SlideShare a Scribd company logo
EDEXCEL IGCSE / CERTIFICATE IN PHYSICS 1-6
Astronomy
Edexcel IGCSE Physics pages 49 to 56
June 17th 2011
All content applies for Triple & Double Science
Edexcel Specification
Section 1: Forces and motion
d) Astronomy
understand gravitational field strength, g, and know that it is different on other planets and the moon
from that on the Earth.
explain that gravitational force:
- causes moons to orbit planets
- causes the planets to orbit the sun
- causes the moon and artificial satellites to orbit the Earth
- causes comets to orbit the sun
describe the differences in the orbits of comets, moons and planets
use the relationship:
orbital speed = (2× π × orbital radius) / time period
v = (2× π × r) / T
understand that:
- the universe is a large collection of billions of galaxies
- a galaxy is a large collection of billions of stars
- our solar system is in the Milky Way galaxy.
The Solar System
The Solar System consists of the Sun orbited by eight
planets and their moons, some dwarf planets along with
many asteroids and comets.
Planets
A planet is a body that orbits
the Sun, is massive enough
for its own gravity to make it
round, and has cleared its
neighbourhood of smaller
objects around its orbit.
Based on this, International
Astronomical Union’s definition
of 2006, there are only eight
planets in orbit around the
Sun.
In order of distance
from the Sun:
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Neptune
Uranus
Dwarf Planets
A dwarf planet is a celestial
body orbiting the Sun that is
massive enough to be
spherical as a result of its own
gravity. but has not cleared its
neighbouring region of other
similar bodies.
As of 2011 there are five dwarf
planets in the Solar System.
Between Mars and Jupiter:
Ceres
Beyond Neptune:
Pluto, Haumea,
Makemake
and Eris (the largest)
Hubble image of Pluto
and one of its moons
(Charon)
Asteroids
An asteroid is a celestial body
orbiting the Sun that is not
massive enough to be spherical
as a result of its own gravity.
Most asteroids are found between
the orbits of Mars and Jupiter – a
region called ‘The Asteroid Belt’.
There are about 750 000 asteroids
larger than 1km across.
A few, called ‘Near Earth
Asteroids’ can pass very close to
the Earth.
Asteroid Vesta – image
taken on July 17th 2011
by the Dawn spacecraft
Moons
A moon orbits a planet.
Planet Moons (2011)
Mercury 0
Venus 0
Earth 1
Mars 2
Jupiter 64
Saturn 62
Uranus 27
Neptune 13
The Earth’s only
natural satellite
Note: A number of dwarf planets and asteroids also have
moons, for example Pluto has three moons.
This is the time
taken for a planet
to complete one
orbit around the
Sun.
It increases with a
planets distance
from the Sun.
Mercury 88 days
Venus 225 days
Earth 1 year
Mars 2 years
Jupiter 12 years
Saturn 29 years
Neptune 165 years
Uranus 84 years
Time period (T )
Gravitational attraction
The force of gravity is responsible for the orbits of
planets, moons, asteroids and comets.
In 1687 Sir Isaac Newton stated that this
gravitational force:
- is always attractive
- would double if either the mass of Sun or
the planet was doubled
- decreases by a factor of 4 as the distance
between the Sun and a planet doubles.
Gravitational field strength (g)
This is a way of measuring the strength of gravity.
The gravitational field strength is equal to the
gravitational force exerted per kilogram.
Near the Earth’s surface, g = 10 N/kg
In most cases gravitational field strength in N/kg is
numerically equal to the acceleration due to
gravity in m/s2, hence they both use the same
symbol ‘g’.
Gravitational field strength (g) varies from planet
to planet.
It is greatest near the most massive objects.
Some examples of gravitational field strength:
Location N/kg Location N/kg
Earth 10 Jupiter 24
Moon 1.6 Pluto 0.7
Mars 3.7 The Sun 270
Planet,
Dwarf
Planet or
Moon
Number
of
moons
(2011)
Average distance
from the Sun
(millions of km)
Diameter
(km)
Time for
one orbit
(years)
Average
surface
temperature
(°C)
Gravitation
al field
strength
(N/kg)
Mercury 0 58 4 700 0.2
(88 days)
+ 350 4
Venus 0 108 12 100 0.6
(225 days)
+ 470 9
Earth 1 150
(93 million miles)
12 700 `1.0 + 15 10
Moon - 0.38
(from the Earth)
3 400 0.07
(27 days)
- 50 1.6
Mars 2 228 6 800 1.9 - 30 4
