SlideShare a Scribd company logo
1 of 67
Download to read offline
From	
  First	
  Stars	
  to	
  First	
  Galaxies	
  to	
  
the	
  Reioniza3on	
  of	
  the	
  Universe:	
  	
  
20	
  Years	
  of	
  Computa3onal	
  Progress	
  
Michael	
  L	
  Norman	
  
Director,	
  San	
  Diego	
  Supercomputer	
  Center	
  
Dis8nguished	
  Professor	
  of	
  Physics	
  
UC	
  San	
  Diego	
  
What	
  	
  we	
  have	
  explored	
  
computa8onally	
  
This	
  talk	
  is	
  about	
  the	
  	
  
first generation of galaxies
aka primeval galaxies
aka protogalaxies
•  How	
  they	
  formed?	
  
•  When	
  they	
  formed?	
  
•  What	
  they	
  were	
  like?	
  
•  Why	
  are	
  they	
  important?	
  
Don’t we have observational answers?
•  Yes	
  and	
  no	
  
•  High-­‐z	
  HUDF	
  galaxies	
  are	
  
the	
  8p	
  of	
  the	
  iceberg	
  
•  What	
  we	
  can	
  see	
  are	
  the	
  
biggest	
  and	
  brightest	
  
galaxies	
  of	
  their	
  era	
  
•  We	
  are	
  interested	
  in	
  
what	
  came	
  before	
  
Inferences from Reionization
•  Observed	
  high-­‐z	
  
galaxies	
  don’t	
  
provide	
  all	
  the	
  
ionizing	
  photons	
  
needed	
  to	
  explain	
  
reioniza8on	
  by	
  z=7	
  
(Robertson+	
  2015)	
  
•  What	
  does	
  the	
  faint	
  
end	
  of	
  the	
  LF	
  look	
  
like?	
  
Bouwens+	
  	
  2014	
  
Protogalaxies: An artist’s impression
A.	
  Schaller,	
  STScI	
  
Yikes!	
  Can	
  we	
  possibly	
  simulate	
  that?!!	
  
Answer:	
  YES!	
  
Peak	
  Speed:	
  13.4	
  Petaflops	
  
Total	
  memory:	
  1.5	
  Petabyte	
  
Processor	
  cores:	
  362,240	
  
NCSA,	
  University	
  of	
  Illinois	
  
Bryan	
  et	
  al.	
  2014,	
  ApJS,	
  211,	
  19	
  
hdp://enzo-­‐project.org	
  
Our	
  analysis/viz	
  tool:	
  	
  
Turk	
  et	
  al.	
  2011,	
  ApJS,	
  192,	
  9	
  
hdp://yt-­‐project.org	
  
Powerful software (open source),
developed over 22 years
Our	
  simula8on	
  tool:	
  	
  
Protogalaxies: A big supercomputer
simulation with lots of physics
•  How	
  they	
  form	
  
•  When	
  they	
  form	
  
•  What	
  they	
  are	
  like	
  
•  Whether	
  they	
  contribute	
  the	
  missing	
  photons	
  
to	
  reionize	
  the	
  universe	
  (spoiler:	
  YES)	
  
With	
  these	
  simula8ons	
  we	
  have	
  discovered	
  
Plan for the talk
1.  Numerical	
  cosmology	
  101	
  
2.  From	
  primordial	
  density	
  fluctua8ons	
  to	
  the	
  
first	
  stars	
  
3.  From	
  the	
  first	
  stars	
  to	
  the	
  first	
  galaxies	
  
4.  Simula8ng	
  the	
  first	
  galaxy	
  popula8on	
  
5.  From	
  the	
  first	
  galaxies	
  to	
  cosmic	
  reioniza8on	
  
NUMERICAL	
  COSMOLOGY	
  101	
  
The universe at 380,000 yr ABB	
  
ini)al	
  condi)ons	
  for	
  my	
  simula)ons	
  
Fluctua8ons	
  have	
  a	
  well-­‐
measured	
  power	
  spectrum	
  
Comoving	
  volume	
  
Computing the Universe:	
  
Numerical Cosmology
•  Transformation to
comoving coordinates
x=r/a(t)
a(t1)
a(t2)
a(t3)
•  Triply-periodic boundary
conditions
Input	
  observed	
  
fluctua8ons	
  
Time	
  step	
  the	
  laws	
  of	
  physics	
  in	
  a	
  computer	
  program	
  
Cosmic	
  web	
  
Equations of Cosmological Hydrodynamics
Mass	
  cons:	
  
Mom	
  cons:	
  
Energy	
  cons:	
  
Species	
  cons:	
  
2-­‐body	
  reac8ons	
   photo-­‐dissoc./ioniza8on	
  
Mul8species	
  gas	
  dynamics	
  
Newton’s	
  
law:	
  
Poisson	
  eq.	
  
Dark	
  mader	
  dynamics	
  
Friedmann	
  eq.	
  for	
  scale	
  factor	
  a(t)	
  
Metric	
  
“HALOS”	
  
	
  
Gravita8onally	
  bound	
  
mixtures	
  of	
  baryons	
  and	
  
dark	
  mader	
  
	
  
Where	
  stars	
  and	
  galaxies	
  
form	
  
Evolution of gas density
(c)	
  Brian	
  O'Shea	
  (MSU)	
  and	
  the	
  Enzo	
  Collabora8on,	
  2015	
  
FROM	
  LINEAR	
  FLUCTUATIONS	
  TO	
  
THE	
  FIRST	
  STARS	
  
Forming the First Stars (Population III)
•  The	
  first	
  genera8on	
  of	
  stars	
  condense	
  from	
  
pris8ne	
  H	
  and	
  He	
  gas	
  in	
  very	
  small	
  dark	
  mader	
  
halos	
  beginning	
  about	
  100	
  Myr	
  amer	
  big	
  bang	
  	
  
(Abel,	
  Bryan	
  &	
  Norman	
  2000,	
  2002;	
  Bromm	
  et	
  	
  al.	
  2002)	
  
•  Rota8onal	
  transi8ons	
  in	
  H2	
  molecule	
  is	
  the	
  
dominant	
  radia8ve	
  cooling	
  mechanism	
  that	
  
permits	
  the	
  gravita8onally	
  bound	
  cloud	
  to	
  
condense	
  to	
  a	
  star	
  
Key physics: gravitational instability
	
  
•  What	
  T	
  and	
  ρ	
  to	
  use?	
  
