SlideShare a Scribd company logo
1 of 5
Download to read offline
The International Journal Of Engineering And Science (IJES)
|| Volume || 6 || Issue || 2 || Pages || PP 14-18 || 2017 ||
ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805
DOI : 10.9790/1813-0602021418 www.theijes.com Page 14
A Study of the Root Causes of High Failure Rate of Distribution
Transformer - A Case Study
C. Ndungu1
, J.Nderu2
, L. Ngoo3
, P. Hinga4
1
Jomo Kenyatta University of Agriculture and Technology (JKUAT) Nairobi Kenya,
2
JKUAT,
3
Multimedia University,
4
JKUAT
--------------------------------------------------------ABSTRACT-------------------------------------------------------------
A distribution transformer is one of major electrical equipment that links the power utility and power
consumers. It is what enables the power utility to supply electricity to consumers. In recent time, there has been
an upsurge of distribution transformers premature failure before reaching the desired and designed service life.
Consequently, the power utility has been incurring huge economical losses in replacing the faulty transformers
or repairing them. On the other hand, failure of transformer inconveniencies power end users by interrupting
the power supplies for prolonged period of time before the faulty transformer is replaced. In this paper, an
effort is made to investigate the root causes of premature failure of distribution transformers. Research has
revealed that line surges and switching transients are among the main causes of the transformers failures as
this accelerates deterioration of insulation materials. This has been aggravated by lack of lightning arrestors
and vandalism of low voltage and high voltage earthing systems. It is also noted that a transformer is usually
‘killed’ by unusual stresses that usually break down its weak insulation and hence leading to reduced
transformer life. Use of concrete poles with earth wire appended is proposed to deter vandalism of earthing
wire. In addition, proper fuse grading, installation of High Voltage (HV) expulsion fuses and regular
Operational and Maintenance (O&M) has been recommended to reduce the premature failure of distribution
transformers.
Keywords: Concrete poles, Distribution transformers, earthing wire, Fuses grading, Harmonics
---------------------------------------------------------------------------------------------------------------------------------------
Date of Submission: 09 September 2016 Date of Accepted: 25 February 2017
--------------------------------------------------------------------------------------------------------------------------------------
I. INTRODUCTION
A distribution transformer is an imperative link of the distribution system without which the power utility could
not able to supply the electricity to end users. It is used for energy transfer through electromagnetic induction
between two or more circuits. Failure of distribution transformer is devastating and costly experience because it
causes an outage to the area the transformer is supplying power. In the past, distribution transformers served for
more than sixty years [1, 2]. In recent years, many distribution transformers fail even a few years after
commissioning. It is for this reason that many studies are being carried out to investigate the main causes of the
distribution transformers premature failure. In Kenya for instance, the failure rate is approximately 10-12% per
annum which is far above the failure rate of 1-2% in the developed countries per annum (as per Kenya Power
reported cases of failed transformers). Due to rural and primary school electrification, Government and
partnership funded projects such as Global Partnership On Output Based Aid (GPOBA), last mile, and
electrification of suburb areas, the number of distribution transformers are continuously increasing. It is
pertinent to address the cause of the premature failure of transformers because they are contributing to both loss
of capital and revenue to the power utility and slowing down the economic growth of the country.
It has been noted that due to relative low cost of distribution transformers (as compared with power
transformers), very little effort is made by utility to find out the root cause of transformer failure. Lack of
investigating the root cause, could be attributed to one of the reason why more failures happen immediately or
within a very short period after replacing a damaged transformer [3, 4, 5].
The research carried out by William H.B of Hartford Steam Boiler (2005) [4] has shown that transformer fail
due to insulation breakdown could be contributed to electrical, mechanical and thermal factors [6]. Electrically
induced factors include operation of transformer under transients or sustainable over voltage condition, exposure
to lightning surges and switching surges, or partial discharge (corona) due to poor insulation system design. On
the other hand, mechanically induced factors are such as looping of the inner most windings, conductor tipping,
conductor telescoping and failure of coil clamping system. Thermal induced factors include degradation of
cellulose insulation of oil and insulation material of the windings. Thermal induced factors are mainly due to
A Study Of The Root Causes Of High Failure Rate Of Distribution Transformer - A Case Study
DOI : 10.9790/1813-0602021418 www.theijes.com Page 15
overload beyond transformer design capacity as result of cold load pickup (loads transformer supplies after
restoration of power after prolonged power outage), failure of transformer cooling system, operating transformer
in an over excited condition (under frequency) and operating under excessive ambient temperature
conditions [7, 8]. MIL-STD -1629A standards clarifies transformer faults in three categories; severity, frequency
and detection factors. This give rise to priority number (PN) which is defined as
PN = Severity * Frequency (occurrence)*Detection (1)
The minimum PN of any faults on transformer is 1 and maximum is 120. The PN for various elements of a
transformer are as depicted in table 1 below [9];
Table 1: PN for various elements of a transformer (1)
S/no. Failure type PN
1 Windings 6-30
2 Bushing 24-48
3 Tap-charger 28-52
4 Core 6
5 Tank 18
6 Protection system 22-64
7 Cooling system 26-48
Data sourced from MIL-STD-1629A
From Table 1, is evident that protection system has the highest PN (22-64). This therefore implies lack of proper
protection system contribute to high failure rate of transformer. Protection system includes poor fuse grading
(over-rated fuses), lack of lightning arrestors and an ineffective earthing system. Core failure is the least cause
of premature failure of distribution transformer. It is worth pointing out that bushing failure is associated with
poor workmanship and O&M as is mainly caused by;
i. Loosening of conductor due to vibration
ii. Sudden over-voltage which cause partial discharge
iii. Ingress of water at seal of the transformer
iv. Not replacing old oil which may result in internal flashover
Research has shown that there are various measures which may increase the expectant life and efficiency of
distribution transformers (The expected life span of transformer above 100KVA is 35 years while below
100KVA is approximately 25years). These measures include [8]; adequate and good design. Transformers
manufacturer in recent time have compromised both on quality and reliability. This is achieved by lack of
adequate clearance for free air circulation, economical size of winding wire which cannot withstand higher
current densities due to short circuit conditions, and improper use of inter-layer papers. Enhanced O&M to
ensure oil level of the transformer is sufficient, clearing trees which are main source of high impedance fault,
proper fuse grading and remove of condensed water in the transformer. Use of correct diversity factor to avert
overloading of the transformer and avoiding two phasing in rural areas which causes unbalance current that raise
potential of neutral with respect to the earth are some of the measures utility need to undertake to avert early
failure of distribution transformers.
It has been observed that most of transformer supplying industrial and institution are premature failing. The
research carried out by R. Singh and others (2014) [8] revealed that increase of non linear loads both at
industries and at institutions has resulted to high harmonic content which increases the current leading to over-
load of transformers. It is worth noting winding copper losses (I2
R), the core losses and stray losses which
increase significantly operating temperature of a transformer has direct proportionality with level of harmonic
frequencies present. It is important to note that, average life expectancy of the transformers is directly
proportional to the average life of insulating materials. On steady state power supply, harmonics and variations
in frequency are the main factors that accelerated aging of insulation materials and hence premature failure of
distribution transformers [9, 10, 11 and 12]. It is for this reason a study was carried out to establish the main
causes of the distribution transformer in most part of the Kenya.
II. METHODOLOGY
Kenya Power is the main distributor of electricity in Kenya. Currently it has a customer base of 4 million. The
total number of estimated installed distribution transformers across the county are forty five thousand. The