Ceres 0 414 970 4.6 - 100 0.3
Jupiter 64 779 143 000 12 - 150 23
Saturn 62 1443 120 000 30 - 180 9
Uranus 27 2877 51 000 84 - 210 9
Neptune 13 4503 49 000 165 - 220 11
Pluto 3 5874 2 300 248 - 230 0.7
Planetary orbits
The orbits of the planets
are slightly squashed
circles (ellipses) with
the Sun quite close to
the centre.
The Sun lies at a ‘focus’
of the ellipse
Planets move more quickly when they are closer
to the Sun.
faster slower
The above diagram is exaggerated!
What would happen to an orbit
without gravity
As the red planet moves it
is continually pulled by
gravity towards the Sun.
Gravity therefore causes
the planet to move along a
circular path – an orbit.
If this gravity is removed
the planet will continue to
move along a straight line
at a tangent to its original
orbit.
Comets
A comet is a body made of dust
and ice that occupies a highly
elongated orbit.
When the comet passes close to the
Sun some of the comet’s frozen
gases evaporate. These form a long
tail that shines in the sunlight.
Comets are most visible and travel
quickest when close to the Sun.
Comets are approximately 1-30km in
diameter.
Halley’s Comet
This is perhaps the most
famous comet.
It returns to the inner Solar
System every 75 to 76 years.
It last appeared in 1986 and is
due to return in 2061.
It has been observed since at
least 240BC. In 1705 Edmund
Halley correctly predicted its
reappearance in 1758.
Choose appropriate words to fill in the gaps below:
The Solar System consists of a ______, the Sun, orbited by
_______ planets, a number of dwarf planets and millions of
asteroids and ________.
All of these bodies ______ the Sun because of gravitational
force. Gravity is also responsible for the orbits of _______ and
artificial satellites.
Most orbits are nearly circular _______ but those of comets
are highly elongated. Comets move ________ when they are at
their nearest to the Sun
quickest eight star comets
ellipses
WORD SELECTION:
orbit moons
quickest
eight
star
comets
ellipses
orbit
moons
Orbital speed (v)
orbital speed = (2π x orbital radius) / time period
v = (2π x r ) / T
orbital speed in metres per second (m/s)
orbital radius in metres (m)
time period in seconds (s)
Question 1
Calculate the orbital speed of the Earth around the Sun.
(Earth orbital radius = 150 million km)
v = (2π x r ) / T
= (2π x [150 000 000 km] ) / [1 year]
but 1 year = (365 x 24 x 60 x 60) seconds
= 31 536 000 s
and 150 000 000 km = 150 000 000 000 metres
v = (2π x [150 000 000 000] ) / [31 536 000]
orbital speed = 29 900 m/s
Question 2
Calculate the orbital speed of the Moon around the Earth.
(Moon orbital radius = 380 000 km; orbit time = 27.3 days)
v = (2π x r ) / T
= (2π x [380 000 km] ) / [27.3 days]
but 27.3 days = (27.3 x 24 x 60 x 60) seconds
= 2 359 000 s
and 380 000 km = 380 000 000 metres
v = (2π x [380 000 000] ) / [2 359 000]
orbital speed = 1 012 m/s
Question 3
Calculate the orbital speed of the ISS (International Space Station)
around the Earth. (ISS orbital height = 355 km; orbit time = 91 minutes;
Earth radius = 6 378 km)
The orbit radius of the ISS = (355 + 6 378) km = 6 733 km
v = (2π x r ) / T
= (2π x [6 733 km] ) / [91 minutes]
but 91 minutes = (91 x 60) seconds
= 5 460 s
and 6 733 km = 6 733 000 metres
v = (2π x [6 733 000] ) / [5 460]
orbital speed = 7 748 m/s
Question 4
Calculate the orbital time of a satellite that has a speed of 3 075 m/s
and height above the earth of 35 906 km. (Earth radius = 6 378 km)
The orbit radius of the satellite = (35 576 + 6 378) km = 42 284 km
v = (2π x r ) / T
becomes: T = (2π x r ) / v
= (2π x [42 284 km] ) / [3 075 m/s]
but 42 284 km = 42 284 000 metres
T = (2π x [41 954 000 ] ) / [3 075 ]
orbital time = 86 400 seconds
= 1440 minutes
= 24 hours
Communication satellites
These are usually placed in geostationary orbits
so that they always stay above the same place on
the Earth’s surface.
VIEW FROM
ABOVE THE
NORTH POLE
Geostationary satellites must have orbits that:
- take 24 hours to complete
- circle in the same direction as the Earth’s
spin
- are above the equator
- orbit at a height of about 36 000 km
Uses of communication satellites include satellite
TV and some weather satellites.
Choose appropriate words to fill in the gaps below:
