SlideShare a Scribd company logo
1 of 21
Download to read offline
AI for kids? It’s possible!
Jill-Jênn Vie
@jjvie
13 juin 2017
What is a kid?
Definition
A kid is someone who is younger than I.
What you will see has been tested on real kids!
Girls from 12 to 18 (Girls Can Code! summer schools)
Students in high school (from 17 to 19)
Overview of the French CS curriculum
2012. Spécialité ISN (Informatique et sciences du numérique) en
terminale : validation par projet au baccalauréat
Biology 38% (=) Maths 25% (↑) Physics/Chemistry 22% (↓)
Computer Science 11% (↑)
Source : Laurent Chéno, inspecteur général de mathématiques
Overview of the French CS curriculum: Python
2013. Python en classes préparatoires (remplace Maple)
calcul numérique numpy
bases de données SQLite
2014. Python accepté à l’agrégation de mathématiques
algorithmique
Code instruction for non-scientists
2015. Option ICN (Informatique et création numérique) en seconde:
représentation de l’information
algorithmique / programmation
réseaux et protocoles
(5% of the students (= 27k), in 32% of high schools (= 800))
2016. Option ICN en première/terminale L et ES (!)
(0,46% of the students (= 1.8k), in 6% of high schools (= 151))
Massive instruction for everyone
o/ Scratch au primaire/collège !
Introduction en CM1/CM2/6e
Au programme de technologie et de mathématiques 5e/4e/3e
800k students per level!
2017. Un chapitre entier d’algorithmique dans le programme de
mathématiques de seconde !
Python dans les manuels
AI for kids
Requirements
Should be simple, fun and really extensive
Easy to prepare for us
Activities
1. Sequence generation
2. Bot tournament for simple games
3. Recommender systems (simple classifier)
Sequence generation
Simple structure
Basic rule: noun + verb + complement
Sentence generation, word by word
NO RULES.
Jump from word to word
Music composition
https://trinket.io/music
Machine can output absurd things, but you can improve it by
adding extra constraints.
Bot tournament for games
Inspiration
Context
High school students
Feasible equivalent
15 matches (Nim game)
| | | | | | | | | | | | | | |
Each player can take 1–3 |
Who takes the last | looses
Demo
All Python champions contain a single function def
ia(nb_matches) that returns a number of matches to
withdraw.
Put in a shared folder which is the arena (Samba or DropBox).
python allumette.py 15 jj john
Bot tournament for games
Benefits
Incremental improvement of their champions
Look at other’s source code (like with Scratch)
“I CAN BEAT ANYONE AT THIS GAME”
— Élianor, 12 years old
Movie recommendation
Inspiration
Netflix
Feasible equivalent
like/hate ratings (binary classification)
Collaborative filtering
Sacha ? 5 2 ?
Ondine 4 1 ? 5
Pierre 3 3 1 4
Joëlle 5 ? 2 ?
Collaborative filtering
Sacha 3 5 2 2
Ondine 4 1 4 5
Pierre 3 3 1 4
Joëlle 5 2 2 5
Nearest neighbors
To recommend movies to Alice (see surpriselib.com’s talk yesterday):
Introduce a similarity score between people
Determine 10 people close to Alice
Recommend to Alice what they liked that she did not see
Data
007 Batman 1 Shrek 2 Toy Story 3 Star Wars 4 Twilight 5
Alice + − 0 + 0 −
Bob − 0 + − + +
Charles + + + + − −
Daisy + + 0 0 + −
Everett + − + + − 0
What similarity score can we choose?
Computing the score
007 Batman 1 Shrek 2 Toy Story 3 Star Wars 4 Twilight 5
Alice + − 0 + 0 −
Charles + + + + − −
Score +1 −1 +1 +1
score(Alice, Charles) = 3 + (−1) = 2
007 Batman 1 Shrek 2 Toy Story 3 Star Wars 4 Twilight 5
Alice + − 0 + 0 −
Bob − 0 + − + +
Score −1 −1 -1
score(Alice, Bob) = −3
Alice is closer to Charles than Bob
Similarity score between people
Alice Bob Charles Daisy JJ
Alice 4 −3 2 1 3
Bob −3 5 −3 −1 −2
Charles 2 −3 6 2 3
Daisy 1 −1 2 4 −1
Everett 3 −2 3 −1 5
Who are Alice’s 2 closest neighbors?
Computing predictions
007 Batman 1 Shrek 2 Toy Story 3 Star Wars 4 Twilight 5
Alice + − ? + ? −
Charles + + + + − −
Daisy + + 0 0 + −
Everett + − + + − 0
Knowing her neighbors, how likely Alice will enjoy these movies?
Computing predictions
007 Batman 1 Shrek 2 Toy Story 3 Star Wars 4 Twilight 5
Alice + − + + − −
Charles + + + + − −
Daisy + + 0 0 + −
Everett + − + + − 0
Compute the mean:
prediction(Alice, Star Wars 4) = 0,333. . .
Movie recommendation
Benefits
At least, students learn how to rely on user data to infer
missing entries
AI is not perfect but learns
“Hey what about giving more weight to closest neighbors?”
— Clara, 18 years old
Call for activities!
Please take something
that is everywhere, ex. AlphaGo
or what you’re working on
and try to make a “suitable for kids” version (visual)
Send it to us! tryalgo.org
Thanks!
jill-jenn.net @jjvie jj@mangaki.fr

