‘Ž29                           𝑇29 , 𝑑      +     π‘Ž33                       𝑇33 , 𝑑       𝐺21 *77
 𝑑𝑑
                                                                                                   β€²β€²         7.7.7.
                                                                                                + π‘Ž37                        𝑇37 , 𝑑
                                               β€²        3      β€²β€²            3                        β€²β€²           2,2,2                       β€²β€²       1,1,1,
                                              π‘Ž22           + π‘Ž22                  𝑇21 , 𝑑         + π‘Ž18                       𝑇17 , 𝑑      + π‘Ž15                     𝑇14 , 𝑑
𝑑 𝐺22                  3             β€²β€²               4,4,4,4,4,4                              β€²β€²         5,5,5,5,5,5                          β€²β€²       6,6,6,6,6,6
 𝑑𝑑
        = π‘Ž22               𝐺21 βˆ’ + π‘Ž26                                   𝑇25 , 𝑑           + π‘Ž30                              𝑇29 , 𝑑      + π‘Ž34                           𝑇33 , 𝑑       𝐺22 *78
                                                                                                   β€²β€²         7.7.7.
                                                                                                + π‘Ž38                        𝑇37 , 𝑑

   β€²β€²         3                   β€²β€²           3                     β€²β€²                 3
+ π‘Ž20                𝑇21 , 𝑑 , + π‘Ž21                    𝑇21 , 𝑑 , + π‘Ž22                         𝑇21 , 𝑑      are first augmentation coefficients for category 1, 2 and 3
     β€²β€²       2,2,2                     β€²β€²            2,2,2                           β€²β€²             2,2,2
 + π‘Ž16                     𝑇17 , 𝑑 , + π‘Ž17                       𝑇17 , 𝑑         , + π‘Ž18                           𝑇17 , 𝑑      are second augmentation coefficients for category 1, 2
and 3
     β€²β€²       1,1,1,                    β€²β€²            1,1,1,                   β€²β€²                   1,1,1,
 + π‘Ž13                     𝑇14 , 𝑑 , + π‘Ž14                        𝑇14 , 𝑑 , + π‘Ž15                                  𝑇14 , 𝑑          are third augmentation coefficients for category 1, 2
and 3
                                   β€²β€²
 + π‘Ž24 4,4,4,4,4,4 𝑇25 , 𝑑 , + π‘Ž25 4,4,4,4,4,4 𝑇25 , 𝑑 , + π‘Ž26 4,4,4,4,4,4 𝑇25 , 𝑑 are fourth augmentation coefficients for
     β€²β€²                                                        β€²β€²

category 1, 2 and 3
 + π‘Ž28 5,5,5,5,5,5 𝑇29 , 𝑑 , + π‘Ž29 5,5,5,5,5,5 𝑇29 , 𝑑 , + π‘Ž30 5,5,5,5,5,5 𝑇29 , 𝑑
     β€²β€²                         β€²β€²                          β€²β€²
                                                                                   are fifth augmentation coefficients for
category 1, 2 and 3
 + π‘Ž32 6,6,6,6,6,6 𝑇33 , 𝑑 , + π‘Ž33
     β€²β€²                         β€²β€²                            6,6,6,6,6,6                       β€²β€²
                                                                                   𝑇33 , 𝑑 , + π‘Ž34                 6,6,6,6,6,6
                                                                                                                                        𝑇33 , 𝑑     are sixth augmentation coefficients for
category 1, 2 and 3 *79

80
   β€²β€²         7.7.7.                  β€²β€²            7.7.7.                  β€²β€²                  7.7.7.
+ π‘Ž36                      𝑇37 , 𝑑 + π‘Ž37                         𝑇37 , 𝑑 + π‘Ž38                               𝑇37 , 𝑑 are seventh augmentation coefficient*81




                                                                                            www.ijmer.com                                                                                           2117 | P a g e
International Journal of Modern Engineering Research (IJMER)
                        www.ijmer.com                            Vol.2, Issue.4, July-Aug 2012 pp-2110-2167        ISSN: 2249-6645
                                                 β€²        3       β€²β€²           3                         β€²β€²               7,7,7                       β€²β€²            1,1,1,
                                                𝑏20            βˆ’ 𝑏20                   𝐺23 , 𝑑        – 𝑏36                           𝐺19 , 𝑑      – 𝑏13                         𝐺, 𝑑
𝑑 𝑇20                   3                  β€²β€²           4,4,4,4,4,4                            β€²β€²            5,5,5,5,5,5                             β€²β€²            6,6,6,6,6,6
 𝑑𝑑
        = 𝑏20                   𝑇21 βˆ’   βˆ’ 𝑏24                                𝐺27 , 𝑑        – 𝑏28                                    𝐺31 , 𝑑      – 𝑏32                                 𝐺35 , 𝑑    𝑇20 *82
                                                                                                   β€²β€²           7,7,7
                                                                                                – 𝑏36                         𝐺39 , 𝑑
                                                 β€²        3       β€²β€²          3                          β€²β€²            2,2,2                          β€²β€²           1,1,1,
                                                𝑏21            βˆ’ 𝑏21                   𝐺23 , 𝑑        – 𝑏17                          𝐺19 , 𝑑       – 𝑏14                        𝐺, 𝑑
𝑑 𝑇21                   3                  β€²β€²           4,4,4,4,4,4                            β€²β€²            5,5,5,5,5,5                             β€²β€²            6,6,6,6,6,6
 𝑑𝑑
        = 𝑏21                   𝑇20 βˆ’   βˆ’ 𝑏25                                𝐺27 , 𝑑        – 𝑏29                                    𝐺31 , 𝑑      – 𝑏33                                 𝐺35 , 𝑑    𝑇21 *83
                                                                                                   β€²β€²           7,7,7
                                                                                                – 𝑏37                         𝐺39 , 𝑑
                                                 β€²        3             β€²β€²     3                               β€²β€²         2,2,2                       β€²β€²            1,1,1,
                                                𝑏22            βˆ’       𝑏22             𝐺23 , 𝑑        –       𝑏18                     𝐺19 , 𝑑      – 𝑏15                         𝐺, 𝑑
𝑑 𝑇22                   3                  β€²β€²           4,4,4,4,4,4                            β€²β€²            5,5,5,5,5,5                             β€²β€²            6,6,6,6,6,6
        = 𝑏22                   𝑇21 βˆ’   βˆ’ 𝑏26                                𝐺27 , 𝑑        – 𝑏30                                    𝐺31 , 𝑑      – 𝑏34                                 𝐺35 , 𝑑    𝑇22 *84
 𝑑𝑑
                                                                                                   β€²β€²           7,7,7
                                                                                                – 𝑏38                         𝐺39 , 𝑑
         β€²β€²   3                           β€²β€²     3                                  β€²β€²      3
βˆ’       𝑏20           𝐺23 , 𝑑 , βˆ’        𝑏21              𝐺23 , 𝑑       , βˆ’        𝑏22              𝐺23 , 𝑑           are first detritions coefficients for category 1, 2 and 3
   β€²β€²         2,2,2                      β€²β€²              2,2,2                      β€²β€²                     2,2,2
βˆ’ 𝑏16                       𝐺19 , 𝑑 , βˆ’ 𝑏17                            𝐺19 , 𝑑 , βˆ’ 𝑏18                                𝐺19 , 𝑑          are second detritions coefficients for category 1, 2 and
3
   β€²β€²         1,1,1,                  β€²β€²             1,1,1,                 β€²β€²                   1,1,1,
βˆ’ 𝑏13                       𝐺, 𝑑 , βˆ’ 𝑏14                          𝐺, 𝑑 , βˆ’ 𝑏15                                 𝐺, 𝑑        are third detrition coefficients for category 1,2 and 3
         β€²β€²   4,4,4,4,4,4                              β€²β€²      4,4,4,4,4,4                                    β€²β€²      4,4,4,4,4,4
 βˆ’      𝑏24         𝐺27 , 𝑑 , βˆ’                       𝑏25                          𝐺27 , 𝑑 , βˆ’               𝑏26                           𝐺27 , 𝑑          are fourth                    detritions coefficients       for
category 1, 2 and 3
  βˆ’ 𝑏28 5,5,5,5,5,5 𝐺31 , 𝑑 , βˆ’ 𝑏29
      β€²β€²                         β€²β€²                              5,5,5,5,5,5                        β€²β€²
                                                                                       𝐺31 , 𝑑 , βˆ’ 𝑏30                     5,5,5,5,5,5
                                                                                                                                                𝐺31 , 𝑑       are fifth                   detritions coefficients       for
category 1, 2 and 3
βˆ’ 𝑏32 6,6,6,6,6,6
     β€²β€²                                         β€²β€²
                                   𝐺35 , 𝑑 , βˆ’ 𝑏33             6,6,6,6,6,6                      β€²β€²
                                                                                   𝐺35 , 𝑑 , βˆ’ 𝑏34                    6,6,6,6,6,6
                                                                                                                                           𝐺35 , 𝑑        are sixth detritions coefficients for category
1, 2 and 3 *85
– 𝑏36 7,7,7 𝐺39 , 𝑑 – 𝑏37 7,7,7 𝐺39 , 𝑑 – 𝑏38 7,7,7 𝐺39 , 𝑑 are seventh detritions coefficients
   β€²β€²                  β€²β€²                  β€²β€²

====================================================================================

FOURTH MODULE CONCATENATION:*86
               π‘Ž24 4 + π‘Ž24 4 𝑇25 , 𝑑 + π‘Ž28
                β€²       β€²β€²              β€²β€²                                                                         5,5,
                                                                                                                             𝑇29 , 𝑑          β€²β€²
                                                                                                                                           + π‘Ž32            6,6,
                                                                                                                                                                      𝑇33 , 𝑑
𝑑 𝐺24                   4                        β€²β€²       1,1,1,1                                β€²β€²        2,2,2,2                               β€²β€²       3,3,3,3
        = π‘Ž24                   𝐺25 βˆ’    +      π‘Ž13                     𝑇14 , 𝑑         +       π‘Ž16                        𝑇17 , 𝑑       +      π‘Ž20                    𝑇21 , 𝑑            𝐺24 βˆ—87
 𝑑𝑑
                                                                                          β€²β€²               7,7,7,7,
                                                                                       + π‘Ž36                               𝑇37 , 𝑑
                                           β€²        4       β€²β€²          4                          β€²β€²              5,5,                       β€²β€²            6,6
                                          π‘Ž25            + π‘Ž25                 𝑇25 , 𝑑          + π‘Ž29                        𝑇29 , 𝑑       + π‘Ž33                     𝑇33 , 𝑑
𝑑 𝐺25                   4                       β€²β€²       1,1,1,1                                 β€²β€²    2,2,2,2                                   β€²β€²   3,3,3,3
        = π‘Ž25                   𝐺24 βˆ’   +      π‘Ž14                      𝑇14 , 𝑑        +        π‘Ž17                       𝑇17 , 𝑑       +       π‘Ž21                    𝑇21 , 𝑑           𝐺25 βˆ—88
 𝑑𝑑
                                                                                          β€²β€²           7,7,7,7,
                                                                                       + π‘Ž37                              𝑇37 , 𝑑
                                           β€²        4             β€²β€²    4                               β€²β€²         5,5,                       β€²β€²            6,6,
                                          π‘Ž26            +       π‘Ž26           𝑇25 , 𝑑          +      π‘Ž30                   𝑇29 , 𝑑       + π‘Ž34                      𝑇33 , 𝑑
𝑑 𝐺26                                      β€²β€²            1,1,1,1                          β€²β€²           2,2,2,2                             β€²β€²         3,3,3,3
        = π‘Ž26           4
                                𝐺25 βˆ’   + π‘Ž15                           𝑇14 , 𝑑        + π‘Ž18                              𝑇17 , 𝑑       + π‘Ž22                          𝑇21 , 𝑑           𝐺26 βˆ—89
 𝑑𝑑
                                                                                             β€²β€²        7,7,7,7,
                                                                                       +    π‘Ž38                            𝑇37 , 𝑑


                   β€²β€²       4                    β€²β€²        4                         β€²β€²         4
 π‘Šπ‘•π‘’π‘Ÿπ‘’            π‘Ž24             𝑇25 , 𝑑 ,     π‘Ž25               𝑇25 , 𝑑 ,         π‘Ž26                𝑇25 , 𝑑            π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
         β€²β€²   5,5,                             β€²β€²       5,5,                              β€²β€²        5,5,
 +      π‘Ž28                 𝑇29 , 𝑑 , +       π‘Ž29                𝑇29 , 𝑑 , +             π‘Ž30                  𝑇29 , 𝑑         π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
         β€²β€²   6,6,                             β€²β€²       6,6,                              β€²β€²        6,6,
 +      π‘Ž32                 𝑇33 , 𝑑 , +       π‘Ž33                𝑇33 , 𝑑 , +             π‘Ž34                  𝑇33 , 𝑑         π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
                                                                                     β€²β€²
+ π‘Ž13 1,1,1,1
     β€²β€²                                      β€²β€²
                                𝑇14 , 𝑑 , + π‘Ž14          1,1,1,1
                                                                        𝑇14 , 𝑑 , + π‘Ž15                    1,1,1,1
                                                                                                                           𝑇14 , 𝑑        are fourth augmentation coefficients for category 1,
2,and 3
+ π‘Ž16 2,2,2,2 𝑇17 , 𝑑 , + π‘Ž17 2,2,2,2 𝑇17 , 𝑑 , + π‘Ž18 2,2,2,2 𝑇17 , 𝑑 are fifth augmentation coefficients for category 1,
     β€²β€²                      β€²β€²                     β€²β€²

2,and 3
+ π‘Ž20 3,3,3,3 𝑇21 , 𝑑 , + π‘Ž21 3,3,3,3 𝑇21 , 𝑑 , + π‘Ž22 3,3,3,3 𝑇21 , 𝑑 are sixth augmentation coefficients for category 1,
     β€²β€²                      β€²β€²                       β€²β€²

2,and 3
+ π‘Ž36 7,7,7,7, 𝑇37 , 𝑑 + π‘Ž36 7,7,7,7, 𝑇37 , 𝑑 + π‘Ž36 7,7,7,7, 𝑇37 , 𝑑 ARE SEVENTH augmentation coefficients*90
     β€²β€²                   β€²β€²                     β€²β€²




