SlideShare a Scribd company logo
Introduction
         Volumetric Model
              Experiments
                 Modelling




A Volumetric Contact Dynamics Model

                    Mike Boos

                      SYDE 652


                March 27, 2012




               Mike Boos     A Volumetric Contact Dynamics Model   1/ 34
Introduction
                       Volumetric Model
                            Experiments
                               Modelling


Outline

  1 Introduction
  2 Volumetric Model
      Volumetric model framework
      Normal forces
      Friction forces
  3 Experiments
      Normal force experiments
      Friction experiments
  4 Modelling
      Graph theoretic contact model
      MapleSim model
      Demos

                             Mike Boos     A Volumetric Contact Dynamics Model   2/ 34
Introduction
                       Volumetric Model
                            Experiments
                               Modelling


Outline

  1 Introduction
  2 Volumetric Model
      Volumetric model framework
      Normal forces
      Friction forces
  3 Experiments
      Normal force experiments
      Friction experiments
  4 Modelling
      Graph theoretic contact model
      MapleSim model
      Demos

                             Mike Boos     A Volumetric Contact Dynamics Model   3/ 34
Introduction
                   Volumetric Model
                        Experiments
                           Modelling


Motivation




        Dextre at the tip of Canadarm2 (Gonthier, 2007)

                         Mike Boos     A Volumetric Contact Dynamics Model   4/ 34
Introduction
                      Volumetric Model
                           Experiments
                              Modelling


Point contact models


                      fn

                                                             Hertz theory
           B1
                                                             f n = kδ p n
                                k                            (p = 3/2 for
                     δ
                                                             sphere-on-sphere)

                           B2



        Figure: Point contact model.



                            Mike Boos     A Volumetric Contact Dynamics Model   5/ 34
Introduction
                      Volumetric Model
                           Experiments
                              Modelling


Point contact models


                      fn

                                                             Hertz theory
           B1
                                                             f n = kδ p n
                                k                            (p = 3/2 for
                     δ
                                                             sphere-on-sphere)

                           B2                                Hunt-Crossley
                                                             f n = kδ p (1 + aδ) n
        Figure: Point contact model.



                            Mike Boos     A Volumetric Contact Dynamics Model   5/ 34
Introduction
                                           Volumetric model framework
                       Volumetric Model
                                           Normal forces
                            Experiments
                                           Friction forces
                               Modelling


Outline

  1 Introduction
  2 Volumetric Model
      Volumetric model framework
      Normal forces
      Friction forces
  3 Experiments
      Normal force experiments
      Friction experiments
  4 Modelling
      Graph theoretic contact model
      MapleSim model
      Demos

                             Mike Boos     A Volumetric Contact Dynamics Model   6/ 34
Introduction
                                            Volumetric model framework
                        Volumetric Model
                                            Normal forces
                             Experiments
                                            Friction forces
                                Modelling


Volumetric model


                        fn


             B1

                               kv
                                                               Force element
                                                               df n = kv δ(s)n
                             B2



Figure: Modified Winkler elastic foundation model.



                              Mike Boos     A Volumetric Contact Dynamics Model   7/ 34
Introduction
                                                       Volumetric model framework
                               Volumetric Model
                                                       Normal forces
                                    Experiments
                                                       Friction forces
                                       Modelling


Volumetric model

                                               S
                                                                                                     S


                      B1                                              B1
                                                                                    ρs        ρv
                                  δ(s)
                           s                       n
                                                                                s            n
                                                                           sc            p
      Contact plate

                                                                                    pc
                                 B2                                                          B2



V =   S   δ(s)dS




                                         Mike Boos     A Volumetric Contact Dynamics Model         8/ 34
Introduction
                                                        Volumetric model framework
                                Volumetric Model
                                                        Normal forces
                                     Experiments
                                                        Friction forces
                                        Modelling


Volumetric model

                                                S
                                                                                                      S


                       B1                                              B1
                                                                                     ρs        ρv
                                   δ(s)
                            s                       n
                                                                                 s            n
                                                                            sc            p
       Contact plate

                                                                                     pc
                                  B2                                                          B2



V =    S   δ(s)dS

           pdV
pc =   V
           V


                                          Mike Boos     A Volumetric Contact Dynamics Model         8/ 34
Introduction
                                                               Volumetric model framework
                                       Volumetric Model
                                                               Normal forces
                                            Experiments
                                                               Friction forces
                                               Modelling


Volumetric model

                                                       S
                                                                                                             S


                       B1                                                     B1
                                                                                            ρs        ρv
                                          δ(s)
                                   s                       n
                                                                                        s            n
                                                                                   sc            p
       Contact plate

                                                                                            pc
                                         B2                                                          B2



V =    S   δ(s)dS           Js =       S ((ρs ·ρs )I−ρs ρs )δ(s)dS


           pdV
pc =   V
           V


                                                 Mike Boos     A Volumetric Contact Dynamics Model         8/ 34
Introduction
                                                               Volumetric model framework
                                       Volumetric Model
                                                               Normal forces
                                            Experiments
                                                               Friction forces
                                               Modelling


Volumetric model

                                                       S
                                                                                                             S


                       B1                                                     B1
                                                                                            ρs        ρv
                                          δ(s)
                                   s                       n
                                                                                        s            n
                                                                                   sc            p
       Contact plate