More Related Content

More from Pôle Systematic Paris-Region

More from Pôle Systematic Paris-Region (20)

OSIS19_Cloud : Performance and power management in virtualized data centers, ...
OSIS19_Cloud : Performance and power management in virtualized data centers, ...OSIS19_Cloud : Performance and power management in virtualized data centers, ...
OSIS19_Cloud : Performance and power management in virtualized data centers, ...
 
OSIS19_Cloud : Des objets dans le cloud, et qui y restent -- L'expérience du ...
OSIS19_Cloud : Des objets dans le cloud, et qui y restent -- L'expérience du ...OSIS19_Cloud : Des objets dans le cloud, et qui y restent -- L'expérience du ...
OSIS19_Cloud : Des objets dans le cloud, et qui y restent -- L'expérience du ...
 
OSIS19_Cloud : Attribution automatique de ressources pour micro-services, Alt...
OSIS19_Cloud : Attribution automatique de ressources pour micro-services, Alt...OSIS19_Cloud : Attribution automatique de ressources pour micro-services, Alt...
OSIS19_Cloud : Attribution automatique de ressources pour micro-services, Alt...
 
OSIS19_IoT : State of the art in security for embedded systems and IoT, by Pi...
OSIS19_IoT : State of the art in security for embedded systems and IoT, by Pi...OSIS19_IoT : State of the art in security for embedded systems and IoT, by Pi...
OSIS19_IoT : State of the art in security for embedded systems and IoT, by Pi...
 
Osis19_IoT: Proof of Pointer Programs with Ownership in SPARK, by Yannick Moy
Osis19_IoT: Proof of Pointer Programs with Ownership in SPARK, by Yannick MoyOsis19_IoT: Proof of Pointer Programs with Ownership in SPARK, by Yannick Moy
Osis19_IoT: Proof of Pointer Programs with Ownership in SPARK, by Yannick Moy
 
Osis18_Cloud : Pas de commun sans communauté ?
Osis18_Cloud : Pas de commun sans communauté ?Osis18_Cloud : Pas de commun sans communauté ?
Osis18_Cloud : Pas de commun sans communauté ?
 
Osis18_Cloud : Projet Wolphin
Osis18_Cloud : Projet Wolphin Osis18_Cloud : Projet Wolphin
Osis18_Cloud : Projet Wolphin
 
Osis18_Cloud : Virtualisation efficace d’architectures NUMA
Osis18_Cloud : Virtualisation efficace d’architectures NUMAOsis18_Cloud : Virtualisation efficace d’architectures NUMA
Osis18_Cloud : Virtualisation efficace d’architectures NUMA
 
Osis18_Cloud : DeepTorrent Stockage distribué perenne basé sur Bittorrent
Osis18_Cloud : DeepTorrent Stockage distribué perenne basé sur BittorrentOsis18_Cloud : DeepTorrent Stockage distribué perenne basé sur Bittorrent
Osis18_Cloud : DeepTorrent Stockage distribué perenne basé sur Bittorrent
 
Osis18_Cloud : Software-heritage
Osis18_Cloud : Software-heritageOsis18_Cloud : Software-heritage
Osis18_Cloud : Software-heritage
 
OSIS18_IoT: L'approche machine virtuelle pour les microcontrôleurs, le projet...
OSIS18_IoT: L'approche machine virtuelle pour les microcontrôleurs, le projet...OSIS18_IoT: L'approche machine virtuelle pour les microcontrôleurs, le projet...
OSIS18_IoT: L'approche machine virtuelle pour les microcontrôleurs, le projet...
 
OSIS18_IoT: La securite des objets connectes a bas cout avec l'os et riot
OSIS18_IoT: La securite des objets connectes a bas cout avec l'os et riotOSIS18_IoT: La securite des objets connectes a bas cout avec l'os et riot
OSIS18_IoT: La securite des objets connectes a bas cout avec l'os et riot
 
OSIS18_IoT : Solution de mise au point pour les systemes embarques, par Julio...
OSIS18_IoT : Solution de mise au point pour les systemes embarques, par Julio...OSIS18_IoT : Solution de mise au point pour les systemes embarques, par Julio...
OSIS18_IoT : Solution de mise au point pour les systemes embarques, par Julio...
 