                                                                                            www.ijmer.com                                                                                                    2118 | P a g e
International Journal of Modern Engineering Research (IJMER)
                      www.ijmer.com                            Vol.2, Issue.4, July-Aug 2012 pp-2110-2167        ISSN: 2249-6645
91
*92
                                        β€²     4        β€²β€²             4                             β€²β€²          5,5,                         β€²β€²        6,6,
                                       𝑏24          βˆ’ 𝑏24                      𝐺27 , 𝑑           βˆ’ 𝑏28                     𝐺31 , 𝑑        – 𝑏32                𝐺35 , 𝑑
𝑑 𝑇24                 4
 𝑑𝑑
        = 𝑏24             𝑇25 βˆ’           β€²β€²
                                       βˆ’ 𝑏13            1,1,1,1
                                                                       𝐺, 𝑑             β€²β€²
                                                                                     βˆ’ 𝑏16           2,2,2,2
                                                                                                                       𝐺19 , 𝑑          β€²β€²
                                                                                                                                     – 𝑏20          3,3,3,3
                                                                                                                                                               𝐺23 , 𝑑            𝑇24 βˆ—93
                                                                                        β€²β€²           7,7,7,7,,,
                                                                                     βˆ’ 𝑏36                               𝐺39 , 𝑑
                                        β€²     4              β€²β€²       4                             β€²β€²          5,5,                         β€²β€²        6,6,
                                       𝑏25          βˆ’       𝑏25                𝐺27 , 𝑑           βˆ’ 𝑏29                     𝐺31 , 𝑑        – 𝑏33                𝐺35 , 𝑑
𝑑 𝑇25                 4
 𝑑𝑑
        = 𝑏25             𝑇24 βˆ’           β€²β€²
                                       βˆ’ 𝑏14            1,1,1,1
                                                                       𝐺, 𝑑             β€²β€²
                                                                                     βˆ’ 𝑏17           2,2,2,2
                                                                                                                       𝐺19 , 𝑑          β€²β€²
                                                                                                                                     – 𝑏21          3,3,3,3
                                                                                                                                                               𝐺23 , 𝑑            𝑇25 βˆ—94
                                                                                       β€²β€²           7,7,7,77,,
                                                                                    βˆ’ 𝑏37                                𝐺39 , 𝑑
                                         β€²      4       β€²β€²            4                             β€²β€²           5,5,                           β€²β€²      6,6,
                                        𝑏26          βˆ’ 𝑏26                       𝐺27 , 𝑑         βˆ’ 𝑏30                      𝐺31 , 𝑑          – 𝑏34                𝐺35 , 𝑑
𝑑 𝑇26                 4                        β€²β€²       1,1,1,1                               β€²β€²       2,2,2,2                                β€²β€²    3,3,3,3
        = 𝑏26             𝑇25 βˆ’         βˆ’     𝑏15                         𝐺, 𝑑       βˆ’       𝑏18                        𝐺19 , 𝑑       –      𝑏22                  𝐺23 , 𝑑             𝑇26 βˆ—95
 𝑑𝑑
                                                                                        β€²β€²             7,7,7,,7,,
                                                                                     βˆ’ 𝑏38                               𝐺39 , 𝑑
          β€²β€²                 4                           β€²β€²     4                      β€²β€²                  4
 π‘Šπ‘•π‘’π‘Ÿπ‘’ βˆ’ 𝑏24                       𝐺27 , 𝑑 , βˆ’          𝑏25               𝐺27 , 𝑑 , βˆ’ 𝑏26                           𝐺27 , 𝑑         π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
   β€²β€²         5,5,                 β€²β€²               5,5,                    β€²β€²                     5,5,
βˆ’ 𝑏28                 𝐺31 , 𝑑 , βˆ’ 𝑏29                          𝐺31 , 𝑑 , βˆ’ 𝑏30                                 𝐺31 , 𝑑        π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
         β€²β€²   6,6,                         β€²β€²       6,6,                                    β€²β€²     6,6,
βˆ’       𝑏32           𝐺35 , 𝑑 , βˆ’         𝑏33                  𝐺35 , 𝑑 , βˆ’                 𝑏34                 𝐺35 , 𝑑        π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
                                                                                                                                                                                                     β€²β€²
βˆ’ 𝑏13 1,1,1,1 𝐺, 𝑑 , βˆ’ 𝑏14 1,1,1,1 𝐺, 𝑑
    β€²β€²                  β€²β€²
                                                                                                                                                                                                , βˆ’ 𝑏15     1,1,1,1
                                                                                                                                                                                                                        𝐺, 𝑑
π‘Žπ‘Ÿπ‘’ π‘“π‘œπ‘’π‘Ÿπ‘‘π‘• π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
βˆ’ 𝑏16 2,2,2,2 𝐺19 , 𝑑 ,
    β€²β€²
                                              βˆ’ 𝑏17 2,2,2,2
                                                   β€²β€²
                                                                                                                                   𝐺19 , 𝑑 ,                                                       β€²β€²
                                                                                                                                                                                                βˆ’ 𝑏18     2,2,2,2
                                                                                                                                                                                                                      𝐺19 , 𝑑
π‘Žπ‘Ÿπ‘’ 𝑓𝑖𝑓𝑑𝑕 π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
– 𝑏20 3,3,3,3 𝐺23 , 𝑑 , – 𝑏21 3,3,3,3 𝐺23 , 𝑑 , – 𝑏22 3,3,3,3 𝐺23 , 𝑑
     β€²β€²                       β€²β€²                     β€²β€²

 π‘Žπ‘Ÿπ‘’ 𝑠𝑖π‘₯𝑑𝑕 π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
βˆ’ 𝑏36 7,7,7,7,7,, 𝐺39 , 𝑑 βˆ’ 𝑏37 7,7,7,7,7,, 𝐺39 , 𝑑 βˆ’ 𝑏38 7,7,7,7,7,, 𝐺39 , 𝑑 𝐴𝑅𝐸 SEVENTH DETRITION
     β€²β€²                          β€²β€²                     β€²β€²

COEFFICIENTS*96
*97
FIFTH MODULE CONCATENATION:*98
                           π‘Ž28 5 + π‘Ž28 5 𝑇29 , 𝑑 + π‘Ž24 4,4, 𝑇25 , 𝑑 + π‘Ž32 6,6,6 𝑇33 , 𝑑
                            β€²         β€²β€²                   β€²β€²                  β€²β€²

𝑑 𝐺28                 5                   β€²β€²            1,1,1,1,1                             β€²β€²           2,2,2,2,2                            β€²β€²       3,3,3,3,3
        = π‘Ž28              𝐺29 βˆ’       + π‘Ž13                               𝑇14 , 𝑑         + π‘Ž16                              𝑇17 , 𝑑        + π‘Ž20                          𝑇21 , 𝑑      𝐺28 βˆ—99
 𝑑𝑑
                                                                                              β€²β€²          7,7,,7,,7,7
                                                                                           + π‘Ž36                              𝑇37 , 𝑑
                                           β€²        5             β€²β€²       5                               β€²β€²       4,4,                        β€²β€²        6,6,6
                                          π‘Ž29              +     π‘Ž29               𝑇29 , 𝑑         +      π‘Ž25                 𝑇25 , 𝑑        + π‘Ž33                   𝑇33 , 𝑑
𝑑 𝐺29                 5                   β€²β€²            1,1,1,1,1                             β€²β€²           2,2,2,2,2                            β€²β€²       3,3,3,3,3
        = π‘Ž29              𝐺28 βˆ’       + π‘Ž14                               𝑇14 , 𝑑         + π‘Ž17                              𝑇17 , 𝑑        + π‘Ž21                          𝑇21 , 𝑑      𝐺29 βˆ—100
 𝑑𝑑
                                                                                              β€²β€²          7,7,,,7,,7,7
                                                                                           + π‘Ž37                              𝑇37 , 𝑑
                                           β€²        5             β€²β€²       5                               β€²β€²       4,4,                        β€²β€²        6,6,6
                                          π‘Ž30              +     π‘Ž30               𝑇29 , 𝑑         +      π‘Ž26                 𝑇25 , 𝑑        + π‘Ž34                   𝑇33 , 𝑑
𝑑 𝐺30                                     β€²β€²            1,1,1,1,1                             β€²β€²           2,2,2,2,2                            β€²β€²       3,3,3,3,3
        = π‘Ž30         5
                           𝐺29 βˆ’       + π‘Ž15                               𝑇14 , 𝑑         + π‘Ž18                              𝑇17 , 𝑑        + π‘Ž22                          𝑇21 , 𝑑      𝐺30 βˆ—101
 𝑑𝑑

                                                                                              β€²β€²          7,7,,7,,7,7
                                                                                           + π‘Ž38                              𝑇37 , 𝑑
          β€²β€²                 5                  β€²β€²              5                      β€²β€²                  5
 π‘Šπ‘•π‘’π‘Ÿπ‘’ + π‘Ž28                       𝑇29 , 𝑑 , + π‘Ž29                        𝑇29 , 𝑑 , + π‘Ž30                          𝑇29 , 𝑑         π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
       β€²β€²             4,4,                     β€²β€²              4,4,                    β€²β€²                   4,4,
𝐴𝑛𝑑 + π‘Ž24                         𝑇25 , 𝑑 , + π‘Ž25                         𝑇25 , 𝑑 , + π‘Ž26                                𝑇25 , 𝑑        π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘
         β€²β€²   6,6,6                           β€²β€²     6,6,6                                    β€²β€²     6,6,6
+       π‘Ž32               𝑇33 , 𝑑 , +        π‘Ž33                    𝑇33 , 𝑑 , +              π‘Ž34                    𝑇33 , 𝑑        π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
                                                                                                      β€²β€²
+ π‘Ž13 1,1,1,1,1
      β€²β€²                                      β€²β€²
                                 𝑇14 , 𝑑 , + π‘Ž14           1,1,1,1,1
                                                                               𝑇14 , 𝑑 , +           π‘Ž15       1,1,1,1,1
                                                                                                                                   𝑇14 , 𝑑     are fourth augmentation coefficients for category
1,2, and 3
+ π‘Ž16 2,2,2,2,2
     β€²β€²                                       β€²β€²
                                 𝑇17 , 𝑑 , + π‘Ž17           2,2,2,2,2                        β€²β€²
                                                                               𝑇17 , 𝑑 , + π‘Ž18                 2,2,2,2,2
                                                                                                                                   𝑇17 , 𝑑     are fifth augmentation coefficients for category
1,2,and 3
+ π‘Ž20 3,3,3,3,3
     β€²β€²                                       β€²β€²
                                 𝑇21 , 𝑑 , + π‘Ž21           3,3,3,3,3                        β€²β€²
                                                                               𝑇21 , 𝑑 , + π‘Ž22                  3,3,3,3,3
                                                                                                                                   𝑇21 , 𝑑         are sixth augmentation coefficients for category
1,2, 3    βˆ—102
*103



                                                                                             www.ijmer.com                                                                                              2119 | P a g e
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167
Bi2421102167

More Related Content

What's hot

Tesla memorial-conf-2013-stoyan-sarg
Tesla memorial-conf-2013-stoyan-sargTesla memorial-conf-2013-stoyan-sarg
Tesla memorial-conf-2013-stoyan-sargStoyan Sarg Sargoytchev
Β 
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g ElectronsHidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g ElectronsABDERRAHMANE REGGAD
Β 
Polarization bremsstrahlung on atoms, plasmas, nanostructures and solids
Polarization bremsstrahlung on atoms, plasmas, nanostructures and solidsPolarization bremsstrahlung on atoms, plasmas, nanostructures and solids
Polarization bremsstrahlung on atoms, plasmas, nanostructures and solidsSpringer
Β 
Mean field Green function solution of the two-band Hubbard model in cuprates
Mean field Green function solution of the two-band Hubbard model in cupratesMean field Green function solution of the two-band Hubbard model in cuprates
Mean field Green function solution of the two-band Hubbard model in cupratesABDERRAHMANE REGGAD
Β 
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...ABDERRAHMANE REGGAD
Β 
Theoretical picture: magnetic impurities, Zener model, mean-field theory
Theoretical picture: magnetic impurities, Zener model, mean-field theoryTheoretical picture: magnetic impurities, Zener model, mean-field theory
Theoretical picture: magnetic impurities, Zener model, mean-field theoryABDERRAHMANE REGGAD
Β 
Introduction to the phenomenology of HiTc superconductors.
Introduction to  the phenomenology of HiTc superconductors.Introduction to  the phenomenology of HiTc superconductors.
Introduction to the phenomenology of HiTc superconductors.ABDERRAHMANE REGGAD
Β 
The metal-insulator transition of VO2 revisited
The metal-insulator transition of VO2revisitedThe metal-insulator transition of VO2revisited
The metal-insulator transition of VO2 revisitedABDERRAHMANE REGGAD
Β 
Semiconductor qubits in practice
Semiconductor qubits in practiceSemiconductor qubits in practice
Semiconductor qubits in practiceGabriel O'Brien
Β 
Diluted Magnetic Semiconductors
Diluted Magnetic SemiconductorsDiluted Magnetic Semiconductors
Diluted Magnetic SemiconductorsABDERRAHMANE REGGAD
Β 
Strongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical LatticesStrongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical LatticesABDERRAHMANE REGGAD
Β 
Magnetic nanostructures
Magnetic nanostructuresMagnetic nanostructures
Magnetic nanostructuresSpringer
Β 
Electronic structure of strongly correlated materials
Electronic structure of strongly correlated materialsElectronic structure of strongly correlated materials
Electronic structure of strongly correlated materialsABDERRAHMANE REGGAD
Β 
Electronic structure of strongly correlated materials Part II V.Anisimov
Electronic structure of strongly correlated materials Part II V.AnisimovElectronic structure of strongly correlated materials Part II V.Anisimov
Electronic structure of strongly correlated materials Part II V.AnisimovABDERRAHMANE REGGAD
Β 
Al Ga As Pccp Paulus
Al Ga As Pccp PaulusAl Ga As Pccp Paulus
Al Ga As Pccp Pauluspaulknijn
Β 
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...ABDERRAHMANE REGGAD
Β 
Electronic structure of strongly correlated materials Part III V.Anisimov
 Electronic structure of strongly correlated materials Part III V.Anisimov Electronic structure of strongly correlated materials Part III V.Anisimov
Electronic structure of strongly correlated materials Part III V.AnisimovABDERRAHMANE REGGAD
Β 
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMSELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMSABDERRAHMANE REGGAD
Β 

What's hot (20)