failure rate of these transformers is approximated as to be 10 -12% which is far above the recommended level of
1-2%. [3]. Table 2 shows the number of transformers that failed between April 2014 to March 2016 and their
suspected cause of failure.
A Study Of The Root Causes Of High Failure Rate Of Distribution Transformer - A Case Study
DOI : 10.9790/1813-0602021418 www.theijes.com Page 16
Table 2: Total number of failed transformer and suspected causes.
Probable Cause of Failure April’15 May ’15 Jun ’15 Jul ’15 Aug ’15 Sep ’15 Oct ’15 Nov ’15 Dec ’15 Jan ‘16 Feb ‘16 Mar ‘16 Total ’15
LightningStrikes 35 38 19 13 20 24 23 45 41 18 17 42 368
Vandalism 42 44 43 34 25 30 26 45 31 25 30 36 526
FaultonLV System 82 93 79 59 49 51 65 102 107 86 71 69 1077
BrokenBushings 8 18 6 11 10 15 12 8 6 12 8 4 152
Burnt/BrokenRods 15 2 19 5 4 8 12 11 4 40 15 30 196
Oil Leakage 33 27 33 24 25 17 22 33 19 19 36 30 399
Accidental Damage 3 9 0 7 2 2 3 18 0 0 0 8 70
Overload 24 44 13 40 7 15 21 26 26 18 12 12 331
FailedonCommissioning 11 8 6 2 3 5 3 6 4 5 3 6 81
Internal Defects 64 13 34 15 39 20 49 21 27 43 35 33 525
Total 317 296 252 210 184 187 236 315 265 266 227 270 3725
Source: Utility IMS, Network Management Division
From above Table, faults emanating from low voltage circuits were suspected to be the main cause of premature
failure of distribution transformer (28.9%). The least suspected cause was accidental damage (1.9%). A random
number of installation of transformers totalling 166 depicted in Table 3 were inspected to established the main
contributors of failure on low voltage side of transformer. The data was collected in five regions namely
Nairobi South, Mt. Kenya, Coast, Central Rift and Western regions as per Table 4 below.
Table 3: Transformers sampled and ratings
Rating (KVA) 25 50 100 200 315 630 1000 Total
11KV 12 22 25 40 27 1 4 131
33KV 4 9 10 8 2 2 0 35
Total 16 31 35 48 29 3 4 166
Table 4: Transformers sampled per region
Region No. of transformers sampled
Nairobi South 32
Western 35
Mt. Kenya 36
Central Rift 31
Coast 32
Total 166
The findings are summarized in the Table 5 below;
Table 5: Findings of inspection of sampled transformers
Description Yes No Total Vulnerability
Surge diverter properly installed and earthed? 58 108 166 65%
TX Body & metallic parts earthed properly 90 76 166 46%
PME for TX (LV) properly done? 74 92 166 55%
Arcing horns properly installed? 56 110 166 66%
Availability of HV fuses (Expulsion fuses)? 40 126 166 76%
Trace encroachment? 79 87 166 48%
Poor sag along circuit? 57 109 166 34%
LV fuses properly graded? 56 45 101 45%
Where;
PME –Protective multiple earthing, TX – Distribution Transformer, LV – Low Voltage, HV – High Voltage
From the above Table 5, it is observed that most distribution transformers are exposed heavily to lightning and
switching surges as more than half of all the inspected transformers were found to lack Lightning Arrestors
(LAs). The report (Table 6) also showed that most of the transformers that were within 10% of the distance from
end of the feeder were most affected by high failure rate. The main cause of failure is attributed by transient
travelling waves that mostly originate from switching operations of the circuit breakers during Operational and
Maintenance or during the line fault double in magnitude after reflection at end of the feeder.
Near the Substation (Approx.
10% From Substation)
In the Middle of the
Feeder
At End or Approx. 10% From the
Terminal of the Feeder
12 21 23
A Study Of The Root Causes Of High Failure Rate Of Distribution Transformer - A Case Study
DOI : 10.9790/1813-0602021418 www.theijes.com Page 17
From Table 6, it is shown that lack of installation LAs on the HV side of transformer results in premature failure
of the transformers as lightning strikes and transient travelling waves causes HV windings insulation to give in
due to high surge voltages. Further, it was noted that most of the transformers arc horns were not well aligned.
This was caused by poor workmanship and lack of knowledge of field marshal the purpose of the arc horns. It
paramount noting that due to rampant vandalism of the earthing wire and earth rods, even properly aligned arc
horns and installed surge diverters are rendered ineffective.
From the investigation, a substantial number of the transformers (45%) had direct wire instead of graded fuses
on the low voltage side. This caused the transformer to be overloaded for prolonged period of time due to high
impedance fault (which may be caused by a tree branch touching a phase) or cold load pickup. The high current
increases transformer thermal heating (losses) that raise windings and insulation oil temperature leading to
decrease of the life of the transformer. The heat also accelerates the aging of cellulose of oil and hence lowering
the degree of polymerization (DP) of solid insulation that provides dielectric and mechanical isolation of the
windings [7].
III. CONCLUSIONS
From the study the followings were concluded;
i. It was noted that the failure rate of distribution transformers in Kenya is on upward trend and there is need
to reverse the trend. Currently the failure rate is 10% against recommended 1-2% annually as per
international standard.
ii. The distribution transformers are poorly protected from switching surges, voltage spikes and line faults/
flashovers.
iii. Vandalism of earthing system both for HT and LV side of the transformer expose the transformers to high
voltage surges that lead to insulation breakdown resulting to early failure of the transformers
iv. Reflection of travelling wave impact negatively on the transformer causing more transformer to fail
prematurely due to lack of proper protection system
v. Most of the distribution transformers are apparently replaced immediately without the technical personnel
establishing the root cause of the problem. This has aggravated the transformer failure rate.
vi. High harmonic current result to transformer overload especially triplen harmonics (that circulate within
delta windings) causing HV winding insulation breakdown
The authors recommend to the power utility to undertake the following measures to improve distribution
transformers expectant service life and efficiency;
 Avoid transformer overload by properly grading the LV fuses. Use of direct link should be avoided and
discouraged. Each circuit should have independent fuses. No sharing of fuses to control more than one
circuit.
 Use of concrete poles with earth wire appended is recommended to deter earthing wire vandalism.
Appended earth wire inside the concrete prevent vandals from accessing the earth wire hence ensuring the
transformer is properly earthed both HT and LV side.
 High impedance faults should be avoided by clearing flora that encroach the feeder and low voltage line
wayleave. The O&M team to frequently patrol the lines especially wet area where rate of growth of trees
are high. The power utility may adopt insulated cables instead of bare conductors at rural area where trees
are known to be fast growing. Use of phase separators and re-sagging loosely sagging lines can avert phase
clashing that causes transformer overloading.
 The transformer to be properly protected by installing correct fuse rating and earthed LAs. It was observed
that 76% of distribution transformer have no expulsion HT fuses hence exposing the transformer HV
windings to high fault currents when a fault occurs along the feeder.
REFERENCE
[1]. Shayan Tang Jan, Raheel Afzal and Akif Zia Khan, Transformer Failures, Causes And Impact, International conference data
mining, civil and mechanical engineering, February 2015
[2]. Shrikent S. Rajurkar, Jayant G and Amil R. Kulkan, Analysis Of Power Transformer Failure On Transmission Utilities, 16th
National power system conference Dec, 2010
[3]. Ambuj Kumar, Sunil Kumar Singh and Zakir Husain, Root Cause Analysis Of Transformer Failure Scenario At Power Substation,
Advances in environmental and agriculture science, 2013
[4]. William H. Bartley P.E, Failure Analysis of Transformer, The Hartford Steam Boiler Inspection and insurance Co. 2005
[5]. S.N. Singh, Electrical Power Generation, Transmission and Distribution, (New Delhi, 2007, 8th
edition).
[6]. Colin Bayliss and Brian hardy, Transmission And Distribution Electrical Engineering, (2008, 3rd
edition)
[7]. Ranjane Singh, A.S Zadgaonker and Amarjit Singh, Premature Failure Of Distribution Transformer- A Case Study, IJS&ER Vol. 5
issue 6, June 2014
[8]. Ranjane Singh, A.S Zadgaonker and Amarjit Singh, Impact Of Harmonics On Distribution Transformer Supplying A Technical
Institution – A Case Study, Journal of research in electrical and electronic engineering (ISTP-JREEE), 2010
A Study Of The Root Causes Of High Failure Rate Of Distribution Transformer - A Case Study
DOI : 10.9790/1813-0602021418 www.theijes.com Page 18
[9]. IEEE C57.125, A Standard Guide For Investigating Failure, Deformation And Analysis For Power Transformer And Shunt
Reactors
[10]. Mohammed Addul Rahman Uzair, Mohammed Mohiuddin and Mohammed Khaja Shujauddin, Failure Analysis of Power
Transformers, International Journal of Emerging Technology and Advanced Engineering, Vol. 3 Issue 9, September 2013
[11]. Jyotirmaya Ghadai and Chinmay Das, Failure of transformers due to Harmoni loads, International Journal of Electrical, Electronic
and mechanical controls, Vol. 3, Issue 3, September 2014
[12]. Manish N. Siaha Patel, Parsh Shah , Maulik Dosh and Nishish B, Case Studies of the Transformers Failure Analyses, Jul 5, 2015

