A* Search Algorithm
 A* Search Algorithm solved with numeric example
A* Search Algorithm solved with numeric example
A* Search Algorithm solved with numeric example
A* Search Algorithm solved with numeric example
A* Search Algorithm solved with numeric example
A* Search Algorithm solved with numeric example
A* Search Algorithm solved with numeric example
A* Search Algorithm solved with numeric example
A* Search Algorithm solved with numeric example
Heuristic Function h(n) and how to make it
Heuristic Function h(n) and how to make it
Optimality of A* Search Algorithm
 Heuristic may be:
 h(n) > actual cost
 h(n) = actual cost
 h(n) < actual cost
 (1) h(n) > actual cost [Optimum solution can be overlooked, optimum solution is not
possible]
 (2) h(n) = actual cost [Best case scenario, if h(n) approximates actual cost, searching
uses minimum of node to the goal]
 (3) h(n) < actual cost [ Admissible, Consistent Heuristics]
Optimality of A* Search Algorithm
h(n) > actual cost [Optimum solution can be overlooked, optimum solution is not
possible]
Optimality of A* Search Algorithm
h(n) > actual cost [Optimum solution can be overlooked, optimum solution is not
possible]
Optimality of A* Search Algorithm
h(n) > actual cost [Optimum solution can be overlooked, optimum solution is not
possible]
b………….> dest and cost (7+2+0=9) , or ……….>a and cost (2+9=11)
Optimality of A* Search Algorithm
h(n) > actual cost [Optimum solution can be overlooked, optimum solution is not
possible]
b………….> dest and cost (7+2+0=9) , or ……….>a and cost (2+9=11)
Actual cost from Sabdest =2+3+2=7
h(n)=10 > actual cost = 7
Optimality of A* Search Algorithm
 h(n) < actual cost, if this relation maintains for every node, then we say this
this Admissible Heuristics.
Optimality of A* Search Algorithm
Optimality of A* Search Algorithm
Optimality of A* Search Algorithm
Optimality of A* Search Algorithm
Optimality of A* Search Algorithm
If Heuristic admissible but not consistent, it may not be provided optimum solution.
For optimum solution, heuristic must be consistent. If it consistent, it must be admissible.
Optimality of A* Search Algorithm
Random Variable
 The domain

A Star search algorithm with example (num)

  • 1.
    A* Search Algorithm A* Search Algorithm solved with numeric example
  • 2.
    A* Search Algorithmsolved with numeric example
  • 3.
    A* Search Algorithmsolved with numeric example
  • 4.
    A* Search Algorithmsolved with numeric example
  • 5.
    A* Search Algorithmsolved with numeric example
  • 6.
    A* Search Algorithmsolved with numeric example
  • 7.
    A* Search Algorithmsolved with numeric example
  • 8.
    A* Search Algorithmsolved with numeric example
  • 9.
    A* Search Algorithmsolved with numeric example
  • 10.
    Heuristic Function h(n)and how to make it
  • 11.
    Heuristic Function h(n)and how to make it
  • 12.
    Optimality of A*Search Algorithm  Heuristic may be:  h(n) > actual cost  h(n) = actual cost  h(n) < actual cost  (1) h(n) > actual cost [Optimum solution can be overlooked, optimum solution is not possible]  (2) h(n) = actual cost [Best case scenario, if h(n) approximates actual cost, searching uses minimum of node to the goal]  (3) h(n) < actual cost [ Admissible, Consistent Heuristics]
  • 13.
    Optimality of A*Search Algorithm h(n) > actual cost [Optimum solution can be overlooked, optimum solution is not possible]
  • 14.
    Optimality of A*Search Algorithm h(n) > actual cost [Optimum solution can be overlooked, optimum solution is not possible]
  • 15.
    Optimality of A*Search Algorithm h(n) > actual cost [Optimum solution can be overlooked, optimum solution is not possible] b………….> dest and cost (7+2+0=9) , or ……….>a and cost (2+9=11)
  • 16.
    Optimality of A*Search Algorithm h(n) > actual cost [Optimum solution can be overlooked, optimum solution is not possible] b………….> dest and cost (7+2+0=9) , or ……….>a and cost (2+9=11) Actual cost from Sabdest =2+3+2=7 h(n)=10 > actual cost = 7
  • 17.
    Optimality of A*Search Algorithm  h(n) < actual cost, if this relation maintains for every node, then we say this this Admissible Heuristics.
  • 18.
    Optimality of A*Search Algorithm
  • 19.
    Optimality of A*Search Algorithm
  • 20.
    Optimality of A*Search Algorithm
  • 21.
    Optimality of A*Search Algorithm
  • 22.
    Optimality of A*Search Algorithm If Heuristic admissible but not consistent, it may not be provided optimum solution. For optimum solution, heuristic must be consistent. If it consistent, it must be admissible.
  • 23.
    Optimality of A*Search Algorithm
  • 24.