                                                                                            pc
                                         B2                                                          B2



V =    S   δ(s)dS           Js =       S ((ρs ·ρs )I−ρs ρs )δ(s)dS


           pdV
pc =   V
           V                Jv =        V ((ρv       · ρv )I − ρv ρv )dV

                                                 Mike Boos     A Volumetric Contact Dynamics Model         8/ 34
Introduction
                                                               Volumetric model framework
                                       Volumetric Model
                                                               Normal forces
                                            Experiments
                                                               Friction forces
                                               Modelling


Volumetric model

                                                       S
                                                                                                              S


                       B1                                                     B1
                                                                                             ρs        ρv
                                          δ(s)
                                   s                       n
                                                                                         s            n
                                                                                   sc             p
       Contact plate

                                                                                             pc
                                         B2                                                           B2



V =    S   δ(s)dS           Js =       S ((ρs ·ρs )I−ρs ρs )δ(s)dS
                                                                                                    2
                                                                                        J{s,v} n = rgyr V n
           pdV
pc =   V
           V                Jv =        V ((ρv       · ρv )I − ρv ρv )dV

                                                 Mike Boos     A Volumetric Contact Dynamics Model          8/ 34
Introduction
                                             Volumetric model framework
                         Volumetric Model
                                             Normal forces
                              Experiments
                                             Friction forces
                                 Modelling


Normal Forces



          fn
                                             df n = kv δ(s)(1 + a vn )n

     B1   τs
                         ft
               τr




                    B2




                               Mike Boos     A Volumetric Contact Dynamics Model   9/ 34
Introduction
                                             Volumetric model framework
                         Volumetric Model
                                             Normal forces
                              Experiments
                                             Friction forces
                                 Modelling


Normal Forces



          fn
                                             df n = kv δ(s)(1 + a vn )n

          τs
                                             Normal force
     B1
                         ft                  f n = kv V (1 + a vcn )n
               τr




                    B2




                               Mike Boos     A Volumetric Contact Dynamics Model   9/ 34
Introduction
                                             Volumetric model framework
                         Volumetric Model
                                             Normal forces
                              Experiments
                                             Friction forces
                                 Modelling


Normal Forces



          fn
                                             df n = kv δ(s)(1 + a vn )n

          τs
                                             Normal force
     B1
                         ft                  f n = kv V (1 + a vcn )n
               τr
                                             Rolling resistance torque
                                             τ r = kv a Js · ω t
                    B2




                               Mike Boos     A Volumetric Contact Dynamics Model   9/ 34
Introduction
                                              Volumetric model framework
                          Volumetric Model
                                              Normal forces
                               Experiments
                                              Friction forces
                                  Modelling


Basic friction model



           fn
                                              df t = −µ dfn vt
                                                            ˆ

      B1   τs
                          ft
                τr




                     B2




                                Mike Boos     A Volumetric Contact Dynamics Model   10/ 34
Introduction
                                              Volumetric model framework
                          Volumetric Model
                                              Normal forces
                               Experiments
                                              Friction forces
                                  Modelling


Basic friction model



           fn
                                              df t = −µ dfn vt
                                                            ˆ
                                              Friction force
      B1   τs
                          ft                  f t = −µ fn vsct
                                                          ˆ
                τr




                     B2




                                Mike Boos     A Volumetric Contact Dynamics Model   10/ 34
Introduction
                                              Volumetric model framework
                          Volumetric Model
                                              Normal forces
                               Experiments
                                              Friction forces
                                  Modelling


Basic friction model



           fn
                                              df t = −µ dfn vt
                                                            ˆ
                                              Friction force
      B1   τs
                          ft                  f t = −µ fn vsct
                                                          ˆ
                τr
                                              Spinning friction torque
                                                        2
                                              τ s = −µ rgyr fn ω n
                                                               ˆ
                     B2




                                Mike Boos     A Volumetric Contact Dynamics Model   10/ 34
Introduction
                                              Volumetric model framework
                          Volumetric Model
                                              Normal forces
                               Experiments
                                              Friction forces
                                  Modelling


Stick-slip state


  Average surface velocity
  vavg = vsct · vsct + (rgyr |ω n |)2
   2




                                Mike Boos     A Volumetric Contact Dynamics Model   11/ 34
Introduction
                                              Volumetric model framework
                          Volumetric Model
                                              Normal forces
                               Experiments
                                              Friction forces
                                  Modelling


Stick-slip state


  Average surface velocity
  vavg = vsct · vsct + (rgyr |ω n |)2
   2



  Stick-slip state
             2
            vavg
        −
             v2
  s=e        s




                                Mike Boos     A Volumetric Contact Dynamics Model   11/ 34
Introduction
                                              Volumetric model framework
                          Volumetric Model
                                              Normal forces
                               Experiments
                                              Friction forces
                                  Modelling


Stick-slip state


  Average surface velocity
  vavg = vsct · vsct + (rgyr |ω n |)2
   2



  Stick-slip state
             2
            vavg
        −
             v2
  s=e        s


  Maximum friction coefficient
  µmax = µC + (µS − µC ) s




                                Mike Boos     A Volumetric Contact Dynamics Model   11/ 34
Introduction
                                              Volumetric model framework
                          Volumetric Model
                                              Normal forces
                               Experiments
                                              Friction forces
                                  Modelling


Stick-slip state


  Average surface velocity
  vavg = vsct · vsct + (rgyr |ω n |)2
   2



  Stick-slip state
             2
            vavg
        −
             v2
  s=e        s


  Maximum friction coefficient
  µmax = µC + (µS − µC ) s
  Can add lag to s for dwell time dependency.