More Related Content

What's hot

Steady State Fault Analysis of VSC- HVDC Transmission System
Steady State Fault Analysis of VSC- HVDC Transmission SystemSteady State Fault Analysis of VSC- HVDC Transmission System
Steady State Fault Analysis of VSC- HVDC Transmission SystemIRJET Journal
 
Ieee transient stability improvement
Ieee transient stability improvementIeee transient stability improvement
Ieee transient stability improvementvinayraju03
 
A REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLER
A REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLERA REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLER
A REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLERDHEERAJ DHAKAR
 
IRJET- Review: Different Technology for Distributed Power Flow Controller
IRJET- Review: Different Technology for Distributed Power Flow ControllerIRJET- Review: Different Technology for Distributed Power Flow Controller
IRJET- Review: Different Technology for Distributed Power Flow ControllerIRJET Journal
 
Regulatory Guidelines to set up Voltage Quality Monitoring
Regulatory Guidelines to set up Voltage Quality MonitoringRegulatory Guidelines to set up Voltage Quality Monitoring
Regulatory Guidelines to set up Voltage Quality MonitoringLeonardo ENERGY
 
A Review on Hybrid Active Power Filter for Power Quality Improvement
A Review on Hybrid Active Power Filter for Power Quality Improvement A Review on Hybrid Active Power Filter for Power Quality Improvement
A Review on Hybrid Active Power Filter for Power Quality Improvement IRJET Journal
 
transformer dignostics on high voltage
transformer dignostics on high voltagetransformer dignostics on high voltage
transformer dignostics on high voltageKamal Deep
 
INSTANTANEOUS POWER AND CURRENT STRATEGIES FOR CURRENT HARMONICS CANCELLATION...
INSTANTANEOUS POWER AND CURRENT STRATEGIES FOR CURRENT HARMONICS CANCELLATION...INSTANTANEOUS POWER AND CURRENT STRATEGIES FOR CURRENT HARMONICS CANCELLATION...
INSTANTANEOUS POWER AND CURRENT STRATEGIES FOR CURRENT HARMONICS CANCELLATION...ijiert bestjournal
 
Control of Resonant Flows Using High Bandwidth Mirco-Actuators
Control of Resonant Flows Using High Bandwidth Mirco-ActuatorsControl of Resonant Flows Using High Bandwidth Mirco-Actuators
Control of Resonant Flows Using High Bandwidth Mirco-Actuatorsaswiley1
 
Techno economic study of series current limiting reactor and its impact in th...
Techno economic study of series current limiting reactor and its impact in th...Techno economic study of series current limiting reactor and its impact in th...
Techno economic study of series current limiting reactor and its impact in th...Alexander Decker
 
Design and Mitigation Techniques of MV Capacitor Bank Switching Transients on...
Design and Mitigation Techniques of MV Capacitor Bank Switching Transients on...Design and Mitigation Techniques of MV Capacitor Bank Switching Transients on...
Design and Mitigation Techniques of MV Capacitor Bank Switching Transients on...ijtsrd
 
IRJET- Controlling the Stator Flux Linkages to Improve Dynamic Behavior of Gr...
IRJET- Controlling the Stator Flux Linkages to Improve Dynamic Behavior of Gr...IRJET- Controlling the Stator Flux Linkages to Improve Dynamic Behavior of Gr...
IRJET- Controlling the Stator Flux Linkages to Improve Dynamic Behavior of Gr...IRJET Journal
 

What's hot (17)

Steady State Fault Analysis of VSC- HVDC Transmission System
Steady State Fault Analysis of VSC- HVDC Transmission SystemSteady State Fault Analysis of VSC- HVDC Transmission System
Steady State Fault Analysis of VSC- HVDC Transmission System
 
Ieee transient stability improvement
Ieee transient stability improvementIeee transient stability improvement
Ieee transient stability improvement
 
A REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLER
A REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLERA REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLER
A REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLER
 
IRJET- Review: Different Technology for Distributed Power Flow Controller
IRJET- Review: Different Technology for Distributed Power Flow ControllerIRJET- Review: Different Technology for Distributed Power Flow Controller
IRJET- Review: Different Technology for Distributed Power Flow Controller
 
Power compensation for vector-based current control of a modular multilevel c...
Power compensation for vector-based current control of a modular multilevel c...Power compensation for vector-based current control of a modular multilevel c...
Power compensation for vector-based current control of a modular multilevel c...
 
Regulatory Guidelines to set up Voltage Quality Monitoring
Regulatory Guidelines to set up Voltage Quality MonitoringRegulatory Guidelines to set up Voltage Quality Monitoring
Regulatory Guidelines to set up Voltage Quality Monitoring
 
A Review on Hybrid Active Power Filter for Power Quality Improvement
A Review on Hybrid Active Power Filter for Power Quality Improvement A Review on Hybrid Active Power Filter for Power Quality Improvement
A Review on Hybrid Active Power Filter for Power Quality Improvement
 
05Sep_Bittle
05Sep_Bittle05Sep_Bittle
05Sep_Bittle
 
transformer dignostics on high voltage
transformer dignostics on high voltagetransformer dignostics on high voltage
transformer dignostics on high voltage
 
A044040108
A044040108A044040108
A044040108
 
INSTANTANEOUS POWER AND CURRENT STRATEGIES FOR CURRENT HARMONICS CANCELLATION...
INSTANTANEOUS POWER AND CURRENT STRATEGIES FOR CURRENT HARMONICS CANCELLATION...INSTANTANEOUS POWER AND CURRENT STRATEGIES FOR CURRENT HARMONICS CANCELLATION...
INSTANTANEOUS POWER AND CURRENT STRATEGIES FOR CURRENT HARMONICS CANCELLATION...
 
