SlideShare a Scribd company logo
Two-center interference in ion-molecule collisions: electron capture and ionization Deepankar Misra Stockholm University, Stockholm, Sweden
Plan ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Thomas Young, 1801 Interference in diatomic molecules  on electrons: Davisson and Germer, 1927 C. Jönsson, 1961 P.G. Merli et al., 1974 A. Tonomura et al., 1989 Electron capture: Theory Tuan and Gerjuoy, 1960 S. Cheng, C.L. Cocke, et al., 1993 Photo-ionization:  Theory Cohen and Fano, 1966 D. Rolls et. al., Nature 2005, K. Kreidi et al., PRL 2008 Ionization: Stolterfoht et al., PRL 2001 Misra et al., PRL 2004  and many others Transfer Excitation: Fast (MeV) H atoms, Schmidt et al., 2008 Double-electron capture: He ++  + H 2 . on neutrons:  A. Zeilinger, 1988 on fullerenes:  Hackermuller et al., 2004 The double slit experiment Visible light A q+ 
e - k i =M p v p i k f = ( M p + m e )   v p f    capture at small distances (  << 1 a.u.)    small projectile scattering angles ( < 1 mrad)    projectile long. momentum change | k f  –  k i | = n  v p /2- Q / v p Fast electron capture from molecules Number of electrons captured
e - k i =M p v p i k f = ( M p + m e )   v p f    capture at small distances (  << 1 a.u.)    small projectile scattering angles ( < 1 mrad)    projectile long. momentum change | k f  –  k i | = n  v p /2 Fast electron capture from molecules Number of electrons captured
KER Electron capture from H 2 H + Dissociaton ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],H
injection from source HF cavity e - cooler CRYRING The Experimental Setup Gas jet  Intense and narrow ion beam  Ideal for low cross section measurements, e.g., ~ 10 -22 cm 2  Beam diameter ~ 1 mm  Gas jet diameter ~ 1 mm  Ultra High Vacuum ~10 -12  Torr (UHV)  Temp T ~ 100 mK target beam neutralized projectiles E -field coincidence
 1.3 MeV p + H 2 Interference in electron capture from H 2 a a   = 1.4 a.u.  = 7.4   10 -11  m k i =M p v p i k f = ( M p + m e )   v p f projectile velocity: v p     = 7.2 a.u. projectile momentum: k     ~ 13250 a.u.  k =  ( k f -k i )  = 3.5 a.u. proj. wavelength:      ~ 2.5   10 -14  m       = 6.6   10 -18  m double slit Tuan and Gerjuoy, Phys. Rev. (1960) Stochkel et al PRA  72  050703 (2005) phase shift   = ( k f -k i ) z z = a  cos 
 Interference in electron capture from H 2 a a   = 1.4 a.u.  = 7.4   10 -11  m k i =M p v p i k f = ( M p + m e )   v p f phase shift   = ( k f -k i ) z z = a  cos  projectile velocity: v p     = 7.2 a.u. projectile momentum: k     ~ 13250 a.u.  k =  ( k f -k i )  = 3.5 a.u. proj. wavelength:      ~ 2.5   10 -14  m       = 6.6   10 -18  m double slit constructive interference  =          ~ 90° 1.3 MeV p + H 2 Stochkel et al PRA  72  050703 (2005)