•  Peebles	
  &	
  Dicke	
  (1968)	
  
suggested	
  	
  using	
  mean	
  
values	
  at	
  recombina8on	
  
Jeans	
  mass	
  
MJ	
  =	
  106	
  Ms	
  
Globular	
  cluster	
  
Key physics: catalytic formation of H2
•  Process	
  starts	
  with	
  residual	
  electrons	
  amer	
  
recombina8on	
  
	
  
H + e- è H- + hν
H- + H è H2 + e-
H + H+ è H2
+ + hν
H2
+ + H è H2 + H
Channel	
  1	
  
Channel	
  2	
  
•  Solution: Semi-implicit rate solver (Anninos et al. 1997)
Computational difficulties and solutions
•  Difficulty:	
  noneq.	
  primordial	
  gas	
  chemistry	
  
	
  
Computational difficulties and solutions
•  Difficulty:	
  Vast	
  range	
  of	
  spa8o-­‐temporal	
  scales	
  
	
  
Gas	
  cloud	
  
protostar	
  
Space:	
  1010	
  
Time:	
  1012	
  
Computational difficulties and solutions
•  Solu8on:	
  recursive	
  adap8ve	
  mesh	
  refinement	
  
and	
  hierarchical	
  8me-­‐stepping	
  (Bryan	
  &	
  Norman	
  1997)	
  	
  
	
  
	
  
Evolution of grid refinements
(c)	
  Brian	
  O'Shea	
  (MSU)	
  and	
  the	
  Enzo	
  Collabora8on,	
  2015	
  
L/Δxmin=1010
density
temperature
600 pc 60 pc 6 pc
self-gravitating
core
Abel, Bryan & Norman 2002
100x mass of sun
924	
  cita8ons	
  and	
  coun8ng	
  
Findings	
  and	
  Implica8ons	
  
Abel,	
  Bryan	
  &	
  Norman	
  (2002;	
  Science)	
  
•  First	
  stars	
  begin	
  forming	
  about	
  100	
  Myr	
  ABB	
  
•  First	
  stars	
  are	
  massive:	
  >100	
  x	
  mass	
  of	
  Sun	
  
•  First	
  stars	
  form	
  in	
  isola8on	
  (one	
  per	
  pregalac8c	
  clump)	
  
•  They	
  will	
  be	
  extraordinarily	
  luminous	
  but	
  only	
  live	
  for	
  a	
  few	
  
million	
  years	
  
•  They	
  will	
  explode	
  as	
  supernovae,	
  and	
  seed	
  the	
  universe	
  
with	
  heavy	
  elements	
  (C,	
  N,	
  O,	
  Ca,	
  Si,	
  Fe…..)	
  
•  They	
  will	
  produce	
  first	
  stellar	
  mass	
  black	
  holes	
  
•  èThere	
  should	
  be	
  no	
  first	
  stars	
  around	
  today	
  
A deluge of papers followed
FROM FIRST STARS TO THE
FIRST GALAXIES
Wait! You skipped a step
•  Precise	
  mass	
  of	
  final	
  star	
  is	
  currently	
  not	
  computable	
  
•  But	
  we	
  can	
  es8mate	
  mass	
  from	
  amount	
  of	
  collapsing	
  
gas	
  and	
  accre8on	
  rate	
  
•  We	
  have	
  good	
  Pop	
  III	
  stellar	
  models	
  which	
  give	
  their	
  
life8mes,	
  luminosi8es,	
  and	
  fates	
  as	
  a	
  func8on	
  of	
  
mass	
  (Heger	
  &	
  Woosley	
  2002,	
  Shaerer	
  2003)	
  
•  We	
  parameterize	
  our	
  ignorance	
  with	
  a	
  primordial	
  
ini8al	
  mass	
  func8on	
  (PIMF)	
  
	
  
	
  
Assembly of the first galaxies
•  First	
  galaxies	
  assemble	
  from	
  gravita8onal	
  
merger	
  of	
  lower	
  mass	
  halos	
  that	
  previously	
  
contained	
  first	
  stars	
  and	
  were	
  processed	
  by	
  
their	
  radia8ve,	
  chemical,	
  and	
  kine8c	
  feedback	
  
•  A	
  typical	
  “first	
  galaxy”	
  will	
  incorporate	
  
O(10-­‐100)	
  such	
  systems	
  
•  Need	
  to	
  simulate	
  a	
  larger	
  volume	
  with	
  “AMR	
  
everywhere”,	
  tracking	
  the	
  detailed	
  star	
  
forma8on	
  and	
  feedback	
  
Assembly of the first galaxies
•  Key	
  physics:	
  hierarchical	
  
structure	
  forma8on	
  
driven	
  by	
  dark	
  mader	
  
clustering	
  
•  Key	
  computa8onal	
  
physics:	
  subgrid	
  models	
  
for	
  star	
  forma8on	
  and	
  
feedback	
  (Pop	
  III	
  stars	
  
and	
  metal-­‐enriched	
  star	
  
clusters)	
  
Lacey	
  &	
  Cole	
  1993	
  
Forming	
  a	
  Numerical	
  Star/Star	
  Cluster	
  
Wise	
  &	
  Abel	
  2008;	
  Wise	
  et	
  al.	
  2012a	
  
Z>10-­‐4	
  
Metal	
  enriched	
  
star	
  cluster	
  
Test	
  for	
  collapse	
  
Test	
  for	
  metallicity	
  
Pop	
  III	
  star	
  
PIMF	
   Salpeter	
  
Life8mes,	
  yields,	
  
endpoints	
  
Time-­‐dependent	
  
feedback	
  
yes	
  no	
  
Create	
  star	
  par3cle	
  
Feedback	
  &	
  
Pop	
  III	
  remnants	
  
Assembly of the first galaxies
•  Key	
  physics:	
  transport	
  
of	
  ionizing	
  and	
  
photodissocia8ng	
  
radia8on	
  from	
  young	
  
massive	
  stars	
  
•  Key	
  computa8onal	
  
physics:	
  adap8ve	
  ray	
  
tracing	
  (Abel	
  &	
  Wandelt	
  
2002;	
  Wise	
  &	
  Abel	
  2011)	
  	
  
Population III Star Formation Fireworks
(Cox/Patterson, NCSA)
Birth of a Galaxy
Wise	
  et	
  al.	
  2012a,b;	
  2014	
  	
  	
  
(c)	
  John	
  Wise	
  (GIT)	
  and	
  the	
  Enzo	
  Collabora8on,	
  2012	
  
Galaxy	
  counts	
  
(luminosity	
  fcn.)	
  
Volume	
  
averaged	
  star	
  
forma3on	
  
history	
  
STATISTICS	
  OF	
  THE	
  FIRST	
  GALAXIES:	
  
THE	
  RENAISSANCE	
  SIMULATIONS	
  
The Renaissance Simulations
40	
  cMpc	
  
Each	
  zoom-­‐in	
  region	
  is	
  200	
  8mes	
  the	
  volume	
  of	
  
the	
  “First	
  Galaxy”	
  simula8on	
  but	
  is	
  simulated	
  at	
  
nearly	
  equivalent	
  resolu8on	
  
è	
  Massive	
  amounts	
  of	
  computer	
  power	
  
required	
  (~50	
  M	
  cpu-­‐hrs)	
  
Peak	
  Speed:	
  13.4	
  Petaflops	
  
Total	
  memory:	
  1.5	
  Petabyte	
  
Processor	
  cores:	
  362,240	
  
NCSA,	
  University	
  of	
  Illinois	
  
A virtual tour of the Renaissance
Simulation (Cox/Patterson, NCSA)
How do the first galaxies form?
Ans:	
  Mergers	
  and	
  Acquisi8ons	
   z=25	
  
First	
  stars	
  
First	
  galaxies	
  
8me	
  
z=15	
  
When did the first galaxies form?
Ans:	
  Immediately	
  amer	
  the	
  first	
  stars	
  
What are they like?
Sta8s8cs	
  from	
  ~3000	
  halos	
  
Stellar	
  mass	
  v.	
  halo	
  mass	
  
UV	
  luminosity	
  v.	
  halo	
  mass	
  
O’Shea	
  et	
  al.	
  (2015)	
  