                                Mike Boos     A Volumetric Contact Dynamics Model   11/ 34
Introduction
                                              Volumetric model framework
                          Volumetric Model
                                              Normal forces
                               Experiments
                                              Friction forces
                                  Modelling


Bristle model


                   fN
                                              Bristle properties

                                                    Deformation: zsc
                                                    Rotation: θn




          Contact sites


Surface asperities (‘bristles’) in
contact (Gonthier, 2007).

                                Mike Boos     A Volumetric Contact Dynamics Model   12/ 34
Introduction
                                              Volumetric model framework
                          Volumetric Model
                                              Normal forces
                               Experiments
                                              Friction forces
                                  Modelling


Bristle model


                   fN
                                              Bristle properties

                                                    Deformation: zsc
                                                    Rotation: θn

                                              Parameters

                                                    Stiffness: σo
          Contact sites
                                                    Damping: σ1
Surface asperities (‘bristles’) in
contact (Gonthier, 2007).

                                Mike Boos     A Volumetric Contact Dynamics Model   12/ 34
Introduction
                                             Volumetric model framework
                         Volumetric Model
                                             Normal forces
                              Experiments
                                             Friction forces
                                 Modelling


Tangential friction forces




  Friction force
  f t = −fn (sat(σo zsc + σ1 zsc , µmax ) + σ2 vsct )
                             ˙




                               Mike Boos     A Volumetric Contact Dynamics Model   13/ 34
Introduction
                                             Volumetric model framework
                         Volumetric Model
                                             Normal forces
                              Experiments
                                             Friction forces
                                 Modelling


Tangential friction forces




  Friction force
  f t = −fn (sat(σo zsc + σ1 zsc , µmax ) + σ2 vsct )
                             ˙

  Bristle deformation rate
                         1                       σo
  zsc = s vsct + (1 − s) σ1 µC dir (vsct , v ) − σ1 zsc
  ˙




                               Mike Boos     A Volumetric Contact Dynamics Model   13/ 34
Introduction
                                           Volumetric model framework
                       Volumetric Model
                                           Normal forces
                            Experiments
                                           Friction forces
                               Modelling


Spinning friction torque



  Spinning friction torque
          2                     ˙ µ
  τ s = −rgyr fn sat σo θn + σ1 θn , rmax + σ2 ωn n
                                      gyr




                             Mike Boos     A Volumetric Contact Dynamics Model   14/ 34
Introduction
                                           Volumetric model framework
                       Volumetric Model
                                           Normal forces
                            Experiments
                                           Friction forces
                               Modelling


Spinning friction torque



  Spinning friction torque
          2                     ˙ µ
  τ s = −rgyr fn sat σo θn + σ1 θn , rmax + σ2 ωn n
                                      gyr


  Bristle deformation rate
                          µC
  θn = s ωn + (1 − s) σ1 rgyr sgn(ωn ) − σo θn
  ˙
                                         σ1




                             Mike Boos     A Volumetric Contact Dynamics Model   14/ 34
Introduction
                                           Volumetric model framework
                       Volumetric Model
                                           Normal forces
                            Experiments
                                           Friction forces
                               Modelling


The Contensou effect


 Translational friction forces                               vC
 tend to ‘cancel out’ as angular                             ωr
                                                                  C
 velocity increases.
                                                                                       vB
                                                                               ωr
                                                                      v
                                                     A                           B
                                             vA
                                                     ωr       ω

                                                                          vD
                                                                  D
                                                                          ωr
                                             v << ωr (Gonthier, 2007)



                             Mike Boos     A Volumetric Contact Dynamics Model       15/ 34
Introduction
                                           Volumetric model framework
                       Volumetric Model
                                           Normal forces
                            Experiments
                                           Friction forces
                               Modelling


The Contensou effect


 Translational friction forces                               vC
 tend to ‘cancel out’ as angular                             ωr
                                                                  C
 velocity increases.
                                                                                       vB
                                                                               ωr
 Contensou factors
                                                                      v
      |vsct |           rgyr |ωn |                   A                           B
 Cv = vavg      Cω =      vavg               vA
                                                     ωr       ω

                                                                          vD
                                                                  D
                                                                          ωr
                                             v << ωr (Gonthier, 2007)



                             Mike Boos     A Volumetric Contact Dynamics Model       15/ 34
Introduction
                                           Volumetric model framework
                       Volumetric Model
                                           Normal forces
                            Experiments
                                           Friction forces
                               Modelling


The Contensou effect


 Translational friction forces                               vC
 tend to ‘cancel out’ as angular                             ωr
                                                                  C
 velocity increases.
                                                                                       vB
                                                                               ωr
 Contensou factors
                                                                      v
      |vsct |           rgyr |ωn |                   A                           B
 Cv = vavg      Cω =      vavg               vA
                                                     ωr       ω

 We now need to update the                                        D
                                                                          vD
 slipping coefficient in our                                                ωr
 bristle dyanmics equations to
                                             v << ωr (Gonthier, 2007)
 include these factors.