Power
PowerPower
Power
 
Control of Resonant Flows Using High Bandwidth Mirco-Actuators
Control of Resonant Flows Using High Bandwidth Mirco-ActuatorsControl of Resonant Flows Using High Bandwidth Mirco-Actuators
Control of Resonant Flows Using High Bandwidth Mirco-Actuators
 
Fact controller
Fact controllerFact controller
Fact controller
 
Techno economic study of series current limiting reactor and its impact in th...
Techno economic study of series current limiting reactor and its impact in th...Techno economic study of series current limiting reactor and its impact in th...
Techno economic study of series current limiting reactor and its impact in th...
 
Design and Mitigation Techniques of MV Capacitor Bank Switching Transients on...
Design and Mitigation Techniques of MV Capacitor Bank Switching Transients on...Design and Mitigation Techniques of MV Capacitor Bank Switching Transients on...
Design and Mitigation Techniques of MV Capacitor Bank Switching Transients on...
 
IRJET- Controlling the Stator Flux Linkages to Improve Dynamic Behavior of Gr...
IRJET- Controlling the Stator Flux Linkages to Improve Dynamic Behavior of Gr...IRJET- Controlling the Stator Flux Linkages to Improve Dynamic Behavior of Gr...
IRJET- Controlling the Stator Flux Linkages to Improve Dynamic Behavior of Gr...
 

Viewers also liked

Production of CH4 and C2 hydrocarbons by axial and radial pulse H2/CO2 discha...
Production of CH4 and C2 hydrocarbons by axial and radial pulse H2/CO2 discha...Production of CH4 and C2 hydrocarbons by axial and radial pulse H2/CO2 discha...
Production of CH4 and C2 hydrocarbons by axial and radial pulse H2/CO2 discha...theijes
 
The Investigation of Primary School Students’ Ability to Identify Quadrilater...
The Investigation of Primary School Students’ Ability to Identify Quadrilater...The Investigation of Primary School Students’ Ability to Identify Quadrilater...
The Investigation of Primary School Students’ Ability to Identify Quadrilater...theijes
 
Effects of Self Compacting Concrete Using the Discrete Models as Binary & Ter...
Effects of Self Compacting Concrete Using the Discrete Models as Binary & Ter...Effects of Self Compacting Concrete Using the Discrete Models as Binary & Ter...
Effects of Self Compacting Concrete Using the Discrete Models as Binary & Ter...theijes
 
The Effect of Personality Traits on Social Identification, Transformational L...
The Effect of Personality Traits on Social Identification, Transformational L...The Effect of Personality Traits on Social Identification, Transformational L...
The Effect of Personality Traits on Social Identification, Transformational L...theijes
 
An Analysis of the E-Agriculture Research Field Between 2005 and 2015
An Analysis of the E-Agriculture Research Field Between 2005 and 2015An Analysis of the E-Agriculture Research Field Between 2005 and 2015
An Analysis of the E-Agriculture Research Field Between 2005 and 2015theijes
 
Delay of Geo/Geo/1 N-limited Nonstop Forwarding Queue
Delay of Geo/Geo/1 N-limited Nonstop Forwarding QueueDelay of Geo/Geo/1 N-limited Nonstop Forwarding Queue
Delay of Geo/Geo/1 N-limited Nonstop Forwarding Queuetheijes
 
Queue with Breakdowns and Interrupted Repairs
Queue with Breakdowns and Interrupted RepairsQueue with Breakdowns and Interrupted Repairs
Queue with Breakdowns and Interrupted Repairstheijes
 
A Case Study of Teaching the Concept of Differential in Mathematics Teacher T...
A Case Study of Teaching the Concept of Differential in Mathematics Teacher T...A Case Study of Teaching the Concept of Differential in Mathematics Teacher T...
A Case Study of Teaching the Concept of Differential in Mathematics Teacher T...theijes
 
Concepts and Trends on E -Learning in Romania
Concepts and Trends on E -Learning in RomaniaConcepts and Trends on E -Learning in Romania
Concepts and Trends on E -Learning in Romaniatheijes
 
Multiple Linear Regression Model with Two Parameter Doubly Truncated New Symm...
Multiple Linear Regression Model with Two Parameter Doubly Truncated New Symm...Multiple Linear Regression Model with Two Parameter Doubly Truncated New Symm...
Multiple Linear Regression Model with Two Parameter Doubly Truncated New Symm...theijes
 
Quantum Current in Graphene Nano Scrolls Based Transistor
Quantum Current in Graphene Nano Scrolls Based TransistorQuantum Current in Graphene Nano Scrolls Based Transistor
Quantum Current in Graphene Nano Scrolls Based Transistortheijes
 
Application of Synchronized Phasor Measurements Units in Power Systems
Application of Synchronized Phasor Measurements Units in Power SystemsApplication of Synchronized Phasor Measurements Units in Power Systems
Application of Synchronized Phasor Measurements Units in Power Systemstheijes
 
Review of Waste Management Approach for Producing Biomass Energy in India
Review of Waste Management Approach for Producing Biomass Energy in IndiaReview of Waste Management Approach for Producing Biomass Energy in India
Review of Waste Management Approach for Producing Biomass Energy in Indiatheijes
 
Non-woven fabric filters integrated with decentralized system for domestic wa...
Non-woven fabric filters integrated with decentralized system for domestic wa...Non-woven fabric filters integrated with decentralized system for domestic wa...
Non-woven fabric filters integrated with decentralized system for domestic wa...theijes
 
Paleoenvironment and Provenance Studies of Ajali Sandstone in Igbere Area, Af...
Paleoenvironment and Provenance Studies of Ajali Sandstone in Igbere Area, Af...Paleoenvironment and Provenance Studies of Ajali Sandstone in Igbere Area, Af...
Paleoenvironment and Provenance Studies of Ajali Sandstone in Igbere Area, Af...theijes
 
Retrospective and Prospective Studies of Gastro-Intestinal Helminths of Human...
Retrospective and Prospective Studies of Gastro-Intestinal Helminths of Human...Retrospective and Prospective Studies of Gastro-Intestinal Helminths of Human...
Retrospective and Prospective Studies of Gastro-Intestinal Helminths of Human...theijes
 
Bituminous Pavement Recycling – Effective Utilization of Depleting Non-Renewa...
Bituminous Pavement Recycling – Effective Utilization of Depleting Non-Renewa...Bituminous Pavement Recycling – Effective Utilization of Depleting Non-Renewa...
Bituminous Pavement Recycling – Effective Utilization of Depleting Non-Renewa...theijes
 
The Characteristics of Traffic Accidents Caused by Human Behavior on the Road...
The Characteristics of Traffic Accidents Caused by Human Behavior on the Road...The Characteristics of Traffic Accidents Caused by Human Behavior on the Road...
The Characteristics of Traffic Accidents Caused by Human Behavior on the Road...theijes
 
Analysis of Economic Growth Quality to Improve Society Welfare in Southeast S...
Analysis of Economic Growth Quality to Improve Society Welfare in Southeast S...Analysis of Economic Growth Quality to Improve Society Welfare in Southeast S...
Analysis of Economic Growth Quality to Improve Society Welfare in Southeast S...theijes
 
Diagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoire
Diagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoireDiagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoire
Diagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoiretheijes
 

Viewers also liked (20)

Production of CH4 and C2 hydrocarbons by axial and radial pulse H2/CO2 discha...
Production of CH4 and C2 hydrocarbons by axial and radial pulse H2/CO2 discha...Production of CH4 and C2 hydrocarbons by axial and radial pulse H2/CO2 discha...
Production of CH4 and C2 hydrocarbons by axial and radial pulse H2/CO2 discha...
 
The Investigation of Primary School Students’ Ability to Identify Quadrilater...
The Investigation of Primary School Students’ Ability to Identify Quadrilater...The Investigation of Primary School Students’ Ability to Identify Quadrilater...
The Investigation of Primary School Students’ Ability to Identify Quadrilater...
 
