We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
Pointers are a notorious "defect attractor", in particular when dynamic memory management is involved. Ada mitigates these issues by having much less need for pointers overall (thanks to first-class arrays, parameter modes, generics) and stricter rules for pointer manipulations that limit access to dangling memory. Still, dynamic memory management in Ada may lead to use-after-free, double-free and memory leaks, and dangling memory issues may lead to runtime exceptions.
The SPARK subset of Ada is focused on making it possible to guarantee properties of the program statically, in particular the absence of programming language errors, with a mostly automatic analysis. For that reason, and because static analysis of pointers is notoriously hard to automate, pointers have been forbidden in SPARK until now. We are working at AdaCore since 2017 on including pointer support in SPARK by restricting the use of pointers in programs so that they respect "ownership" constraints, like what is found in Rust.
In this talk, I will present the current state of the ownership rules for pointer support in SPARK, and the current state of the implementation in the GNAT compiler and GNATprove prover, as well as our roadmap for the future.
Pointers are a notorious "defect attractor", in particular when dynamic memory management is involved. Ada mitigates these issues by having much less need for pointers overall (thanks to first-class arrays, parameter modes, generics) and stricter rules for pointer manipulations that limit access to dangling memory. Still, dynamic memory management in Ada may lead to use-after-free, double-free and memory leaks, and dangling memory issues may lead to runtime exceptions.
The SPARK subset of Ada is focused on making it possible to guarantee properties of the program statically, in particular the absence of programming language errors, with a mostly automatic analysis. For that reason, and because static analysis of pointers is notoriously hard to automate, pointers have been forbidden in SPARK until now. We are working at AdaCore since 2017 on including pointer support in SPARK by restricting the use of pointers in programs so that they respect "ownership" constraints, like what is found in Rust.
In this talk, I will present the current state of the ownership rules for pointer support in SPARK, and the current state of the implementation in the GNAT compiler and GNATprove prover, as well as our roadmap for the future.
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!