                             Mike Boos     A Volumetric Contact Dynamics Model       15/ 34
Introduction
                       Volumetric Model    Normal force experiments
                            Experiments    Friction experiments
                               Modelling


Outline

  1 Introduction
  2 Volumetric Model
      Volumetric model framework
      Normal forces
      Friction forces
  3 Experiments
      Normal force experiments
      Friction experiments
  4 Modelling
      Graph theoretic contact model
      MapleSim model
      Demos

                             Mike Boos     A Volumetric Contact Dynamics Model   16/ 34
Introduction
                     Volumetric Model    Normal force experiments
                          Experiments    Friction experiments
                             Modelling


Contact properties

          Focus on simple geometric pairs:


              Cylinder-on-plane




              Sphere-on-plane


          Payload material: Stainless steel
          Contact plane materials: Al, Mg


                           Mike Boos     A Volumetric Contact Dynamics Model   17/ 34
Introduction
                          Volumetric Model    Normal force experiments
                               Experiments    Friction experiments
                                  Modelling


Apparatus in normal configuration




                                                   Force sensor
       Payload/specimen (stainless steel)


             Linear
            encoder




      Encoder reference    Contact surface (Al or Mg)




                                Mike Boos     A Volumetric Contact Dynamics Model   18/ 34
Introduction
                                                                                  Volumetric Model    Normal force experiments
                                                                                       Experiments    Friction experiments
                                                                                          Modelling


Selected results: Normal forces

Quasi-static loading of SS                                                                            Damping factors (a) measured
cylinder on Mg plane                                                                                                                      4
                                                                                                                                     x 10
                                                                                                                                10
                      25                                                                                                                                                                 Estimated factors for Al
                                     Measured data                                                                               9                                                       Fit of a ∝ 1/vi for Al
                                     Perpendicular fit
                                     Perpendicular contact point                                                                                                                         Estimated factors for Mg
                      20                                                                                                         8                                                       Fit of a ∝ 1/vi for Mg
                                     Misaligned fit
                                     Misaligned contact point
                                                                                                                                 7




                                                                                                         Damping factor (s/m)
                      15
                                                                                                                                 6
  Contact force (N)




                                                                                                                                 5
                      10
                                                                                                                                 4

                       5                                                                                                         3

                                                                                                                                 2
                       0
                                                                                                                                 1

                                                                                                                                 0
                      −5                                                                                                             0        0.1   0.2   0.3     0.4    0.5      0.6     0.7     0.8     0.9       1
                           0   0.5        1     1.5      2     2.5     3    3.5     4   4.5   5                                                                 Impact velocity (mm/s)
                                                        Displacement (µm)

                                                                                                                                         1−e2eff
kv = 5.17 × 1012 N/m3                                                                                 a≈                                      i
                                                                                                                                         eeff vn



                                                                                         Mike Boos    A Volumetric Contact Dynamics Model                                                           19/ 34
Introduction
                       Volumetric Model    Normal force experiments
                            Experiments    Friction experiments
                               Modelling


Experimental procedure




 Identify parameters




                             Mike Boos     A Volumetric Contact Dynamics Model   20/ 34
Introduction
                       Volumetric Model    Normal force experiments
                            Experiments    Friction experiments
                               Modelling


Experimental procedure




 Identify parameters        Verify parameters




                             Mike Boos     A Volumetric Contact Dynamics Model   20/ 34
Introduction
                       Volumetric Model    Normal force experiments
                            Experiments    Friction experiments
                               Modelling


Experimental procedure




 Identify parameters        Verify parameters                     Contensou effect




                             Mike Boos     A Volumetric Contact Dynamics Model   20/ 34
Introduction
                                                Volumetric Model            Normal force experiments
                                                     Experiments            Friction experiments
                                                        Modelling


Friction apparatus


                        Rotational
                         motor
       Linear
       motor



                                                                     Linear
           Cylindrical                                              encoder
            payload
 Contact                                                                 Encoder
 surface                                                                reference

                    x                                  x
                          y                                         y


                z              3DOF force sensors          z




                                                      Mike Boos             A Volumetric Contact Dynamics Model   21/ 34
Introduction
                                                                 Volumetric Model         Normal force experiments
                                                                      Experiments         Friction experiments
                                                                         Modelling


Selected results: Contensou effect


                            0.45                                                                                      0.45
                                                              Measured coefficients                                              Measured coefficients
                             0.4                              Model coefficients                                       0.4       Model coefficients


                            0.35                                                                                      0.35
  Coefficient of Friction




                                                                                            Coefficient of Friction
                             0.3                                                                                       0.3

                            0.25                                                                                      0.25

                             0.2                                                                                       0.2

                            0.15                                                                                      0.15

                             0.1                                                                                       0.1

                            0.05                                                                                      0.05

                              0                                                                                         0
                                   0   1   2              3          4                5                                      0      1             2                 3   4            5
                                               Time (s)                                                                                                  Time (s)




                                                                             Mike Boos    A Volumetric Contact Dynamics Model                                               22/ 34
Introduction
                                           Graph theoretic contact model
                       Volumetric Model
                                           MapleSim model
                            Experiments
                                           Demos
                               Modelling