How Many Are There?
UV	
  Luminosity	
  Func8on	
  of	
  First	
  Galaxies	
  
	
  
Faintest	
  galaxy	
  
Hubble	
  can	
  see	
  
Faintest	
  galaxy	
  
JWST	
  can	
  see	
  
O’Shea	
  et	
  al.	
  (2015)	
  
Brighter	
   Fainter	
  
Numerous	
  faint	
  galaxies	
  
dominate	
  photon	
  budget	
  
for	
  reioniza8on	
  	
  
FROM	
  FIRST	
  GALAXIES	
  TO	
  COSMIC	
  
REIONIZATION	
  
Escape	
  frac3on	
  vs.	
  halo	
  mass	
  
Frac3on	
  of	
  halos	
  ac3vely	
  
forming	
  stars	
  vs.	
  halo	
  mass	
  
Xu	
  et	
  al.	
  (2016)	
  
Escape of ionizing photons
A Calibrated Simulation of Reionization
IGM completes reionization at
z=7.3
zrei(100%)=7.3	
  
Planck	
  1σ
A Calibrated Simulation of Reionization
•  Early	
  stages	
  driven	
  by	
  intermident	
  
star	
  forma8on	
  in	
  smallest	
  galaxies	
  
–  Leads	
  to	
  recombining	
  HII	
  regions	
  
•  Later	
  stages	
  driven	
  by	
  steady	
  star	
  
forma8on	
  in	
  more	
  massive	
  
galaxies	
  
•  Reioniza8on	
  starts	
  and	
  ends	
  
consistent	
  with	
  observa8ons	
  
•  	
  τes	
  agrees	
  with	
  Planck	
  data	
  within	
  
error	
  bars	
  
Chen,	
  Norman	
  &	
  Xu	
  (in	
  prep)	
  
Predic8ons	
  about	
  the	
  	
  
first generation of galaxies
Ques3on	
   Predic3on	
  
How	
  they	
  formed?	
   From	
  the	
  ashes	
  of	
  Pop	
  III	
  stars	
  
When	
  they	
  formed?	
   As	
  early	
  as	
  z=25	
  (earlier	
  in	
  
rare	
  peaks	
  of	
  the	
  density	
  
field)	
  
What	
  were	
  they	
  like?	
   Like	
  ultra-­‐faint	
  dwarfs	
  
Why	
  were	
  they	
  important?	
   -­‐Galaxy	
  building	
  blocks	
  
-­‐Contributed	
  to	
  reioniza8on	
  
-­‐May	
  be	
  ancestors	
  of	
  
modern-­‐day	
  ultra-­‐faint	
  
dwarfs	
  
James	
  Webb	
  Space	
  Telescope	
  
Launch	
  2018	
  
Ongoing Investigations
•  When	
  does	
  the	
  last	
  Pop	
  III	
  star	
  form	
  and	
  under	
  what	
  
condi8ons?	
  
–  Proximity	
  to	
  first	
  galaxies	
  (Xu	
  et	
  al.	
  2016)	
  
•  How	
  do	
  X-­‐rays	
  from	
  accre8ng	
  stellar	
  and	
  supermassive	
  
black	
  holes	
  modify	
  this	
  picture?	
  
–  Preheat/preionize	
  the	
  IGM	
  everywhere	
  (Xu	
  et	
  al.	
  2013,	
  2015)	
  
•  How	
  to	
  test	
  our	
  calibrated	
  reioniza8on	
  model?	
  
–  21	
  cm	
  cosmology	
  (Ahn	
  et	
  al.	
  2015)	
  
•  How	
  to	
  connect	
  with	
  proper8es	
  of	
  Local	
  Group	
  dwarfs?	
  
(Wise	
  et	
  al.	
  2014;	
  O’Shea	
  et	
  al.	
  in	
  prep)	
  
•  Observable	
  proper8es	
  for	
  JWST	
  (Barrow	
  &	
  Wise,	
  in	
  prep)	
  
Acknowledgements to former
students, postdocs, and
collaborators
•  Tom	
  Abel	
  (Stanford)	
  
•  Kyungin	
  Ahn	
  (Korea)	
  
•  Marcello	
  Alvarez	
  (CITA)	
  
•  Peter	
  Anninos	
  (LLNL)	
  
•  Greg	
  Bryan	
  (Columbia)	
  
•  James	
  Bordner	
  (UCSD)	
  
•  Pengfei	
  Chen	
  (UCSD)	
  
•  Brian	
  O’Shea	
  (MSU)	
  
•  Dan	
  Reynolds	
  (SMU)	
  
•  Geoffrey	
  So	
  (Intel)	
  
•  Bridon	
  Smith	
  (Edinburgh)	
  
•  Mad	
  Turk	
  (UIUC)	
  
•  John	
  Wise	
  (GA	
  Tech)	
  
•  Hao	
  Xu	
  (UCSD)	
  
And	
  too	
  many	
  NSF	
  and	
  NASA	
  grants	
  to	
  men8on	
  
RESERVE	
  SLIDES	
  
Cosmological	
  Parameters	
  
Mass in stars and remnants
Star formation rate densities
Renaissance	
  Simula)ons	
  Publica8ons	
  
Reference	
   Topic	
  
Xu	
  et	
  al.	
  (2013)	
   Pop	
  III	
  stars	
  and	
  remnants	
  
Xu	
  et	
  al.	
  (2014)	
   X-­‐ray	
  feedback	
  from	
  Pop	
  III	
  black	
  holes	
  
Chen	
  et	
  al.	
  (2014)	
   Scaling	
  rela8ons	
  for	
  SAMs	
  
Ahn	
  et	
  al.	
  (2015)	
   21	
  cm	
  signal	
  from	
  X-­‐ray	
  prehea8ng	
  
O’Shea	
  et	
  al.	
  (2015)	
   UV	
  luminosity	
  func8on	
  
Xu	
  et	
  al.	
  (2016a	
   Late	
  Pop	
  III	
  star	
  forma8on	
  	
  
Xu	
  et	
  al.	
  (2016b,	
  submided)	
   Galaxy	
  proper8es	
  and	
  escape	
  frac8ons	
  
Xu	
  et	
  al.	
  (2016c,	
  in	
  prep)	
   X-­‐ray	
  background	
  from	
  Pop	
  III	
  stars	
  
Renaissance	
  Simula8ons	
  Fact	
  Sheet	
  
Configura3on	
  
L_periodic	
  (cMpc)	
   40	
  
L_refined	
  (cMpc)	
   6.6	
  
N_p	
  (effec8ve)	
   40963	
  
m_p	
  (solar	
  mass)	
   2.9	
  x	
  104	
  
AMR	
  levels	
  	
   12	
  
Δx	
  min	
  (pc)	
   19/(1+z)	
  
z_init	
   99	
  
Physics	
  
Cosmology	
   WMAP7	
  
ICs	
   MUSIC	
  	
  
Code	
   ENZO	
  
gas	
  dynamics	
   9-­‐species	
  primord.	
  
