Learning-to-rank
for ligand-based virtual screening
Masahito Ohue, Ph.D.
Tokyo Institute of Technology, Japan
1
ohue@c.titech.ac.jp
AHeDD2019/IPAB2019 Joint Symposium
Nov 29, 2019 @Tonomachi King Skyfront, Kawasaki, Japan
Virtual screening 2
⋮ ⋮
Virtual screening with machine learning 3
𝒄1
𝒄2
𝒄3
𝑓 𝒄2 ≻ 𝒄3 ≻ 𝒄1
𝑓
𝑓
𝑓( ) > 𝑓( ) > 𝑓( )
Learning-to-rank
≻
≻
≻
𝑓 𝑓𝑓
4
SVM vs. RankSVM 5
𝑥1 ≻ 𝑥2 ≻ 𝑥3 ≻ 𝑥4
RankSVM optimization
𝑥1 ≻ 𝑥2 ≻ 𝑥3 ≻ 𝑥4
𝐰
𝛿(1)
𝛿(2)
𝐰1
𝐰2
>𝛿min
(1)
𝛿min
2
𝐰1 𝐰2
6
Two proposed method for learning-to-rank-based LBVS 7
Suzuki SD, Ohue M, Akiyama Y. Artificial Life and Robotics, 23(2): 205-212, 2018.
Ohue M, Suzuki SD, Akiyama Y. J Mol Graph Model, 92:192-200, 2019.
“Ignore the meaningless order”
“Integrate different experimental data” without wet data
other wet data
Ignoring meaningless order 8
Ohue M, Suzuki SD, Akiyama Y. J Mol Graph Model, 92:192-200, 2019.
Integrating different experimental data 9
𝐩1 𝐩2
𝐜1
𝐜2
𝐜3
𝐜4
𝐩1
𝐩2
𝐩3
𝐩1 𝐩2 𝐩3
𝐩1
𝐩2
𝐩3
𝐩1 𝐩2 𝐩3
𝐜1
𝐜2
𝐜3
𝐜4
𝐜5
𝐜6
𝐜1 𝐜2 𝐜3 𝐜4 𝐜5 𝐜6
𝐩3
𝐜5
𝐜6
𝐜1
𝐜2
𝐜3
𝐜4
𝐜5
𝐜6
𝐜1 𝐜2 𝐜3 𝐜4 𝐜5 𝐜6
𝑘 𝐜, 𝐩 , 𝐜′
, 𝐩′ = 𝑘com 𝐜, 𝐜′ × 𝑘pro 𝐩, 𝐩′
Jacob L & Vert JP, Bioinformatics, 24:2149, 2008
Evaluation 10
PKRank prediction on BindingDB data
𝑘com 𝑘pro
( ): significantly improvement (paired t-test, P < 0.05)
11
(Zhang Wei, et al. J Cheminform, 7, 2015)
Suzuki SD, Ohue M, Akiyama Y. Artificial Life and Robotics, 23(2): 205-212, 2018.
Summary 12
≻
≻
≻
𝑓 𝑓𝑓
⋮ ⋮
Ohue M, Suzuki SD, Akiyama Y. J Mol Graph Model, 92:192-200, 2019.
Suzuki SD, Ohue M, Akiyama Y. Artificial Life and Robotics, 23(2): 205-212, 2018.

Learning-to-rank for ligand-based virtual screening

  • 1.
    Learning-to-rank for ligand-based virtualscreening Masahito Ohue, Ph.D. Tokyo Institute of Technology, Japan 1 ohue@c.titech.ac.jp AHeDD2019/IPAB2019 Joint Symposium Nov 29, 2019 @Tonomachi King Skyfront, Kawasaki, Japan
  • 2.
  • 3.
    Virtual screening withmachine learning 3 𝒄1 𝒄2 𝒄3 𝑓 𝒄2 ≻ 𝒄3 ≻ 𝒄1 𝑓 𝑓 𝑓( ) > 𝑓( ) > 𝑓( )
  • 4.
  • 5.
    SVM vs. RankSVM5 𝑥1 ≻ 𝑥2 ≻ 𝑥3 ≻ 𝑥4
  • 6.
    RankSVM optimization 𝑥1 ≻𝑥2 ≻ 𝑥3 ≻ 𝑥4 𝐰 𝛿(1) 𝛿(2) 𝐰1 𝐰2 >𝛿min (1) 𝛿min 2 𝐰1 𝐰2 6
  • 7.
    Two proposed methodfor learning-to-rank-based LBVS 7 Suzuki SD, Ohue M, Akiyama Y. Artificial Life and Robotics, 23(2): 205-212, 2018. Ohue M, Suzuki SD, Akiyama Y. J Mol Graph Model, 92:192-200, 2019. “Ignore the meaningless order” “Integrate different experimental data” without wet data other wet data
  • 8.
    Ignoring meaningless order8 Ohue M, Suzuki SD, Akiyama Y. J Mol Graph Model, 92:192-200, 2019.
  • 9.
    Integrating different experimentaldata 9 𝐩1 𝐩2 𝐜1 𝐜2 𝐜3 𝐜4 𝐩1 𝐩2 𝐩3 𝐩1 𝐩2 𝐩3 𝐩1 𝐩2 𝐩3 𝐩1 𝐩2 𝐩3 𝐜1 𝐜2 𝐜3 𝐜4 𝐜5 𝐜6 𝐜1 𝐜2 𝐜3 𝐜4 𝐜5 𝐜6 𝐩3 𝐜5 𝐜6 𝐜1 𝐜2 𝐜3 𝐜4 𝐜5 𝐜6 𝐜1 𝐜2 𝐜3 𝐜4 𝐜5 𝐜6 𝑘 𝐜, 𝐩 , 𝐜′ , 𝐩′ = 𝑘com 𝐜, 𝐜′ × 𝑘pro 𝐩, 𝐩′ Jacob L & Vert JP, Bioinformatics, 24:2149, 2008
  • 10.
  • 11.
    PKRank prediction onBindingDB data 𝑘com 𝑘pro ( ): significantly improvement (paired t-test, P < 0.05) 11 (Zhang Wei, et al. J Cheminform, 7, 2015) Suzuki SD, Ohue M, Akiyama Y. Artificial Life and Robotics, 23(2): 205-212, 2018.
  • 12.
    Summary 12 ≻ ≻ ≻ 𝑓 𝑓𝑓 ⋮⋮ Ohue M, Suzuki SD, Akiyama Y. J Mol Graph Model, 92:192-200, 2019. Suzuki SD, Ohue M, Akiyama Y. Artificial Life and Robotics, 23(2): 205-212, 2018.