 Interference in electron capture from H 2 a a   = 1.4 a.u.  = 7.4   10 -11  m k i =M p v p i k f = ( M p + m e )   v p f projectile velocity: v p     = 7.2 a.u. projectile momentum: k     ~ 13250 a.u.  k =  ( k f -k i )  = 3.5 a.u. proj. wavelength:      ~ 2.5   10 -14  m       = 6.6   10 -18  m destructive interference  =          ~ 51°, 129° 1.3 MeV p + H 2 Stochkel et al PRA  72  050703 (2005) phase shift   = ( k f -k i ) z z = a  cos 
 a a   = 1.4 a.u.  = 7.4   10 -11  m k i =M p v p i k f = ( M p + m e )   v p f 1.3 MeV p + H 2 Molecule    LCAO Capture     Brinkmann-Kramers Wang, McGuire, Rivarola (1989 ) Stochkel et al PRA  72  050703 (2005) Interference in electron capture from H 2 phase shift   = ( k f -k i ) z z = a  cos 
 = 50°  = 90° Schmidt et al Phys. Rev. Lett.  101  083201 (2008) Interference in scat. angle distribution Single hydrogen atom inside the apparatus at a given time    Single hydrogen de Broglie wave interference
Double-electron capture from H 2 k i =M p v p i k f = ( M p +  2 m e )   v p f He 2+  DC  ~ 10 -22  cm 2  I  ~ 10 -17  cm 2 105 0 75 0
Double-electron capture from H 2 k i =M p v p i k f = ( M p +  2 m e )   v p f D. Misra, et al., Phys. Rev. Lett 102 153201 (2009 ) Expected destructive interference At first Glance     Simple picture does not seem to work!    A rather strong velocity dependence  Two-center ( LCAO ), two-electron wavefunctions  Does not include two-electron, one center part.  one electron is captured in a direct capture event ( OBK )  The other electron is captured by a  “shakeover” projectile velocity: v p     = 4.46 a.u. projectile momentum: k     ~ 32754 a.u.  k =  ( k f -k i )  = 4.46 a.u. proj. wavelength:      ~ 1.0   10 -14  m       = 1.4   10 -18  m
Comparison: Single- & Double- Capture d = c a and S p =q/v p c=1.00 c=0.89 c=0.90 c=0.70 c=0.76 c=0.49 Expected position for the minima
Comparison: Single- & Double- Capture d = c a S p =q/v p 1.3 MeV H + V p =7.2 a.u. Electron capture takes place when the projectile passes  through regions close to either of the target nuclei. d a
Comparison: Single- & Double- Capture d = c a S p =q/v p 2 MeV He ++ V p = 4.46 a.u. Electron capture takes place when the projectile passes  through regions close to either of the target nuclei. d a
Conclusions ,[object Object],[object Object],[object Object],[object Object]
Acknowledgement ( Stockholm University and MSL ) H. T. Schmidt    M. Gudmundsson N. Haag  H. Johansson  P. Reinhed A. Källberg  A. Simonsson  R. Schuch   H. Cederquist     Max Planck Institute fuer Kernphysik, Heidelberg D. Fischer A. Voitkiv B. Najjari M. Schöffler ( University of Frankfurt and LBNL )
THANK YOU