OSIS18_IoT : Securisation du reseau des objets connectes, par Nicolas LE SAUZ...
OSIS18_IoT : Securisation du reseau des objets connectes, par Nicolas LE SAUZ...OSIS18_IoT : Securisation du reseau des objets connectes, par Nicolas LE SAUZ...
OSIS18_IoT : Securisation du reseau des objets connectes, par Nicolas LE SAUZ...
 
OSIS18_IoT : Ada and SPARK - Defense in Depth for Safe Micro-controller Progr...
OSIS18_IoT : Ada and SPARK - Defense in Depth for Safe Micro-controller Progr...OSIS18_IoT : Ada and SPARK - Defense in Depth for Safe Micro-controller Progr...
OSIS18_IoT : Ada and SPARK - Defense in Depth for Safe Micro-controller Progr...
 
OSIS18_IoT : RTEMS pour l'IoT professionnel, par Pierre Ficheux (Smile ECS)
OSIS18_IoT : RTEMS pour l'IoT professionnel, par Pierre Ficheux (Smile ECS)OSIS18_IoT : RTEMS pour l'IoT professionnel, par Pierre Ficheux (Smile ECS)
OSIS18_IoT : RTEMS pour l'IoT professionnel, par Pierre Ficheux (Smile ECS)
 
PyParis 2017 / Un mooc python, by thierry parmentelat
PyParis 2017 / Un mooc python, by thierry parmentelatPyParis 2017 / Un mooc python, by thierry parmentelat
PyParis 2017 / Un mooc python, by thierry parmentelat
 
PyParis2017 / Python pour les enseignants des classes préparatoires, by Olivi...
PyParis2017 / Python pour les enseignants des classes préparatoires, by Olivi...PyParis2017 / Python pour les enseignants des classes préparatoires, by Olivi...
PyParis2017 / Python pour les enseignants des classes préparatoires, by Olivi...
 
PyParis 2017 / Unicode and bytes demystified, by Boris Feld
PyParis 2017 / Unicode and bytes demystified, by Boris FeldPyParis 2017 / Unicode and bytes demystified, by Boris Feld
PyParis 2017 / Unicode and bytes demystified, by Boris Feld
 
Py paris2017 / promises and perils in artificial intelligence, by Andreas Muller
Py paris2017 / promises and perils in artificial intelligence, by Andreas MullerPy paris2017 / promises and perils in artificial intelligence, by Andreas Muller
Py paris2017 / promises and perils in artificial intelligence, by Andreas Muller
 

Recently uploaded

Breaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdfBreaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
UK Journal
 

Recently uploaded (20)

The Metaverse: Are We There Yet?
The  Metaverse:    Are   We  There  Yet?The  Metaverse:    Are   We  There  Yet?
The Metaverse: Are We There Yet?
 
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptxWSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
 
BT & Neo4j _ How Knowledge Graphs help BT deliver Digital Transformation.pptx
BT & Neo4j _ How Knowledge Graphs help BT deliver Digital Transformation.pptxBT & Neo4j _ How Knowledge Graphs help BT deliver Digital Transformation.pptx
BT & Neo4j _ How Knowledge Graphs help BT deliver Digital Transformation.pptx
 
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
 
What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024
 
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdfSimplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
 
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdfThe Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
 
Microsoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - QuestionnaireMicrosoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - Questionnaire
 
Oauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftOauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoft
 
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdfBreaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
 
A Business-Centric Approach to Design System Strategy
A Business-Centric Approach to Design System StrategyA Business-Centric Approach to Design System Strategy
A Business-Centric Approach to Design System Strategy
 
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
 
AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentation
 
Your enemies use GenAI too - staying ahead of fraud with Neo4j
Your enemies use GenAI too - staying ahead of fraud with Neo4jYour enemies use GenAI too - staying ahead of fraud with Neo4j
Your enemies use GenAI too - staying ahead of fraud with Neo4j
 
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on ThanabotsContinuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024
 
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
 
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdfIntroduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
 
Designing for Hardware Accessibility at Comcast
Designing for Hardware Accessibility at ComcastDesigning for Hardware Accessibility at Comcast
Designing for Hardware Accessibility at Comcast
 
PLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. StartupsPLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. Startups
 

