SlideShare a Scribd company logo
1 of 35
Propositional Logic:
Logical Agents
Outline
• Basic Definitions:
– Syntax, Semantics, Sentences, Propositions, Entails, Follows,
Derives, Inference, Sound, Complete, Model, Satisfiable,
Valid (or Tautology)
• Syntactic Transformations:
– E.g., (A  B)  (A  B)
• Semantic Transformations:
– E.g., (KB |= )  (|= (KB  )
• Truth Tables
– Negation, Conjunction, Disjunction, Implication,
Equivalence (Biconditional)
– Inference by Model Enumeration
Complete architectures for
intelligence?
• Search?
– Solve the problem of what to do.
• Learning?
– Learn what to do.
• Logic and inference?
– Reason about what to do.
– Encoded knowledge/”expert” systems?
• Know what to do.
• Modern view: It’s complex & multi-faceted.
Inference in Formal Symbol Systems:
Ontology, Representation, Inference
• Formal Symbol Systems
– Symbols correspond to things/ideas in the world
– Pattern matching & rewrite corresponds to inference
• Ontology: What exists in the world?
– What must be represented?
• Representation: Syntax vs. Semantics
– What’s Said vs. What’s Meant
• Inference: Schema vs. Mechanism
– Proof Steps vs. Search Strategy
Ontology:
What kind of things exist in the world?
What do we need to describe and reason
about?
Reasoning
Representation
-------------------
A Formal
Symbol System
Inference
---------------------
Formal Pattern
Matching
Syntax
---------
What
is said
Semantics
-------------
What it
means
Schema
-------------
Rules of
Inference
Execution
-------------
Search
Strategy
Schematic perspective
If KB is true in the real world,
then any sentence  entailed by KB
is also true in the real world.
Why Do We Need Logic?
• Problem-solving agents were very inflexible: hard code
every possible state.
• Search is almost always exponential in the number of
states.
• Problem solving agents cannot infer unobserved
information.
• We want an algorithm that reasons in a way that
resembles reasoning in humans.
Knowledge-Based Agents
• KB = knowledge base
– A set of sentences or facts
– e.g., a set of statements in a logic language
• Inference
– Deriving new sentences from old
– e.g., using a set of logical statements to infer new ones
• A simple model for reasoning
– Agent is told or perceives new evidence
• E.g., A is true
– Agent then infers new facts to add to the KB
• E.g., KB = { A -> (B OR C) }, then given A and not C we can infer
that B is true
• B is now added to the KB even though it was not explicitly asserted,
i.e., the agent inferred B
Types of Logics
• Propositional logic deals with specific objects and concrete statements
that are either true or false
– E.g., John is married to Sue.
• Predicate logic (also called first order logic, first order predicate
calculus) allows statements to contain variables, functions, and quantifiers
– For all X, Y: If X is married to Y then Y is married to X.
• Fuzzy logic deals with statements that are somewhat vague, such as this
paint is grey, or the sky is cloudy.
• Probability deals with statements that are possibly true, such as whether I
will win the lottery next week.
• Temporal logic deals with statements about time, such as John was a
student at UC Irvine for four years.
• Modal logic deals with statements about belief or knowledge, such as Mary
believes that John is married to Sue, or Sue knows that search is NP-
complete.
Wumpus World PEAS
description
• Performance measure
– gold: +1000, death: -1000
– -1 per step, -10 for using the arrow
• Environment
– Squares adjacent to wumpus are smelly
– Squares adjacent to pit are breezy
– Glitter iff gold is in the same square
– Shooting kills wumpus if you are facing it
– Shooting uses up the only arrow
– Grabbing picks up gold if in same square
– Releasing drops the gold in same square
• Sensors: Stench, Breeze, Glitter, Bump, Scream
• Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot
Would DFS work well? A*?
Exploring a wumpus world
Exploring a wumpus world
Exploring a wumpus world
Exploring a wumpus world
Exploring a Wumpus world
If the Wumpus were
here, stench should be
here. Therefore it is
here.
Since, there is no breeze
here, the pit must be
there, and it must be OK
here
We need rather sophisticated reasoning here!
Exploring a wumpus world
Exploring a wumpus world
Exploring a wumpus world
Logic
• We used logical reasoning to find the gold.
• Logics are formal languages for representing information such