A satellite is a ________ mass object orbiting around a
________ mass body.
The larger the orbit of a satellite the more ________ it moves
and the ________ it takes to complete one orbit.
Geostationary satellites are used for _____________ and have
an orbital period of _____ hours.
_____________ satellites normally use polar orbits.
24
lower
longer slowly
communications
WORD SELECTION:
higher
monitoring
24
lower
longer
slowly
communications
higher
monitoring
The Milky Way
The Milky Way is the
name of our galaxy.
From Earth we can see
our galaxy edge-on. In a
very dark sky it appears
like a ‘cloud’ across the
sky resembling a strip of
spilt milk.
A very dark sky is required to
see the Milky Way this clearly
Galaxies
Galaxies consist of
billions of stars bound
together by the force of
gravity.
There are thought to be
at least 200 billion
galaxies in our Universe
each containing on
average 2 billion stars.
The Sun’s position in the Milky Way
The Andromeda Galaxy
Types of galaxy
Barred-Spiral – NGC 1300
Our galaxy is this type
Spiral – The Whirlpool Galaxy
Elliptical – M32
Irregular – The Small
Magellanic Cloud
Choose appropriate words to fill in the gaps below:
The ___________ is made up of billions of galaxies which
consist of __________ of stars bound to each other by the force
of ___________.
The name of our _________ is The Milky Way. The ______ is
located towards the outer edge of our galaxy.
The are different types of galaxy; ________, barred-spiral,
elliptical and irregular. The Milky Way is a ____________
galaxy. The _____________ Galaxy is the nearest spiral galaxy
to the Milky Way.
spiral
galaxy
gravity billions
Sun
barred-spiral
WORD SELECTION:
Universe
Andromeda
spiral
galaxy
gravity
billions
Sun
barred-spiral
Universe
Andromeda
Online Simulations
My Solar System - PhET- Build your own system of
heavenly bodies and watch the gravitational ballet. With
this orbit simulator, you can set initial positions,
velocities, and masses of 2, 3, or 4 bodies, and then
see them orbit each other.
Multiple planets - 7stones
Planet orbit info - Fendt
Distances in Space - Powerpoint presentation by JAA
Solar system quizes - How well do you know the solar
system? This resource contains whiteboard activities to
order and name the planets corrrectly as well as a
palnet database - by eChalk
Hidden Pairs Game on Planet Facts - by KT - Microsoft
WORD
Fifty-Fifty Game on Planets with Atmospheres - by KT -
Microsoft WORD
Fifty-Fifty Game on Planets that are smaller than the
Earth - by KT - Microsoft WORD
Sequential Puzzle on Planet Order - by KT - Microsoft
WORD
Sequential Puzzle on Planet Size - by KT - Microsoft
WORD
Lunar Eclipse - flash demo
Phases of the Moon - Freezeway.com
Phases of the Moon - eChalk
Seasons - Freezeway.com
Gravity & Orbits - PhET - Move the sun, earth, moon
and space station to see how it affects their
gravitational forces and orbital paths. Visualize the
sizes and distances between different heavenly bodies,
and turn off gravity to see what would happen without it!
Projectile & Satellite Orbits - NTNU
Newton's Cannon Demo - to show how orbits occur - by
Michael Fowler
Kepler Motion - NTNU
Kepler's 2nd Law - Fendt
Two & Three Body Orbits - 7stones
Orbits - Gravitation program
BBC KS3 Bitesize Revision:
The Solar System
Gravitational Forces
Days & Nights
Years & Seasons - includes an applet showing the tilt of
the Earth
The Moon
Artificial space probes and satellites
Astronomy
Notes questions from pages 49 to 56
1. Outline the structure of the Solar System and explain the difference
between a planet and a moon. (see pages 49 to 50)
2. Define what is meant by gravitational field strength and explain how it may
differ throughout the Solar System. (see page 50)
3. How is the orbit of a comet different from a planet? (see pages 51 and 52)
4. (a) Give the equation for orbital speed. (b) Calculate the orbital speed of
Mercury around the Sun. [Mercury orbital radius = 58 million km; orbital
time = 88 days]. (see page 54)
5. (a) What is the ‘Milky Way’? (b) What is a galaxy? (c) How many galaxies
are there in the Universe? (see page 55)
6. Answer the questions on page 56.
7. Verify that you can do all of the items listed in the end of chapter checklist
on page 56.