More Related Content

What's hot

Half life of radioactive material
Half life of radioactive materialHalf life of radioactive material
Half life of radioactive material
MirzaMusmanBaig
 
Notes for Atoms Molecules and Nuclei - Part III
Notes for Atoms Molecules and Nuclei - Part IIINotes for Atoms Molecules and Nuclei - Part III
Notes for Atoms Molecules and Nuclei - Part III
Ednexa
 
Half life
Half lifeHalf life
Nmr spectroscopy by dr. pramod r. padole
Nmr spectroscopy by dr. pramod r. padoleNmr spectroscopy by dr. pramod r. padole
Nmr spectroscopy by dr. pramod r. padole
pramod padole
 
12th Physics - Atoms Molecules and Nuclei for JEE Main 2014
12th Physics - Atoms Molecules and Nuclei for JEE Main 201412th Physics - Atoms Molecules and Nuclei for JEE Main 2014
12th Physics - Atoms Molecules and Nuclei for JEE Main 2014
Ednexa
 
Uv visible spectroscopy by dr. pamod r. padole
Uv visible spectroscopy by dr. pamod r. padoleUv visible spectroscopy by dr. pamod r. padole
Uv visible spectroscopy by dr. pamod r. padole
pramod padole
 
J-PARC
J-PARCJ-PARC
B sc_I_General chemistry U-I Nuclear chemistry
B sc_I_General chemistry U-I Nuclear chemistry B sc_I_General chemistry U-I Nuclear chemistry
B sc_I_General chemistry U-I Nuclear chemistry
Rai University
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
Los Alamos National Laboratory
 
Gw renormalization of the electron phonon coupling
Gw renormalization of the electron phonon couplingGw renormalization of the electron phonon coupling
Gw renormalization of the electron phonon coupling
Claudio Attaccalite
 
Ph 101-8
Ph 101-8Ph 101-8
Ph 101-8
Chandan Singh
 
Quantum mechanical spin
Quantum mechanical spinQuantum mechanical spin
Quantum mechanical spin
Gabriel O'Brien
 
Standin wave
Standin waveStandin wave
Standin wave
rameshthombre1
 
Final m4 march 2019
Final m4 march 2019Final m4 march 2019
Final m4 march 2019
drdivakaras
 
Matter waves
Matter wavesMatter waves
Matter waves
LarryReed15
 
Radioactive decay half-life calculation
Radioactive decay  half-life calculationRadioactive decay  half-life calculation
Radioactive decay half-life calculation
Damion Lawrence
 
ECE 413 Part10B Principles of Nuclear Energy
ECE 413 Part10B   Principles of Nuclear EnergyECE 413 Part10B   Principles of Nuclear Energy
ECE 413 Part10B Principles of Nuclear Energy
Eugene Sebilo
 
Mott insulators
Mott insulatorsMott insulators
Mott insulators
ABDERRAHMANE REGGAD
 
Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...
ABDERRAHMANE REGGAD
 
Mott metal insulator transitions satej soman, robert tang-kong
Mott metal insulator transitions  satej soman, robert tang-kongMott metal insulator transitions  satej soman, robert tang-kong
Mott metal insulator transitions satej soman, robert tang-kong
ABDERRAHMANE REGGAD
 

What's hot (20)

Half life of radioactive material
Half life of radioactive materialHalf life of radioactive material
Half life of radioactive material
 
Notes for Atoms Molecules and Nuclei - Part III
Notes for Atoms Molecules and Nuclei - Part IIINotes for Atoms Molecules and Nuclei - Part III
Notes for Atoms Molecules and Nuclei - Part III
 
Half life
Half lifeHalf life
Half life
 
Nmr spectroscopy by dr. pramod r. padole
Nmr spectroscopy by dr. pramod r. padoleNmr spectroscopy by dr. pramod r. padole
Nmr spectroscopy by dr. pramod r. padole
 
12th Physics - Atoms Molecules and Nuclei for JEE Main 2014
12th Physics - Atoms Molecules and Nuclei for JEE Main 201412th Physics - Atoms Molecules and Nuclei for JEE Main 2014
12th Physics - Atoms Molecules and Nuclei for JEE Main 2014
 
Uv visible spectroscopy by dr. pamod r. padole
Uv visible spectroscopy by dr. pamod r. padoleUv visible spectroscopy by dr. pamod r. padole
Uv visible spectroscopy by dr. pamod r. padole
 
J-PARC
J-PARCJ-PARC
J-PARC
 
B sc_I_General chemistry U-I Nuclear chemistry
B sc_I_General chemistry U-I Nuclear chemistry B sc_I_General chemistry U-I Nuclear chemistry
B sc_I_General chemistry U-I Nuclear chemistry
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
 
Gw renormalization of the electron phonon coupling
Gw renormalization of the electron phonon couplingGw renormalization of the electron phonon coupling
Gw renormalization of the electron phonon coupling
 
Ph 101-8
Ph 101-8Ph 101-8
Ph 101-8
 
Quantum mechanical spin
Quantum mechanical spinQuantum mechanical spin
Quantum mechanical spin
 