that conclusions can be drawn
• Syntax defines the sentences in the language
• Semantics define the "meaning” or interpretation of sentences;
– connects symbols to real events in the world,
– i.e., define truth of a sentence in a world
• E.g., the language of arithmetic
– x+2 ≥ y is a sentence; x2+y > {} is not a sentence; syntax
–
– x+2 ≥ y is true in a world where x = 7, y = 1
– x+2 ≥ y is false in a world where x = 0, y = 6
semantics
Schematic perspective
If KB is true in the real world,
then any sentence  entailed by KB
is also true in the real world.
Entailment
• Entailment means that one thing follows from
another:
KB ╞ α
• Knowledge base KB entails sentence α if and
only if α is true in all worlds where KB is true
– E.g., the KB containing “the Giants won and the Reds
won” entails “The Giants won”.
– E.g., x+y = 4 entails 4 = x+y
– E.g., “Mary is Sue’s sister and Amy is Sue’s daughter”
entails “Mary is Amy’s aunt.”
Models
• Logicians typically think in terms of models, which are formally
structured worlds with respect to which truth can be evaluated
• We say m is a model of a sentence α if α is true in m
• M(α) is the set of all models of α
• Then KB ╞ α iff M(KB)  M(α)
– E.g. KB = Giants won and Reds
won α = Giants won
• Think of KB and α as collections of
constraints and of models m as
possible states. M(KB) are the solutions
to KB and M(α) the solutions to α.
Then, KB ╞ α when all solutions to
KB are also solutions to α.
Wumpus models
All possible models in this reduced Wumpus world.
Wumpus models
• KB = all possible wumpus-worlds
consistent with the observations and the
“physics” of the Wumpus world.
Wumpus models
α1 = "[1,2] is safe", KB ╞ α1, proved by model checking
Wumpus models
α2 = "[2,2] is safe", KB ╞ α2
Inference Procedures
(next lecture)
• KB ├i α = sentence α can be derived from KB by
procedure i
• Soundness: i is sound if whenever KB ├i α, it is also true
that KB╞ α (no wrong inferences, but maybe not all
inferences)
• Completeness: i is complete if whenever KB╞ α, it is also
true that KB ├i α (all inferences can be made, but maybe
some wrong extra ones as well)
Recap propositional logic:
Syntax
• Propositional logic is the simplest logic – illustrates
basic ideas
• The proposition symbols P1, P2 etc are sentences
– If S is a sentence, S is a sentence (negation)
– If S1 and S2 are sentences, S1  S2 is a sentence (conjunction)
– If S1 and S2 are sentences, S1  S2 is a sentence (disjunction)
– If S1 and S2 are sentences, S1  S2 is a sentence (implication)
– If S1 and S2 are sentences, S1  S2 is a sentence (biconditional)
Recap propositional logic:
Semantics
Each model/world specifies true or false for each proposition symbol
E.g. P1,2 P2,2 P3,1
false true false
With these symbols, 8 possible models, can be enumerated automatically.
Rules for evaluating truth with respect to a model m:
S is true iff S is false
S1  S2 is true iff S1 is true and S2 is true
S1  S2 is true iff S1is true or S2 is true
S1  S2 is true iff S1 is false or S2 is true
i.e., is false iff S1 is true and S2 is false
S1  S2 is true iff S1S2 is true andS2S1 is true
Simple recursive process evaluates an arbitrary sentence, e.g.,
P1,2  (P2,2  P3,1) = true  (true  false) = true  true = true
Recap truth tables for
connectives
OR: P or Q is true or both are true.
XOR: P or Q is true but not both.
Implication is always true
when the premises are False!
Inference by enumeration
(generate the truth table)
• Enumeration of all models is sound and complete.
• For n symbols, time complexity is O(2n)...
• We need a smarter way to do inference!
• In particular, we are going to infer new logical sentences
from the data-base and see if they match a query.
Logical equivalence
• To manipulate logical sentences we need some rewrite
rules.
• Two sentences are logically equivalent iff they are true in
same models: α ≡ ß iff α╞ β and β╞ α
You need to
know these !
Validity and satisfiability
A sentence is valid if it is true in all models,
e.g., True, A A, A  A, (A  (A  B))  B
Validity is connected to inference via the Deduction Theorem:
KB ╞ α if and only if (KB  α) is valid
A sentence is satisfiable if it is true in some model
e.g., A B, C
A sentence is unsatisfiable if it is false in all models
e.g., AA
Satisfiability is connected to inference via the following:
KB ╞ α if and only if (KB α) is unsatisfiable
(there is no model for which KB=true and is false)

