This document summarizes a study on using wavelet transforms to detect and separate artifacts in EEG signals. The study aimed to minimize artifacts and noise in EEG signals without affecting the original signal. Wavelet transforms were found to be effective for analyzing non-stationary EEG signals. The results showed that wavelet transforms significantly reduced input size without compromising performance. Decomposing EEG signals using wavelet transforms extracted different frequency bands and resolved signals at different resolutions. This allowed artifacts and noise to be detected and the original signal to be recovered. Simulation results demonstrated the wavelet transform's ability to denoise EEG signals and extract key frequency components.