Tesla memorial-conf-2013-stoyan-sarg
Tesla memorial-conf-2013-stoyan-sargTesla memorial-conf-2013-stoyan-sarg
Tesla memorial-conf-2013-stoyan-sarg
Β 
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g ElectronsHidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Β 
Polarization bremsstrahlung on atoms, plasmas, nanostructures and solids
Polarization bremsstrahlung on atoms, plasmas, nanostructures and solidsPolarization bremsstrahlung on atoms, plasmas, nanostructures and solids
Polarization bremsstrahlung on atoms, plasmas, nanostructures and solids
Β 
Mean field Green function solution of the two-band Hubbard model in cuprates
Mean field Green function solution of the two-band Hubbard model in cupratesMean field Green function solution of the two-band Hubbard model in cuprates
Mean field Green function solution of the two-band Hubbard model in cuprates
Β 
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Β 
Theoretical picture: magnetic impurities, Zener model, mean-field theory
Theoretical picture: magnetic impurities, Zener model, mean-field theoryTheoretical picture: magnetic impurities, Zener model, mean-field theory
Theoretical picture: magnetic impurities, Zener model, mean-field theory
Β 
Introduction to the phenomenology of HiTc superconductors.
Introduction to  the phenomenology of HiTc superconductors.Introduction to  the phenomenology of HiTc superconductors.
Introduction to the phenomenology of HiTc superconductors.
Β 
The metal-insulator transition of VO2 revisited
The metal-insulator transition of VO2revisitedThe metal-insulator transition of VO2revisited
The metal-insulator transition of VO2 revisited
Β 
Semiconductor qubits in practice
Semiconductor qubits in practiceSemiconductor qubits in practice
Semiconductor qubits in practice
Β 
Diluted Magnetic Semiconductors
Diluted Magnetic SemiconductorsDiluted Magnetic Semiconductors
Diluted Magnetic Semiconductors
Β 
1204.5674v1
1204.5674v11204.5674v1
1204.5674v1
Β 
Strongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical LatticesStrongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical Lattices
Β 
Magnetic nanostructures
Magnetic nanostructuresMagnetic nanostructures
Magnetic nanostructures
Β 
Electronic structure of strongly correlated materials
Electronic structure of strongly correlated materialsElectronic structure of strongly correlated materials
Electronic structure of strongly correlated materials
Β 
Electronic structure of strongly correlated materials Part II V.Anisimov
Electronic structure of strongly correlated materials Part II V.AnisimovElectronic structure of strongly correlated materials Part II V.Anisimov
Electronic structure of strongly correlated materials Part II V.Anisimov
Β 
Mottphysics 2talk
Mottphysics   2talkMottphysics   2talk
Mottphysics 2talk
Β 
Al Ga As Pccp Paulus
Al Ga As Pccp PaulusAl Ga As Pccp Paulus
Al Ga As Pccp Paulus
Β 
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Β 
Electronic structure of strongly correlated materials Part III V.Anisimov
 Electronic structure of strongly correlated materials Part III V.Anisimov Electronic structure of strongly correlated materials Part III V.Anisimov
Electronic structure of strongly correlated materials Part III V.Anisimov
Β 
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMSELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
Β 

Viewers also liked

Bj32809815
Bj32809815Bj32809815
Bj32809815IJMER
Β 
Dy3212291237
Dy3212291237Dy3212291237
Dy3212291237IJMER
Β 
Bt32884887
Bt32884887Bt32884887
Bt32884887IJMER
Β 
Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...
Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...
Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...IJMER
Β 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...IJMER
Β 
Black Hole Detection in AODV Using Hexagonal Encryption in Manet’s
Black Hole Detection in AODV Using Hexagonal Encryption in Manet’sBlack Hole Detection in AODV Using Hexagonal Encryption in Manet’s
Black Hole Detection in AODV Using Hexagonal Encryption in Manet’sIJMER
Β 
Www youtube com_watch_v_p_n_huv50kbfe
Www youtube com_watch_v_p_n_huv50kbfeWww youtube com_watch_v_p_n_huv50kbfe
Www youtube com_watch_v_p_n_huv50kbfeRancyna James
Β 
R hill tx hr eeo specialist portofilio resume 9.24.12
R hill tx hr eeo specialist portofilio resume 9.24.12R hill tx hr eeo specialist portofilio resume 9.24.12
R hill tx hr eeo specialist portofilio resume 9.24.12hillr2012
Β 
Bi32798808
Bi32798808Bi32798808
Bi32798808IJMER
Β 
Ca31317323
Ca31317323Ca31317323
Ca31317323IJMER
Β 
Geotechnical Investigation of Soils: A Case Study of Gombe Town (Sheet 152NW)...
Geotechnical Investigation of Soils: A Case Study of Gombe Town (Sheet 152NW)...Geotechnical Investigation of Soils: A Case Study of Gombe Town (Sheet 152NW)...
Geotechnical Investigation of Soils: A Case Study of Gombe Town (Sheet 152NW)...IJMER
Β 
Andra vk hΓ€ndelsefΓΆrlopp
Andra vk hΓ€ndelsefΓΆrloppAndra vk hΓ€ndelsefΓΆrlopp
Andra vk hΓ€ndelsefΓΆrloppJessicaForsberg
Β 
Query Answering Approach Based on Document Summarization
Query Answering Approach Based on Document SummarizationQuery Answering Approach Based on Document Summarization
Query Answering Approach Based on Document SummarizationIJMER
Β 
Live Streaming With Receiver-Based P2P Multiplexing for Future IPTV Network
Live Streaming With Receiver-Based P2P Multiplexing for Future IPTV NetworkLive Streaming With Receiver-Based P2P Multiplexing for Future IPTV Network
Live Streaming With Receiver-Based P2P Multiplexing for Future IPTV NetworkIJMER
Β 
Narrating Fantasy in the Novel Pratimayum Rajakumariyum (The Statue and the P...
Narrating Fantasy in the Novel Pratimayum Rajakumariyum (The Statue and the P...Narrating Fantasy in the Novel Pratimayum Rajakumariyum (The Statue and the P...
Narrating Fantasy in the Novel Pratimayum Rajakumariyum (The Statue and the P...IJMER
Β 
Ppt eleni
Ppt eleniPpt eleni
Ppt eleniPopi Kaza
Β 
From Hero to Zero - DevOpsDays Boston
From Hero to Zero - DevOpsDays BostonFrom Hero to Zero - DevOpsDays Boston
From Hero to Zero - DevOpsDays BostonJennifer Davis
Β 
Bv32891897
Bv32891897Bv32891897
Bv32891897IJMER
Β 

Viewers also liked (20)

Bj32809815
Bj32809815Bj32809815
Bj32809815
Β 
Kingston
KingstonKingston
Kingston
Β 
Dy3212291237
Dy3212291237Dy3212291237
Dy3212291237
Β 
Bt32884887
Bt32884887Bt32884887
Bt32884887
Β 
Swuni2012 cyberdoc
Swuni2012 cyberdocSwuni2012 cyberdoc
Swuni2012 cyberdoc
Β 
Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...
Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...
Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...
Β 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Β 
Black Hole Detection in AODV Using Hexagonal Encryption in Manet’s
Black Hole Detection in AODV Using Hexagonal Encryption in Manet’sBlack Hole Detection in AODV Using Hexagonal Encryption in Manet’s
Black Hole Detection in AODV Using Hexagonal Encryption in Manet’s
Β 
Www youtube com_watch_v_p_n_huv50kbfe
Www youtube com_watch_v_p_n_huv50kbfeWww youtube com_watch_v_p_n_huv50kbfe
Www youtube com_watch_v_p_n_huv50kbfe
Β 
R hill tx hr eeo specialist portofilio resume 9.24.12
R hill tx hr eeo specialist portofilio resume 9.24.12R hill tx hr eeo specialist portofilio resume 9.24.12
R hill tx hr eeo specialist portofilio resume 9.24.12
Β 
Bi32798808
Bi32798808Bi32798808
Bi32798808
Β 
Ca31317323
Ca31317323Ca31317323
Ca31317323
Β 
Geotechnical Investigation of Soils: A Case Study of Gombe Town (Sheet 152NW)...
Geotechnical Investigation of Soils: A Case Study of Gombe Town (Sheet 152NW)...Geotechnical Investigation of Soils: A Case Study of Gombe Town (Sheet 152NW)...
Geotechnical Investigation of Soils: A Case Study of Gombe Town (Sheet 152NW)...
Β 
Andra vk hΓ€ndelsefΓΆrlopp
Andra vk hΓ€ndelsefΓΆrloppAndra vk hΓ€ndelsefΓΆrlopp
Andra vk hΓ€ndelsefΓΆrlopp
Β 
Query Answering Approach Based on Document Summarization
Query Answering Approach Based on Document SummarizationQuery Answering Approach Based on Document Summarization
Query Answering Approach Based on Document Summarization
Β 
Live Streaming With Receiver-Based P2P Multiplexing for Future IPTV Network
Live Streaming With Receiver-Based P2P Multiplexing for Future IPTV NetworkLive Streaming With Receiver-Based P2P Multiplexing for Future IPTV Network
Live Streaming With Receiver-Based P2P Multiplexing for Future IPTV Network
Β 
Narrating Fantasy in the Novel Pratimayum Rajakumariyum (The Statue and the P...
Narrating Fantasy in the Novel Pratimayum Rajakumariyum (The Statue and the P...Narrating Fantasy in the Novel Pratimayum Rajakumariyum (The Statue and the P...
Narrating Fantasy in the Novel Pratimayum Rajakumariyum (The Statue and the P...
Β 
Ppt eleni
Ppt eleniPpt eleni
Ppt eleni
Β 
From Hero to Zero - DevOpsDays Boston
From Hero to Zero - DevOpsDays BostonFrom Hero to Zero - DevOpsDays Boston
From Hero to Zero - DevOpsDays Boston
Β 
Bv32891897
Bv32891897Bv32891897
Bv32891897
Β 

Similar to Bi2421102167

11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...Alexander Decker
Β 
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...Alexander Decker
Β 
11.electronic properties of nanostructured quantum dots
11.electronic properties of nanostructured quantum dots11.electronic properties of nanostructured quantum dots
11.electronic properties of nanostructured quantum dotsAlexander Decker
Β 
Electronic properties of nanostructured quantum dots
Electronic properties of nanostructured quantum dotsElectronic properties of nanostructured quantum dots
Electronic properties of nanostructured quantum dotsAlexander Decker
Β 
Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...
Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...
Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...ijrap
Β 
E03503025029
E03503025029E03503025029
E03503025029theijes
Β 
Optial Magnetormetry, Malcolm Jardine - Summer Placement Report 2015
Optial Magnetormetry, Malcolm Jardine - Summer Placement Report 2015Optial Magnetormetry, Malcolm Jardine - Summer Placement Report 2015
Optial Magnetormetry, Malcolm Jardine - Summer Placement Report 2015Malcolm Jardine
Β 
Topology of charge density from pseudopotential density functional theory cal...
Topology of charge density from pseudopotential density functional theory cal...Topology of charge density from pseudopotential density functional theory cal...
Topology of charge density from pseudopotential density functional theory cal...Alexander Decker
Β 
Structural, electronic, elastic, optical and thermodynamical properties of zi...
Structural, electronic, elastic, optical and thermodynamical properties of zi...Structural, electronic, elastic, optical and thermodynamical properties of zi...
Structural, electronic, elastic, optical and thermodynamical properties of zi...Alexander Decker
Β 
A_Papoulia_thesis2015
A_Papoulia_thesis2015A_Papoulia_thesis2015
A_Papoulia_thesis2015Asimina Papoulia
Β 
Excitons, lifetime and Drude tail within the current~current response framew...
Excitons, lifetime and Drude tail  within the current~current response framew...Excitons, lifetime and Drude tail  within the current~current response framew...
Excitons, lifetime and Drude tail within the current~current response framew...Claudio Attaccalite
Β 
Global-10
Global-10Global-10
Global-10Vijay Bist
Β 
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in UcogeCoexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucogeijrap
Β 
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge ijrap
Β 
The dynamical-casimir-effect-in-superconducting-microwave-circuits
The dynamical-casimir-effect-in-superconducting-microwave-circuitsThe dynamical-casimir-effect-in-superconducting-microwave-circuits
The dynamical-casimir-effect-in-superconducting-microwave-circuitsvilla1451
Β 
Study on momentum density in magnetic semiconductor MnTe by positron annihila...
Study on momentum density in magnetic semiconductor MnTe by positron annihila...Study on momentum density in magnetic semiconductor MnTe by positron annihila...
Study on momentum density in magnetic semiconductor MnTe by positron annihila...IJASCSE
Β 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
Β 
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-Plasma
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-PlasmaNonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-Plasma
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-PlasmaShiv Arjun
Β 

Similar to Bi2421102167 (20)

Ijetcas14 318
Ijetcas14 318Ijetcas14 318
Ijetcas14 318
Β 
11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...
Β 
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Β 
11.electronic properties of nanostructured quantum dots
11.electronic properties of nanostructured quantum dots11.electronic properties of nanostructured quantum dots
11.electronic properties of nanostructured quantum dots
Β 
Electronic properties of nanostructured quantum dots
Electronic properties of nanostructured quantum dotsElectronic properties of nanostructured quantum dots
Electronic properties of nanostructured quantum dots
Β 
Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...
Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...
Ferromagnetic-Ferroelectric Composite 1D Nanostructure in the Pursuit of Magn...
Β 
E03503025029
E03503025029E03503025029
E03503025029
Β 
Optial Magnetormetry, Malcolm Jardine - Summer Placement Report 2015
Optial Magnetormetry, Malcolm Jardine - Summer Placement Report 2015Optial Magnetormetry, Malcolm Jardine - Summer Placement Report 2015
Optial Magnetormetry, Malcolm Jardine - Summer Placement Report 2015
Β 
Topology of charge density from pseudopotential density functional theory cal...
Topology of charge density from pseudopotential density functional theory cal...Topology of charge density from pseudopotential density functional theory cal...
Topology of charge density from pseudopotential density functional theory cal...
Β 
Structural, electronic, elastic, optical and thermodynamical properties of zi...
Structural, electronic, elastic, optical and thermodynamical properties of zi...Structural, electronic, elastic, optical and thermodynamical properties of zi...
Structural, electronic, elastic, optical and thermodynamical properties of zi...
Β 
Advanced Molecular Dynamics 2016
Advanced Molecular Dynamics 2016Advanced Molecular Dynamics 2016
Advanced Molecular Dynamics 2016
Β 
A_Papoulia_thesis2015
A_Papoulia_thesis2015A_Papoulia_thesis2015
A_Papoulia_thesis2015
Β 
Excitons, lifetime and Drude tail within the current~current response framew...
Excitons, lifetime and Drude tail  within the current~current response framew...Excitons, lifetime and Drude tail  within the current~current response framew...
Excitons, lifetime and Drude tail within the current~current response framew...
Β 
Global-10
Global-10Global-10
Global-10
Β 
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in UcogeCoexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Β 
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Β 
The dynamical-casimir-effect-in-superconducting-microwave-circuits
The dynamical-casimir-effect-in-superconducting-microwave-circuitsThe dynamical-casimir-effect-in-superconducting-microwave-circuits
The dynamical-casimir-effect-in-superconducting-microwave-circuits
Β 
Study on momentum density in magnetic semiconductor MnTe by positron annihila...
Study on momentum density in magnetic semiconductor MnTe by positron annihila...Study on momentum density in magnetic semiconductor MnTe by positron annihila...
Study on momentum density in magnetic semiconductor MnTe by positron annihila...
Β 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
Β 
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-Plasma
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-PlasmaNonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-Plasma
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-Plasma
Β 

More from IJMER

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...IJMER
Β 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingIJMER
Β 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreIJMER
Β 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)IJMER
Β 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...IJMER
Β 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...IJMER
Β 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...IJMER
Β 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...IJMER
Β 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationIJMER
Β 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless BicycleIJMER
Β 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIJMER
Β 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemIJMER
Β 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesIJMER
Β 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...IJMER
Β 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningIJMER
Β 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessIJMER
Β 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersIJMER
Β 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And AuditIJMER
Β 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLIJMER
Β 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyIJMER
Β 

More from IJMER (20)