Summary (Part I)
• Logical agents apply inference to a knowledge base to derive new
information and make decisions
• Basic concepts of logic:
– syntax: formal structure of sentences
– semantics: truth of sentences wrt models
– entailment: necessary truth of one sentence given another
– inference: deriving sentences from other sentences
– soundness: derivations produce only entailed sentences
– completeness: derivations can produce all entailed sentences
– valid: sentence is true in every model (a tautology)
• Logical equivalences allow syntactic manipulations
• Propositional logic lacks expressive power
– Can only state specific facts about the world.
– Cannot express general rules about the world (use First Order Predicate Logic)
Assignment for 5th Semester, March 2023
Subject: Fundamentals of AI
• 1.What is a Knowledge Based System? Explain.
• 2.Describe the components of a KBS.
• 3. Differentiate prepositional & predicate logic.
• 4. List some of the rules of inference.
• 5. What is the clausal form? How is it useful?
• 6. Define forward and backward chaining. Differentiate
the same.

More Related Content

Similar to AI-Unit4.ppt

Top school in delhi ncr
Top school in delhi ncrTop school in delhi ncr
Top school in delhi ncrEdhole.com
 
predicateLogic.ppt
predicateLogic.pptpredicateLogic.ppt
predicateLogic.pptMUZAMILALI48
 
Jarrar: Introduction to logic and Logic Agents
Jarrar: Introduction to logic and Logic Agents Jarrar: Introduction to logic and Logic Agents
Jarrar: Introduction to logic and Logic Agents Mustafa Jarrar
 
Artificial intelligence- Logic Agents
Artificial intelligence- Logic AgentsArtificial intelligence- Logic Agents
Artificial intelligence- Logic AgentsNuruzzaman Milon
 
inductive-and-deductive-reasoning-ppt.pptx
inductive-and-deductive-reasoning-ppt.pptxinductive-and-deductive-reasoning-ppt.pptx
inductive-and-deductive-reasoning-ppt.pptxDystopianSh
 
unit1rulesofinference-170113152312.pdf
unit1rulesofinference-170113152312.pdfunit1rulesofinference-170113152312.pdf
unit1rulesofinference-170113152312.pdfBhanuCharan9
 
Unit 1 rules of inference
Unit 1  rules of inferenceUnit 1  rules of inference
Unit 1 rules of inferenceraksharao
 
Tma2033 chap1.1&1.2handout
Tma2033 chap1.1&1.2handoutTma2033 chap1.1&1.2handout
Tma2033 chap1.1&1.2handoutshiqinrino
 
aritficial intellegence
aritficial intellegencearitficial intellegence
aritficial intellegenceAnkit Sharma
 
AI NOTES ppt 4.pdf
AI NOTES ppt 4.pdfAI NOTES ppt 4.pdf
AI NOTES ppt 4.pdfARMANVERMA7
 

Similar to AI-Unit4.ppt (20)