More Related Content

Similar to Astronomy.ppt

Gravitation
GravitationGravitation
Gravitation
Arihant Jain
 
Stars & The Solar System
Stars & The Solar SystemStars & The Solar System
Stars & The Solar Systemitutor
 
Chapter 22outline
Chapter 22outlineChapter 22outline
Chapter 22outlinejmchenry071
 
Gravitation ppt
Gravitation pptGravitation ppt
Gravitation ppt
Arpan Shakya
 
Exploring Our Solar System Part 1
Exploring Our Solar System Part 1Exploring Our Solar System Part 1
Exploring Our Solar System Part 1guest1be680
 
Exploring Our Solar System Part 1
Exploring Our Solar System Part 1Exploring Our Solar System Part 1
Exploring Our Solar System Part 1guest9a7a6a
 
Exploring Our Solar System Part 1
Exploring Our Solar System Part 1Exploring Our Solar System Part 1
Exploring Our Solar System Part 1guest4407359
 
Exploring Our Solar System Part 1
Exploring Our Solar System Part 1Exploring Our Solar System Part 1
Exploring Our Solar System Part 1guest9a7a6a
 
Exploring Our Solar System Part 1
Exploring Our Solar System Part 1Exploring Our Solar System Part 1
Exploring Our Solar System Part 1guest4407359
 
Solar system
Solar systemSolar system
Solar system
isrokids
 
Our solar system: planets
Our solar system: planetsOur solar system: planets
Our solar system: planets
Cinemath Paradise
 
Movimientos orbitales y satélites de saturno comparados con los de la tierra ...
Movimientos orbitales y satélites de saturno comparados con los de la tierra ...Movimientos orbitales y satélites de saturno comparados con los de la tierra ...
Movimientos orbitales y satélites de saturno comparados con los de la tierra ...
MARCOSISAIASCHUQUIRU1
 
Exploring our solar system part 1
Exploring our solar system part 1Exploring our solar system part 1
Exploring our solar system part 1gum9wv
 
Science planets ppt
Science planets pptScience planets ppt
Science planets pptsesilia_m
 
Overview Of Astronomy1
Overview Of Astronomy1Overview Of Astronomy1
Overview Of Astronomy1guest0c34aaf
 
Overview Of Astronomy
Overview Of AstronomyOverview Of Astronomy
Overview Of Astronomyguestfc4a02
 