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
Β 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed Delinting
Β 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Β 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Β 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Β 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Β 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Β 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Β 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Β 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless Bicycle
Β 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise Applications
Β 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation System
Β 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological Spaces
Β 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...
Β 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine Learning
Β 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Β 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Β 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And Audit
Β 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDL
Β 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One Prey
Β 

Bi2421102167

  • 1. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2110-2167 ISSN: 2249-6645 Shell Matricies and Fermion Verticies-Predicational Anteriority and Character Constitution Thereof 1 Dr. K. N. Prasanna Kumar, 2Prof. B. S. Kiranagi, 3Prof. C. S. Bagewadi Abstract: In quantum physics, in order to quantize a gauge theory, like for example Yang-Mills theory, Chern-Simons or BF model, one method is to perform a gauge fixing. This is done in the BRST and Batalin-Vilkovisky formulation. Another is to factor out the symmetry by dispensing with vector potentials altogether (they're not physically observable anyway) and work directly with Wilson loops, Wilson lines contracted with other charged fields at its endpoints and spin networks Presently renormalization prescriptions of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix have been investigated by many authors like Yong Zhou. Based on one prescription which is formulated by comparing with the fictitious case of no mixing of quark generations, they have proposed the substantive limits, singular pauses, general rests, logical attributes and real relations therefore a new prescription intermodal manifestation which can make the physical amplitude involving quark's mixing gauge independent and ultraviolet finite. Compared with the previous prescriptions this prescription is very simple and suitable for actual calculations. Through analytical calculations we also give a strong Proof for the important hypothesis that in order to keep the CKM matrix gauge independent the unitarity of the CKM matrix must be preserved. Mass-shell renormalization of fermion mixing matrices have also been delineated and investigated upon by K.-P.O Diener, B.A Kniehl wherein they consider favorable extensions of the standard model (SM) where the lepton sector contains Majorana neutrinos with vanishing left-handed mass terms, thus allowing for the see-saw mechanism to operate, and propose physical on-mass-shell (OS) renormalization conditions for the lepton mixing matrices that comply with ultraviolet finiteness, gauge-parameter independence, and (pseudo)unitarity This is an important result that motivated us to draw up the consolidation of some of the most important variables in Fermion and graviton vertices.. A crucial feature is that the texture zero in the neutrino mass matrix is preserved by renormalization, which is not automatically the case for possible generalizations of existing renormalization prescriptions for the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix in the SM. Our renormalization prescription also applies to the special case of the SM and leads to a physical OS definition of the renormalized CKM matrix. A consummate and link model is built for the variables like gravity, matter field, virtual photons and other important variables. Nevertheless the stormy petrel Neutrino seems to rule the roost with its own disnormative prescriptions for itself. Rich IN ITS twists and turns, the Model seems to offer a parade of variables bent on aggrandizement agenda. I. Introduction: Ward–Takahashi identity In quantum field theory, a Ward-Takahashi identity is an identity between correlation functions that follows from the global or gauged symmetries of the theory, and which remains valid after renormalization. The Ward-Takahashi identity of quantum electrodynamics was originally used by John Clive Ward and Yasushi Takahashi to relate the wave function renormalization of the electron to its vertex renormalization factor F1(0), guaranteeing the cancellation of the ultraviolet divergence to all orders of perturbation theory. Later uses include the extension of the proof of Goldstone's theorem to all orders of perturbation theory. The Ward-Takahashi identity is a quantum version of the classical Noether's theorem, and any symmetry in a quantum field theory can lead to an equation of motion for correlation functions.. The Ward-Takahashi identity applies to correlation functions in momentum space, which do not necessarily have all their external momenta on-shell. Let be a QED correlation function involving an external photon with momentum k (where is the polarization vector of the photon), n initial-state electrons with momenta , and n final-state electrons with momenta . Also define to be the simpler amplitude that is obtained by removing the photon with momentum k from original amplitude. Then the Ward-Takahashi identity reads where βˆ’e is the charge of the electron. Note that if has its external electrons on-shell, then the amplitudes on the right- hand side of this identity each had one external particle off-shell, and therefore they do not contribute to S-matrix elements. The Ward identity The Ward identity is a specialization of the Ward-Takahashi identity to S-matrix elements, which describe physically possible scattering processes and thus have all their external particles on-shell. Again let www.ijmer.com 2110 | P a g e
  • 2. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2110-2167 ISSN: 2249-6645 be the amplitude for some QED process involving an external photon with momentum , where is the polarization vector of the photon. Then the Ward identity reads: Physically, what this identity means is the longitudinal polarization of the photon which arises in the ΞΎ gauge is unphysical and disappears from the S-matrix. II. Some Reviews: Flavor Changing Fermion-Graviton Vertices (SEE FOR DETAILS G. Degrassi, E. Gabrielli, L. Trentadue- emphasis mine)Authors study the flavor-changing quark-graviton vertex that is induced at the one-loop level when gravitational interactions are coupled to the standard model. Because of the conservation of the energy-momentum tensor the corresponding form factors turn out to be finite and gauge-invariant. Analytical expressions of the form factors are provided at leading order in the external masses. Authors show that flavor-changing interactions in gravity are local if the graviton is strictly massless while if the graviton has a small mass long-range interactions inducing a flavor-changing contribution in the Newton potential appear. Flavor-changing processes with massive spin-2 particles are also briefly discussed in the paper. . These results can be generalized to the case of the lepton-graviton coupling. Examples of its use include constraining the tensor structure of the vacuum polarization and of the electron vertex function in QED. Gauge dependence of the on-shell renormalized mixing matrices WAS STUDIED BY Youichi Yamada It