Logic
LogicLogic
Logic
 
Top school in delhi ncr
Top school in delhi ncrTop school in delhi ncr
Top school in delhi ncr
 
predicateLogic.ppt
predicateLogic.pptpredicateLogic.ppt
predicateLogic.ppt
 
PropositionalLogic.ppt
PropositionalLogic.pptPropositionalLogic.ppt
PropositionalLogic.ppt
 
Jarrar: Introduction to logic and Logic Agents
Jarrar: Introduction to logic and Logic Agents Jarrar: Introduction to logic and Logic Agents
Jarrar: Introduction to logic and Logic Agents
 
Artificial intelligence- Logic Agents
Artificial intelligence- Logic AgentsArtificial intelligence- Logic Agents
Artificial intelligence- Logic Agents
 
inductive-and-deductive-reasoning-ppt.pptx
inductive-and-deductive-reasoning-ppt.pptxinductive-and-deductive-reasoning-ppt.pptx
inductive-and-deductive-reasoning-ppt.pptx
 
2020CSC4331_Lecture6_1.pdf
2020CSC4331_Lecture6_1.pdf2020CSC4331_Lecture6_1.pdf
2020CSC4331_Lecture6_1.pdf
 
unit1rulesofinference-170113152312.pdf
unit1rulesofinference-170113152312.pdfunit1rulesofinference-170113152312.pdf
unit1rulesofinference-170113152312.pdf
 
Unit 1 rules of inference
Unit 1  rules of inferenceUnit 1  rules of inference
Unit 1 rules of inference
 
lec3 AI.pptx
lec3  AI.pptxlec3  AI.pptx
lec3 AI.pptx
 
Tma2033 chap1.1&1.2handout
Tma2033 chap1.1&1.2handoutTma2033 chap1.1&1.2handout
Tma2033 chap1.1&1.2handout
 
AI Lesson 11
AI Lesson 11AI Lesson 11
AI Lesson 11
 
Module_4_2.pptx
Module_4_2.pptxModule_4_2.pptx
Module_4_2.pptx
 
artficial intelligence
artficial intelligenceartficial intelligence
artficial intelligence
 
Predicate logic
 Predicate logic Predicate logic
Predicate logic
 
aritficial intellegence
aritficial intellegencearitficial intellegence
aritficial intellegence
 
Logic (1)
Logic (1)Logic (1)
Logic (1)
 
AI NOTES ppt 4.pdf
AI NOTES ppt 4.pdfAI NOTES ppt 4.pdf
AI NOTES ppt 4.pdf
 
CSE680-17NP-Complete.pptx
CSE680-17NP-Complete.pptxCSE680-17NP-Complete.pptx
CSE680-17NP-Complete.pptx
 

Recently uploaded

A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 

Recently uploaded (20)