Standin wave
Standin waveStandin wave
Standin wave
 
Final m4 march 2019
Final m4 march 2019Final m4 march 2019
Final m4 march 2019
 
Matter waves
Matter wavesMatter waves
Matter waves
 
Radioactive decay half-life calculation
Radioactive decay  half-life calculationRadioactive decay  half-life calculation
Radioactive decay half-life calculation
 
ECE 413 Part10B Principles of Nuclear Energy
ECE 413 Part10B   Principles of Nuclear EnergyECE 413 Part10B   Principles of Nuclear Energy
ECE 413 Part10B Principles of Nuclear Energy
 
Mott insulators
Mott insulatorsMott insulators
Mott insulators
 
Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...
 
Mott metal insulator transitions satej soman, robert tang-kong
Mott metal insulator transitions  satej soman, robert tang-kongMott metal insulator transitions  satej soman, robert tang-kong
Mott metal insulator transitions satej soman, robert tang-kong
 

Similar to Aisamp DM 2008 Talk

Chapter_3.pptx .
Chapter_3.pptx                              .Chapter_3.pptx                              .
Chapter_3.pptx .
happycocoman
 
Chemistry 11
Chemistry 11Chemistry 11
Chemistry 11
rakeshbhanj
 
Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES
Chandan Singh
 
Phys 4190 lec (3)
Phys 4190 lec (3)Phys 4190 lec (3)
Phys 4190 lec (3)
Dr. Abeer Kamal
 
Magnetic effect of current
Magnetic effect of currentMagnetic effect of current
Magnetic effect of currentjoseherbertraj
 
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
FatimaAfzal56
 
Chapter3 introduction to the quantum theory of solids
Chapter3 introduction to the quantum theory of solidsChapter3 introduction to the quantum theory of solids
Chapter3 introduction to the quantum theory of solids
K. M.
 
Electron diffraction experiment
Electron diffraction experimentElectron diffraction experiment
Electron diffraction experiment
mohammedIsmael40
 
NEET Boost ypur Chemistry- Atomic structure.pdf
NEET Boost ypur Chemistry- Atomic structure.pdfNEET Boost ypur Chemistry- Atomic structure.pdf
NEET Boost ypur Chemistry- Atomic structure.pdf
chaitaligiri2029
 
A010410103
A010410103A010410103
A010410103
IOSR Journals
 
Thesis on the masses of photons with different wavelengths.pdf
Thesis on the masses of photons with different wavelengths.pdf Thesis on the masses of photons with different wavelengths.pdf
Thesis on the masses of photons with different wavelengths.pdf
WilsonHidalgo8
 
Ab-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsAb-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear optics
Claudio Attaccalite
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notesRohan Jain
 
Magnetic effect of_current
Magnetic effect of_currentMagnetic effect of_current
Magnetic effect of_currentjoseherbertraj
 
Magnetic effect of_current
Magnetic effect of_currentMagnetic effect of_current
Magnetic effect of_currentjoseherbertraj
 
LengthScales.ppt
LengthScales.pptLengthScales.ppt
LengthScales.ppt
Sc Pattar
 
Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3Self-employed
 

Similar to Aisamp DM 2008 Talk (20)

Chapter_3.pptx .
Chapter_3.pptx                              .Chapter_3.pptx                              .
Chapter_3.pptx .
 
Phy 310 chapter 3
Phy 310   chapter 3Phy 310   chapter 3
Phy 310 chapter 3
 
Phy 310 chapter 3
Phy 310   chapter 3Phy 310   chapter 3
Phy 310 chapter 3
 
Chemistry 11
Chemistry 11Chemistry 11
Chemistry 11
 
Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES
 
Phys 4190 lec (3)
Phys 4190 lec (3)Phys 4190 lec (3)
Phys 4190 lec (3)
 
Magnetic effect of current
Magnetic effect of currentMagnetic effect of current
Magnetic effect of current
 