2	
  metal	
  fields	
  
Chemistry/cooling	
   9-­‐species	
  noneq.	
  
metal	
  line	
  
Radia8ve	
  transfer	
   EUV,	
  LW	
  
Lyman-­‐Werner	
  
bkgd	
  
Yes	
  
Pop	
  III	
  SF+FB	
   Wise+	
  2012b	
  
Pop	
  II	
  SF+FB	
   Wise+	
  2012b	
  
Simula3ons	
  
Runs	
   7	
  
Core-­‐hrs	
   ~100	
  M	
  
Data	
  (TB)	
   ~70	
  	
  
M.	
  Norman,	
  Aspen	
  EoR	
  2016	
  
Star	
  Forma8on	
  Prescrip8ons	
  
Wise	
  et	
  al.	
  (2012a,b;	
  2014)	
  
Pop	
  III	
   [Z/H]	
  <=	
  -­‐4	
  
Par8cle	
   Individual	
  Pop	
  III	
  star	
  
Mass	
   IMF	
  w/Mchar=40	
  Msol	
  
thresholds	
   fH2>5x10-­‐4,	
  δb>5x105,	
  
div(V)<0	
  
Star	
  
proper8es	
  
Schaerer	
  (2002)	
  
SN	
  yields	
   Heger	
  &	
  Woosley	
  (2003)	
  
Metal-­‐enriched	
   [Z/H]	
  >	
  -­‐4	
  
Par8cle	
   Molecular	
  cloud/
star	
  cluster	
  
Mass	
   >	
  1000	
  Msol	
  
thresholds	
   Τ<1000Κ, δb>5x105	
  
div(V)<0	
  
SF	
  efficiency	
   0.07	
  fcold	
  inside	
  MC	
  
radius	
  
Radia8ve	
  FB	
   6000	
  γ/baryon	
  over	
  
20	
  Myr	
  
SN	
  FB	
   6.8x1048	
  erg/s/Msol	
  
amer	
  4	
  Myr	
  
Mass	
  recycling	
  &	
  
enrichment	
  
Pop	
  III	
  IMF	
  
FLD	
  versus	
  MORAY	
  
M.	
  Norman,	
  Aspen	
  EoR	
  2016	
  
Norman	
  et	
  al.	
  (2015)	
  
M.	
  Norman,	
  Aspen	
  EoR	
  2016	
  
FLD	
  versus	
  MORAY	
  
Norman	
  et	
  al.	
  (2015)	
  

More Related Content

What's hot

CA 3.08 The Milky Way Universe
CA 3.08 The Milky Way UniverseCA 3.08 The Milky Way Universe
CA 3.08 The Milky Way UniverseStephen Kwong
 
Batalha press aas20110110
Batalha press aas20110110Batalha press aas20110110
Batalha press aas20110110Sérgio Sacani
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"SEENET-MTP
 
The big bang theory
The big bang theoryThe big bang theory
The big bang theoryTDubell
 
Kako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fiziku
Kako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fizikuKako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fiziku
Kako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fizikuMilan Milošević
 
Secular Processes and Galaxy Evolution
Secular Processes and Galaxy EvolutionSecular Processes and Galaxy Evolution
Secular Processes and Galaxy EvolutionKaren Masters
 
Chapter 19 – formation of the universe
Chapter 19 – formation of the universeChapter 19 – formation of the universe
Chapter 19 – formation of the universeAnnie cox
 
Galaxy Formation: An Overview
Galaxy Formation: An OverviewGalaxy Formation: An Overview
Galaxy Formation: An OverviewCosmoAIMS Bassett
 
Cosmic evolution 04162009short
Cosmic evolution 04162009shortCosmic evolution 04162009short
Cosmic evolution 04162009shortGary Stilwell
 
Refsdal meets popper_comparing_predictions_of_the_reapperance_of_the_multiply...
Refsdal meets popper_comparing_predictions_of_the_reapperance_of_the_multiply...Refsdal meets popper_comparing_predictions_of_the_reapperance_of_the_multiply...
Refsdal meets popper_comparing_predictions_of_the_reapperance_of_the_multiply...Sérgio Sacani
 
Deja vu all_over_again_the_reapperance_of_supernova_refsdal
Deja vu all_over_again_the_reapperance_of_supernova_refsdalDeja vu all_over_again_the_reapperance_of_supernova_refsdal
Deja vu all_over_again_the_reapperance_of_supernova_refsdalSérgio Sacani
 
Seminar presentation on Hubble's Law and Expanding Universe
Seminar presentation on Hubble's Law and Expanding UniverseSeminar presentation on Hubble's Law and Expanding Universe
Seminar presentation on Hubble's Law and Expanding UniverseGautham Reddy Kovvuri
 
FROM BIG BANG TO THE PRESENT TIME
FROM BIG BANG TO THE PRESENT TIMEFROM BIG BANG TO THE PRESENT TIME
FROM BIG BANG TO THE PRESENT TIMENepal Flying Labs
 

What's hot (20)

CA 3.08 The Milky Way Universe
CA 3.08 The Milky Way UniverseCA 3.08 The Milky Way Universe
CA 3.08 The Milky Way Universe
 
Batalha press aas20110110
Batalha press aas20110110Batalha press aas20110110
Batalha press aas20110110
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"
 
The big bang theory
The big bang theoryThe big bang theory
The big bang theory
 
Kako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fiziku
Kako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fizikuKako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fiziku
Kako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fiziku
 
Secular Processes and Galaxy Evolution
Secular Processes and Galaxy EvolutionSecular Processes and Galaxy Evolution
Secular Processes and Galaxy Evolution
 
BASICS OF COSMOLOGY
BASICS OF COSMOLOGYBASICS OF COSMOLOGY
BASICS OF COSMOLOGY
 
16 cosmology
16 cosmology16 cosmology
16 cosmology
 
Chapter 19 – formation of the universe
Chapter 19 – formation of the universeChapter 19 – formation of the universe
Chapter 19 – formation of the universe
 
Galaxy Formation: An Overview
Galaxy Formation: An OverviewGalaxy Formation: An Overview
Galaxy Formation: An Overview
 
Multiverse
MultiverseMultiverse
Multiverse
 
Cosmic evolution 04162009short
Cosmic evolution 04162009shortCosmic evolution 04162009short
Cosmic evolution 04162009short
 
Refsdal meets popper_comparing_predictions_of_the_reapperance_of_the_multiply...
Refsdal meets popper_comparing_predictions_of_the_reapperance_of_the_multiply...Refsdal meets popper_comparing_predictions_of_the_reapperance_of_the_multiply...
Refsdal meets popper_comparing_predictions_of_the_reapperance_of_the_multiply...
 