Outline

  1 Introduction
  2 Volumetric Model
      Volumetric model framework
      Normal forces
      Friction forces
  3 Experiments
      Normal force experiments
      Friction experiments
  4 Modelling
      Graph theoretic contact model
      MapleSim model
      Demos

                             Mike Boos     A Volumetric Contact Dynamics Model   23/ 34
Introduction
                                      Graph theoretic contact model
                  Volumetric Model
                                      MapleSim model
                       Experiments
                                      Demos
                          Modelling


Model



         c1                d
                                              Bodies: m1 , m2
                                              Measured displacement: d
              f

    m1
                                              Volume centroid (relative to
                                              each body): c1 , c2
                      c2
                                              Contact forces: f
g        m2




                        Mike Boos     A Volumetric Contact Dynamics Model   24/ 34
Introduction
                                          Graph theoretic contact model
                      Volumetric Model
                                          MapleSim model
                           Experiments
                                          Demos
                              Modelling


MapleSim Model: Assumptions


     One deformable body model - body ‘a’ rigid, ‘b’ deformable
     Normal axis is frame ‘a’ z-axis (body a is flat)
     All vectors and tensors (i.e. inertia tensor, centroid, relative
     velocity) calculated for frame ‘a’
     Js ≈ JV - volume inertia tensor is easier to calculate than
     surface inertia
     Volume centroid and surface centroid are very close (normal
     and friction forces at same location)




                            Mike Boos     A Volumetric Contact Dynamics Model   25/ 34
Introduction
                                               Graph theoretic contact model
                           Volumetric Model
                                               MapleSim model
                                Experiments
                                               Demos
                                   Modelling


Model




         c1            d




              f

    m1

                  c2


g        m2




                                 Mike Boos     A Volumetric Contact Dynamics Model   26/ 34
Introduction
                                 Graph theoretic contact model
             Volumetric Model
                                 MapleSim model
                  Experiments
                                 Demos
                     Modelling


Parameters




                   Mike Boos     A Volumetric Contact Dynamics Model   27/ 34
Introduction
                                   Graph theoretic contact model
               Volumetric Model
                                   MapleSim model
                    Experiments
                                   Demos
                       Modelling


Forces Block




                     Mike Boos     A Volumetric Contact Dynamics Model   28/ 34
Introduction
                                     Graph theoretic contact model
                 Volumetric Model
                                     MapleSim model
                      Experiments
                                     Demos
                         Modelling


Geometry Calculation Block




                       Mike Boos     A Volumetric Contact Dynamics Model   29/ 34
Introduction
                                     Graph theoretic contact model
                 Volumetric Model
                                     MapleSim model
                      Experiments
                                     Demos
                         Modelling


Geometry: Sphere-on-plane




                       Mike Boos     A Volumetric Contact Dynamics Model   30/ 34
Introduction
                                      Graph theoretic contact model
                  Volumetric Model
                                      MapleSim model
                       Experiments
                                      Demos
                          Modelling


Geometry: Cylinder-on-plane




                        Mike Boos     A Volumetric Contact Dynamics Model   31/ 34
Introduction
                                     Graph theoretic contact model
                 Volumetric Model
                                     MapleSim model
                      Experiments
                                     Demos
                         Modelling


Demo: ‘wobbly’ clutch




                       Mike Boos     A Volumetric Contact Dynamics Model   32/ 34
Introduction
                                      Graph theoretic contact model
                  Volumetric Model
                                      MapleSim model
                       Experiments
                                      Demos
                          Modelling


Demo: tippe top




                        Mike Boos     A Volumetric Contact Dynamics Model   33/ 34
Introduction
                                Graph theoretic contact model
            Volumetric Model
                                MapleSim model
                 Experiments
                                Demos
                    Modelling


Questions




                  Mike Boos     A Volumetric Contact Dynamics Model   34/ 34

More Related Content

Recently uploaded

Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfVivekanand Anglo Vedic Academy
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxJheel Barad
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasGeoBlogs
 
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...Denish Jangid
 
Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.pptBasic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.pptSourabh Kumar
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleCeline George
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationDelapenabediema
 
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxJose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxricssacare
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfjoachimlavalley1
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfkaushalkr1407
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativePeter Windle
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonSteve Thomason
 
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptxSolid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptxDenish Jangid
 
Benefits and Challenges of Using Open Educational Resources
Benefits and Challenges of Using Open Educational ResourcesBenefits and Challenges of Using Open Educational Resources
Benefits and Challenges of Using Open Educational Resourcesdimpy50
 
Salient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxSalient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxakshayaramakrishnan21
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePedroFerreira53928
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxEduSkills OECD
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...Nguyen Thanh Tu Collection
 

Recently uploaded (20)

Introduction to Quality Improvement Essentials
Introduction to Quality Improvement EssentialsIntroduction to Quality Improvement Essentials
Introduction to Quality Improvement Essentials
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...
 
Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.pptBasic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxJose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
 
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptxSolid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
 
Benefits and Challenges of Using Open Educational Resources
Benefits and Challenges of Using Open Educational ResourcesBenefits and Challenges of Using Open Educational Resources
Benefits and Challenges of Using Open Educational Resources
 
Salient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxSalient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptx
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
 

Featured

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by HubspotMarius Sescu
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTExpeed Software
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsPixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 

Featured (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

A Volumetric Contact Dynamics Model

  • 1. Introduction Volumetric Model Experiments Modelling A Volumetric Contact Dynamics Model Mike Boos SYDE 652 March 27, 2012 Mike Boos A Volumetric Contact Dynamics Model 1/ 34
  • 2. Introduction Volumetric Model Experiments Modelling Outline 1 Introduction 2 Volumetric Model Volumetric model framework Normal forces Friction forces 3 Experiments Normal force experiments Friction experiments 4 Modelling Graph theoretic contact model MapleSim model Demos Mike Boos A Volumetric Contact Dynamics Model 2/ 34
  • 3. Introduction Volumetric Model Experiments Modelling Outline 1 Introduction 2 Volumetric Model Volumetric model framework Normal forces Friction forces 3 Experiments Normal force experiments Friction experiments 4 Modelling Graph theoretic contact model MapleSim model Demos Mike Boos A Volumetric Contact Dynamics Model 3/ 34
  • 4. Introduction Volumetric Model Experiments Modelling Motivation Dextre at the tip of Canadarm2 (Gonthier, 2007) Mike Boos A Volumetric Contact Dynamics Model 4/ 34
  • 5. Introduction Volumetric Model Experiments Modelling Point contact models fn Hertz theory B1 f n = kδ p n k (p = 3/2 for δ sphere-on-sphere) B2 Figure: Point contact model. Mike Boos A Volumetric Contact Dynamics Model 5/ 34
  • 6. Introduction Volumetric Model Experiments Modelling Point contact models fn Hertz theory B1 f n = kδ p n k (p = 3/2 for δ sphere-on-sphere) B2 Hunt-Crossley f n = kδ p (1 + aδ) n Figure: Point contact model. Mike Boos A Volumetric Contact Dynamics Model 5/ 34
  • 7. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Outline 1 Introduction 2 Volumetric Model Volumetric model framework Normal forces Friction forces 3 Experiments Normal force experiments Friction experiments 4 Modelling Graph theoretic contact model MapleSim model Demos Mike Boos A Volumetric Contact Dynamics Model 6/ 34
  • 8. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Volumetric model fn B1 kv Force element df n = kv δ(s)n B2 Figure: Modified Winkler elastic foundation model. Mike Boos A Volumetric Contact Dynamics Model 7/ 34
  • 9. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Volumetric model S S B1 B1 ρs ρv δ(s) s n s n sc p Contact plate pc B2 B2 V = S δ(s)dS Mike Boos A Volumetric Contact Dynamics Model 8/ 34
  • 10. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Volumetric model S S B1 B1 ρs ρv δ(s) s n s n sc p Contact plate pc B2 B2 V = S δ(s)dS pdV pc = V V Mike Boos A Volumetric Contact Dynamics Model 8/ 34
  • 11. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Volumetric model S S B1 B1 ρs ρv δ(s) s n s n sc p Contact plate pc B2 B2 V = S δ(s)dS Js = S ((ρs ·ρs )I−ρs ρs )δ(s)dS pdV pc = V V Mike Boos A Volumetric Contact Dynamics Model 8/ 34
  • 12. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Volumetric model S S B1 B1 ρs ρv δ(s) s n s n sc p Contact plate pc B2 B2 V = S δ(s)dS Js = S ((ρs ·ρs )I−ρs ρs )δ(s)dS pdV pc = V V Jv = V ((ρv · ρv )I − ρv ρv )dV Mike Boos A Volumetric Contact Dynamics Model 8/ 34
  • 13. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Volumetric model S S B1 B1 ρs ρv δ(s) s n s n sc p Contact plate pc B2 B2 V = S δ(s)dS Js = S ((ρs ·ρs )I−ρs ρs )δ(s)dS 2 J{s,v} n = rgyr V n pdV pc = V V Jv = V ((ρv · ρv )I − ρv ρv )dV Mike Boos A Volumetric Contact Dynamics Model 8/ 34
  • 14. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Normal Forces fn df n = kv δ(s)(1 + a vn )n B1 τs ft τr B2 Mike Boos A Volumetric Contact Dynamics Model 9/ 34
  • 15. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Normal Forces fn df n = kv δ(s)(1 + a vn )n τs Normal force B1 ft f n = kv V (1 + a vcn )n τr B2 Mike Boos A Volumetric Contact Dynamics Model 9/ 34
  • 16. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Normal Forces fn df n = kv δ(s)(1 + a vn )n τs Normal force B1 ft f n = kv V (1 + a vcn )n τr Rolling resistance torque τ r = kv a Js · ω t B2 Mike Boos A Volumetric Contact Dynamics Model 9/ 34
  • 17. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Basic friction model fn df t = −µ dfn vt ˆ B1 τs ft τr B2 Mike Boos A Volumetric Contact Dynamics Model 10/ 34