Effects of Self Compacting Concrete Using the Discrete Models as Binary & Ter...
Effects of Self Compacting Concrete Using the Discrete Models as Binary & Ter...Effects of Self Compacting Concrete Using the Discrete Models as Binary & Ter...
Effects of Self Compacting Concrete Using the Discrete Models as Binary & Ter...
 
The Effect of Personality Traits on Social Identification, Transformational L...
The Effect of Personality Traits on Social Identification, Transformational L...The Effect of Personality Traits on Social Identification, Transformational L...
The Effect of Personality Traits on Social Identification, Transformational L...
 
An Analysis of the E-Agriculture Research Field Between 2005 and 2015
An Analysis of the E-Agriculture Research Field Between 2005 and 2015An Analysis of the E-Agriculture Research Field Between 2005 and 2015
An Analysis of the E-Agriculture Research Field Between 2005 and 2015
 
Delay of Geo/Geo/1 N-limited Nonstop Forwarding Queue
Delay of Geo/Geo/1 N-limited Nonstop Forwarding QueueDelay of Geo/Geo/1 N-limited Nonstop Forwarding Queue
Delay of Geo/Geo/1 N-limited Nonstop Forwarding Queue
 
Queue with Breakdowns and Interrupted Repairs
Queue with Breakdowns and Interrupted RepairsQueue with Breakdowns and Interrupted Repairs
Queue with Breakdowns and Interrupted Repairs
 
A Case Study of Teaching the Concept of Differential in Mathematics Teacher T...
A Case Study of Teaching the Concept of Differential in Mathematics Teacher T...A Case Study of Teaching the Concept of Differential in Mathematics Teacher T...
A Case Study of Teaching the Concept of Differential in Mathematics Teacher T...
 
Concepts and Trends on E -Learning in Romania
Concepts and Trends on E -Learning in RomaniaConcepts and Trends on E -Learning in Romania
Concepts and Trends on E -Learning in Romania
 
Multiple Linear Regression Model with Two Parameter Doubly Truncated New Symm...
Multiple Linear Regression Model with Two Parameter Doubly Truncated New Symm...Multiple Linear Regression Model with Two Parameter Doubly Truncated New Symm...
Multiple Linear Regression Model with Two Parameter Doubly Truncated New Symm...
 
Quantum Current in Graphene Nano Scrolls Based Transistor
Quantum Current in Graphene Nano Scrolls Based TransistorQuantum Current in Graphene Nano Scrolls Based Transistor
Quantum Current in Graphene Nano Scrolls Based Transistor
 
Application of Synchronized Phasor Measurements Units in Power Systems
Application of Synchronized Phasor Measurements Units in Power SystemsApplication of Synchronized Phasor Measurements Units in Power Systems
Application of Synchronized Phasor Measurements Units in Power Systems
 
Review of Waste Management Approach for Producing Biomass Energy in India
Review of Waste Management Approach for Producing Biomass Energy in IndiaReview of Waste Management Approach for Producing Biomass Energy in India
Review of Waste Management Approach for Producing Biomass Energy in India
 
Non-woven fabric filters integrated with decentralized system for domestic wa...
Non-woven fabric filters integrated with decentralized system for domestic wa...Non-woven fabric filters integrated with decentralized system for domestic wa...
Non-woven fabric filters integrated with decentralized system for domestic wa...
 
Paleoenvironment and Provenance Studies of Ajali Sandstone in Igbere Area, Af...
Paleoenvironment and Provenance Studies of Ajali Sandstone in Igbere Area, Af...Paleoenvironment and Provenance Studies of Ajali Sandstone in Igbere Area, Af...
Paleoenvironment and Provenance Studies of Ajali Sandstone in Igbere Area, Af...
 
Retrospective and Prospective Studies of Gastro-Intestinal Helminths of Human...
Retrospective and Prospective Studies of Gastro-Intestinal Helminths of Human...Retrospective and Prospective Studies of Gastro-Intestinal Helminths of Human...
Retrospective and Prospective Studies of Gastro-Intestinal Helminths of Human...
 
Bituminous Pavement Recycling – Effective Utilization of Depleting Non-Renewa...
Bituminous Pavement Recycling – Effective Utilization of Depleting Non-Renewa...Bituminous Pavement Recycling – Effective Utilization of Depleting Non-Renewa...
Bituminous Pavement Recycling – Effective Utilization of Depleting Non-Renewa...
 
The Characteristics of Traffic Accidents Caused by Human Behavior on the Road...
The Characteristics of Traffic Accidents Caused by Human Behavior on the Road...The Characteristics of Traffic Accidents Caused by Human Behavior on the Road...
The Characteristics of Traffic Accidents Caused by Human Behavior on the Road...
 
Analysis of Economic Growth Quality to Improve Society Welfare in Southeast S...
Analysis of Economic Growth Quality to Improve Society Welfare in Southeast S...Analysis of Economic Growth Quality to Improve Society Welfare in Southeast S...
Analysis of Economic Growth Quality to Improve Society Welfare in Southeast S...
 
Diagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoire
Diagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoireDiagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoire
Diagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoire
 

Similar to A Study of the Root Causes of High Failure Rate of Distribution Transformer - A Case Study

Power Quality Problems Related with the Interconnection of Wind Farms to the ...
Power Quality Problems Related with the Interconnection of Wind Farms to the ...Power Quality Problems Related with the Interconnection of Wind Farms to the ...
Power Quality Problems Related with the Interconnection of Wind Farms to the ...IRJET Journal
 
CPRI-Power quality report
CPRI-Power quality reportCPRI-Power quality report
CPRI-Power quality reportNageswar Rao
 
Why transformers fail_final
Why transformers fail_finalWhy transformers fail_final
Why transformers fail_finalSnehangshu Ghosh
 
IRJET- A Review Paper on Power Quality Issues and Monitoring Techniques
IRJET- A Review Paper on Power Quality Issues and Monitoring TechniquesIRJET- A Review Paper on Power Quality Issues and Monitoring Techniques
IRJET- A Review Paper on Power Quality Issues and Monitoring TechniquesIRJET Journal
 
IRJET- Transmission of Ac Power from Offshore to Onshore by using Low Frequen...
IRJET- Transmission of Ac Power from Offshore to Onshore by using Low Frequen...IRJET- Transmission of Ac Power from Offshore to Onshore by using Low Frequen...
IRJET- Transmission of Ac Power from Offshore to Onshore by using Low Frequen...IRJET Journal
 
Novel Cost-effective Technique for Continued Operation of Electrical Equipmen...
Novel Cost-effective Technique for Continued Operation of Electrical Equipmen...Novel Cost-effective Technique for Continued Operation of Electrical Equipmen...
Novel Cost-effective Technique for Continued Operation of Electrical Equipmen...CSCJournals
 
Cost savings by low-loss distribution transformers in wind power plants
Cost savings by low-loss distribution transformers in wind power plantsCost savings by low-loss distribution transformers in wind power plants
Cost savings by low-loss distribution transformers in wind power plantsLeonardo ENERGY
 
Power System Operational Challenges from the Energy Transition
Power System Operational Challenges from the Energy TransitionPower System Operational Challenges from the Energy Transition
Power System Operational Challenges from the Energy TransitionPower System Operation
 
Monitoring of power transformers using thermal model and permission time of ...
Monitoring of power transformers using thermal model and  permission time of ...Monitoring of power transformers using thermal model and  permission time of ...
Monitoring of power transformers using thermal model and permission time of ...IJECEIAES
 