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
 
Chapter3 introduction to the quantum theory of solids
Chapter3 introduction to the quantum theory of solidsChapter3 introduction to the quantum theory of solids
Chapter3 introduction to the quantum theory of solids
 
Electron diffraction experiment
Electron diffraction experimentElectron diffraction experiment
Electron diffraction experiment
 
NEET Boost ypur Chemistry- Atomic structure.pdf
NEET Boost ypur Chemistry- Atomic structure.pdfNEET Boost ypur Chemistry- Atomic structure.pdf
NEET Boost ypur Chemistry- Atomic structure.pdf
 
A010410103
A010410103A010410103
A010410103
 
Thesis on the masses of photons with different wavelengths.pdf
Thesis on the masses of photons with different wavelengths.pdf Thesis on the masses of photons with different wavelengths.pdf
Thesis on the masses of photons with different wavelengths.pdf
 
Ab-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsAb-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear optics
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notes
 
Ch2 slides-1
Ch2 slides-1Ch2 slides-1
Ch2 slides-1
 
Magnetic effect of_current
Magnetic effect of_currentMagnetic effect of_current
Magnetic effect of_current
 
Magnetic effect of_current
Magnetic effect of_currentMagnetic effect of_current
Magnetic effect of_current
 
LengthScales.ppt
LengthScales.pptLengthScales.ppt
LengthScales.ppt
 
Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3
 

Aisamp DM 2008 Talk

  • 1. Two-center interference in ion-molecule collisions: electron capture and ionization Deepankar Misra Stockholm University, Stockholm, Sweden
  • 2.
  • 3. Thomas Young, 1801 Interference in diatomic molecules on electrons: Davisson and Germer, 1927 C. Jönsson, 1961 P.G. Merli et al., 1974 A. Tonomura et al., 1989 Electron capture: Theory Tuan and Gerjuoy, 1960 S. Cheng, C.L. Cocke, et al., 1993 Photo-ionization: Theory Cohen and Fano, 1966 D. Rolls et. al., Nature 2005, K. Kreidi et al., PRL 2008 Ionization: Stolterfoht et al., PRL 2001 Misra et al., PRL 2004 and many others Transfer Excitation: Fast (MeV) H atoms, Schmidt et al., 2008 Double-electron capture: He ++ + H 2 . on neutrons: A. Zeilinger, 1988 on fullerenes: Hackermuller et al., 2004 The double slit experiment Visible light A q+ 
  • 4. e - k i =M p v p i k f = ( M p + m e ) v p f  capture at small distances (  << 1 a.u.)  small projectile scattering angles ( < 1 mrad)  projectile long. momentum change | k f – k i | = n v p /2- Q / v p Fast electron capture from molecules Number of electrons captured
  • 5. e - k i =M p v p i k f = ( M p + m e ) v p f  capture at small distances (  << 1 a.u.)  small projectile scattering angles ( < 1 mrad)  projectile long. momentum change | k f – k i | = n v p /2 Fast electron capture from molecules Number of electrons captured
  • 6.
  • 7. injection from source HF cavity e - cooler CRYRING The Experimental Setup Gas jet  Intense and narrow ion beam  Ideal for low cross section measurements, e.g., ~ 10 -22 cm 2  Beam diameter ~ 1 mm  Gas jet diameter ~ 1 mm  Ultra High Vacuum ~10 -12 Torr (UHV)  Temp T ~ 100 mK target beam neutralized projectiles E -field coincidence