Day 1 Journet to the light ves 4.pptx
Day 1 Journet to the light ves 4.pptxDay 1 Journet to the light ves 4.pptx
Day 1 Journet to the light ves 4.pptx
Dr Robert Craig PhD
 
Jupiter info.ppt
Jupiter info.pptJupiter info.ppt
Jupiter info.ppt
RigzinYoedzer
 
Science and astronomy club (types of celestrial objects)
Science and astronomy club (types of celestrial objects)Science and astronomy club (types of celestrial objects)
Science and astronomy club (types of celestrial objects)
Antilen Jacob
 

Similar to Astronomy.ppt (20)

Gravitation
GravitationGravitation
Gravitation
 
Stars & The Solar System
Stars & The Solar SystemStars & The Solar System
Stars & The Solar System
 
Chapter 22outline
Chapter 22outlineChapter 22outline
Chapter 22outline
 
Gravitation ppt
Gravitation pptGravitation ppt
Gravitation ppt
 
Exploring Our Solar System Part 1
Exploring Our Solar System Part 1Exploring Our Solar System Part 1
Exploring Our Solar System Part 1
 
Exploring Our Solar System Part 1
Exploring Our Solar System Part 1Exploring Our Solar System Part 1
Exploring Our Solar System Part 1
 
Exploring Our Solar System Part 1
Exploring Our Solar System Part 1Exploring Our Solar System Part 1
Exploring Our Solar System Part 1
 
Exploring Our Solar System Part 1
Exploring Our Solar System Part 1Exploring Our Solar System Part 1
Exploring Our Solar System Part 1
 
Exploring Our Solar System Part 1
Exploring Our Solar System Part 1Exploring Our Solar System Part 1
Exploring Our Solar System Part 1
 
SpacePP.ppt
SpacePP.pptSpacePP.ppt
SpacePP.ppt
 
Solar system
Solar systemSolar system
Solar system
 
Our solar system: planets
Our solar system: planetsOur solar system: planets
Our solar system: planets
 
Movimientos orbitales y satélites de saturno comparados con los de la tierra ...
Movimientos orbitales y satélites de saturno comparados con los de la tierra ...Movimientos orbitales y satélites de saturno comparados con los de la tierra ...
Movimientos orbitales y satélites de saturno comparados con los de la tierra ...
 
Exploring our solar system part 1
Exploring our solar system part 1Exploring our solar system part 1
Exploring our solar system part 1
 
Science planets ppt
Science planets pptScience planets ppt
Science planets ppt
 
Overview Of Astronomy1
Overview Of Astronomy1Overview Of Astronomy1
Overview Of Astronomy1
 
Overview Of Astronomy
Overview Of AstronomyOverview Of Astronomy
Overview Of Astronomy
 
Day 1 Journet to the light ves 4.pptx
Day 1 Journet to the light ves 4.pptxDay 1 Journet to the light ves 4.pptx
Day 1 Journet to the light ves 4.pptx
 
Jupiter info.ppt
Jupiter info.pptJupiter info.ppt
Jupiter info.ppt
 
Science and astronomy club (types of celestrial objects)
Science and astronomy club (types of celestrial objects)Science and astronomy club (types of celestrial objects)
Science and astronomy club (types of celestrial objects)
 

Recently uploaded

The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
timhan337
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 

Recently uploaded (20)