A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 

AI-Unit4.ppt

  • 2. Outline • Basic Definitions: – Syntax, Semantics, Sentences, Propositions, Entails, Follows, Derives, Inference, Sound, Complete, Model, Satisfiable, Valid (or Tautology) • Syntactic Transformations: – E.g., (A  B)  (A  B) • Semantic Transformations: – E.g., (KB |= )  (|= (KB  ) • Truth Tables – Negation, Conjunction, Disjunction, Implication, Equivalence (Biconditional) – Inference by Model Enumeration
  • 3. Complete architectures for intelligence? • Search? – Solve the problem of what to do. • Learning? – Learn what to do. • Logic and inference? – Reason about what to do. – Encoded knowledge/”expert” systems? • Know what to do. • Modern view: It’s complex & multi-faceted.
  • 4. Inference in Formal Symbol Systems: Ontology, Representation, Inference • Formal Symbol Systems – Symbols correspond to things/ideas in the world – Pattern matching & rewrite corresponds to inference • Ontology: What exists in the world? – What must be represented? • Representation: Syntax vs. Semantics – What’s Said vs. What’s Meant • Inference: Schema vs. Mechanism – Proof Steps vs. Search Strategy
  • 5. Ontology: What kind of things exist in the world? What do we need to describe and reason about? Reasoning Representation ------------------- A Formal Symbol System Inference --------------------- Formal Pattern Matching Syntax --------- What is said Semantics ------------- What it means Schema ------------- Rules of Inference Execution ------------- Search Strategy
  • 6. Schematic perspective If KB is true in the real world, then any sentence  entailed by KB is also true in the real world.
  • 7. Why Do We Need Logic? • Problem-solving agents were very inflexible: hard code every possible state. • Search is almost always exponential in the number of states. • Problem solving agents cannot infer unobserved information. • We want an algorithm that reasons in a way that resembles reasoning in humans.
  • 8. Knowledge-Based Agents • KB = knowledge base – A set of sentences or facts – e.g., a set of statements in a logic language • Inference – Deriving new sentences from old – e.g., using a set of logical statements to infer new ones • A simple model for reasoning – Agent is told or perceives new evidence • E.g., A is true – Agent then infers new facts to add to the KB • E.g., KB = { A -> (B OR C) }, then given A and not C we can infer that B is true • B is now added to the KB even though it was not explicitly asserted, i.e., the agent inferred B
  • 9. Types of Logics • Propositional logic deals with specific objects and concrete statements that are either true or false – E.g., John is married to Sue. • Predicate logic (also called first order logic, first order predicate calculus) allows statements to contain variables, functions, and quantifiers – For all X, Y: If X is married to Y then Y is married to X. • Fuzzy logic deals with statements that are somewhat vague, such as this paint is grey, or the sky is cloudy. • Probability deals with statements that are possibly true, such as whether I will win the lottery next week. • Temporal logic deals with statements about time, such as John was a student at UC Irvine for four years. • Modal logic deals with statements about belief or knowledge, such as Mary believes that John is married to Sue, or Sue knows that search is NP- complete.
  • 10. Wumpus World PEAS description • Performance measure – gold: +1000, death: -1000 – -1 per step, -10 for using the arrow • Environment – Squares adjacent to wumpus are smelly – Squares adjacent to pit are breezy – Glitter iff gold is in the same square – Shooting kills wumpus if you are facing it – Shooting uses up the only arrow – Grabbing picks up gold if in same square – Releasing drops the gold in same square • Sensors: Stench, Breeze, Glitter, Bump, Scream • Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot Would DFS work well? A*?
  • 15. Exploring a Wumpus world If the Wumpus were here, stench should be here. Therefore it is here. Since, there is no breeze here, the pit must be there, and it must be OK here We need rather sophisticated reasoning here!
  • 19. Logic • We used logical reasoning to find the gold. • Logics are formal languages for representing information such that conclusions can be drawn • Syntax defines the sentences in the language • Semantics define the "meaning” or interpretation of sentences; – connects symbols to real events in the world, – i.e., define truth of a sentence in a world • E.g., the language of arithmetic – x+2 ≥ y is a sentence; x2+y > {} is not a sentence; syntax – – x+2 ≥ y is true in a world where x = 7, y = 1 – x+2 ≥ y is false in a world where x = 0, y = 6 semantics
  • 20. Schematic perspective If KB is true in the real world, then any sentence  entailed by KB is also true in the real world.