  • 8.  1.3 MeV p + H 2 Interference in electron capture from H 2 a a = 1.4 a.u. = 7.4  10 -11 m k i =M p v p i k f = ( M p + m e ) v p f projectile velocity: v p = 7.2 a.u. projectile momentum: k ~ 13250 a.u.  k = ( k f -k i ) = 3.5 a.u. proj. wavelength:  ~ 2.5  10 -14 m   = 6.6  10 -18 m double slit Tuan and Gerjuoy, Phys. Rev. (1960) Stochkel et al PRA 72 050703 (2005) phase shift  = ( k f -k i ) z z = a cos 
  • 9.  Interference in electron capture from H 2 a a = 1.4 a.u. = 7.4  10 -11 m k i =M p v p i k f = ( M p + m e ) v p f phase shift  = ( k f -k i ) z z = a cos  projectile velocity: v p = 7.2 a.u. projectile momentum: k ~ 13250 a.u.  k = ( k f -k i ) = 3.5 a.u. proj. wavelength:  ~ 2.5  10 -14 m   = 6.6  10 -18 m double slit constructive interference  =    ~ 90° 1.3 MeV p + H 2 Stochkel et al PRA 72 050703 (2005)
  • 10.  Interference in electron capture from H 2 a a = 1.4 a.u. = 7.4  10 -11 m k i =M p v p i k f = ( M p + m e ) v p f projectile velocity: v p = 7.2 a.u. projectile momentum: k ~ 13250 a.u.  k = ( k f -k i ) = 3.5 a.u. proj. wavelength:  ~ 2.5  10 -14 m   = 6.6  10 -18 m destructive interference  =    ~ 51°, 129° 1.3 MeV p + H 2 Stochkel et al PRA 72 050703 (2005) phase shift  = ( k f -k i ) z z = a cos 
  • 11.  a a = 1.4 a.u. = 7.4  10 -11 m k i =M p v p i k f = ( M p + m e ) v p f 1.3 MeV p + H 2 Molecule  LCAO Capture  Brinkmann-Kramers Wang, McGuire, Rivarola (1989 ) Stochkel et al PRA 72 050703 (2005) Interference in electron capture from H 2 phase shift  = ( k f -k i ) z z = a cos 
  • 12.  = 50°  = 90° Schmidt et al Phys. Rev. Lett. 101 083201 (2008) Interference in scat. angle distribution Single hydrogen atom inside the apparatus at a given time  Single hydrogen de Broglie wave interference
  • 13. Double-electron capture from H 2 k i =M p v p i k f = ( M p + 2 m e ) v p f He 2+  DC ~ 10 -22 cm 2  I ~ 10 -17 cm 2 105 0 75 0
  • 14. Double-electron capture from H 2 k i =M p v p i k f = ( M p + 2 m e ) v p f D. Misra, et al., Phys. Rev. Lett 102 153201 (2009 ) Expected destructive interference At first Glance  Simple picture does not seem to work!  A rather strong velocity dependence  Two-center ( LCAO ), two-electron wavefunctions  Does not include two-electron, one center part.  one electron is captured in a direct capture event ( OBK )  The other electron is captured by a “shakeover” projectile velocity: v p = 4.46 a.u. projectile momentum: k ~ 32754 a.u.  k = ( k f -k i ) = 4.46 a.u. proj. wavelength:  ~ 1.0  10 -14 m   = 1.4  10 -18 m
  • 15. Comparison: Single- & Double- Capture d = c a and S p =q/v p c=1.00 c=0.89 c=0.90 c=0.70 c=0.76 c=0.49 Expected position for the minima
  • 16. Comparison: Single- & Double- Capture d = c a S p =q/v p 1.3 MeV H + V p =7.2 a.u. Electron capture takes place when the projectile passes through regions close to either of the target nuclei. d a
  • 17. Comparison: Single- & Double- Capture d = c a S p =q/v p 2 MeV He ++ V p = 4.46 a.u. Electron capture takes place when the projectile passes through regions close to either of the target nuclei. d a
  • 18.
  • 19. Acknowledgement ( Stockholm University and MSL ) H. T. Schmidt M. Gudmundsson N. Haag H. Johansson P. Reinhed A. Källberg A. Simonsson R. Schuch H. Cederquist Max Planck Institute fuer Kernphysik, Heidelberg D. Fischer A. Voitkiv B. Najjari M. Schöffler ( University of Frankfurt and LBNL )