  • 18. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Basic friction model fn df t = −µ dfn vt ˆ Friction force B1 τs ft f t = −µ fn vsct ˆ τr B2 Mike Boos A Volumetric Contact Dynamics Model 10/ 34
  • 19. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Basic friction model fn df t = −µ dfn vt ˆ Friction force B1 τs ft f t = −µ fn vsct ˆ τr Spinning friction torque 2 τ s = −µ rgyr fn ω n ˆ B2 Mike Boos A Volumetric Contact Dynamics Model 10/ 34
  • 20. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Stick-slip state Average surface velocity vavg = vsct · vsct + (rgyr |ω n |)2 2 Mike Boos A Volumetric Contact Dynamics Model 11/ 34
  • 21. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Stick-slip state Average surface velocity vavg = vsct · vsct + (rgyr |ω n |)2 2 Stick-slip state 2 vavg − v2 s=e s Mike Boos A Volumetric Contact Dynamics Model 11/ 34
  • 22. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Stick-slip state Average surface velocity vavg = vsct · vsct + (rgyr |ω n |)2 2 Stick-slip state 2 vavg − v2 s=e s Maximum friction coefficient µmax = µC + (µS − µC ) s Mike Boos A Volumetric Contact Dynamics Model 11/ 34
  • 23. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Stick-slip state Average surface velocity vavg = vsct · vsct + (rgyr |ω n |)2 2 Stick-slip state 2 vavg − v2 s=e s Maximum friction coefficient µmax = µC + (µS − µC ) s Can add lag to s for dwell time dependency. Mike Boos A Volumetric Contact Dynamics Model 11/ 34
  • 24. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Bristle model fN Bristle properties Deformation: zsc Rotation: θn Contact sites Surface asperities (‘bristles’) in contact (Gonthier, 2007). Mike Boos A Volumetric Contact Dynamics Model 12/ 34
  • 25. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Bristle model fN Bristle properties Deformation: zsc Rotation: θn Parameters Stiffness: σo Contact sites Damping: σ1 Surface asperities (‘bristles’) in contact (Gonthier, 2007). Mike Boos A Volumetric Contact Dynamics Model 12/ 34
  • 26. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Tangential friction forces Friction force f t = −fn (sat(σo zsc + σ1 zsc , µmax ) + σ2 vsct ) ˙ Mike Boos A Volumetric Contact Dynamics Model 13/ 34
  • 27. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Tangential friction forces Friction force f t = −fn (sat(σo zsc + σ1 zsc , µmax ) + σ2 vsct ) ˙ Bristle deformation rate 1 σo zsc = s vsct + (1 − s) σ1 µC dir (vsct , v ) − σ1 zsc ˙ Mike Boos A Volumetric Contact Dynamics Model 13/ 34
  • 28. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Spinning friction torque Spinning friction torque 2 ˙ µ τ s = −rgyr fn sat σo θn + σ1 θn , rmax + σ2 ωn n gyr Mike Boos A Volumetric Contact Dynamics Model 14/ 34
  • 29. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling Spinning friction torque Spinning friction torque 2 ˙ µ τ s = −rgyr fn sat σo θn + σ1 θn , rmax + σ2 ωn n gyr Bristle deformation rate µC θn = s ωn + (1 − s) σ1 rgyr sgn(ωn ) − σo θn ˙ σ1 Mike Boos A Volumetric Contact Dynamics Model 14/ 34
  • 30. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling The Contensou effect Translational friction forces vC tend to ‘cancel out’ as angular ωr C velocity increases. vB ωr v A B vA ωr ω vD D ωr v << ωr (Gonthier, 2007) Mike Boos A Volumetric Contact Dynamics Model 15/ 34
  • 31. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling The Contensou effect Translational friction forces vC tend to ‘cancel out’ as angular ωr C velocity increases. vB ωr Contensou factors v |vsct | rgyr |ωn | A B Cv = vavg Cω = vavg vA ωr ω vD D ωr v << ωr (Gonthier, 2007) Mike Boos A Volumetric Contact Dynamics Model 15/ 34
  • 32. Introduction Volumetric model framework Volumetric Model Normal forces Experiments Friction forces Modelling The Contensou effect Translational friction forces vC tend to ‘cancel out’ as angular ωr C velocity increases. vB ωr Contensou factors v |vsct | rgyr |ωn | A B Cv = vavg Cω = vavg vA ωr ω We now need to update the D vD slipping coefficient in our ωr bristle dyanmics equations to v << ωr (Gonthier, 2007) include these factors. Mike Boos A Volumetric Contact Dynamics Model 15/ 34
  • 33. Introduction Volumetric Model Normal force experiments Experiments Friction experiments Modelling Outline 1 Introduction 2 Volumetric Model Volumetric model framework Normal forces Friction forces 3 Experiments Normal force experiments Friction experiments 4 Modelling Graph theoretic contact model MapleSim model Demos Mike Boos A Volumetric Contact Dynamics Model 16/ 34
  • 34. Introduction Volumetric Model Normal force experiments Experiments Friction experiments Modelling Contact properties Focus on simple geometric pairs: Cylinder-on-plane Sphere-on-plane Payload material: Stainless steel Contact plane materials: Al, Mg Mike Boos A Volumetric Contact Dynamics Model 17/ 34
  • 35. Introduction Volumetric Model Normal force experiments Experiments Friction experiments Modelling Apparatus in normal configuration Force sensor Payload/specimen (stainless steel) Linear encoder Encoder reference Contact surface (Al or Mg) Mike Boos A Volumetric Contact Dynamics Model 18/ 34
