Решение задач потеме
« »
Теорема Пифагора
:
Цели урока
Закрепить знание
теоремы Пифагора и
,
теоремы обратной
теореме Пифагора
Совершенствовать
навыки решения
задач на
применение
теоремы Пифагора и
теоремы обратной к
теореме Пифагора
2.
Сформулируйте теоремуПифагора
В прямоугольном треугольнике квадрат
гипотенузы равен сумме квадратов катетов
,
Сформулируйте теорему обратную теореме
Пифагора
Если в треугольнике квадрат одной из его
сторон равен сумме квадратов двух других
,
сторон то этот треугольник является
прямоугольным
Задачи на готовых
:
чертежах
:
Дано
ABCD– параллелограмм
:
Найти CD
1
Задача
:
Решение
BE=AE, так как угол A = 45 градусов. Треугольник ABE - прямоугольный
AB = CD, так как ABCD – параллелограмм
6.
Задачи на готовых
:
чертежах
Задача2
:
Дано
DE||AC
:
Найти AC
:
Решение
Угол BDE равен углу BAC – как
односторонние при DE||AC
и секущей BA
Треугольник DBE – ,
прямоугольный
:
следовательно
1 :
й способ DE – средняя линия
треугольника ABC,AC=2DE=16
2 :
й способ по теореме Фалеса BE=EC=10,
,
тогда по теореме обратной теореме
:
Пифагора
7.
Задачи на готовых
:
чертежах
Задача3 :
Найти CB,AB,AC
:
Решение
Из треугольника DBC:
CB=2DC=8, так как DC – катет лежащий
30
против угла в градусов
Угол DBA = 90 – 30 = 60
Из треугольника ABD :
AB=2DB= , так как DB – катет
30
лежащий против угла в градусов
AC=AD+DC=12+4=16
8.
:
Задачи практического характера
1
Задача
5.
Лестница длинной м приставлена к стене
3
Нижний конец стоит на расстоянии м от
.
стены На какой высоте находится верхний
?
конец лестницы