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...IRJET Journal
 
Engineering Practice Report
Engineering Practice ReportEngineering Practice Report
Engineering Practice ReportPaul Soko
 
AN OUTLINE OF HARMONICS AND MULTILEVEL
AN OUTLINE OF HARMONICS AND MULTILEVELAN OUTLINE OF HARMONICS AND MULTILEVEL
AN OUTLINE OF HARMONICS AND MULTILEVELIRJET Journal
 
Impact of Crack Length into Pipe Conveying Fluid Utilizing Fast Fourier trans...
Impact of Crack Length into Pipe Conveying Fluid Utilizing Fast Fourier trans...Impact of Crack Length into Pipe Conveying Fluid Utilizing Fast Fourier trans...
Impact of Crack Length into Pipe Conveying Fluid Utilizing Fast Fourier trans...IJECEIAES
 
IRJET- Improved IUPQC Controller to Provide Grid Voltage as a STATCOM
IRJET- Improved IUPQC Controller to Provide Grid Voltage as a STATCOMIRJET- Improved IUPQC Controller to Provide Grid Voltage as a STATCOM
IRJET- Improved IUPQC Controller to Provide Grid Voltage as a STATCOMIRJET Journal
 
windfarmgridissues.pdf
windfarmgridissues.pdfwindfarmgridissues.pdf
windfarmgridissues.pdfsundeepsiddula
 
Wind farm grid issues
Wind farm grid issuesWind farm grid issues
Wind farm grid issuesRohil Kumar
 
Influence choice of the injection nodes of energy source on on-line losses of...
Influence choice of the injection nodes of energy source on on-line losses of...Influence choice of the injection nodes of energy source on on-line losses of...
Influence choice of the injection nodes of energy source on on-line losses of...IJMER
 
Review on Different Techniques for Differential Protection of Power Transformer
Review on Different Techniques for Differential Protection of Power TransformerReview on Different Techniques for Differential Protection of Power Transformer
Review on Different Techniques for Differential Protection of Power TransformerIRJET Journal
 

Similar to A Study of the Root Causes of High Failure Rate of Distribution Transformer - A Case Study (20)

Power Quality Problems Related with the Interconnection of Wind Farms to the ...
Power Quality Problems Related with the Interconnection of Wind Farms to the ...Power Quality Problems Related with the Interconnection of Wind Farms to the ...
Power Quality Problems Related with the Interconnection of Wind Farms to the ...
 
CPRI-Power quality report
CPRI-Power quality reportCPRI-Power quality report
CPRI-Power quality report
 
Why transformers fail_final
Why transformers fail_finalWhy transformers fail_final
Why transformers fail_final
 
IRJET- A Review Paper on Power Quality Issues and Monitoring Techniques
IRJET- A Review Paper on Power Quality Issues and Monitoring TechniquesIRJET- A Review Paper on Power Quality Issues and Monitoring Techniques
IRJET- A Review Paper on Power Quality Issues and Monitoring Techniques
 
IRJET- Transmission of Ac Power from Offshore to Onshore by using Low Frequen...
IRJET- Transmission of Ac Power from Offshore to Onshore by using Low Frequen...IRJET- Transmission of Ac Power from Offshore to Onshore by using Low Frequen...
IRJET- Transmission of Ac Power from Offshore to Onshore by using Low Frequen...
 
Novel Cost-effective Technique for Continued Operation of Electrical Equipmen...
Novel Cost-effective Technique for Continued Operation of Electrical Equipmen...Novel Cost-effective Technique for Continued Operation of Electrical Equipmen...
Novel Cost-effective Technique for Continued Operation of Electrical Equipmen...
 
Frequency response analysis for transformer tap changer damage detection
Frequency response analysis for transformer tap changer damage detectionFrequency response analysis for transformer tap changer damage detection
Frequency response analysis for transformer tap changer damage detection
 
G225159
G225159G225159
G225159
 
Cost savings by low-loss distribution transformers in wind power plants
Cost savings by low-loss distribution transformers in wind power plantsCost savings by low-loss distribution transformers in wind power plants
Cost savings by low-loss distribution transformers in wind power plants
 
Power System Operational Challenges from the Energy Transition
Power System Operational Challenges from the Energy TransitionPower System Operational Challenges from the Energy Transition
Power System Operational Challenges from the Energy Transition
 
Monitoring of power transformers using thermal model and permission time of ...
Monitoring of power transformers using thermal model and  permission time of ...Monitoring of power transformers using thermal model and  permission time of ...
Monitoring of power transformers using thermal model and permission time of ...
 
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
 
Engineering Practice Report
Engineering Practice ReportEngineering Practice Report
Engineering Practice Report
 
AN OUTLINE OF HARMONICS AND MULTILEVEL
AN OUTLINE OF HARMONICS AND MULTILEVELAN OUTLINE OF HARMONICS AND MULTILEVEL
AN OUTLINE OF HARMONICS AND MULTILEVEL
 
Impact of Crack Length into Pipe Conveying Fluid Utilizing Fast Fourier trans...
Impact of Crack Length into Pipe Conveying Fluid Utilizing Fast Fourier trans...Impact of Crack Length into Pipe Conveying Fluid Utilizing Fast Fourier trans...
Impact of Crack Length into Pipe Conveying Fluid Utilizing Fast Fourier trans...
 
IRJET- Improved IUPQC Controller to Provide Grid Voltage as a STATCOM
IRJET- Improved IUPQC Controller to Provide Grid Voltage as a STATCOMIRJET- Improved IUPQC Controller to Provide Grid Voltage as a STATCOM
IRJET- Improved IUPQC Controller to Provide Grid Voltage as a STATCOM
 
windfarmgridissues.pdf
windfarmgridissues.pdfwindfarmgridissues.pdf
windfarmgridissues.pdf
 
Wind farm grid issues
Wind farm grid issuesWind farm grid issues
Wind farm grid issues
 
Influence choice of the injection nodes of energy source on on-line losses of...
Influence choice of the injection nodes of energy source on on-line losses of...Influence choice of the injection nodes of energy source on on-line losses of...
Influence choice of the injection nodes of energy source on on-line losses of...
 
Review on Different Techniques for Differential Protection of Power Transformer
Review on Different Techniques for Differential Protection of Power TransformerReview on Different Techniques for Differential Protection of Power Transformer
Review on Different Techniques for Differential Protection of Power Transformer
 

Recently uploaded

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 

Recently uploaded (20)

★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 

A Study of the Root Causes of High Failure Rate of Distribution Transformer - A Case Study