  • 36. Introduction Volumetric Model Normal force experiments Experiments Friction experiments Modelling Selected results: Normal forces Quasi-static loading of SS Damping factors (a) measured cylinder on Mg plane 4 x 10 10 25 Estimated factors for Al Measured data 9 Fit of a ∝ 1/vi for Al Perpendicular fit Perpendicular contact point Estimated factors for Mg 20 8 Fit of a ∝ 1/vi for Mg Misaligned fit Misaligned contact point 7 Damping factor (s/m) 15 6 Contact force (N) 5 10 4 5 3 2 0 1 0 −5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Impact velocity (mm/s) Displacement (µm) 1−e2eff kv = 5.17 × 1012 N/m3 a≈ i eeff vn Mike Boos A Volumetric Contact Dynamics Model 19/ 34
  • 37. Introduction Volumetric Model Normal force experiments Experiments Friction experiments Modelling Experimental procedure Identify parameters Mike Boos A Volumetric Contact Dynamics Model 20/ 34
  • 38. Introduction Volumetric Model Normal force experiments Experiments Friction experiments Modelling Experimental procedure Identify parameters Verify parameters Mike Boos A Volumetric Contact Dynamics Model 20/ 34
  • 39. Introduction Volumetric Model Normal force experiments Experiments Friction experiments Modelling Experimental procedure Identify parameters Verify parameters Contensou effect Mike Boos A Volumetric Contact Dynamics Model 20/ 34
  • 40. Introduction Volumetric Model Normal force experiments Experiments Friction experiments Modelling Friction apparatus Rotational motor Linear motor Linear Cylindrical encoder payload Contact Encoder surface reference x x y y z 3DOF force sensors z Mike Boos A Volumetric Contact Dynamics Model 21/ 34
  • 41. Introduction Volumetric Model Normal force experiments Experiments Friction experiments Modelling Selected results: Contensou effect 0.45 0.45 Measured coefficients Measured coefficients 0.4 Model coefficients 0.4 Model coefficients 0.35 0.35 Coefficient of Friction Coefficient of Friction 0.3 0.3 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 0 1 2 3 4 5 0 1 2 3 4 5 Time (s) Time (s) Mike Boos A Volumetric Contact Dynamics Model 22/ 34
  • 42. Introduction Graph theoretic contact model Volumetric Model MapleSim model Experiments Demos Modelling Outline 1 Introduction 2 Volumetric Model Volumetric model framework Normal forces Friction forces 3 Experiments Normal force experiments Friction experiments 4 Modelling Graph theoretic contact model MapleSim model Demos Mike Boos A Volumetric Contact Dynamics Model 23/ 34
  • 43. Introduction Graph theoretic contact model Volumetric Model MapleSim model Experiments Demos Modelling Model c1 d Bodies: m1 , m2 Measured displacement: d f m1 Volume centroid (relative to each body): c1 , c2 c2 Contact forces: f g m2 Mike Boos A Volumetric Contact Dynamics Model 24/ 34
  • 44. Introduction Graph theoretic contact model Volumetric Model MapleSim model Experiments Demos Modelling MapleSim Model: Assumptions One deformable body model - body ‘a’ rigid, ‘b’ deformable Normal axis is frame ‘a’ z-axis (body a is flat) All vectors and tensors (i.e. inertia tensor, centroid, relative velocity) calculated for frame ‘a’ Js ≈ JV - volume inertia tensor is easier to calculate than surface inertia Volume centroid and surface centroid are very close (normal and friction forces at same location) Mike Boos A Volumetric Contact Dynamics Model 25/ 34
  • 45. Introduction Graph theoretic contact model Volumetric Model MapleSim model Experiments Demos Modelling Model c1 d f m1 c2 g m2 Mike Boos A Volumetric Contact Dynamics Model 26/ 34
  • 46. Introduction Graph theoretic contact model Volumetric Model MapleSim model Experiments Demos Modelling Parameters Mike Boos A Volumetric Contact Dynamics Model 27/ 34
  • 47. Introduction Graph theoretic contact model Volumetric Model MapleSim model Experiments Demos Modelling Forces Block Mike Boos A Volumetric Contact Dynamics Model 28/ 34
  • 48. Introduction Graph theoretic contact model Volumetric Model MapleSim model Experiments Demos Modelling Geometry Calculation Block Mike Boos A Volumetric Contact Dynamics Model 29/ 34
  • 49. Introduction Graph theoretic contact model Volumetric Model MapleSim model Experiments Demos Modelling Geometry: Sphere-on-plane Mike Boos A Volumetric Contact Dynamics Model 30/ 34
  • 50. Introduction Graph theoretic contact model Volumetric Model MapleSim model Experiments Demos Modelling Geometry: Cylinder-on-plane Mike Boos A Volumetric Contact Dynamics Model 31/ 34
  • 51. Introduction Graph theoretic contact model Volumetric Model MapleSim model Experiments Demos Modelling Demo: ‘wobbly’ clutch Mike Boos A Volumetric Contact Dynamics Model 32/ 34
  • 52. Introduction Graph theoretic contact model Volumetric Model MapleSim model Experiments Demos Modelling Demo: tippe top Mike Boos A Volumetric Contact Dynamics Model 33/ 34
  • 53. Introduction Graph theoretic contact model Volumetric Model MapleSim model Experiments Demos Modelling Questions Mike Boos A Volumetric Contact Dynamics Model 34/ 34