PyParis 2017 / AI for kids ? It's possible! Jill-Jênn Vie

  • 1. AI for kids? It’s possible! Jill-Jênn Vie @jjvie 13 juin 2017
  • 2. What is a kid? Definition A kid is someone who is younger than I. What you will see has been tested on real kids! Girls from 12 to 18 (Girls Can Code! summer schools) Students in high school (from 17 to 19)
  • 3. Overview of the French CS curriculum 2012. Spécialité ISN (Informatique et sciences du numérique) en terminale : validation par projet au baccalauréat Biology 38% (=) Maths 25% (↑) Physics/Chemistry 22% (↓) Computer Science 11% (↑) Source : Laurent Chéno, inspecteur général de mathématiques
  • 4. Overview of the French CS curriculum: Python 2013. Python en classes préparatoires (remplace Maple) calcul numérique numpy bases de données SQLite 2014. Python accepté à l’agrégation de mathématiques algorithmique
  • 5. Code instruction for non-scientists 2015. Option ICN (Informatique et création numérique) en seconde: représentation de l’information algorithmique / programmation réseaux et protocoles (5% of the students (= 27k), in 32% of high schools (= 800)) 2016. Option ICN en première/terminale L et ES (!) (0,46% of the students (= 1.8k), in 6% of high schools (= 151))
  • 6. Massive instruction for everyone o/ Scratch au primaire/collège ! Introduction en CM1/CM2/6e Au programme de technologie et de mathématiques 5e/4e/3e 800k students per level! 2017. Un chapitre entier d’algorithmique dans le programme de mathématiques de seconde ! Python dans les manuels
  • 7. AI for kids Requirements Should be simple, fun and really extensive Easy to prepare for us Activities 1. Sequence generation 2. Bot tournament for simple games 3. Recommender systems (simple classifier)
  • 8. Sequence generation Simple structure Basic rule: noun + verb + complement Sentence generation, word by word NO RULES. Jump from word to word Music composition https://trinket.io/music Machine can output absurd things, but you can improve it by adding extra constraints.
  • 9. Bot tournament for games Inspiration Context High school students Feasible equivalent 15 matches (Nim game) | | | | | | | | | | | | | | | Each player can take 1–3 | Who takes the last | looses Demo All Python champions contain a single function def ia(nb_matches) that returns a number of matches to withdraw. Put in a shared folder which is the arena (Samba or DropBox). python allumette.py 15 jj john
  • 10. Bot tournament for games Benefits Incremental improvement of their champions Look at other’s source code (like with Scratch) “I CAN BEAT ANYONE AT THIS GAME” — Élianor, 12 years old
  • 12. Collaborative filtering Sacha ? 5 2 ? Ondine 4 1 ? 5 Pierre 3 3 1 4 Joëlle 5 ? 2 ?
  • 13. Collaborative filtering Sacha 3 5 2 2 Ondine 4 1 4 5 Pierre 3 3 1 4 Joëlle 5 2 2 5
  • 14. Nearest neighbors To recommend movies to Alice (see surpriselib.com’s talk yesterday): Introduce a similarity score between people Determine 10 people close to Alice Recommend to Alice what they liked that she did not see
  • 15. Data 007 Batman 1 Shrek 2 Toy Story 3 Star Wars 4 Twilight 5 Alice + − 0 + 0 − Bob − 0 + − + + Charles + + + + − − Daisy + + 0 0 + − Everett + − + + − 0 What similarity score can we choose?
  • 16. Computing the score 007 Batman 1 Shrek 2 Toy Story 3 Star Wars 4 Twilight 5 Alice + − 0 + 0 − Charles + + + + − − Score +1 −1 +1 +1 score(Alice, Charles) = 3 + (−1) = 2 007 Batman 1 Shrek 2 Toy Story 3 Star Wars 4 Twilight 5 Alice + − 0 + 0 − Bob − 0 + − + + Score −1 −1 -1 score(Alice, Bob) = −3 Alice is closer to Charles than Bob
  • 17. Similarity score between people Alice Bob Charles Daisy JJ Alice 4 −3 2 1 3 Bob −3 5 −3 −1 −2 Charles 2 −3 6 2 3 Daisy 1 −1 2 4 −1 Everett 3 −2 3 −1 5 Who are Alice’s 2 closest neighbors?
  • 18. Computing predictions 007 Batman 1 Shrek 2 Toy Story 3 Star Wars 4 Twilight 5 Alice + − ? + ? − Charles + + + + − − Daisy + + 0 0 + − Everett + − + + − 0 Knowing her neighbors, how likely Alice will enjoy these movies?
  • 19. Computing predictions 007 Batman 1 Shrek 2 Toy Story 3 Star Wars 4 Twilight 5 Alice + − + + − − Charles + + + + − − Daisy + + 0 0 + − Everett + − + + − 0 Compute the mean: prediction(Alice, Star Wars 4) = 0,333. . .
  • 20. Movie recommendation Benefits At least, students learn how to rely on user data to infer missing entries AI is not perfect but learns “Hey what about giving more weight to closest neighbors?” — Clara, 18 years old
  • 21. Call for activities! Please take something that is everywhere, ex. AlphaGo or what you’re working on and try to make a “suitable for kids” version (visual) Send it to us! tryalgo.org Thanks! jill-jenn.net @jjvie jj@mangaki.fr