  • 1. The International Journal Of Engineering And Science (IJES) || Volume || 6 || Issue || 2 || Pages || PP 14-18 || 2017 || ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805 DOI : 10.9790/1813-0602021418 www.theijes.com Page 14 A Study of the Root Causes of High Failure Rate of Distribution Transformer - A Case Study C. Ndungu1 , J.Nderu2 , L. Ngoo3 , P. Hinga4 1 Jomo Kenyatta University of Agriculture and Technology (JKUAT) Nairobi Kenya, 2 JKUAT, 3 Multimedia University, 4 JKUAT --------------------------------------------------------ABSTRACT------------------------------------------------------------- A distribution transformer is one of major electrical equipment that links the power utility and power consumers. It is what enables the power utility to supply electricity to consumers. In recent time, there has been an upsurge of distribution transformers premature failure before reaching the desired and designed service life. Consequently, the power utility has been incurring huge economical losses in replacing the faulty transformers or repairing them. On the other hand, failure of transformer inconveniencies power end users by interrupting the power supplies for prolonged period of time before the faulty transformer is replaced. In this paper, an effort is made to investigate the root causes of premature failure of distribution transformers. Research has revealed that line surges and switching transients are among the main causes of the transformers failures as this accelerates deterioration of insulation materials. This has been aggravated by lack of lightning arrestors and vandalism of low voltage and high voltage earthing systems. It is also noted that a transformer is usually ‘killed’ by unusual stresses that usually break down its weak insulation and hence leading to reduced transformer life. Use of concrete poles with earth wire appended is proposed to deter vandalism of earthing wire. In addition, proper fuse grading, installation of High Voltage (HV) expulsion fuses and regular Operational and Maintenance (O&M) has been recommended to reduce the premature failure of distribution transformers. Keywords: Concrete poles, Distribution transformers, earthing wire, Fuses grading, Harmonics --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 09 September 2016 Date of Accepted: 25 February 2017 -------------------------------------------------------------------------------------------------------------------------------------- I. INTRODUCTION A distribution transformer is an imperative link of the distribution system without which the power utility could not able to supply the electricity to end users. It is used for energy transfer through electromagnetic induction between two or more circuits. Failure of distribution transformer is devastating and costly experience because it causes an outage to the area the transformer is supplying power. In the past, distribution transformers served for more than sixty years [1, 2]. In recent years, many distribution transformers fail even a few years after commissioning. It is for this reason that many studies are being carried out to investigate the main causes of the distribution transformers premature failure. In Kenya for instance, the failure rate is approximately 10-12% per annum which is far above the failure rate of 1-2% in the developed countries per annum (as per Kenya Power reported cases of failed transformers). Due to rural and primary school electrification, Government and partnership funded projects such as Global Partnership On Output Based Aid (GPOBA), last mile, and electrification of suburb areas, the number of distribution transformers are continuously increasing. It is pertinent to address the cause of the premature failure of transformers because they are contributing to both loss of capital and revenue to the power utility and slowing down the economic growth of the country. It has been noted that due to relative low cost of distribution transformers (as compared with power transformers), very little effort is made by utility to find out the root cause of transformer failure. Lack of investigating the root cause, could be attributed to one of the reason why more failures happen immediately or within a very short period after replacing a damaged transformer [3, 4, 5]. The research carried out by William H.B of Hartford Steam Boiler (2005) [4] has shown that transformer fail due to insulation breakdown could be contributed to electrical, mechanical and thermal factors [6]. Electrically induced factors include operation of transformer under transients or sustainable over voltage condition, exposure to lightning surges and switching surges, or partial discharge (corona) due to poor insulation system design. On the other hand, mechanically induced factors are such as looping of the inner most windings, conductor tipping, conductor telescoping and failure of coil clamping system. Thermal induced factors include degradation of cellulose insulation of oil and insulation material of the windings. Thermal induced factors are mainly due to
  • 2. A Study Of The Root Causes Of High Failure Rate Of Distribution Transformer - A Case Study DOI : 10.9790/1813-0602021418 www.theijes.com Page 15 overload beyond transformer design capacity as result of cold load pickup (loads transformer supplies after restoration of power after prolonged power outage), failure of transformer cooling system, operating transformer in an over excited condition (under frequency) and operating under excessive ambient temperature conditions [7, 8]. MIL-STD -1629A standards clarifies transformer faults in three categories; severity, frequency and detection factors. This give rise to priority number (PN) which is defined as PN = Severity * Frequency (occurrence)*Detection (1) The minimum PN of any faults on transformer is 1 and maximum is 120. The PN for various elements of a transformer are as depicted in table 1 below [9]; Table 1: PN for various elements of a transformer (1) S/no. Failure type PN 1 Windings 6-30 2 Bushing 24-48 3 Tap-charger 28-52 4 Core 6 5 Tank 18 6 Protection system 22-64 7 Cooling system 26-48 Data sourced from MIL-STD-1629A From Table 1, is evident that protection system has the highest PN (22-64). This therefore implies lack of proper protection system contribute to high failure rate of transformer. Protection system includes poor fuse grading (over-rated fuses), lack of lightning arrestors and an ineffective earthing system. Core failure is the least cause of premature failure of distribution transformer. It is worth pointing out that bushing failure is associated with poor workmanship and O&M as is mainly caused by; i. Loosening of conductor due to vibration ii. Sudden over-voltage which cause partial discharge iii. Ingress of water at seal of the transformer iv. Not replacing old oil which may result in internal flashover Research has shown that there are various measures which may increase the expectant life and efficiency of distribution transformers (The expected life span of transformer above 100KVA is 35 years while below 100KVA is approximately 25years). These measures include [8]; adequate and good design. Transformers manufacturer in recent time have compromised both on quality and reliability. This is achieved by lack of adequate clearance for free air circulation, economical size of winding wire which cannot withstand higher current densities due to short circuit conditions, and improper use of inter-layer papers. Enhanced O&M to ensure oil level of the transformer is sufficient, clearing trees which are main source of high impedance fault, proper fuse grading and remove of condensed water in the transformer. Use of correct diversity factor to avert overloading of the transformer and avoiding two phasing in rural areas which causes unbalance current that raise potential of neutral with respect to the earth are some of the measures utility need to undertake to avert early failure of distribution transformers. It has been observed that most of transformer supplying industrial and institution are premature failing. The research carried out by R. Singh and others (2014) [8] revealed that increase of non linear loads both at industries and at institutions has resulted to high harmonic content which increases the current leading to over- load of transformers. It is worth noting winding copper losses (I2 R), the core losses and stray losses which increase significantly operating temperature of a transformer has direct proportionality with level of harmonic frequencies present. It is important to note that, average life expectancy of the transformers is directly proportional to the average life of insulating materials. On steady state power supply, harmonics and variations in frequency are the main factors that accelerated aging of insulation materials and hence premature failure of distribution transformers [9, 10, 11 and 12]. It is for this reason a study was carried out to establish the main causes of the distribution transformer in most part of the Kenya. II. METHODOLOGY Kenya Power is the main distributor of electricity in Kenya. Currently it has a customer base of 4 million. The total number of estimated installed distribution transformers across the county are forty five thousand. The failure rate of these transformers is approximated as to be 10 -12% which is far above the recommended level of 1-2%. [3]. Table 2 shows the number of transformers that failed between April 2014 to March 2016 and their suspected cause of failure.