Deja vu all_over_again_the_reapperance_of_supernova_refsdal
Deja vu all_over_again_the_reapperance_of_supernova_refsdalDeja vu all_over_again_the_reapperance_of_supernova_refsdal
Deja vu all_over_again_the_reapperance_of_supernova_refsdal
 
AAS National Conference 2008: Jon Morse
AAS National Conference 2008: Jon MorseAAS National Conference 2008: Jon Morse
AAS National Conference 2008: Jon Morse
 
Seminar presentation on Hubble's Law and Expanding Universe
Seminar presentation on Hubble's Law and Expanding UniverseSeminar presentation on Hubble's Law and Expanding Universe
Seminar presentation on Hubble's Law and Expanding Universe
 
Big bang
Big bangBig bang
Big bang
 
The big band theory
The big band theoryThe big band theory
The big band theory
 
Big bang
Big bangBig bang
Big bang
 
FROM BIG BANG TO THE PRESENT TIME
FROM BIG BANG TO THE PRESENT TIMEFROM BIG BANG TO THE PRESENT TIME
FROM BIG BANG TO THE PRESENT TIME
 

Viewers also liked

Lettre de recommandation SUSHI GOURMET
Lettre de recommandation SUSHI GOURMETLettre de recommandation SUSHI GOURMET
Lettre de recommandation SUSHI GOURMETCyril Hosejka-Hoppenot
 
Real maturi̇ty equal real ci̇vi̇li̇sati̇on 4
Real  maturi̇ty  equal  real  ci̇vi̇li̇sati̇on  4Real  maturi̇ty  equal  real  ci̇vi̇li̇sati̇on  4
Real maturi̇ty equal real ci̇vi̇li̇sati̇on 4PHİLOSOPHER EFRUZHU PHRMP
 
Pruebaslideshare
PruebaslidesharePruebaslideshare
Pruebaslideshareraulzarco
 
Lista exer ci_cios-equacao_energia_regime_permanente (1)
Lista exer ci_cios-equacao_energia_regime_permanente (1)Lista exer ci_cios-equacao_energia_regime_permanente (1)
Lista exer ci_cios-equacao_energia_regime_permanente (1)Cristiano Fonseca Do Nascimento
 
Animais do pantanal ameaçados de extinção
Animais do pantanal ameaçados de extinçãoAnimais do pantanal ameaçados de extinção
Animais do pantanal ameaçados de extinçãoescolanilce
 
Anexo9 monica interrogação
Anexo9 monica interrogaçãoAnexo9 monica interrogação
Anexo9 monica interrogaçãoSuely Seuly
 
La wiki mapa conceptual
La wiki mapa conceptual La wiki mapa conceptual
La wiki mapa conceptual marwins528
 
COMENDADOR ERNESTO PESCE
COMENDADOR ERNESTO PESCECOMENDADOR ERNESTO PESCE
COMENDADOR ERNESTO PESCEErnesto Pesce
 
mastering management skills vocabulary
mastering management skills vocabularymastering management skills vocabulary
mastering management skills vocabularyfluffy_fury
 
Vishista prathipala
Vishista prathipalaVishista prathipala
Vishista prathipalawijeed
 
New text document
New text documentNew text document
New text documentxhevas
 
Progrma Jornada Jurídica
Progrma Jornada JurídicaProgrma Jornada Jurídica
Progrma Jornada JurídicaUlacademia
 
Megan Moffitt Annual Car Wash Fundraiser at Bay Elementary School 2014
Megan Moffitt Annual Car Wash Fundraiser at Bay Elementary School 2014Megan Moffitt Annual Car Wash Fundraiser at Bay Elementary School 2014
Megan Moffitt Annual Car Wash Fundraiser at Bay Elementary School 2014Kim Kaufer
 
confirmation letter
confirmation letterconfirmation letter
confirmation letterAshim Maji
 

Viewers also liked (20)

namuunaa
namuunaanamuunaa
namuunaa
 
Lettre de recommandation SUSHI GOURMET
Lettre de recommandation SUSHI GOURMETLettre de recommandation SUSHI GOURMET
Lettre de recommandation SUSHI GOURMET
 
Real maturi̇ty equal real ci̇vi̇li̇sati̇on 4
Real  maturi̇ty  equal  real  ci̇vi̇li̇sati̇on  4Real  maturi̇ty  equal  real  ci̇vi̇li̇sati̇on  4
Real maturi̇ty equal real ci̇vi̇li̇sati̇on 4
 
Pruebaslideshare
PruebaslidesharePruebaslideshare
Pruebaslideshare
 
Contenidos
ContenidosContenidos
Contenidos
 
Lista exer ci_cios-equacao_energia_regime_permanente (1)
Lista exer ci_cios-equacao_energia_regime_permanente (1)Lista exer ci_cios-equacao_energia_regime_permanente (1)
Lista exer ci_cios-equacao_energia_regime_permanente (1)
 
Animais do pantanal ameaçados de extinção
Animais do pantanal ameaçados de extinçãoAnimais do pantanal ameaçados de extinção
Animais do pantanal ameaçados de extinção
 
08
0808
08
 
Anexo9 monica interrogação
Anexo9 monica interrogaçãoAnexo9 monica interrogação
Anexo9 monica interrogação
 
La wiki mapa conceptual
La wiki mapa conceptual La wiki mapa conceptual
La wiki mapa conceptual
 
COMENDADOR ERNESTO PESCE
COMENDADOR ERNESTO PESCECOMENDADOR ERNESTO PESCE
COMENDADOR ERNESTO PESCE
 
mastering management skills vocabulary
mastering management skills vocabularymastering management skills vocabulary
mastering management skills vocabulary
 
Vishista prathipala
Vishista prathipalaVishista prathipala
Vishista prathipala
 
New text document
New text documentNew text document
New text document
 
Progrma Jornada Jurídica
Progrma Jornada JurídicaProgrma Jornada Jurídica
Progrma Jornada Jurídica
 
04
0404
04
 
Impressionismo
ImpressionismoImpressionismo
Impressionismo
 
Megan Moffitt Annual Car Wash Fundraiser at Bay Elementary School 2014
Megan Moffitt Annual Car Wash Fundraiser at Bay Elementary School 2014Megan Moffitt Annual Car Wash Fundraiser at Bay Elementary School 2014
Megan Moffitt Annual Car Wash Fundraiser at Bay Elementary School 2014
 
confirmation letter
confirmation letterconfirmation letter
confirmation letter
 
ykvlw.pdf
ykvlw.pdfykvlw.pdf
ykvlw.pdf
 

Similar to From First Stars to First Galaxies: Simulating Cosmic Reionization

Neven Bilic, "Dark Matter, Dark Energy, and Unification Models"
Neven Bilic, "Dark Matter, Dark Energy, and Unification Models"Neven Bilic, "Dark Matter, Dark Energy, and Unification Models"
Neven Bilic, "Dark Matter, Dark Energy, and Unification Models"SEENET-MTP
 
H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...
H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...
H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...SEENET-MTP
 
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk Rene Kotze
 
Cosmology and Numbers jfK
Cosmology and Numbers jfKCosmology and Numbers jfK
Cosmology and Numbers jfKDr Jim Kelly
 
Galaxies_BigBang_Dark Matter
Galaxies_BigBang_Dark MatterGalaxies_BigBang_Dark Matter
Galaxies_BigBang_Dark MatterStephen Perrenod
 
The magma ocean stage in the formation of rocky-terrestrial planets
The magma ocean stage in the formation of rocky-terrestrial planetsThe magma ocean stage in the formation of rocky-terrestrial planets
The magma ocean stage in the formation of rocky-terrestrial planetsAdvanced-Concepts-Team
 
Sochi presentationucl(tampa)
Sochi presentationucl(tampa)Sochi presentationucl(tampa)
Sochi presentationucl(tampa)Taha Sochi
 
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...Chad Orzel
 
TRM-4.ppt
TRM-4.pptTRM-4.ppt
TRM-4.ppthansa64
 
use this anytime anywhere, just cite properly TRM-4.ppt
use this anytime anywhere, just cite properly TRM-4.pptuse this anytime anywhere, just cite properly TRM-4.ppt
use this anytime anywhere, just cite properly TRM-4.pptmariadelrioalbar1
 
CHAPTER 4: Structure of the Atom - Portland State University
CHAPTER 4: Structure of the Atom - Portland State UniversityCHAPTER 4: Structure of the Atom - Portland State University
CHAPTER 4: Structure of the Atom - Portland State UniversityHichamChourak2
 
This is it Right one to form M-4.ppt
This is it Right one to form       M-4.pptThis is it Right one to form       M-4.ppt
This is it Right one to form M-4.pptmariadelrioalbar1
 
physciweek1.pptx
physciweek1.pptxphysciweek1.pptx
physciweek1.pptxAnggeComeso
 
20150930 Yokohama Protostellar discs
20150930 Yokohama Protostellar discs20150930 Yokohama Protostellar discs
20150930 Yokohama Protostellar discsGareth Murphy
 

Similar to From First Stars to First Galaxies: Simulating Cosmic Reionization (20)

Neven Bilic, "Dark Matter, Dark Energy, and Unification Models"
Neven Bilic, "Dark Matter, Dark Energy, and Unification Models"Neven Bilic, "Dark Matter, Dark Energy, and Unification Models"
Neven Bilic, "Dark Matter, Dark Energy, and Unification Models"
 
H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...
H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...
H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...
 