  • 21. Entailment • Entailment means that one thing follows from another: KB ╞ α • Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true – E.g., the KB containing “the Giants won and the Reds won” entails “The Giants won”. – E.g., x+y = 4 entails 4 = x+y – E.g., “Mary is Sue’s sister and Amy is Sue’s daughter” entails “Mary is Amy’s aunt.”
  • 22. Models • Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated • We say m is a model of a sentence α if α is true in m • M(α) is the set of all models of α • Then KB ╞ α iff M(KB)  M(α) – E.g. KB = Giants won and Reds won α = Giants won • Think of KB and α as collections of constraints and of models m as possible states. M(KB) are the solutions to KB and M(α) the solutions to α. Then, KB ╞ α when all solutions to KB are also solutions to α.
  • 23. Wumpus models All possible models in this reduced Wumpus world.
  • 24. Wumpus models • KB = all possible wumpus-worlds consistent with the observations and the “physics” of the Wumpus world.
  • 25. Wumpus models α1 = "[1,2] is safe", KB ╞ α1, proved by model checking
  • 26. Wumpus models α2 = "[2,2] is safe", KB ╞ α2
  • 27. Inference Procedures (next lecture) • KB ├i α = sentence α can be derived from KB by procedure i • Soundness: i is sound if whenever KB ├i α, it is also true that KB╞ α (no wrong inferences, but maybe not all inferences) • Completeness: i is complete if whenever KB╞ α, it is also true that KB ├i α (all inferences can be made, but maybe some wrong extra ones as well)
  • 28. Recap propositional logic: Syntax • Propositional logic is the simplest logic – illustrates basic ideas • The proposition symbols P1, P2 etc are sentences – If S is a sentence, S is a sentence (negation) – If S1 and S2 are sentences, S1  S2 is a sentence (conjunction) – If S1 and S2 are sentences, S1  S2 is a sentence (disjunction) – If S1 and S2 are sentences, S1  S2 is a sentence (implication) – If S1 and S2 are sentences, S1  S2 is a sentence (biconditional)
  • 29. Recap propositional logic: Semantics Each model/world specifies true or false for each proposition symbol E.g. P1,2 P2,2 P3,1 false true false With these symbols, 8 possible models, can be enumerated automatically. Rules for evaluating truth with respect to a model m: S is true iff S is false S1  S2 is true iff S1 is true and S2 is true S1  S2 is true iff S1is true or S2 is true S1  S2 is true iff S1 is false or S2 is true i.e., is false iff S1 is true and S2 is false S1  S2 is true iff S1S2 is true andS2S1 is true Simple recursive process evaluates an arbitrary sentence, e.g., P1,2  (P2,2  P3,1) = true  (true  false) = true  true = true
  • 30. Recap truth tables for connectives OR: P or Q is true or both are true. XOR: P or Q is true but not both. Implication is always true when the premises are False!
  • 31. Inference by enumeration (generate the truth table) • Enumeration of all models is sound and complete. • For n symbols, time complexity is O(2n)... • We need a smarter way to do inference! • In particular, we are going to infer new logical sentences from the data-base and see if they match a query.
  • 32. Logical equivalence • To manipulate logical sentences we need some rewrite rules. • Two sentences are logically equivalent iff they are true in same models: α ≡ ß iff α╞ β and β╞ α You need to know these !
  • 33. Validity and satisfiability A sentence is valid if it is true in all models, e.g., True, A A, A  A, (A  (A  B))  B Validity is connected to inference via the Deduction Theorem: KB ╞ α if and only if (KB  α) is valid A sentence is satisfiable if it is true in some model e.g., A B, C A sentence is unsatisfiable if it is false in all models e.g., AA Satisfiability is connected to inference via the following: KB ╞ α if and only if (KB α) is unsatisfiable (there is no model for which KB=true and is false) 
  • 34. Summary (Part I) • Logical agents apply inference to a knowledge base to derive new information and make decisions • Basic concepts of logic: – syntax: formal structure of sentences – semantics: truth of sentences wrt models – entailment: necessary truth of one sentence given another – inference: deriving sentences from other sentences – soundness: derivations produce only entailed sentences – completeness: derivations can produce all entailed sentences – valid: sentence is true in every model (a tautology) • Logical equivalences allow syntactic manipulations • Propositional logic lacks expressive power – Can only state specific facts about the world. – Cannot express general rules about the world (use First Order Predicate Logic)
  • 35. Assignment for 5th Semester, March 2023 Subject: Fundamentals of AI • 1.What is a Knowledge Based System? Explain. • 2.Describe the components of a KBS. • 3. Differentiate prepositional & predicate logic. • 4. List some of the rules of inference. • 5. What is the clausal form? How is it useful? • 6. Define forward and backward chaining. Differentiate the same.