was recently pointed out that the on-shell renormalization of the CabibboKobayashi-Maskawa (CKM) matrix in the method by Denner and Sack causes a gauge parameter dependence of the amplitudes. Authors analyze the gauge dependence of the on-shell renormalization of the mixing matrices both for fermions and scalars in general cases, at the one-loop level. It is also shown that this gauge dependence can be avoided by fixing the counterterm for the mixing matrices in terms of the off- diagonal wave function corrections for fermions and scalars after a rearrangement, in a similar manner to the pinch technique for gauge bosons. Particles in the same representation under unbroken symmetries can mix with each other. The neutral gauge bosons, quarks, and massive neutrinos in the Standard Model (SM) are well-known examples. New particles in extensions of the Standard Model also show the mixings. For example, in the minimal supersymmetric (SUSY) standard model (MSSM), a very promising extension, super partners of most SM particles show the mixing .The mixing of particles is expressed in terms of the mixing matrix, which represents the relations between the gauge eigenstates and the mass eigenstates of the particles. The mixing matrices always appear at the couplings of these particles in the mass eigenbasis. Because of the fact that mass eigenstates at the tree-level mix with each other by radiative corrections, (it calls for) the mixing matrices have to be renormalized to obtain ultraviolet (UV) finite amplitudes. Denner and Sack have proposed a simple scheme to renormalize the mixing matrix of Dirac fermions at the one-loop level, which is usually called the on-shell renormalization scheme. They have required the counterterm for the renormalized mixing matrix to completely absorb the anti-Hermitian part of the wave function correction Ξ΄Zijfor the external on-shell fields* III. GRAVITY AND MATTER FIELDS: MODULE NUMBERED ONE NOTATION : 𝐺13 : CATEGORY ONE OF GRAVITY 𝐺14 : CATEGORY TWO OFGRAVITY 𝐺15 : CATEGORY THREE OF GRAVITY 𝑇13 : CATEGORY ONE OF MATTER FILEDS 𝑇14 : CATEGORY TWO OF MATTER FIELDS 𝑇15 :CATEGORY THREE OF MATTER FIELDS GRAVITON FIELD AND CONSERVED MATTER ENERGY MOMENTUM TENSOR(LIKE IN A BANK THE RULE THAT ASSETS AND LIABILITIES ARE EQUIVALENT IS APPLIED TO THE IBNDIVIDUAL SYSTEMS, THE CONSERVATION OF ENERGY MOMENTUM TENSOR IS APPLICABLE TO VARIOUS SYSTEMS AND THE CLASSIFICATION IS BASED ON THE CHARACTERSITICS OF THE SYSTEMS TO WHICH THE CONSERVATION PRINCIPLE IS APPLIED): MODULE NUMBERED TWO: ============================================================================= 𝐺16 : CATEGORY ONE OF GRAVITON FIELD 𝐺17 : CATEGORY TWO OF GRAVITON FIELD 𝐺18 : CATEGORY THREE OF GRAVITON FIELD 𝑇16 : CATEGORY ONE OF CONSERVED MATTER-ENERGY-MOMENTUM TENSOR(WE ARE HERE SPEAKING OF SYSTEMS TO WHICH IT IS APPLICABLE. PLEASEE THE BANK EXAMPLE GIVEN ABOVE) 𝑇17 : CATEGORY TWO OF CONSERVED MATTER-ENERGY-MOMENTUM TENSOR 𝑇18 : CATEGORY THREE OF CONSERVED MATTER-ENERGY-MOMENTUM TENSOR VIRTUAL PHOTONS AND GRAVITON PHOTON VERTEX: MODULE NUMBERED THREE: ============================================================================= www.ijmer.com 2111 | P a g e
  • 3. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2110-2167 ISSN: 2249-6645 𝐺20 : CATEGORY ONE OF VIRTUAL PHOTONS(WE HERE SPEAK OF THE CHARACTERISED SYSTEMS FOR WHICH QUANTUM GAUGE THEORY IS APPLICABLE) 𝐺21 :CATEGORY TWO OF VIRTUAL PHOTONS 𝐺22 : CATEGORY THREE OF VIRTUAL PHOTONS 𝑇20 : CATEGORY ONE OF GRAVITON ELECTRON VERTEX 𝑇21 :CATEGORY TWO OF GRAVITON ELECTRON VERTEX 𝑇22 : CATEGORY THREE OF GRAVITON ELECTRON VERTEX QUANTUM FIELD THEORY(AGAIN,PARAMETRICIZED SYSTEMS TO WHICH QFT COULD BE APPLIED IS TAKEN IN TO CONSIDERATION AND RENORMALIZATION THEORY(BASED ON CERTAIN VARAIBLES OF THE SYSTEM WHICH CONSEQUENTIALLY CLSSIFIABLE ON PARAMETERS) : MODULE NUMBERED FOUR: ============================================================================ 𝐺24 : CATEGORY ONE OF QUANTUM FIELD THEORY(EVALUATIVE PARAMETRICIZATION OF SITUATIONAL ORIENTATIONS AND ESSENTIAL COGNITIVE ORIENTATION AND CHOICE VARIABLES OF THE SYSTEM TO WHICH QFT IS APPLICABLE) 𝐺25 : CATEGORY TWO OF QUANTUM FIELD THEORY 𝐺26 : CATEGORY THREE OF QUANTUM FIELD THEORY 𝑇24 :CATEGORY ONE OF RENORMALIZATION THEORY 𝑇25 :CATEGORY TWO OF RENORMALIZATION THEORY(SYSTEMIC INSTRUMENTAL CHARACTERISATIONS AND ACTION ORIENTATIONS AND FUYNCTIONAL IMPERATIVES OF CHANGE MANIFESTED THEREIN ) 𝑇26 : CATEGORY THREE OF QUANTUM FIELD THEORY VIRTUAL ELECTRONS AND GRAVITON PHOTON VERTEX MODULE NUMBERED FIVE: ============================================================================= 𝐺28 : CATEGORY ONE OF VIRTUAL ELECTRONS 𝐺29 : CATEGORY TWO OFVIRTUAL ELECTRONS 𝐺30 :CATEGORY THREE OF VIRTUAL ELECTRONS 𝑇28 :CATEGORY ONE OF GRAVITON PHOTON VERTEX 𝑇29 :CATEGORY TWO OF GRAVITON PHOTON VERTEX 𝑇30 :CATEGORY THREE OF GRAVITON PHOTON VERTEX ========================================================================= QUANTUM CORRECTIONS TO ON SHELL MATRIX (VIRTUAKL GRAVITONS ARE NOT INCLUDED IN THE LOOPS) AND WARD IDENTITIES FROM MATTER ENERGY MOMENTUM CONSERVATION(LOT OF SYSTEMS CONSERVE THE MASS ENERGY AND THE CLASSIFICATION IS BASED ON THE PARAMETRICIZATION OF THE SYSTEMS) MODULE NUMBERED SIX: ============================================================================= 𝐺32 : CATEGORY ONE OF QUANTUM CORRECTION TO SHELL MATRIX 𝐺33 : CATEGORY TWO OF QUANTUM CORRECTIONS TO SHELL MATRIX 𝐺34 : CATEGORY THREE OFQUANTUM CORRECTIONS TO SHELL MATRIX 𝑇32 : CATEGORY ONE OF WARD IDENTITIES FROM MASS-ENERGY-MOMENTUM CONSERVATION(AGAIN WE RECAPITUALTE THE BANK EXAMPLES THERE ARE MILLIONS OF SYSTEMS FOR WHICH THE CONSERVATION HOLDS AND WE ARE CLASSIFYING THE SYSTEMS AND WARD IDENTITIES THEREOF) 𝑇33 : CATEGORY TWO OF WARD IDENTITIES 𝑇34 : CATEGORY THREE OF WARD IDENTITIES CHARGED WEAK CURRENTS AND ONE LOOP FLAVOUR CHANGING NEUTRAL CURRENTS(FCNC) IN THE FERMION PORTFOLIO: MODULE NUMBERED SEVEN ========================================================================== 𝐺36 : CATEGORY ONE OF CHARGED WEAK CURRENTS 𝐺37 : CATEGORY TWO OF CHARGED WEAK CURRENTS 𝐺38 : CATEGORY THREE OF CHARGED WEAK CURRENTS (ENERGY EXCITATION OF THE VACUUM AND CONCOMITANT GENERATION OF ENERGY DIFFERENTIAL-TIME LAG OR INSTANTANEOUSNESSMIGHT EXISTS WHEREBY ACCENTUATION AND ATTRITIONS MODEL MAY ASSUME ZERO POSITIONS IS AN EXAMPLE) 𝑇36 : CATEGORY ONE OF FCNC IN THE FERMIONS SECTOR 𝑇37 : CATEGORY TWO OF FCNC IN THE FERMIONS SECTOR 𝑇38 : CATEGORY THREE OF FCNC IN THE FERMIONS SECTOR www.ijmer.com 2112 | P a g e
  • 4. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2110-2167 ISSN: 2249-6645 =============================================================================== π‘Ž13 1 , π‘Ž14 1 , π‘Ž15 1 , 𝑏13 1 , 𝑏14 1 , 𝑏15 1 π‘Ž16 2 , π‘Ž17 2 , π‘Ž18 2 𝑏16 2 , 𝑏17 2 , 𝑏18 2 : 3 3 3 3 π‘Ž20 , π‘Ž21 , π‘Ž22 , 𝑏20 , 𝑏21 3 , 𝑏22 3 4 4 4 4 π‘Ž24 , π‘Ž25 , π‘Ž26 , 𝑏24 , 𝑏25 4 , 𝑏26 4 , 𝑏28 5 , 𝑏29 5 , 𝑏30 5 , π‘Ž28 5 , π‘Ž29 5 , π‘Ž30 5 , 6 6 6 6 π‘Ž32 , π‘Ž33 , π‘Ž34 , 𝑏32 , 𝑏33 6 , 𝑏34 6 are Accentuation coefficients β€² β€² π‘Ž13 1 , π‘Ž14 1 , π‘Ž15 1 , β€² β€² 𝑏13 1 , 𝑏14 1 , 𝑏15 1 , β€² β€² β€² π‘Ž16 2 β€² , π‘Ž17 2 β€² , π‘Ž18 2 , β€² 𝑏16 2 β€² , 𝑏17 2 β€² , 𝑏18 2 β€² 3 β€² 3 β€² 3 β€² 3 β€² 3 β€² 3 , π‘Ž20 , π‘Ž21 , π‘Ž22 , 𝑏20 , 𝑏21 , 𝑏22 β€² β€² π‘Ž24 4 , π‘Ž25 4 , π‘Ž26 4 , 𝑏24 4 , 𝑏25 4 , 𝑏26 4 , 𝑏28 β€² β€² β€² β€² β€² 5 β€² , 𝑏29 5 β€² , 𝑏30 5 β€² π‘Ž28 5 β€² , π‘Ž29 5 β€² , π‘Ž30 5 , π‘Ž32 6 , π‘Ž33 6 , π‘Ž34 6 , 𝑏32 6 , 𝑏33 6 , 𝑏34 6 β€² β€² β€² β€² β€² β€² are Dissipation coefficientsβˆ— GRAVITY AND MATTER FIELDS: MODULE NUMBERED ONE The differential system of this model is now (Module Numbered one)*1 𝑑 𝐺13 = π‘Ž13 1 𝐺14 βˆ’ π‘Ž13 1 + π‘Ž13 1 𝑇14 , 𝑑 𝐺13 *2 β€² β€²β€² 𝑑𝑑 𝑑 𝐺14 1 β€² 1 β€²β€² 