The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 

Astronomy.ppt

  • 1. EDEXCEL IGCSE / CERTIFICATE IN PHYSICS 1-6 Astronomy Edexcel IGCSE Physics pages 49 to 56 June 17th 2011 All content applies for Triple & Double Science
  • 2. Edexcel Specification Section 1: Forces and motion d) Astronomy understand gravitational field strength, g, and know that it is different on other planets and the moon from that on the Earth. explain that gravitational force: - causes moons to orbit planets - causes the planets to orbit the sun - causes the moon and artificial satellites to orbit the Earth - causes comets to orbit the sun describe the differences in the orbits of comets, moons and planets use the relationship: orbital speed = (2× π × orbital radius) / time period v = (2× π × r) / T understand that: - the universe is a large collection of billions of galaxies - a galaxy is a large collection of billions of stars - our solar system is in the Milky Way galaxy.
  • 3. The Solar System The Solar System consists of the Sun orbited by eight planets and their moons, some dwarf planets along with many asteroids and comets.
  • 4. Planets A planet is a body that orbits the Sun, is massive enough for its own gravity to make it round, and has cleared its neighbourhood of smaller objects around its orbit. Based on this, International Astronomical Union’s definition of 2006, there are only eight planets in orbit around the Sun. In order of distance from the Sun: Mercury Venus Earth Mars Jupiter Saturn Neptune Uranus
  • 5. Dwarf Planets A dwarf planet is a celestial body orbiting the Sun that is massive enough to be spherical as a result of its own gravity. but has not cleared its neighbouring region of other similar bodies. As of 2011 there are five dwarf planets in the Solar System. Between Mars and Jupiter: Ceres Beyond Neptune: Pluto, Haumea, Makemake and Eris (the largest) Hubble image of Pluto and one of its moons (Charon)
  • 6. Asteroids An asteroid is a celestial body orbiting the Sun that is not massive enough to be spherical as a result of its own gravity. Most asteroids are found between the orbits of Mars and Jupiter – a region called ‘The Asteroid Belt’. There are about 750 000 asteroids larger than 1km across. A few, called ‘Near Earth Asteroids’ can pass very close to the Earth. Asteroid Vesta – image taken on July 17th 2011 by the Dawn spacecraft
  • 7. Moons A moon orbits a planet. Planet Moons (2011) Mercury 0 Venus 0 Earth 1 Mars 2 Jupiter 64 Saturn 62 Uranus 27 Neptune 13 The Earth’s only natural satellite Note: A number of dwarf planets and asteroids also have moons, for example Pluto has three moons.
  • 8. This is the time taken for a planet to complete one orbit around the Sun. It increases with a planets distance from the Sun. Mercury 88 days Venus 225 days Earth 1 year Mars 2 years Jupiter 12 years Saturn 29 years Neptune 165 years Uranus 84 years Time period (T )
  • 9. Gravitational attraction The force of gravity is responsible for the orbits of planets, moons, asteroids and comets. In 1687 Sir Isaac Newton stated that this gravitational force: - is always attractive - would double if either the mass of Sun or the planet was doubled - decreases by a factor of 4 as the distance between the Sun and a planet doubles.
  • 10. Gravitational field strength (g) This is a way of measuring the strength of gravity. The gravitational field strength is equal to the gravitational force exerted per kilogram. Near the Earth’s surface, g = 10 N/kg In most cases gravitational field strength in N/kg is numerically equal to the acceleration due to gravity in m/s2, hence they both use the same symbol ‘g’.
  • 11. Gravitational field strength (g) varies from planet to planet. It is greatest near the most massive objects. Some examples of gravitational field strength: Location N/kg Location N/kg Earth 10 Jupiter 24 Moon 1.6 Pluto 0.7 Mars 3.7 The Sun 270
