ARTIFICIAL NEURAL NETWORK
1

Mahdi Akbarzadeh


Biological Neurons



Artificial Neurons

2
INTRODUCTION

3
MODELS AND ALGORITHMS

4
MODELS AND ALGORITHMS

5
JARGON

6
JARGON

7
NETWORK DIAGRAM

8
NETWORK DIAGRAM

9
PERCEPTRONS

10
PERCEPTRONS

11
PERCEPTRONS

12
PERCEPTRONS

13
PERCEPTRONS

14
PERCEPTRONS

15
PERCEPTRONS

16
MULTILAYER PERCEPTERON

17
MULTILAYER PERCEPTERON

18
MULTILAYER PERCEPTERON

19
MULTILAYER PERCEPTERON

20
MULTILAYER PERCEPTERON

21
MULTILAYER PERCEPTERON

22
MULTILAYER PERCEPTERON

23
MULTILAYER PERCEPTERON

24
MULTILAYER PERCEPTERON

25
26
27
28
29
30
31
32
Backpropagation
a

1
1  e  net g
g 

33
hardlim(n) = 1
=0

if n >=0
otherwise

logsig(n) = 1 / (1 + exp(-n))

poslin(n) = n, if n >= 0
= 0, if n <= 0

34
purelin(n) = n

satlin(n) = 0, if n <= 0
= n, f 0 <= n <= 1
=1, if 1 <= n

satlins(n) = -1,
= n,
= 1,

if n <= -1
if -1 <= n <= 1
if 1 <= n

35
tansig(n) = 2/(1+exp(-2n))-1

tribas(n) = 1 - abs(n), if -1 <= n <= 1
= 0, otherwise

36

radbas(n) = exp(-n^2)
37
UNSUPERVISED LEARNING

38
UNSUPERVISED LEARNING

39
40
41
HYBRID NETWORK

42
RADIAL BASIS FUNCTION (RBF)

43
RADIAL BASIS FUNCTION (RBF)

44
EXAMPLE

45
46
EXAMPLE: SPSS

47
EXAMPLE: SPSS

48
EXAMPLE: SPSS

49
EXAMPLE: SPSS

50
EXAMPLE: SPSS

51
EXAMPLE: SPSS

52
EXAMPLE: SPSS

53
EXAMPLE: SPSS

54
EXAMPLE: SPSS

55
EXAMPLE: SPSS

56
EXAMPLE: SPSS

57
EXAMPLE: MATLAB
nprtool

58
59
60
61
62
63
64
65
66
67
68

Artificial neural network