1 = π‘Ž14 𝐺13 βˆ’ π‘Ž14 + π‘Ž14 𝑇14 , 𝑑 𝐺14 *3 𝑑𝑑 𝑑 𝐺15 1 β€² 1 β€²β€² 1 𝑑𝑑 = π‘Ž15 𝐺14 βˆ’ π‘Ž15 + π‘Ž15 𝑇14 , 𝑑 𝐺15 *4 𝑑 𝑇13 1 β€² 1 β€²β€² 1 = 𝑏13 𝑇14 βˆ’ 𝑏13 βˆ’ 𝑏13 𝐺, 𝑑 𝑇13 *5 𝑑𝑑 𝑑 𝑇14 1 β€² 1 β€²β€² 1 = 𝑏14 𝑇13 βˆ’ 𝑏14 βˆ’ 𝑏14 𝐺, 𝑑 𝑇14 *6 𝑑𝑑 𝑑 𝑇15 1 β€² 1 β€²β€² 1 = 𝑏15 𝑇14 βˆ’ 𝑏15 βˆ’ 𝑏15 𝐺, 𝑑 𝑇15 *7 𝑑𝑑 β€²β€² 1 + π‘Ž13 𝑇14 , 𝑑 = First augmentation factor *8 1 β€²β€² βˆ’ 𝑏13 𝐺, 𝑑 = First detritions factor* GRAVITON FIELD AND CONSERVED MATTER ENERGY MOMENTUM TENSOR(LIKE IN A BANK THE RULE THAT ASSETS AND LIABILITIES ARE EQUIVALENT IS APPLIED TO THE IBNDIVIDUAL SYSTEMS, THE CONSERVATION OF ENERGY MOMENTUM TENSOR IS APPLICABLE TO VARIOUS SYSTEMS AND THE CLASSIFICATION IS BASED ON THE CHARACTERSITICS OF THE SYSTEMS TO WHICH THE CONSERVATION PRINCIPLE IS APPLIED): MODULE NUMBERED TWO: : The differential system of this model is now ( Module numbered two)*9 𝑑 𝐺16 𝑑𝑑 = π‘Ž16 2 𝐺17 βˆ’ π‘Ž16 2 + π‘Ž16 2 𝑇17 , 𝑑 𝐺16 *10 β€² β€²β€² 𝑑 𝐺17 2 β€² 2 β€²β€² 2 𝑑𝑑 = π‘Ž17 𝐺16 βˆ’ π‘Ž17 + π‘Ž17 𝑇17 , 𝑑 𝐺17 *11 𝑑 𝐺18 2 β€² 2 β€²β€² 2 = π‘Ž18 𝐺17 βˆ’ π‘Ž18 + π‘Ž18 𝑇17 , 𝑑 𝐺18 *12 𝑑𝑑 𝑑 𝑇16 2 β€² 2 β€²β€² 2 𝑑𝑑 = 𝑏16 𝑇17 βˆ’ 𝑏16 βˆ’ 𝑏16 𝐺19 , 𝑑 𝑇16 *13 𝑑 𝑇17 2 β€² 2 β€²β€² 2 𝑑𝑑 = 𝑏17 𝑇16 βˆ’ 𝑏17 βˆ’ 𝑏17 𝐺19 , 𝑑 𝑇17 *14 𝑑 𝑇18 2 β€² 2 β€²β€² 2 𝑑𝑑 = 𝑏18 𝑇17 βˆ’ 𝑏18 βˆ’ 𝑏18 𝐺19 , 𝑑 𝑇18 *15 β€²β€² 2 + π‘Ž16 𝑇17 , 𝑑 = First augmentation factor *16 β€²β€² 2 βˆ’ 𝑏16 𝐺19 , 𝑑 = First detritions factor *17 VIRTUAL PHOTONS AND GRAVITON PHOTON VERTEX: MODULE NUMBERED THREE The differential system of this model is now (Module numbered three)*18 𝑑 𝐺20 𝑑𝑑 = π‘Ž20 3 𝐺21 βˆ’ π‘Ž20 3 + π‘Ž20 3 𝑇21 , 𝑑 𝐺20 *19 β€² β€²β€² 𝑑 𝐺21 3 β€² 3 β€²β€² 3 𝑑𝑑 = π‘Ž21 𝐺20 βˆ’ π‘Ž21 + π‘Ž21 𝑇21 , 𝑑 𝐺21 *20 𝑑 𝐺22 3 β€² 3 β€²β€² 3 𝑑𝑑 = π‘Ž22 𝐺21 βˆ’ π‘Ž22 + π‘Ž22 𝑇21 , 𝑑 𝐺22 *21 𝑑 𝑇20 3 β€² 3 β€²β€² 3 = 𝑏20 𝑇21 βˆ’ 𝑏20 βˆ’ 𝑏20 𝐺23 , 𝑑 𝑇20 *22 𝑑𝑑 𝑑 𝑇21 3 β€² 3 β€²β€² 3 𝑑𝑑 = 𝑏21 𝑇20 βˆ’ 𝑏21 βˆ’ 𝑏21 𝐺23 , 𝑑 𝑇21 *23 𝑑 𝑇22 3 β€² 3 β€²β€² 3 = 𝑏22 𝑇21 βˆ’ 𝑏22 βˆ’ 𝑏22 𝐺23 , 𝑑 𝑇22 *24 𝑑𝑑 www.ijmer.com 2113 | P a g e
  • 5. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2110-2167 ISSN: 2249-6645 + π‘Ž20 3 𝑇21 , 𝑑 = First augmentation factor* β€²β€² βˆ’ 𝑏20 3 𝐺23 , 𝑑 = First detritions factor *25 β€²β€² QUANTUM FIELD THEORY(AGAIN,PARAMETRICIZED SYSTEMS TO WHICH QFT COULD BE APPLIED IS TAKEN IN TO CONSIDERATION AND RENORMALIZATION THEORY(BASED ON CERTAIN VARAIBLES OF THE SYSTEM WHICH CONSEQUENTIALLY CLSSIFIABLE ON PARAMETERS) : MODULE NUMBERED FOUR The differential system of this model is now (Module numbered Four)*26 𝑑 𝐺24 𝑑𝑑 = π‘Ž24 4 𝐺25 βˆ’ π‘Ž24 4 + π‘Ž24 4 𝑇25 , 𝑑 𝐺24 *27 β€² β€²β€² 𝑑 𝐺25 4 β€² 4 β€²β€² 4 = π‘Ž25 𝐺24 βˆ’ π‘Ž25 + π‘Ž25 𝑇25 , 𝑑 𝐺25 *28 𝑑𝑑 𝑑 𝐺26 4 β€² 4 β€²β€² 4 = π‘Ž26 𝐺25 βˆ’ π‘Ž26 + π‘Ž26 𝑇25 , 𝑑 𝐺26 *29 𝑑𝑑 𝑑 𝑇24 4 β€² 4 β€²β€² 4 = 𝑏24 𝑇25 βˆ’ 𝑏24 βˆ’ 𝑏24 𝐺27 , 𝑑 𝑇24 *30 𝑑𝑑 𝑑 𝑇25 4 β€² 4 β€²β€² 4 = 𝑏25 𝑇24 βˆ’ 𝑏25 βˆ’ 𝑏25 𝐺27 , 𝑑 𝑇25 *31 𝑑𝑑 𝑑 𝑇26 4 β€² 4 β€²β€² 4 𝑑𝑑 = 𝑏26 𝑇25 βˆ’ 𝑏26 βˆ’ 𝑏26 𝐺27 , 𝑑 𝑇26 *32 β€²β€² 4 + π‘Ž24 𝑇25 , 𝑑 = First augmentation factor*33 4 β€²β€² βˆ’ 𝑏24 𝐺27 , 𝑑 = First detritions factor *34 VIRTUAL ELECTRONS AND GRAVITON PHOTON VERTEX MODULE NUMBERED FIVE The differential system of this model is now (Module number five)*35 𝑑 𝐺28 = π‘Ž28 5 𝐺29 βˆ’ π‘Ž28 5 + π‘Ž28 5 𝑇29 , 𝑑 𝐺28 *36 β€² β€²β€² 𝑑𝑑 𝑑 𝐺29 5 β€² 5 β€²β€² 5 𝑑𝑑 = π‘Ž29 𝐺28 βˆ’ π‘Ž29 + π‘Ž29 𝑇29 , 𝑑 𝐺29 *37 𝑑 𝐺30 5 β€² 5 β€²β€² 5 = π‘Ž30 𝐺29 βˆ’ π‘Ž30 + π‘Ž30 𝑇29 , 𝑑 𝐺30 *38 𝑑𝑑 𝑑 𝑇28 5 β€² 5 β€²β€² 5 = 𝑏28 𝑇29 βˆ’ 𝑏28 βˆ’ 𝑏28 𝐺31 , 𝑑 𝑇28 *39 𝑑𝑑 𝑑 𝑇29 5 β€² 5 β€²β€² 5 = 𝑏29 𝑇28 βˆ’ 𝑏29 βˆ’ 𝑏29 𝐺31 , 𝑑 𝑇29 *40 𝑑𝑑 𝑑 𝑇30 5 β€² 5 β€²β€² 5 𝑑𝑑 = 𝑏30 𝑇29 βˆ’ 𝑏30 βˆ’ 𝑏30 𝐺31 , 𝑑 𝑇30 *41 β€²β€² 5 + π‘Ž28 𝑇29 , 𝑑 = First augmentation factor *42 β€²β€² 5 βˆ’ 𝑏28 𝐺31 , 𝑑 = First detritions factor *43 QUANTUM CORRECTIONS TO ON SHELL MATRIX (VIRTUAKL GRAVITONS ARE NOT INCLUDED IN THE LOOPS) AND WARD IDENTITIES FROM MATTER ENERGY MOMENTUM CONSERVATION(LOT OF SYSTEMS CONSERVE THE MASS ENERGY AND THE CLASSIFICATION IS BASED ON THE PARAMETRICIZATION OF THE SYSTEMS) MODULE NUMBERED SIX: The differential system of this model is now (Module numbered Six)*44 45 𝑑 𝐺32 𝑑𝑑 = π‘Ž32 6 𝐺33 βˆ’ π‘Ž32 6 + π‘Ž32 6 𝑇33 , 𝑑 𝐺32 *46 β€² β€²β€² 𝑑 𝐺33 6 β€² 6 β€²β€² 6 𝑑𝑑 = π‘Ž33 𝐺32 βˆ’ π‘Ž33 + π‘Ž33 𝑇33 , 𝑑 𝐺33 *47 𝑑 𝐺34 6 β€² 6 β€²β€² 6 𝑑𝑑 = π‘Ž34 𝐺33 βˆ’ π‘Ž34 + π‘Ž34 𝑇33 , 𝑑 𝐺34 *48 𝑑 𝑇32 6 β€² 6 β€²β€² 6 𝑑𝑑 = 𝑏32 𝑇33 βˆ’ 𝑏32 βˆ’ 𝑏32 𝐺35 , 𝑑 𝑇32 *49 𝑑 𝑇33 6 β€² 6 β€²β€² 6 = 𝑏33 𝑇32 βˆ’ 𝑏33 βˆ’ 𝑏33 𝐺35 , 𝑑 𝑇33 *50 𝑑𝑑 𝑑 𝑇34 6 β€² 6 β€²β€² 6 𝑑𝑑 = 𝑏34 𝑇33 βˆ’ 𝑏34 βˆ’ 𝑏34 𝐺35 , 𝑑 𝑇34 *51 β€²β€² 6 + π‘Ž32 𝑇33 , 𝑑 = First augmentation factor*52 CHARGED WEAK CURRENTS AND ONE LOOP FLAVOUR CHANGING NEUTRAL CURRENTS(FCNC) IN THE FERMION PORTFOLIO: MODULE NUMBERED SEVEN The differential system of this model is now (SEVENTH MODULE)*53 𝑑 𝐺36 β€² β€²β€² 𝑑𝑑 = π‘Ž36 7 𝐺37 βˆ’ π‘Ž36 7 + π‘Ž36 7 𝑇37 , 𝑑 𝐺36 *54 𝑑 𝐺37 7 β€² 7 β€²β€² 7 𝑑𝑑 = π‘Ž37 𝐺36 βˆ’ π‘Ž37 + π‘Ž37 𝑇37 , 𝑑 𝐺37 *55 𝑑 𝐺38 7 β€² 7 β€²β€² 7 𝑑𝑑 = π‘Ž38 𝐺37 βˆ’ π‘Ž38 + π‘Ž38 𝑇37 , 𝑑 𝐺38 *56 www.ijmer.com 2114 | P a g e
  • 6. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2110-2167 ISSN: 2249-6645 𝑑 𝑇36 7 β€² β€²β€² = 𝑏36 𝑇37 βˆ’ 𝑏36 7 βˆ’ 𝑏36 7 𝐺39 , 𝑑 𝑇36 *57 𝑑𝑑 𝑑 𝑇37 7 β€² 7 β€²β€² 7 𝑑𝑑 = 𝑏37 𝑇36 βˆ’ 𝑏37 βˆ’ 𝑏37 𝐺39 , 𝑑 𝑇37 *58 59 𝑑 𝑇38 7 β€² 7 β€²β€² 7 𝑑𝑑 = 𝑏38 𝑇37 βˆ’ 𝑏38 βˆ’ 𝑏38 𝐺39 , 𝑑 𝑇38 *60 β€²β€² 7 + π‘Ž36 𝑇37 , 𝑑 = First augmentation factor *61 7β€²β€² βˆ’ 𝑏36 𝐺39 , 𝑑 = First detritions factor FIRST MODULE CONCATENATION: π‘Ž13 1 + π‘Ž13 1 𝑇14 , 𝑑 + π‘Ž16 β€² β€²β€² β€²β€² 2,2, 𝑇17 , 𝑑 β€²β€² + π‘Ž20 3,3, 𝑇21 , 𝑑 𝑑 𝐺13 1 β€²β€² 4,4,4,4, β€²β€² 5,5,5,5, β€²β€² 6,6,6,6, = π‘Ž13 𝐺14 βˆ’ + π‘Ž24 𝑇25 , 𝑑 + π‘Ž28 𝑇29 , 𝑑 + π‘Ž32 𝑇33 , 𝑑 𝐺13 𝑑𝑑 β€²β€² 7 + π‘Ž36 𝑇37 , 𝑑 β€² 1 β€²β€² 1 β€²β€² 2,2, β€²β€² 3,3, π‘Ž14 + π‘Ž14 𝑇14 , 𝑑 + π‘Ž17 𝑇17 , 𝑑 + π‘Ž21 𝑇21 , 𝑑 𝑑 𝐺14 1 β€²β€² 4,4,4,4, β€²β€² 5,5,5,5, β€²β€² 6,6,6,6, 𝑑𝑑 = π‘Ž14 𝐺13 βˆ’ + π‘Ž25 𝑇25 , 𝑑 + π‘Ž29 𝑇29 , 𝑑 + π‘Ž33 𝑇33 , 𝑑 𝐺14 β€²β€² 7 + π‘Ž37 𝑇37 , 𝑑 β€² 1 β€²β€² 1 β€²β€² 2,2, β€²β€² 3,3, π‘Ž15 + π‘Ž15 𝑇14 , 𝑑 + π‘Ž18 𝑇17 , 𝑑 + π‘Ž22 𝑇21 , 𝑑 𝑑 𝐺15 β€²β€² 4,4,4,4, β€²β€² 5,5,5,5, β€²β€² 6,6,6,6, = π‘Ž15 1 𝐺14 βˆ’ + π‘Ž26 𝑇25 , 𝑑 + π‘Ž30 𝑇29 , 𝑑 + π‘Ž34 𝑇33 , 𝑑 𝐺15 𝑑𝑑 β€²β€² 7 + π‘Ž38 𝑇37 , 𝑑 β€²β€² 1 β€²β€² 1 β€²β€² 1 Where π‘Ž13 𝑇14 , 𝑑 , π‘Ž14 𝑇14 , 𝑑 , π‘Ž15 𝑇14 , 𝑑 are first augmentation coefficients for category 1, 2 and 3 β€²β€² 2,2, β€²β€² 2,2, β€²β€² 2,2, + π‘Ž16 𝑇17 , 𝑑 , + π‘Ž17 𝑇17 , 𝑑 , + π‘Ž18 𝑇17 , 𝑑 are second augmentation coefficient for category 1, 2 and 3 β€²β€² 3,3, β€²β€² 3,3, β€²β€² 3,3, + π‘Ž20 𝑇21 , 𝑑 , + π‘Ž21 𝑇21 , 𝑑 , + π‘Ž22 𝑇21 , 𝑑 are third augmentation coefficient for category 1, 2 and 3 β€²β€² 4,4,4,4, β€²β€² 4,4,4,4, β€²β€² 4,4,4,4, + π‘Ž24 𝑇25 , 𝑑 , + π‘Ž25 𝑇25 , 𝑑 , + π‘Ž26 𝑇25 , 𝑑 are fourth augmentation coefficient for category 1, 2 and 3 β€²β€² 5,5,5,5, β€²β€² 5,5,5,5, β€²β€² 5,5,5,5, + π‘Ž28 𝑇29 , 𝑑 , + π‘Ž29 𝑇29 , 𝑑 , + π‘Ž30 𝑇29 , 𝑑 are fifth augmentation coefficient for category 1, 2 and 3 β€²β€² 6,6,6,6, β€²β€² 6,6,6,6, β€²β€² 6,6,6,6, + π‘Ž32 𝑇33 , 𝑑 , + π‘Ž33 𝑇33 , 𝑑 , + π‘Ž34 𝑇33 , 𝑑 are sixth augmentation coefficient for category 1, 2 and 3 β€²β€² 7 β€²β€² 7 β€²β€² 7 + π‘Ž36 𝑇37 , 𝑑 + π‘Ž37 𝑇37 , 𝑑 + π‘Ž38 𝑇37 , 𝑑 ARESEVENTHAUGMENTATION COEFFICIENTS β€² 1 β€²β€² 1 β€²β€² 7, β€²β€² 3,3, 𝑏13 βˆ’ 𝑏16 𝐺, 𝑑 βˆ’ 𝑏36 𝐺39 , 𝑑 – 𝑏20 𝐺23 , 𝑑 𝑑 𝑇13 β€²β€² 4,4,4,4, β€²β€² 5,5,5,5, β€²β€² 6,6,6,6, = 𝑏13 1 𝑇14 βˆ’ βˆ’ 𝑏24 𝐺27 , 𝑑 βˆ’ 𝑏28 𝐺31 , 𝑑 – 𝑏32 𝐺35 , 𝑑 𝑇13 𝑑𝑑 β€²β€² 7, βˆ’ 𝑏36 𝐺39 , 𝑑 β€² 1 β€²β€² 1 β€²β€² 2,2, β€²β€² 3,3, 𝑏14 βˆ’ 𝑏14 𝐺, 𝑑 βˆ’ 𝑏17 𝐺19 , 𝑑 – 𝑏21 𝐺23 , 𝑑 𝑑 𝑇14 1 β€²β€² 4,4,4,4, β€²β€² 5,5,5,5, β€²β€² 6,6,6,6, = 𝑏14 𝑇13 βˆ’ βˆ’ 𝑏25 𝐺27 , 𝑑 – 𝑏29 𝐺31 , 𝑑 – 𝑏33 𝐺35 , 𝑑 𝑇14 𝑑𝑑 β€²β€² 7, βˆ’ 𝑏37 𝐺39 , 𝑑 β€² 1 β€²β€² 1 β€²β€² 2,2, β€²β€² 3,3, 𝑏15 βˆ’ 𝑏15 𝐺, 𝑑 βˆ’ 𝑏18 𝐺19 , 𝑑 – 𝑏22 𝐺23 , 𝑑 𝑑 𝑇15 1 𝑑𝑑 = 𝑏15 𝑇14 βˆ’ β€²β€² – 𝑏26 4,4,4,4, 𝐺27 , 𝑑 β€²β€² – 𝑏30 5,5,5,5, 𝐺31 , 𝑑 β€²β€² – 𝑏34 6,6,6,6, 𝐺35 , 𝑑 𝑇15 β€²β€² 7, βˆ’ 𝑏38 𝐺39 , 𝑑 β€²β€² 1 β€²β€² 1 β€²β€² 1 Where βˆ’ 𝑏13 𝐺, 𝑑 , βˆ’ 𝑏14 𝐺, 𝑑 , βˆ’ 𝑏15 𝐺, 𝑑 are first detritions coefficients for category 1, 2 and 3 β€²β€² 2,2, β€²β€² 2,2, β€²β€² 2,2, βˆ’ 𝑏16 𝐺19 , 𝑑 , βˆ’ 𝑏17 𝐺19 , 𝑑 , βˆ’ 𝑏18 𝐺19 , 𝑑 are second detritions coefficients for category 1, 2 and 3 β€²β€² 3,3, β€²β€² 3,3, β€²β€² 3,3, βˆ’ 𝑏20 𝐺23 , 𝑑 , βˆ’ 𝑏21 𝐺23 , 𝑑 , βˆ’ 𝑏22 𝐺23 , 𝑑 are third detritions coefficients for category 1, 2 and 3 β€²β€² 4,4,4,4, β€²β€² 4,4,4,4, β€²β€² 4,4,4,4, βˆ’ 𝑏24 𝐺27 , 𝑑 , βˆ’ 𝑏25 𝐺27 , 𝑑 , βˆ’ 𝑏26 𝐺27 , 𝑑 are fourth detritions coefficients for category 1, 2 and 3 www.ijmer.com 2115 | P a g e