  • 12. Planet, Dwarf Planet or Moon Number of moons (2011) Average distance from the Sun (millions of km) Diameter (km) Time for one orbit (years) Average surface temperature (°C) Gravitation al field strength (N/kg) Mercury 0 58 4 700 0.2 (88 days) + 350 4 Venus 0 108 12 100 0.6 (225 days) + 470 9 Earth 1 150 (93 million miles) 12 700 `1.0 + 15 10 Moon - 0.38 (from the Earth) 3 400 0.07 (27 days) - 50 1.6 Mars 2 228 6 800 1.9 - 30 4 Ceres 0 414 970 4.6 - 100 0.3 Jupiter 64 779 143 000 12 - 150 23 Saturn 62 1443 120 000 30 - 180 9 Uranus 27 2877 51 000 84 - 210 9 Neptune 13 4503 49 000 165 - 220 11 Pluto 3 5874 2 300 248 - 230 0.7
  • 13. Planetary orbits The orbits of the planets are slightly squashed circles (ellipses) with the Sun quite close to the centre. The Sun lies at a ‘focus’ of the ellipse
  • 14. Planets move more quickly when they are closer to the Sun. faster slower The above diagram is exaggerated!
  • 15. What would happen to an orbit without gravity As the red planet moves it is continually pulled by gravity towards the Sun. Gravity therefore causes the planet to move along a circular path – an orbit. If this gravity is removed the planet will continue to move along a straight line at a tangent to its original orbit.
  • 16. Comets A comet is a body made of dust and ice that occupies a highly elongated orbit. When the comet passes close to the Sun some of the comet’s frozen gases evaporate. These form a long tail that shines in the sunlight. Comets are most visible and travel quickest when close to the Sun. Comets are approximately 1-30km in diameter.
  • 17. Halley’s Comet This is perhaps the most famous comet. It returns to the inner Solar System every 75 to 76 years. It last appeared in 1986 and is due to return in 2061. It has been observed since at least 240BC. In 1705 Edmund Halley correctly predicted its reappearance in 1758.
  • 18. Choose appropriate words to fill in the gaps below: The Solar System consists of a ______, the Sun, orbited by _______ planets, a number of dwarf planets and millions of asteroids and ________. All of these bodies ______ the Sun because of gravitational force. Gravity is also responsible for the orbits of _______ and artificial satellites. Most orbits are nearly circular _______ but those of comets are highly elongated. Comets move ________ when they are at their nearest to the Sun quickest eight star comets ellipses WORD SELECTION: orbit moons quickest eight star comets ellipses orbit moons
  • 19. Orbital speed (v) orbital speed = (2π x orbital radius) / time period v = (2π x r ) / T orbital speed in metres per second (m/s) orbital radius in metres (m) time period in seconds (s)
  • 20. Question 1 Calculate the orbital speed of the Earth around the Sun. (Earth orbital radius = 150 million km) v = (2π x r ) / T = (2π x [150 000 000 km] ) / [1 year] but 1 year = (365 x 24 x 60 x 60) seconds = 31 536 000 s and 150 000 000 km = 150 000 000 000 metres v = (2π x [150 000 000 000] ) / [31 536 000] orbital speed = 29 900 m/s
  • 21. Question 2 Calculate the orbital speed of the Moon around the Earth. (Moon orbital radius = 380 000 km; orbit time = 27.3 days) v = (2π x r ) / T = (2π x [380 000 km] ) / [27.3 days] but 27.3 days = (27.3 x 24 x 60 x 60) seconds = 2 359 000 s and 380 000 km = 380 000 000 metres v = (2π x [380 000 000] ) / [2 359 000] orbital speed = 1 012 m/s
  • 22. Question 3 Calculate the orbital speed of the ISS (International Space Station) around the Earth. (ISS orbital height = 355 km; orbit time = 91 minutes; Earth radius = 6 378 km) The orbit radius of the ISS = (355 + 6 378) km = 6 733 km v = (2π x r ) / T = (2π x [6 733 km] ) / [91 minutes] but 91 minutes = (91 x 60) seconds = 5 460 s and 6 733 km = 6 733 000 metres v = (2π x [6 733 000] ) / [5 460] orbital speed = 7 748 m/s
  • 23. Question 4 Calculate the orbital time of a satellite that has a speed of 3 075 m/s and height above the earth of 35 906 km. (Earth radius = 6 378 km) The orbit radius of the satellite = (35 576 + 6 378) km = 42 284 km v = (2π x r ) / T becomes: T = (2π x r ) / v = (2π x [42 284 km] ) / [3 075 m/s] but 42 284 km = 42 284 000 metres T = (2π x [41 954 000 ] ) / [3 075 ] orbital time = 86 400 seconds = 1440 minutes = 24 hours
  • 24. Communication satellites These are usually placed in geostationary orbits so that they always stay above the same place on the Earth’s surface. VIEW FROM ABOVE THE NORTH POLE