Masashi hazumi talk
Masashi hazumi talkMasashi hazumi talk
Masashi hazumi talk
 
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
 
Cosmology and Numbers jfK
Cosmology and Numbers jfKCosmology and Numbers jfK
Cosmology and Numbers jfK
 
statistical physics assignment help
statistical physics assignment helpstatistical physics assignment help
statistical physics assignment help
 
Galaxies_BigBang_Dark Matter
Galaxies_BigBang_Dark MatterGalaxies_BigBang_Dark Matter
Galaxies_BigBang_Dark Matter
 
The magma ocean stage in the formation of rocky-terrestrial planets
The magma ocean stage in the formation of rocky-terrestrial planetsThe magma ocean stage in the formation of rocky-terrestrial planets
The magma ocean stage in the formation of rocky-terrestrial planets
 
Sochi presentationucl(tampa)
Sochi presentationucl(tampa)Sochi presentationucl(tampa)
Sochi presentationucl(tampa)
 
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
 
TRM-4.ppt
TRM-4.pptTRM-4.ppt
TRM-4.ppt
 
use this anytime anywhere, just cite properly TRM-4.ppt
use this anytime anywhere, just cite properly TRM-4.pptuse this anytime anywhere, just cite properly TRM-4.ppt
use this anytime anywhere, just cite properly TRM-4.ppt
 
CHAPTER 4: Structure of the Atom - Portland State University
CHAPTER 4: Structure of the Atom - Portland State UniversityCHAPTER 4: Structure of the Atom - Portland State University
CHAPTER 4: Structure of the Atom - Portland State University
 
This is it Right one to form M-4.ppt
This is it Right one to form       M-4.pptThis is it Right one to form       M-4.ppt
This is it Right one to form M-4.ppt
 
physciweek1.pptx
physciweek1.pptxphysciweek1.pptx
physciweek1.pptx
 
Part III - Quantum Mechanics
Part III - Quantum MechanicsPart III - Quantum Mechanics
Part III - Quantum Mechanics
 
20150930 Yokohama Protostellar discs
20150930 Yokohama Protostellar discs20150930 Yokohama Protostellar discs
20150930 Yokohama Protostellar discs
 
Tests of big bang
Tests of big bangTests of big bang
Tests of big bang
 
Electromagnetic counterparts of Gravitational Waves - Elena Pian
Electromagnetic counterparts of Gravitational Waves - Elena PianElectromagnetic counterparts of Gravitational Waves - Elena Pian
Electromagnetic counterparts of Gravitational Waves - Elena Pian
 
Accelerating Universe
Accelerating Universe Accelerating Universe
Accelerating Universe
 

More from Michael Norman

Scalable AMR - HPC China 2017, Hefei China
Scalable AMR - HPC China 2017, Hefei ChinaScalable AMR - HPC China 2017, Hefei China
Scalable AMR - HPC China 2017, Hefei ChinaMichael Norman
 
Scalable AMR - HPC China 2016 and Exascale Co-Design
Scalable AMR - HPC China 2016 and Exascale Co-DesignScalable AMR - HPC China 2016 and Exascale Co-Design
Scalable AMR - HPC China 2016 and Exascale Co-DesignMichael Norman
 
SC16 Charm++ BOF Cello
SC16 Charm++ BOF CelloSC16 Charm++ BOF Cello
SC16 Charm++ BOF CelloMichael Norman
 

More from Michael Norman (6)

Developing with Cello
Developing with CelloDeveloping with Cello
Developing with Cello
 
Using Enzo-P
Using Enzo-PUsing Enzo-P
Using Enzo-P
 
Scalable AMR - HPC China 2017, Hefei China
Scalable AMR - HPC China 2017, Hefei ChinaScalable AMR - HPC China 2017, Hefei China
Scalable AMR - HPC China 2017, Hefei China
 
Scalable AMR - HPC China 2016 and Exascale Co-Design
Scalable AMR - HPC China 2016 and Exascale Co-DesignScalable AMR - HPC China 2016 and Exascale Co-Design
Scalable AMR - HPC China 2016 and Exascale Co-Design
 
SC16 Charm++ BOF Cello
SC16 Charm++ BOF CelloSC16 Charm++ BOF Cello
SC16 Charm++ BOF Cello
 
Cello SIAM PP16
Cello SIAM PP16Cello SIAM PP16
Cello SIAM PP16
 

Recently uploaded

TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxjana861314
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 

Recently uploaded (20)

TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 

From First Stars to First Galaxies: Simulating Cosmic Reionization

  • 1. From  First  Stars  to  First  Galaxies  to   the  Reioniza3on  of  the  Universe:     20  Years  of  Computa3onal  Progress   Michael  L  Norman   Director,  San  Diego  Supercomputer  Center   Dis8nguished  Professor  of  Physics   UC  San  Diego  
  • 2. What    we  have  explored   computa8onally  
  • 3. This  talk  is  about  the     first generation of galaxies aka primeval galaxies aka protogalaxies •  How  they  formed?   •  When  they  formed?   •  What  they  were  like?   •  Why  are  they  important?  
  • 4. Don’t we have observational answers? •  Yes  and  no   •  High-­‐z  HUDF  galaxies  are   the  8p  of  the  iceberg   •  What  we  can  see  are  the   biggest  and  brightest   galaxies  of  their  era   •  We  are  interested  in   what  came  before  
  • 5. Inferences from Reionization •  Observed  high-­‐z   galaxies  don’t   provide  all  the   ionizing  photons   needed  to  explain   reioniza8on  by  z=7   (Robertson+  2015)   •  What  does  the  faint   end  of  the  LF  look   like?   Bouwens+    2014  
  • 6. Protogalaxies: An artist’s impression A.  Schaller,  STScI   Yikes!  Can  we  possibly  simulate  that?!!   Answer:  YES!  
  • 7. Peak  Speed:  13.4  Petaflops   Total  memory:  1.5  Petabyte   Processor  cores:  362,240   NCSA,  University  of  Illinois  
  • 8. Bryan  et  al.  2014,  ApJS,  211,  19   hdp://enzo-­‐project.org   Our  analysis/viz  tool:     Turk  et  al.  2011,  ApJS,  192,  9   hdp://yt-­‐project.org   Powerful software (open source), developed over 22 years Our  simula8on  tool:    
  • 9. Protogalaxies: A big supercomputer simulation with lots of physics •  How  they  form   •  When  they  form   •  What  they  are  like   •  Whether  they  contribute  the  missing  photons   to  reionize  the  universe  (spoiler:  YES)   With  these  simula8ons  we  have  discovered  
  • 10. Plan for the talk 1.  Numerical  cosmology  101   2.  From  primordial  density  fluctua8ons  to  the   first  stars   3.  From  the  first  stars  to  the  first  galaxies   4.  Simula8ng  the  first  galaxy  popula8on   5.  From  the  first  galaxies  to  cosmic  reioniza8on  
  • 12. The universe at 380,000 yr ABB   ini)al  condi)ons  for  my  simula)ons   Fluctua8ons  have  a  well-­‐ measured  power  spectrum   Comoving  volume  
  • 13. Computing the Universe:   Numerical Cosmology •  Transformation to comoving coordinates x=r/a(t) a(t1) a(t2) a(t3) •  Triply-periodic boundary conditions Input  observed   fluctua8ons   Time  step  the  laws  of  physics  in  a  computer  program   Cosmic  web  
  • 14. Equations of Cosmological Hydrodynamics Mass  cons:   Mom  cons:   Energy  cons:   Species  cons:   2-­‐body  reac8ons   photo-­‐dissoc./ioniza8on   Mul8species  gas  dynamics   Newton’s   law:   Poisson  eq.   Dark  mader  dynamics   Friedmann  eq.  for  scale  factor  a(t)   Metric  
  • 15. “HALOS”     Gravita8onally  bound   mixtures  of  baryons  and   dark  mader     Where  stars  and  galaxies   form   Evolution of gas density (c)  Brian  O'Shea  (MSU)  and  the  Enzo  Collabora8on,  2015  
  • 16. FROM  LINEAR  FLUCTUATIONS  TO   THE  FIRST  STARS  
  • 17. Forming the First Stars (Population III) •  The  first  genera8on  of  stars  condense  from   pris8ne  H  and  He  gas  in  very  small  dark  mader   halos  beginning  about  100  Myr  amer  big  bang     (Abel,  Bryan  &  Norman  2000,  2002;  Bromm  et    al.  2002)   •  Rota8onal  transi8ons  in  H2  molecule  is  the   dominant  radia8ve  cooling  mechanism  that   permits  the  gravita8onally  bound  cloud  to   condense  to  a  star  
  • 18. Key physics: gravitational instability   •  What  T  and  ρ  to  use?   •  Peebles  &  Dicke  (1968)   suggested    using  mean   values  at  recombina8on   Jeans  mass   MJ  =  106  Ms   Globular  cluster  
  • 19. Key physics: catalytic formation of H2 •  Process  starts  with  residual  electrons  amer   recombina8on     H + e- è H- + hν H- + H è H2 + e- H + H+ è H2 + + hν H2 + + H è H2 + H Channel  1   Channel  2  
  • 20. •  Solution: Semi-implicit rate solver (Anninos et al. 1997) Computational difficulties and solutions •  Difficulty:  noneq.  primordial  gas  chemistry    
  • 21. Computational difficulties and solutions •  Difficulty:  Vast  range  of  spa8o-­‐temporal  scales     Gas  cloud   protostar   Space:  1010   Time:  1012  
  • 22. Computational difficulties and solutions •  Solu8on:  recursive  adap8ve  mesh  refinement   and  hierarchical  8me-­‐stepping  (Bryan  &  Norman  1997)        
  • 23. Evolution of grid refinements (c)  Brian  O'Shea  (MSU)  and  the  Enzo  Collabora8on,  2015  
  • 24. L/Δxmin=1010 density temperature 600 pc 60 pc 6 pc self-gravitating core Abel, Bryan & Norman 2002 100x mass of sun
  • 25. 924  cita8ons  and  coun8ng  
  • 26. Findings  and  Implica8ons   Abel,  Bryan  &  Norman  (2002;  Science)   •  First  stars  begin  forming  about  100  Myr  ABB   •  First  stars  are  massive:  >100  x  mass  of  Sun   •  First  stars  form  in  isola8on  (one  per  pregalac8c  clump)   •  They  will  be  extraordinarily  luminous  but  only  live  for  a  few   million  years   •  They  will  explode  as  supernovae,  and  seed  the  universe   with  heavy  elements  (C,  N,  O,  Ca,  Si,  Fe…..)   •  They  will  produce  first  stellar  mass  black  holes   •  èThere  should  be  no  first  stars  around  today  
  • 27. A deluge of papers followed
  • 28. FROM FIRST STARS TO THE FIRST GALAXIES
  • 29. Wait! You skipped a step •  Precise  mass  of  final  star  is  currently  not  computable   •  But  we  can  es8mate  mass  from  amount  of  collapsing   gas  and  accre8on  rate   •  We  have  good  Pop  III  stellar  models  which  give  their   life8mes,  luminosi8es,  and  fates  as  a  func8on  of   mass  (Heger  &  Woosley  2002,  Shaerer  2003)   •  We  parameterize  our  ignorance  with  a  primordial   ini8al  mass  func8on  (PIMF)      
  • 30. Assembly of the first galaxies •  First  galaxies  assemble  from  gravita8onal   merger  of  lower  mass  halos  that  previously   contained  first  stars  and  were  processed  by   their  radia8ve,  chemical,  and  kine8c  feedback   •  A  typical  “first  galaxy”  will  incorporate   O(10-­‐100)  such  systems   •  Need  to  simulate  a  larger  volume  with  “AMR   everywhere”,  tracking  the  detailed  star   forma8on  and  feedback  
  • 31. Assembly of the first galaxies •  Key  physics:  hierarchical   structure  forma8on   driven  by  dark  mader   clustering   •  Key  computa8onal   physics:  subgrid  models   for  star  forma8on  and   feedback  (Pop  III  stars   and  metal-­‐enriched  star   clusters)   Lacey  &  Cole  1993  