  • 7. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2110-2167 ISSN: 2249-6645 β€²β€² 5,5,5,5, βˆ’ 𝑏28 𝐺31 , 𝑑 , βˆ’ 𝑏29 5,5,5,5, 𝐺31 , 𝑑 , βˆ’ 𝑏30 5,5,5,5, 𝐺31 , 𝑑 are fifth detritions coefficients for category 1, 2 β€²β€² β€²β€² and 3 β€²β€² 6,6,6,6, β€²β€² 6,6,6,6, β€²β€² 6,6,6,6, βˆ’ 𝑏32 𝐺35 , 𝑑 , βˆ’ 𝑏33 𝐺35 , 𝑑 , βˆ’ 𝑏34 𝐺35 , 𝑑 are sixth detritions coefficients for category 1, 2 and 3 β€²β€² 7, β€²β€² 7, β€²β€² 7, βˆ’ 𝑏36 𝐺39 , 𝑑 βˆ’ 𝑏36 𝐺39 , 𝑑 βˆ’ 𝑏36 𝐺39 , 𝑑 ARE SEVENTH DETRITION COEFFICIENTS *62 β€² 1 β€²β€² 1 β€²β€² 2,2, β€²β€² 3,3, 𝑑 𝑇15 𝑏15 βˆ’ 𝑏15 𝐺, 𝑑 βˆ’ 𝑏18 𝐺19 , 𝑑 – 𝑏22 𝐺23 , 𝑑 1 𝑑𝑑 = 𝑏15 𝑇14 βˆ’ 𝑇15 *63 β€²β€² 4,4,4,4, β€²β€² 5,5,5,5, β€²β€² 6,6,6,6, βˆ’ 𝑏26 𝐺27 , 𝑑 βˆ’ 𝑏30 𝐺31 , 𝑑 βˆ’ 𝑏34 𝐺35 , 𝑑 β€²β€² 1 β€²β€² 1 β€²β€² 1 Where βˆ’ 𝑏13 𝐺, 𝑑 , βˆ’ 𝑏14 𝐺, 𝑑 , βˆ’ 𝑏15 𝐺, 𝑑 are first detrition coefficients for category 1, 2 and 3 β€²β€² 2,2, β€²β€² 2,2, β€²β€² 2,2, βˆ’ 𝑏16 𝐺19 , 𝑑 , βˆ’ 𝑏17 𝐺19 , 𝑑 , βˆ’ 𝑏18 𝐺19 , 𝑑 are second detritions coefficients for category 1, 2 and 3 β€²β€² 3,3, β€²β€² 3,3, β€²β€² 3,3, βˆ’ 𝑏20 𝐺23 , 𝑑 , βˆ’ 𝑏21 𝐺23 , 𝑑 , βˆ’ 𝑏22 𝐺23 , 𝑑 are third detritions coefficients for category 1, 2 and 3 β€²β€² 4,4,4,4, β€²β€² 4,4,4,4, β€²β€² 4,4,4,4, βˆ’ 𝑏24 𝐺27 , 𝑑 , βˆ’ 𝑏25 𝐺27 , 𝑑 , βˆ’ 𝑏26 𝐺27 , 𝑑 are fourth detritions coefficients for category 1, 2 and 3 β€²β€² 5,5,5,5, β€²β€² 5,5,5,5, β€²β€² 5,5,5,5, βˆ’ 𝑏28 𝐺31 , 𝑑 , βˆ’ 𝑏29 𝐺31 , 𝑑 , βˆ’ 𝑏30 𝐺31 , 𝑑 are fifth detritions coefficients for category 1, 2 and 3 βˆ’ 𝑏32 6,6,6,6, 𝐺35 , 𝑑 , βˆ’ 𝑏33 6,6,6,6, 𝐺35 , 𝑑 , βˆ’ 𝑏34 6,6,6,6, 𝐺35 , 𝑑 are sixth detritions coefficients for category 1, 2 β€²β€² β€²β€² β€²β€² and 3 *64 SECOND MODULE CONCATENATION:*65 π‘Ž16 2 + π‘Ž16 2 𝑇17 , 𝑑 + π‘Ž13 1,1, 𝑇14 , 𝑑 + π‘Ž20 3,3,3 𝑇21 , 𝑑 β€² β€²β€² β€²β€² β€²β€² 𝑑 𝐺16 2 β€²β€² 4,4,4,4,4 β€²β€² 5,5,5,5,5 β€²β€² 6,6,6,6,6 𝑑𝑑 = π‘Ž16 𝐺17 βˆ’ + π‘Ž24 𝑇25 , 𝑑 + π‘Ž28 𝑇29 , 𝑑 + π‘Ž32 𝑇33 , 𝑑 𝐺16 βˆ—66 β€²β€² 7,7, + π‘Ž36 𝑇37 , 𝑑 β€² 2 β€²β€² 2 β€²β€² 1,1, β€²β€² 3,3,3 π‘Ž17 + π‘Ž17 𝑇17 , 𝑑 + π‘Ž14 𝑇14 , 𝑑 + π‘Ž21 𝑇21 , 𝑑 𝑑 𝐺17 β€²β€² 4,4,4,4,4 β€²β€² 5,5,5,5,5 β€²β€² 6,6,6,6,6 = π‘Ž17 2 𝐺16 βˆ’ + π‘Ž25 𝑇25 , 𝑑 + π‘Ž29 𝑇29 , 𝑑 + π‘Ž33 𝑇33 , 𝑑 𝐺17 *67 𝑑𝑑 β€²β€² 7,7, + π‘Ž37 𝑇37 , 𝑑 β€² 2 β€²β€² 2 β€²β€² 1,1, β€²β€² 3,3,3 π‘Ž18 + π‘Ž18 𝑇17 , 𝑑 + π‘Ž15 𝑇14 , 𝑑 + π‘Ž22 𝑇21 , 𝑑 𝑑 𝐺18 2 β€²β€² 4,4,4,4,4 β€²β€² 5,5,5,5,5 β€²β€² 6,6,6,6,6 = π‘Ž18 𝐺17 βˆ’ + π‘Ž26 𝑇25 , 𝑑 + π‘Ž30 𝑇29 , 𝑑 + π‘Ž34 𝑇33 , 𝑑 𝐺18 *68 𝑑𝑑 β€²β€² 7,7, + π‘Ž38 𝑇37 , 𝑑 β€²β€² 2 β€²β€² 2 β€²β€² 2 Where + π‘Ž16 𝑇17 , 𝑑 , + π‘Ž17 𝑇17 , 𝑑 , + π‘Ž18 𝑇17 , 𝑑 are first augmentation coefficients for category 1, 2 and 3 β€²β€² 1,1, β€²β€² 1,1, β€²β€² 1,1, + π‘Ž13 𝑇14 , 𝑑 , + π‘Ž14 𝑇14 , 𝑑 , + π‘Ž15 𝑇14 , 𝑑 are second augmentation coefficient for category 1, 2 and 3 β€²β€² 3,3,3 β€²β€² 3,3,3 β€²β€² 3,3,3 + π‘Ž20 𝑇21 , 𝑑 , + π‘Ž21 𝑇21 , 𝑑 , + π‘Ž22 𝑇21 , 𝑑 are third augmentation coefficient for category 1, 2 and 3 β€²β€² + π‘Ž24 4,4,4,4,4 β€²β€² 𝑇25 , 𝑑 , + π‘Ž25 4,4,4,4,4 β€²β€² 𝑇25 , 𝑑 , + π‘Ž26 4,4,4,4,4 𝑇25 , 𝑑 are fourth augmentation coefficient for category 1, 2 and 3 + π‘Ž28 5,5,5,5,5 β€²β€² β€²β€² 𝑇29 , 𝑑 , + π‘Ž29 5,5,5,5,5 𝑇29 , 𝑑 β€²β€² , + π‘Ž30 5,5,5,5,5 𝑇29 , 𝑑 are fifth augmentation coefficient for category 1, 2 and 3 + π‘Ž32 6,6,6,6,6 β€²β€² β€²β€² 𝑇33 , 𝑑 , + π‘Ž33 6,6,6,6,6 β€²β€² 𝑇33 , 𝑑 , + π‘Ž34 6,6,6,6,6 𝑇33 , 𝑑 are sixth augmentation coefficient for category 1, 2 and 3 *69 70 β€²β€² 7,7, β€²β€² 7,7, β€²β€² 7,7, + π‘Ž36 𝑇37 , 𝑑 + π‘Ž37 𝑇37 , 𝑑 + π‘Ž38 𝑇37 , 𝑑 ARE SEVENTH DETRITION COEFFICIENTS*71 β€² 2 β€²β€² 2 β€²β€² 1,1, β€²β€² 3,3,3, 𝑏16 βˆ’ 𝑏16 𝐺19 , 𝑑 βˆ’ 𝑏13 𝐺, 𝑑 – 𝑏20 𝐺23 , 𝑑 𝑑 𝑇16 2 𝑑𝑑 = 𝑏16 𝑇17 βˆ’ β€²β€² βˆ’ 𝑏24 4,4,4,4,4 𝐺27 , 𝑑 β€²β€² – 𝑏28 5,5,5,5,5 𝐺31 , 𝑑 β€²β€² – 𝑏32 6,6,6,6,6 𝐺35 , 𝑑 𝑇16 *72 β€²β€² 7,7 βˆ’ 𝑏36 𝐺39 , 𝑑 www.ijmer.com 2116 | P a g e
  • 8. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2110-2167 ISSN: 2249-6645 β€² 2 β€²β€² 2 β€²β€² 1,1, β€²β€² 3,3,3, 𝑏17 βˆ’ 𝑏17 𝐺19 , 𝑑 βˆ’ 𝑏14 𝐺, 𝑑 – 𝑏21 𝐺23 , 𝑑 𝑑 𝑇17 2 β€²β€² 4,4,4,4,4 β€²β€² 5,5,5,5,5 β€²β€² 6,6,6,6,6 = 𝑏17 𝑇16 βˆ’ – 𝑏25 𝐺27 , 𝑑 – 𝑏29 𝐺31 , 𝑑 – 𝑏33 𝐺35 , 𝑑 𝑇17 *73 𝑑𝑑 β€²β€² 7,7 βˆ’ 𝑏37 𝐺39 , 𝑑 β€² 2 β€²β€² 2 β€²β€² 1,1, β€²β€² 3,3,3, 𝑏18 βˆ’ 𝑏18 𝐺19 , 𝑑 βˆ’ 𝑏15 𝐺, 𝑑 – 𝑏22 𝐺23 , 𝑑 𝑑 𝑇18 2 𝑑𝑑 = 𝑏18 𝑇17 βˆ’ β€²β€² βˆ’ 𝑏26 4,4,4,4,4 𝐺27 , 𝑑 β€²β€² – 𝑏30 5,5,5,5,5 𝐺31 , 𝑑 β€²β€² – 𝑏34 6,6,6,6,6 𝐺35 , 𝑑 𝑇18 *74 β€²β€² 7,7 βˆ’ 𝑏38 𝐺39 , 𝑑 β€²β€² 2 β€²β€² 2 β€²β€² 2 where βˆ’ b16 G19 , t , βˆ’ b17 G19 , t , βˆ’ b18 G19 , t are first detrition coefficients for category 1, 2 and 3 β€²β€² 1,1, β€²β€² 1,1, β€²β€² 1,1, βˆ’ 𝑏13 𝐺, 𝑑 , βˆ’ 𝑏14 𝐺, 𝑑 , βˆ’ 𝑏15 𝐺, 𝑑 are second detrition coefficients for category 1,2 and 3 β€²β€² 3,3,3, β€²β€² 3,3,3, β€²β€² 3,3,3, βˆ’ 𝑏20 𝐺23 , 𝑑 , βˆ’ 𝑏21 𝐺23 , 𝑑 , βˆ’ 𝑏22 𝐺23 , 𝑑 are third detrition coefficients for category 1,2 and 3 β€²β€² 4,4,4,4,4 β€²β€² 4,4,4,4,4 β€²β€² 4,4,4,4,4 βˆ’ 𝑏24 𝐺27 , 𝑑 , βˆ’ 𝑏25 𝐺27 , 𝑑 , βˆ’ 𝑏26 𝐺27 , 𝑑 are fourth detritions coefficients for category 1,2 and 3 β€²β€² 5,5,5,5,5 β€²β€² 5,5,5,5,5 β€²β€² 5,5,5,5,5 βˆ’ 𝑏28 𝐺31 , 𝑑 , βˆ’ 𝑏29 𝐺31 , 𝑑 , βˆ’ 𝑏30 𝐺31 , 𝑑 are fifth detritions coefficients for category 1,2 and 3 β€²β€² 6,6,6,6,6 β€²β€² 6,6,6,6,6 β€²β€² 6,6,6,6,6 βˆ’ 𝑏32 𝐺35 , 𝑑 , βˆ’ 𝑏33 𝐺35 , 𝑑 , βˆ’ 𝑏34 𝐺35 , 𝑑 are sixth detritions coefficients for category 1,2 and 3 β€²β€² 7,7 β€²β€² 7,7 β€²β€² 7,7 βˆ’ 𝑏36 𝐺39 , 𝑑 βˆ’ 𝑏36 𝐺39 , 𝑑 βˆ’ 𝑏36 𝐺39 , 𝑑 π‘Žπ‘Ÿπ‘’ 𝑠𝑒𝑣𝑒𝑛𝑑𝑕 π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  THIRD MODULE CONCATENATION:*75 π‘Ž20 3 + π‘Ž20 3 𝑇21 , 𝑑 β€² β€²β€² β€²β€² + π‘Ž16 2,2,2 𝑇17 , 𝑑 β€²β€² + π‘Ž13 1,1,1, 𝑇14 , 𝑑 𝑑 𝐺20 β€²β€² 4,4,4,4,4,4 β€²β€² 5,5,5,5,5,5 β€²β€² 6,6,6,6,6,6 = π‘Ž20 3 𝐺21 βˆ’ + π‘Ž24 𝑇25 , 𝑑 + π‘Ž28 𝑇29 , 𝑑 + π‘Ž32 𝑇33 , 𝑑 𝐺20 *76 𝑑𝑑 β€²β€² 7.7.7. + π‘Ž36 𝑇37 , 𝑑 β€² 3 β€²β€² 3 β€²β€² 2,2,2 β€²β€² 1,1,1, π‘Ž21 + π‘Ž21 𝑇21 , 𝑑 + π‘Ž17 𝑇17 , 𝑑 + π‘Ž14 𝑇14 , 𝑑 𝑑 𝐺21 3 β€²β€² 4,4,4,4,4,4 β€²β€² 5,5,5,5,5,5 β€²β€² 6,6,6,6,6,6 = π‘Ž21 𝐺20 βˆ’ + π‘Ž25 𝑇25 , 𝑑 + π‘Ž29 𝑇29 , 𝑑 + π‘Ž33 𝑇33 , 𝑑 𝐺21 *77 𝑑𝑑 β€²β€² 7.7.7. + π‘Ž37 𝑇37 , 𝑑 β€² 3 β€²β€² 3 β€²β€² 2,2,2 β€²β€² 1,1,1, π‘Ž22 + π‘Ž22 𝑇21 , 𝑑 + π‘Ž18 𝑇17 , 𝑑 + π‘Ž15 𝑇14 , 𝑑 𝑑 𝐺22 3 β€²β€² 4,4,4,4,4,4 β€²β€² 5,5,5,5,5,5 β€²β€² 6,6,6,6,6,6 𝑑𝑑 = π‘Ž22 𝐺21 βˆ’ + π‘Ž26 𝑇25 , 𝑑 + π‘Ž30 𝑇29 , 𝑑 + π‘Ž34 𝑇33 , 𝑑 𝐺22 *78 β€²β€² 7.7.7. + π‘Ž38 𝑇37 , 𝑑 β€²β€² 3 β€²β€² 3 β€²β€² 3 + π‘Ž20 𝑇21 , 𝑑 , + π‘Ž21 𝑇21 , 𝑑 , + π‘Ž22 𝑇21 , 𝑑 are first augmentation coefficients for category 1, 2 and 3 β€²β€² 2,2,2 β€²β€² 2,2,2 β€²β€² 2,2,2 + π‘Ž16 𝑇17 , 𝑑 , + π‘Ž17 𝑇17 , 𝑑 , + π‘Ž18 𝑇17 , 𝑑 are second augmentation coefficients for category 1, 2 and 3 β€²β€² 1,1,1, β€²β€² 1,1,1, β€²β€² 1,1,1, + π‘Ž13 𝑇14 , 𝑑 , + π‘Ž14 𝑇14 , 𝑑 , + π‘Ž15 𝑇14 , 𝑑 are third augmentation coefficients for category 1, 2 and 3 β€²β€² + π‘Ž24 4,4,4,4,4,4 𝑇25 , 𝑑 , + π‘Ž25 4,4,4,4,4,4 𝑇25 , 𝑑 , + π‘Ž26 4,4,4,4,4,4 𝑇25 , 𝑑 are fourth augmentation coefficients for β€²β€² β€²β€² category 1, 2 and 3 + π‘Ž28 5,5,5,5,5,5 𝑇29 , 𝑑 , + π‘Ž29 5,5,5,5,5,5 𝑇29 , 𝑑 , + π‘Ž30 5,5,5,5,5,5 𝑇29 , 𝑑 β€²β€² β€²β€² β€²β€² are fifth augmentation coefficients for category 1, 2 and 3 + π‘Ž32 6,6,6,6,6,6 𝑇33 , 𝑑 , + π‘Ž33 β€²β€² β€²β€² 6,6,6,6,6,6 β€²β€² 𝑇33 , 𝑑 , + π‘Ž34 6,6,6,6,6,6 𝑇33 , 𝑑 are sixth augmentation coefficients for category 1, 2 and 3 *79 80 β€²β€² 7.7.7. β€²β€² 7.7.7. β€²β€² 7.7.7. + π‘Ž36 𝑇37 , 𝑑 + π‘Ž37 𝑇37 , 𝑑 + π‘Ž38 𝑇37 , 𝑑 are seventh augmentation coefficient*81 www.ijmer.com 2117 | P a g e