  • 25. Geostationary satellites must have orbits that: - take 24 hours to complete - circle in the same direction as the Earth’s spin - are above the equator - orbit at a height of about 36 000 km Uses of communication satellites include satellite TV and some weather satellites.
  • 26. Choose appropriate words to fill in the gaps below: A satellite is a ________ mass object orbiting around a ________ mass body. The larger the orbit of a satellite the more ________ it moves and the ________ it takes to complete one orbit. Geostationary satellites are used for _____________ and have an orbital period of _____ hours. _____________ satellites normally use polar orbits. 24 lower longer slowly communications WORD SELECTION: higher monitoring 24 lower longer slowly communications higher monitoring
  • 27. The Milky Way The Milky Way is the name of our galaxy. From Earth we can see our galaxy edge-on. In a very dark sky it appears like a ‘cloud’ across the sky resembling a strip of spilt milk. A very dark sky is required to see the Milky Way this clearly
  • 28. Galaxies Galaxies consist of billions of stars bound together by the force of gravity. There are thought to be at least 200 billion galaxies in our Universe each containing on average 2 billion stars. The Sun’s position in the Milky Way The Andromeda Galaxy
  • 29. Types of galaxy Barred-Spiral – NGC 1300 Our galaxy is this type Spiral – The Whirlpool Galaxy Elliptical – M32 Irregular – The Small Magellanic Cloud
  • 30. Choose appropriate words to fill in the gaps below: The ___________ is made up of billions of galaxies which consist of __________ of stars bound to each other by the force of ___________. The name of our _________ is The Milky Way. The ______ is located towards the outer edge of our galaxy. The are different types of galaxy; ________, barred-spiral, elliptical and irregular. The Milky Way is a ____________ galaxy. The _____________ Galaxy is the nearest spiral galaxy to the Milky Way. spiral galaxy gravity billions Sun barred-spiral WORD SELECTION: Universe Andromeda spiral galaxy gravity billions Sun barred-spiral Universe Andromeda
  • 31. Online Simulations My Solar System - PhET- Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other. Multiple planets - 7stones Planet orbit info - Fendt Distances in Space - Powerpoint presentation by JAA Solar system quizes - How well do you know the solar system? This resource contains whiteboard activities to order and name the planets corrrectly as well as a palnet database - by eChalk Hidden Pairs Game on Planet Facts - by KT - Microsoft WORD Fifty-Fifty Game on Planets with Atmospheres - by KT - Microsoft WORD Fifty-Fifty Game on Planets that are smaller than the Earth - by KT - Microsoft WORD Sequential Puzzle on Planet Order - by KT - Microsoft WORD Sequential Puzzle on Planet Size - by KT - Microsoft WORD Lunar Eclipse - flash demo Phases of the Moon - Freezeway.com Phases of the Moon - eChalk Seasons - Freezeway.com Gravity & Orbits - PhET - Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it! Projectile & Satellite Orbits - NTNU Newton's Cannon Demo - to show how orbits occur - by Michael Fowler Kepler Motion - NTNU Kepler's 2nd Law - Fendt Two & Three Body Orbits - 7stones Orbits - Gravitation program BBC KS3 Bitesize Revision: The Solar System Gravitational Forces Days & Nights Years & Seasons - includes an applet showing the tilt of the Earth The Moon Artificial space probes and satellites
  • 32. Astronomy Notes questions from pages 49 to 56 1. Outline the structure of the Solar System and explain the difference between a planet and a moon. (see pages 49 to 50) 2. Define what is meant by gravitational field strength and explain how it may differ throughout the Solar System. (see page 50) 3. How is the orbit of a comet different from a planet? (see pages 51 and 52) 4. (a) Give the equation for orbital speed. (b) Calculate the orbital speed of Mercury around the Sun. [Mercury orbital radius = 58 million km; orbital time = 88 days]. (see page 54) 5. (a) What is the ‘Milky Way’? (b) What is a galaxy? (c) How many galaxies are there in the Universe? (see page 55) 6. Answer the questions on page 56. 7. Verify that you can do all of the items listed in the end of chapter checklist on page 56.