  • 32. Forming  a  Numerical  Star/Star  Cluster   Wise  &  Abel  2008;  Wise  et  al.  2012a   Z>10-­‐4   Metal  enriched   star  cluster   Test  for  collapse   Test  for  metallicity   Pop  III  star   PIMF   Salpeter   Life8mes,  yields,   endpoints   Time-­‐dependent   feedback   yes  no   Create  star  par3cle   Feedback  &   Pop  III  remnants  
  • 33. Assembly of the first galaxies •  Key  physics:  transport   of  ionizing  and   photodissocia8ng   radia8on  from  young   massive  stars   •  Key  computa8onal   physics:  adap8ve  ray   tracing  (Abel  &  Wandelt   2002;  Wise  &  Abel  2011)    
  • 34. Population III Star Formation Fireworks (Cox/Patterson, NCSA)
  • 35. Birth of a Galaxy Wise  et  al.  2012a,b;  2014       (c)  John  Wise  (GIT)  and  the  Enzo  Collabora8on,  2012  
  • 36.
  • 37. Galaxy  counts   (luminosity  fcn.)   Volume   averaged  star   forma3on   history  
  • 38. STATISTICS  OF  THE  FIRST  GALAXIES:   THE  RENAISSANCE  SIMULATIONS  
  • 39. The Renaissance Simulations 40  cMpc   Each  zoom-­‐in  region  is  200  8mes  the  volume  of   the  “First  Galaxy”  simula8on  but  is  simulated  at   nearly  equivalent  resolu8on   è  Massive  amounts  of  computer  power   required  (~50  M  cpu-­‐hrs)  
  • 40. Peak  Speed:  13.4  Petaflops   Total  memory:  1.5  Petabyte   Processor  cores:  362,240   NCSA,  University  of  Illinois  
  • 41. A virtual tour of the Renaissance Simulation (Cox/Patterson, NCSA)
  • 42. How do the first galaxies form? Ans:  Mergers  and  Acquisi8ons   z=25   First  stars   First  galaxies   8me   z=15  
  • 43. When did the first galaxies form? Ans:  Immediately  amer  the  first  stars  
  • 44. What are they like? Sta8s8cs  from  ~3000  halos   Stellar  mass  v.  halo  mass   UV  luminosity  v.  halo  mass   O’Shea  et  al.  (2015)  
  • 45. How Many Are There? UV  Luminosity  Func8on  of  First  Galaxies     Faintest  galaxy   Hubble  can  see   Faintest  galaxy   JWST  can  see   O’Shea  et  al.  (2015)   Brighter   Fainter   Numerous  faint  galaxies   dominate  photon  budget   for  reioniza8on    
  • 46. FROM  FIRST  GALAXIES  TO  COSMIC   REIONIZATION  
  • 47. Escape  frac3on  vs.  halo  mass   Frac3on  of  halos  ac3vely   forming  stars  vs.  halo  mass   Xu  et  al.  (2016)   Escape of ionizing photons
  • 48. A Calibrated Simulation of Reionization
  • 49. IGM completes reionization at z=7.3 zrei(100%)=7.3   Planck  1σ
  • 50. A Calibrated Simulation of Reionization •  Early  stages  driven  by  intermident   star  forma8on  in  smallest  galaxies   –  Leads  to  recombining  HII  regions   •  Later  stages  driven  by  steady  star   forma8on  in  more  massive   galaxies   •  Reioniza8on  starts  and  ends   consistent  with  observa8ons   •   τes  agrees  with  Planck  data  within   error  bars   Chen,  Norman  &  Xu  (in  prep)  
  • 51. Predic8ons  about  the     first generation of galaxies Ques3on   Predic3on   How  they  formed?   From  the  ashes  of  Pop  III  stars   When  they  formed?   As  early  as  z=25  (earlier  in   rare  peaks  of  the  density   field)   What  were  they  like?   Like  ultra-­‐faint  dwarfs   Why  were  they  important?   -­‐Galaxy  building  blocks   -­‐Contributed  to  reioniza8on   -­‐May  be  ancestors  of   modern-­‐day  ultra-­‐faint   dwarfs  
  • 52. James  Webb  Space  Telescope   Launch  2018  
  • 53. Ongoing Investigations •  When  does  the  last  Pop  III  star  form  and  under  what   condi8ons?   –  Proximity  to  first  galaxies  (Xu  et  al.  2016)   •  How  do  X-­‐rays  from  accre8ng  stellar  and  supermassive   black  holes  modify  this  picture?   –  Preheat/preionize  the  IGM  everywhere  (Xu  et  al.  2013,  2015)   •  How  to  test  our  calibrated  reioniza8on  model?   –  21  cm  cosmology  (Ahn  et  al.  2015)   •  How  to  connect  with  proper8es  of  Local  Group  dwarfs?   (Wise  et  al.  2014;  O’Shea  et  al.  in  prep)   •  Observable  proper8es  for  JWST  (Barrow  &  Wise,  in  prep)  
  • 54. Acknowledgements to former students, postdocs, and collaborators •  Tom  Abel  (Stanford)   •  Kyungin  Ahn  (Korea)   •  Marcello  Alvarez  (CITA)   •  Peter  Anninos  (LLNL)   •  Greg  Bryan  (Columbia)   •  James  Bordner  (UCSD)   •  Pengfei  Chen  (UCSD)   •  Brian  O’Shea  (MSU)   •  Dan  Reynolds  (SMU)   •  Geoffrey  So  (Intel)   •  Bridon  Smith  (Edinburgh)   •  Mad  Turk  (UIUC)   •  John  Wise  (GA  Tech)   •  Hao  Xu  (UCSD)   And  too  many  NSF  and  NASA  grants  to  men8on  
  • 57. Mass in stars and remnants
  • 58. Star formation rate densities
  • 59.
  • 60.
  • 61.
  • 62.
  • 63. Renaissance  Simula)ons  Publica8ons   Reference   Topic   Xu  et  al.  (2013)   Pop  III  stars  and  remnants   Xu  et  al.  (2014)   X-­‐ray  feedback  from  Pop  III  black  holes   Chen  et  al.  (2014)   Scaling  rela8ons  for  SAMs   Ahn  et  al.  (2015)   21  cm  signal  from  X-­‐ray  prehea8ng   O’Shea  et  al.  (2015)   UV  luminosity  func8on   Xu  et  al.  (2016a   Late  Pop  III  star  forma8on     Xu  et  al.  (2016b,  submided)   Galaxy  proper8es  and  escape  frac8ons   Xu  et  al.  (2016c,  in  prep)   X-­‐ray  background  from  Pop  III  stars  
  • 64. Renaissance  Simula8ons  Fact  Sheet   Configura3on   L_periodic  (cMpc)   40   L_refined  (cMpc)   6.6   N_p  (effec8ve)   40963   m_p  (solar  mass)   2.9  x  104   AMR  levels     12   Δx  min  (pc)   19/(1+z)   z_init   99   Physics   Cosmology   WMAP7   ICs   MUSIC     Code   ENZO   gas  dynamics   9-­‐species  primord.   2  metal  fields   Chemistry/cooling   9-­‐species  noneq.   metal  line   Radia8ve  transfer   EUV,  LW   Lyman-­‐Werner   bkgd   Yes   Pop  III  SF+FB   Wise+  2012b   Pop  II  SF+FB   Wise+  2012b   Simula3ons   Runs   7   Core-­‐hrs   ~100  M   Data  (TB)   ~70     M.  Norman,  Aspen  EoR  2016  
  • 65. Star  Forma8on  Prescrip8ons   Wise  et  al.  (2012a,b;  2014)   Pop  III   [Z/H]  <=  -­‐4   Par8cle   Individual  Pop  III  star   Mass   IMF  w/Mchar=40  Msol   thresholds   fH2>5x10-­‐4,  δb>5x105,   div(V)<0   Star   proper8es   Schaerer  (2002)   SN  yields   Heger  &  Woosley  (2003)   Metal-­‐enriched   [Z/H]  >  -­‐4   Par8cle   Molecular  cloud/ star  cluster   Mass   >  1000  Msol   thresholds   Τ<1000Κ, δb>5x105   div(V)<0   SF  efficiency   0.07  fcold  inside  MC   radius   Radia8ve  FB   6000  γ/baryon  over   20  Myr   SN  FB   6.8x1048  erg/s/Msol   amer  4  Myr   Mass  recycling  &   enrichment   Pop  III  IMF  
  • 66. FLD  versus  MORAY   M.  Norman,  Aspen  EoR  2016   Norman  et  al.  (2015)  
  • 67. M.  Norman,  Aspen  EoR  2016   FLD  versus  MORAY   Norman  et  al.  (2015)