  • 3. A Study Of The Root Causes Of High Failure Rate Of Distribution Transformer - A Case Study DOI : 10.9790/1813-0602021418 www.theijes.com Page 16 Table 2: Total number of failed transformer and suspected causes. Probable Cause of Failure April’15 May ’15 Jun ’15 Jul ’15 Aug ’15 Sep ’15 Oct ’15 Nov ’15 Dec ’15 Jan ‘16 Feb ‘16 Mar ‘16 Total ’15 LightningStrikes 35 38 19 13 20 24 23 45 41 18 17 42 368 Vandalism 42 44 43 34 25 30 26 45 31 25 30 36 526 FaultonLV System 82 93 79 59 49 51 65 102 107 86 71 69 1077 BrokenBushings 8 18 6 11 10 15 12 8 6 12 8 4 152 Burnt/BrokenRods 15 2 19 5 4 8 12 11 4 40 15 30 196 Oil Leakage 33 27 33 24 25 17 22 33 19 19 36 30 399 Accidental Damage 3 9 0 7 2 2 3 18 0 0 0 8 70 Overload 24 44 13 40 7 15 21 26 26 18 12 12 331 FailedonCommissioning 11 8 6 2 3 5 3 6 4 5 3 6 81 Internal Defects 64 13 34 15 39 20 49 21 27 43 35 33 525 Total 317 296 252 210 184 187 236 315 265 266 227 270 3725 Source: Utility IMS, Network Management Division From above Table, faults emanating from low voltage circuits were suspected to be the main cause of premature failure of distribution transformer (28.9%). The least suspected cause was accidental damage (1.9%). A random number of installation of transformers totalling 166 depicted in Table 3 were inspected to established the main contributors of failure on low voltage side of transformer. The data was collected in five regions namely Nairobi South, Mt. Kenya, Coast, Central Rift and Western regions as per Table 4 below. Table 3: Transformers sampled and ratings Rating (KVA) 25 50 100 200 315 630 1000 Total 11KV 12 22 25 40 27 1 4 131 33KV 4 9 10 8 2 2 0 35 Total 16 31 35 48 29 3 4 166 Table 4: Transformers sampled per region Region No. of transformers sampled Nairobi South 32 Western 35 Mt. Kenya 36 Central Rift 31 Coast 32 Total 166 The findings are summarized in the Table 5 below; Table 5: Findings of inspection of sampled transformers Description Yes No Total Vulnerability Surge diverter properly installed and earthed? 58 108 166 65% TX Body & metallic parts earthed properly 90 76 166 46% PME for TX (LV) properly done? 74 92 166 55% Arcing horns properly installed? 56 110 166 66% Availability of HV fuses (Expulsion fuses)? 40 126 166 76% Trace encroachment? 79 87 166 48% Poor sag along circuit? 57 109 166 34% LV fuses properly graded? 56 45 101 45% Where; PME –Protective multiple earthing, TX – Distribution Transformer, LV – Low Voltage, HV – High Voltage From the above Table 5, it is observed that most distribution transformers are exposed heavily to lightning and switching surges as more than half of all the inspected transformers were found to lack Lightning Arrestors (LAs). The report (Table 6) also showed that most of the transformers that were within 10% of the distance from end of the feeder were most affected by high failure rate. The main cause of failure is attributed by transient travelling waves that mostly originate from switching operations of the circuit breakers during Operational and Maintenance or during the line fault double in magnitude after reflection at end of the feeder. Near the Substation (Approx. 10% From Substation) In the Middle of the Feeder At End or Approx. 10% From the Terminal of the Feeder 12 21 23
  • 4. A Study Of The Root Causes Of High Failure Rate Of Distribution Transformer - A Case Study DOI : 10.9790/1813-0602021418 www.theijes.com Page 17 From Table 6, it is shown that lack of installation LAs on the HV side of transformer results in premature failure of the transformers as lightning strikes and transient travelling waves causes HV windings insulation to give in due to high surge voltages. Further, it was noted that most of the transformers arc horns were not well aligned. This was caused by poor workmanship and lack of knowledge of field marshal the purpose of the arc horns. It paramount noting that due to rampant vandalism of the earthing wire and earth rods, even properly aligned arc horns and installed surge diverters are rendered ineffective. From the investigation, a substantial number of the transformers (45%) had direct wire instead of graded fuses on the low voltage side. This caused the transformer to be overloaded for prolonged period of time due to high impedance fault (which may be caused by a tree branch touching a phase) or cold load pickup. The high current increases transformer thermal heating (losses) that raise windings and insulation oil temperature leading to decrease of the life of the transformer. The heat also accelerates the aging of cellulose of oil and hence lowering the degree of polymerization (DP) of solid insulation that provides dielectric and mechanical isolation of the windings [7]. III. CONCLUSIONS From the study the followings were concluded; i. It was noted that the failure rate of distribution transformers in Kenya is on upward trend and there is need to reverse the trend. Currently the failure rate is 10% against recommended 1-2% annually as per international standard. ii. The distribution transformers are poorly protected from switching surges, voltage spikes and line faults/ flashovers. iii. Vandalism of earthing system both for HT and LV side of the transformer expose the transformers to high voltage surges that lead to insulation breakdown resulting to early failure of the transformers iv. Reflection of travelling wave impact negatively on the transformer causing more transformer to fail prematurely due to lack of proper protection system v. Most of the distribution transformers are apparently replaced immediately without the technical personnel establishing the root cause of the problem. This has aggravated the transformer failure rate. vi. High harmonic current result to transformer overload especially triplen harmonics (that circulate within delta windings) causing HV winding insulation breakdown The authors recommend to the power utility to undertake the following measures to improve distribution transformers expectant service life and efficiency;  Avoid transformer overload by properly grading the LV fuses. Use of direct link should be avoided and discouraged. Each circuit should have independent fuses. No sharing of fuses to control more than one circuit.  Use of concrete poles with earth wire appended is recommended to deter earthing wire vandalism. Appended earth wire inside the concrete prevent vandals from accessing the earth wire hence ensuring the transformer is properly earthed both HT and LV side.  High impedance faults should be avoided by clearing flora that encroach the feeder and low voltage line wayleave. The O&M team to frequently patrol the lines especially wet area where rate of growth of trees are high. The power utility may adopt insulated cables instead of bare conductors at rural area where trees are known to be fast growing. Use of phase separators and re-sagging loosely sagging lines can avert phase clashing that causes transformer overloading.  The transformer to be properly protected by installing correct fuse rating and earthed LAs. It was observed that 76% of distribution transformer have no expulsion HT fuses hence exposing the transformer HV windings to high fault currents when a fault occurs along the feeder. REFERENCE [1]. Shayan Tang Jan, Raheel Afzal and Akif Zia Khan, Transformer Failures, Causes And Impact, International conference data mining, civil and mechanical engineering, February 2015 [2]. Shrikent S. Rajurkar, Jayant G and Amil R. Kulkan, Analysis Of Power Transformer Failure On Transmission Utilities, 16th National power system conference Dec, 2010 [3]. Ambuj Kumar, Sunil Kumar Singh and Zakir Husain, Root Cause Analysis Of Transformer Failure Scenario At Power Substation, Advances in environmental and agriculture science, 2013 [4]. William H. Bartley P.E, Failure Analysis of Transformer, The Hartford Steam Boiler Inspection and insurance Co. 2005 [5]. S.N. Singh, Electrical Power Generation, Transmission and Distribution, (New Delhi, 2007, 8th edition). [6]. Colin Bayliss and Brian hardy, Transmission And Distribution Electrical Engineering, (2008, 3rd edition) [7]. Ranjane Singh, A.S Zadgaonker and Amarjit Singh, Premature Failure Of Distribution Transformer- A Case Study, IJS&ER Vol. 5 issue 6, June 2014 [8]. Ranjane Singh, A.S Zadgaonker and Amarjit Singh, Impact Of Harmonics On Distribution Transformer Supplying A Technical Institution – A Case Study, Journal of research in electrical and electronic engineering (ISTP-JREEE), 2010
  • 5. A Study Of The Root Causes Of High Failure Rate Of Distribution Transformer - A Case Study DOI : 10.9790/1813-0602021418 www.theijes.com Page 18 [9]. IEEE C57.125, A Standard Guide For Investigating Failure, Deformation And Analysis For Power Transformer And Shunt Reactors [10]. Mohammed Addul Rahman Uzair, Mohammed Mohiuddin and Mohammed Khaja Shujauddin, Failure Analysis of Power Transformers, International Journal of Emerging Technology and Advanced Engineering, Vol. 3 Issue 9, September 2013 [11]. Jyotirmaya Ghadai and Chinmay Das, Failure of transformers due to Harmoni loads, International Journal of Electrical, Electronic and mechanical controls, Vol. 3, Issue 3, September 2014 [12]. Manish N. Siaha Patel, Parsh Shah , Maulik Dosh and Nishish B, Case Studies of the Transformers Failure Analyses, Jul 5, 2015