This document reviews the use of deep learning techniques for medical image analysis. It discusses how deep learning networks like convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have been widely and successfully used for tasks involving medical image identification, segmentation, and classification. The document then summarizes several specific applications of deep learning to areas like brain tumor detection and chronic kidney disease identification. It also reviews literature on deep learning methods that have achieved high accuracy in analyzing medical images for conditions such as traumatic brain injuries, brain tumors, and predicting stroke risk.