  • 9. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2110-2167 ISSN: 2249-6645 β€² 3 β€²β€² 3 β€²β€² 7,7,7 β€²β€² 1,1,1, 𝑏20 βˆ’ 𝑏20 𝐺23 , 𝑑 – 𝑏36 𝐺19 , 𝑑 – 𝑏13 𝐺, 𝑑 𝑑 𝑇20 3 β€²β€² 4,4,4,4,4,4 β€²β€² 5,5,5,5,5,5 β€²β€² 6,6,6,6,6,6 𝑑𝑑 = 𝑏20 𝑇21 βˆ’ βˆ’ 𝑏24 𝐺27 , 𝑑 – 𝑏28 𝐺31 , 𝑑 – 𝑏32 𝐺35 , 𝑑 𝑇20 *82 β€²β€² 7,7,7 – 𝑏36 𝐺39 , 𝑑 β€² 3 β€²β€² 3 β€²β€² 2,2,2 β€²β€² 1,1,1, 𝑏21 βˆ’ 𝑏21 𝐺23 , 𝑑 – 𝑏17 𝐺19 , 𝑑 – 𝑏14 𝐺, 𝑑 𝑑 𝑇21 3 β€²β€² 4,4,4,4,4,4 β€²β€² 5,5,5,5,5,5 β€²β€² 6,6,6,6,6,6 𝑑𝑑 = 𝑏21 𝑇20 βˆ’ βˆ’ 𝑏25 𝐺27 , 𝑑 – 𝑏29 𝐺31 , 𝑑 – 𝑏33 𝐺35 , 𝑑 𝑇21 *83 β€²β€² 7,7,7 – 𝑏37 𝐺39 , 𝑑 β€² 3 β€²β€² 3 β€²β€² 2,2,2 β€²β€² 1,1,1, 𝑏22 βˆ’ 𝑏22 𝐺23 , 𝑑 – 𝑏18 𝐺19 , 𝑑 – 𝑏15 𝐺, 𝑑 𝑑 𝑇22 3 β€²β€² 4,4,4,4,4,4 β€²β€² 5,5,5,5,5,5 β€²β€² 6,6,6,6,6,6 = 𝑏22 𝑇21 βˆ’ βˆ’ 𝑏26 𝐺27 , 𝑑 – 𝑏30 𝐺31 , 𝑑 – 𝑏34 𝐺35 , 𝑑 𝑇22 *84 𝑑𝑑 β€²β€² 7,7,7 – 𝑏38 𝐺39 , 𝑑 β€²β€² 3 β€²β€² 3 β€²β€² 3 βˆ’ 𝑏20 𝐺23 , 𝑑 , βˆ’ 𝑏21 𝐺23 , 𝑑 , βˆ’ 𝑏22 𝐺23 , 𝑑 are first detritions coefficients for category 1, 2 and 3 β€²β€² 2,2,2 β€²β€² 2,2,2 β€²β€² 2,2,2 βˆ’ 𝑏16 𝐺19 , 𝑑 , βˆ’ 𝑏17 𝐺19 , 𝑑 , βˆ’ 𝑏18 𝐺19 , 𝑑 are second detritions coefficients for category 1, 2 and 3 β€²β€² 1,1,1, β€²β€² 1,1,1, β€²β€² 1,1,1, βˆ’ 𝑏13 𝐺, 𝑑 , βˆ’ 𝑏14 𝐺, 𝑑 , βˆ’ 𝑏15 𝐺, 𝑑 are third detrition coefficients for category 1,2 and 3 β€²β€² 4,4,4,4,4,4 β€²β€² 4,4,4,4,4,4 β€²β€² 4,4,4,4,4,4 βˆ’ 𝑏24 𝐺27 , 𝑑 , βˆ’ 𝑏25 𝐺27 , 𝑑 , βˆ’ 𝑏26 𝐺27 , 𝑑 are fourth detritions coefficients for category 1, 2 and 3 βˆ’ 𝑏28 5,5,5,5,5,5 𝐺31 , 𝑑 , βˆ’ 𝑏29 β€²β€² β€²β€² 5,5,5,5,5,5 β€²β€² 𝐺31 , 𝑑 , βˆ’ 𝑏30 5,5,5,5,5,5 𝐺31 , 𝑑 are fifth detritions coefficients for category 1, 2 and 3 βˆ’ 𝑏32 6,6,6,6,6,6 β€²β€² β€²β€² 𝐺35 , 𝑑 , βˆ’ 𝑏33 6,6,6,6,6,6 β€²β€² 𝐺35 , 𝑑 , βˆ’ 𝑏34 6,6,6,6,6,6 𝐺35 , 𝑑 are sixth detritions coefficients for category 1, 2 and 3 *85 – 𝑏36 7,7,7 𝐺39 , 𝑑 – 𝑏37 7,7,7 𝐺39 , 𝑑 – 𝑏38 7,7,7 𝐺39 , 𝑑 are seventh detritions coefficients β€²β€² β€²β€² β€²β€² ==================================================================================== FOURTH MODULE CONCATENATION:*86 π‘Ž24 4 + π‘Ž24 4 𝑇25 , 𝑑 + π‘Ž28 β€² β€²β€² β€²β€² 5,5, 𝑇29 , 𝑑 β€²β€² + π‘Ž32 6,6, 𝑇33 , 𝑑 𝑑 𝐺24 4 β€²β€² 1,1,1,1 β€²β€² 2,2,2,2 β€²β€² 3,3,3,3 = π‘Ž24 𝐺25 βˆ’ + π‘Ž13 𝑇14 , 𝑑 + π‘Ž16 𝑇17 , 𝑑 + π‘Ž20 𝑇21 , 𝑑 𝐺24 βˆ—87 𝑑𝑑 β€²β€² 7,7,7,7, + π‘Ž36 𝑇37 , 𝑑 β€² 4 β€²β€² 4 β€²β€² 5,5, β€²β€² 6,6 π‘Ž25 + π‘Ž25 𝑇25 , 𝑑 + π‘Ž29 𝑇29 , 𝑑 + π‘Ž33 𝑇33 , 𝑑 𝑑 𝐺25 4 β€²β€² 1,1,1,1 β€²β€² 2,2,2,2 β€²β€² 3,3,3,3 = π‘Ž25 𝐺24 βˆ’ + π‘Ž14 𝑇14 , 𝑑 + π‘Ž17 𝑇17 , 𝑑 + π‘Ž21 𝑇21 , 𝑑 𝐺25 βˆ—88 𝑑𝑑 β€²β€² 7,7,7,7, + π‘Ž37 𝑇37 , 𝑑 β€² 4 β€²β€² 4 β€²β€² 5,5, β€²β€² 6,6, π‘Ž26 + π‘Ž26 𝑇25 , 𝑑 + π‘Ž30 𝑇29 , 𝑑 + π‘Ž34 𝑇33 , 𝑑 𝑑 𝐺26 β€²β€² 1,1,1,1 β€²β€² 2,2,2,2 β€²β€² 3,3,3,3 = π‘Ž26 4 𝐺25 βˆ’ + π‘Ž15 𝑇14 , 𝑑 + π‘Ž18 𝑇17 , 𝑑 + π‘Ž22 𝑇21 , 𝑑 𝐺26 βˆ—89 𝑑𝑑 β€²β€² 7,7,7,7, + π‘Ž38 𝑇37 , 𝑑 β€²β€² 4 β€²β€² 4 β€²β€² 4 π‘Šπ‘•π‘’π‘Ÿπ‘’ π‘Ž24 𝑇25 , 𝑑 , π‘Ž25 𝑇25 , 𝑑 , π‘Ž26 𝑇25 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² 5,5, β€²β€² 5,5, β€²β€² 5,5, + π‘Ž28 𝑇29 , 𝑑 , + π‘Ž29 𝑇29 , 𝑑 , + π‘Ž30 𝑇29 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² 6,6, β€²β€² 6,6, β€²β€² 6,6, + π‘Ž32 𝑇33 , 𝑑 , + π‘Ž33 𝑇33 , 𝑑 , + π‘Ž34 𝑇33 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² + π‘Ž13 1,1,1,1 β€²β€² β€²β€² 𝑇14 , 𝑑 , + π‘Ž14 1,1,1,1 𝑇14 , 𝑑 , + π‘Ž15 1,1,1,1 𝑇14 , 𝑑 are fourth augmentation coefficients for category 1, 2,and 3 + π‘Ž16 2,2,2,2 𝑇17 , 𝑑 , + π‘Ž17 2,2,2,2 𝑇17 , 𝑑 , + π‘Ž18 2,2,2,2 𝑇17 , 𝑑 are fifth augmentation coefficients for category 1, β€²β€² β€²β€² β€²β€² 2,and 3 + π‘Ž20 3,3,3,3 𝑇21 , 𝑑 , + π‘Ž21 3,3,3,3 𝑇21 , 𝑑 , + π‘Ž22 3,3,3,3 𝑇21 , 𝑑 are sixth augmentation coefficients for category 1, β€²β€² β€²β€² β€²β€² 2,and 3 + π‘Ž36 7,7,7,7, 𝑇37 , 𝑑 + π‘Ž36 7,7,7,7, 𝑇37 , 𝑑 + π‘Ž36 7,7,7,7, 𝑇37 , 𝑑 ARE SEVENTH augmentation coefficients*90 β€²β€² β€²β€² β€²β€² www.ijmer.com 2118 | P a g e
  • 10. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2110-2167 ISSN: 2249-6645 91 *92 β€² 4 β€²β€² 4 β€²β€² 5,5, β€²β€² 6,6, 𝑏24 βˆ’ 𝑏24 𝐺27 , 𝑑 βˆ’ 𝑏28 𝐺31 , 𝑑 – 𝑏32 𝐺35 , 𝑑 𝑑 𝑇24 4 𝑑𝑑 = 𝑏24 𝑇25 βˆ’ β€²β€² βˆ’ 𝑏13 1,1,1,1 𝐺, 𝑑 β€²β€² βˆ’ 𝑏16 2,2,2,2 𝐺19 , 𝑑 β€²β€² – 𝑏20 3,3,3,3 𝐺23 , 𝑑 𝑇24 βˆ—93 β€²β€² 7,7,7,7,,, βˆ’ 𝑏36 𝐺39 , 𝑑 β€² 4 β€²β€² 4 β€²β€² 5,5, β€²β€² 6,6, 𝑏25 βˆ’ 𝑏25 𝐺27 , 𝑑 βˆ’ 𝑏29 𝐺31 , 𝑑 – 𝑏33 𝐺35 , 𝑑 𝑑 𝑇25 4 𝑑𝑑 = 𝑏25 𝑇24 βˆ’ β€²β€² βˆ’ 𝑏14 1,1,1,1 𝐺, 𝑑 β€²β€² βˆ’ 𝑏17 2,2,2,2 𝐺19 , 𝑑 β€²β€² – 𝑏21 3,3,3,3 𝐺23 , 𝑑 𝑇25 βˆ—94 β€²β€² 7,7,7,77,, βˆ’ 𝑏37 𝐺39 , 𝑑 β€² 4 β€²β€² 4 β€²β€² 5,5, β€²β€² 6,6, 𝑏26 βˆ’ 𝑏26 𝐺27 , 𝑑 βˆ’ 𝑏30 𝐺31 , 𝑑 – 𝑏34 𝐺35 , 𝑑 𝑑 𝑇26 4 β€²β€² 1,1,1,1 β€²β€² 2,2,2,2 β€²β€² 3,3,3,3 = 𝑏26 𝑇25 βˆ’ βˆ’ 𝑏15 𝐺, 𝑑 βˆ’ 𝑏18 𝐺19 , 𝑑 – 𝑏22 𝐺23 , 𝑑 𝑇26 βˆ—95 𝑑𝑑 β€²β€² 7,7,7,,7,, βˆ’ 𝑏38 𝐺39 , 𝑑 β€²β€² 4 β€²β€² 4 β€²β€² 4 π‘Šπ‘•π‘’π‘Ÿπ‘’ βˆ’ 𝑏24 𝐺27 , 𝑑 , βˆ’ 𝑏25 𝐺27 , 𝑑 , βˆ’ 𝑏26 𝐺27 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² 5,5, β€²β€² 5,5, β€²β€² 5,5, βˆ’ 𝑏28 𝐺31 , 𝑑 , βˆ’ 𝑏29 𝐺31 , 𝑑 , βˆ’ 𝑏30 𝐺31 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² 6,6, β€²β€² 6,6, β€²β€² 6,6, βˆ’ 𝑏32 𝐺35 , 𝑑 , βˆ’ 𝑏33 𝐺35 , 𝑑 , βˆ’ 𝑏34 𝐺35 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² βˆ’ 𝑏13 1,1,1,1 𝐺, 𝑑 , βˆ’ 𝑏14 1,1,1,1 𝐺, 𝑑 β€²β€² β€²β€² , βˆ’ 𝑏15 1,1,1,1 𝐺, 𝑑 π‘Žπ‘Ÿπ‘’ π‘“π‘œπ‘’π‘Ÿπ‘‘π‘• π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 βˆ’ 𝑏16 2,2,2,2 𝐺19 , 𝑑 , β€²β€² βˆ’ 𝑏17 2,2,2,2 β€²β€² 𝐺19 , 𝑑 , β€²β€² βˆ’ 𝑏18 2,2,2,2 𝐺19 , 𝑑 π‘Žπ‘Ÿπ‘’ 𝑓𝑖𝑓𝑑𝑕 π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 – 𝑏20 3,3,3,3 𝐺23 , 𝑑 , – 𝑏21 3,3,3,3 𝐺23 , 𝑑 , – 𝑏22 3,3,3,3 𝐺23 , 𝑑 β€²β€² β€²β€² β€²β€² π‘Žπ‘Ÿπ‘’ 𝑠𝑖π‘₯𝑑𝑕 π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 βˆ’ 𝑏36 7,7,7,7,7,, 𝐺39 , 𝑑 βˆ’ 𝑏37 7,7,7,7,7,, 𝐺39 , 𝑑 βˆ’ 𝑏38 7,7,7,7,7,, 𝐺39 , 𝑑 𝐴𝑅𝐸 SEVENTH DETRITION β€²β€² β€²β€² β€²β€² COEFFICIENTS*96 *97 FIFTH MODULE CONCATENATION:*98 π‘Ž28 5 + π‘Ž28 5 𝑇29 , 𝑑 + π‘Ž24 4,4, 𝑇25 , 𝑑 + π‘Ž32 6,6,6 𝑇33 , 𝑑 β€² β€²β€² β€²β€² β€²β€² 𝑑 𝐺28 5 β€²β€² 1,1,1,1,1 β€²β€² 2,2,2,2,2 β€²β€² 3,3,3,3,3 = π‘Ž28 𝐺29 βˆ’ + π‘Ž13 𝑇14 , 𝑑 + π‘Ž16 𝑇17 , 𝑑 + π‘Ž20 𝑇21 , 𝑑 𝐺28 βˆ—99 𝑑𝑑 β€²β€² 7,7,,7,,7,7 + π‘Ž36 𝑇37 , 𝑑 β€² 5 β€²β€² 5 β€²β€² 4,4, β€²β€² 6,6,6 π‘Ž29 + π‘Ž29 𝑇29 , 𝑑 + π‘Ž25 𝑇25 , 𝑑 + π‘Ž33 𝑇33 , 𝑑 𝑑 𝐺29 5 β€²β€² 1,1,1,1,1 β€²β€² 2,2,2,2,2 β€²β€² 3,3,3,3,3 = π‘Ž29 𝐺28 βˆ’ + π‘Ž14 𝑇14 , 𝑑 + π‘Ž17 𝑇17 , 𝑑 + π‘Ž21 𝑇21 , 𝑑 𝐺29 βˆ—100 𝑑𝑑 β€²β€² 7,7,,,7,,7,7 + π‘Ž37 𝑇37 , 𝑑 β€² 5 β€²β€² 5 β€²β€² 4,4, β€²β€² 6,6,6 π‘Ž30 + π‘Ž30 𝑇29 , 𝑑 + π‘Ž26 𝑇25 , 𝑑 + π‘Ž34 𝑇33 , 𝑑 𝑑 𝐺30 β€²β€² 1,1,1,1,1 β€²β€² 2,2,2,2,2 β€²β€² 3,3,3,3,3 = π‘Ž30 5 𝐺29 βˆ’ + π‘Ž15 𝑇14 , 𝑑 + π‘Ž18 𝑇17 , 𝑑 + π‘Ž22 𝑇21 , 𝑑 𝐺30 βˆ—101 𝑑𝑑 β€²β€² 7,7,,7,,7,7 + π‘Ž38 𝑇37 , 𝑑 β€²β€² 5 β€²β€² 5 β€²β€² 5 π‘Šπ‘•π‘’π‘Ÿπ‘’ + π‘Ž28 𝑇29 , 𝑑 , + π‘Ž29 𝑇29 , 𝑑 , + π‘Ž30 𝑇29 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² 4,4, β€²β€² 4,4, β€²β€² 4,4, 𝐴𝑛𝑑 + π‘Ž24 𝑇25 , 𝑑 , + π‘Ž25 𝑇25 , 𝑑 , + π‘Ž26 𝑇25 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ β€²β€² 6,6,6 β€²β€² 6,6,6 β€²β€² 6,6,6 + π‘Ž32 𝑇33 , 𝑑 , + π‘Ž33 𝑇33 , 𝑑 , + π‘Ž34 𝑇33 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² + π‘Ž13 1,1,1,1,1 β€²β€² β€²β€² 𝑇14 , 𝑑 , + π‘Ž14 1,1,1,1,1 𝑇14 , 𝑑 , + π‘Ž15 1,1,1,1,1 𝑇14 , 𝑑 are fourth augmentation coefficients for category 1,2, and 3 + π‘Ž16 2,2,2,2,2 β€²β€² β€²β€² 𝑇17 , 𝑑 , + π‘Ž17 2,2,2,2,2 β€²β€² 𝑇17 , 𝑑 , + π‘Ž18 2,2,2,2,2 𝑇17 , 𝑑 are fifth augmentation coefficients for category 1,2,and 3 + π‘Ž20 3,3,3,3,3 β€²β€² β€²β€² 𝑇21 , 𝑑 , + π‘Ž21 3,3,3,3,3 β€²β€² 𝑇21 , 𝑑 , + π‘Ž22 3,3,3,3,3 𝑇21 , 𝑑 are sixth augmentation coefficients for category 1,2, 3 βˆ—102 *103 www.ijmer.com 2119 | P a g e