1
3D Printing with Novel Materials
Production, Processing & Performance
Michael Petch – Black Dog Consulting
Inside 3D Printing Conference, Paris. 26th May 2016
michael@michaelpetch.com
@michaellpetch
2
10
CERAMICS:
FUTURE?
11
GRAPHENE:
WHAT?
03
ABOUT ME
04
MATERIAL
DISCOVERY
.
05
LONG TERM
STRATEGY
06
CERAMICS:
WHAT?
07
CERAMICS:
MATERIALS
14
GRAPHENE:
PROCESSING
15
GRAPHENE:
PERFORMANCE
16
GRAPHENE:
FUTURE?
17
OTHER MATERIALS
agenda
3D PRINTING & NOVEL MATERIALS
08
CERAMICS:
PROCESSING
09
CERAMICS:
PERFORMANCE
12/13
GRAPHITE/GRAPHENE:
PRODUCTION
18
QUESTIONS
3
MICHAEL PETCH
Author, analyst, & consultant.
Image Credit: Gyges 3D
4
Material Discovery & Development
1886
Aluminium
$1,200 / kg
2016
Aluminium
$2 / kg.
2015
US 100%
reliant on
imports for 19
critical
minerals
Image Credits: AP Photo, UT Library, Compound Chem, US Geological Survey.
Smartphones
contain half
elements in
periodic table.
Av. Life = 3
years (Bakker,
2014)
5
“Over the long term, actions to increase resiliency
may include the development of new methods of
extraction, processing, and manufacturing that
promote the efficient use of materials; increased
recovery of materials from waste and scrap; and
research and development of alternative materials
and new product designs to reduce
the demand for limited materials.”
Testimony to Senate Energy and Natural Resources
Committee on May 12, 2015 by Richard Silberglitt,
RAND
6Ceramics: What?
Image Credits: Petr Novak Wikipedia , Engineering Civil, Empa
50% of everything made this year will be made from ceramics (Purnell, 2013)
Post-hard machining incurs up to 80% of the overall manufacturing costs of a ceramic product (Travitzky et al.,
2014)
7
Ceramics: Materials
Ceramics vs Fine / Advanced Ceramics
Chart Data Source: Fine Ceramics World
Ceramic paste
Ceramic powder
Liquid binder (for binder jet)
Photo-curing ceramic composite resin
Preceramic paper
Materials for AM
SiC preceramic paper for
LOM
(Travizky, 2014)
UV curable monomers &
UV photo initiator.
(Schaedler et al., 2016)
8Ceramics: Processing
Image Credits: Laurens van Lieshout, Sandia National Laboratories/Randy Montoya, Heraclitus by Hendrick ter
Brugghen, HRL Laboratories LLC, Schaedler et al., 2016.
AM techniques for working with ceramics.
1 Foil supply. 2 Heated roller. 3
Laser beam. 4. Scanning prism. 5
Laser unit. 6 Layers. 7 Moving
platform. 8 Waste.
Laminated Object
Manufacturing with
preceramic paper
Robocasting with
hydrogels & ceramic
slurries
UV Stereolithography
with silicon oxycarbide
9Ceramics: Performance
Image Credits: Özkol et al., 2012, Feilden et al., 2016, Schaedler et al., 2016, HRL Laboratories/Dan Little, General
Electric GE9X , Joannopoulos et al., 2011.
Biomedical, aerospace, electronics & semiconductors.
Complex geometry, low porosity, high strength & thermal resistance.
10Ceramics: Future?
Image Credits: NASA, Carpenter, J.
11Graphene: What?
Image Credits: Nobel Museum, Alexander AIUS, Tian et al. 2006, Novoselov & Geim: Roadmap for Graphene
2015.
A two-dimensional, atomic scale, monolayer, polyaromatic hydrocarbon.
A single sheet of graphite.
12
Graphite: Production
Graphite demand to increase by 200% within 4
years.*
Image Credit: USGS, 2016, *Benchmark Mineral Intelligence
China: 72% installed capacity worldwide, 55% total
flake graphite production.
3 ton natural flake
graphite
=
1 ton spheroidal graphite
800 million tons
=
World recoverable
graphite
13
Graphene: Production
Graphite must be intercalated to render it
susceptible to exfoliation.
Image Credit: Garg et al., 2014, Ben Mills
Sulfuric acid
Potassium
permangate
Sodium nitrate
Potassium
persulfate
Phosphorus
pentoxide
1. Oxidation of graphite
Brodie Method (1859)
Hummers Method (1958)
Modified Hummers (Kovtyukhova, 1999 &
Tour, 2010)
2. Exfoliation 3. Reduction 4. Dispersal or
Nanocomposite
14Graphene: Processing
Image Credits: Griffiths, 2015, Dul et al. 2016, Jabari & Toyserkani, 2015.
AM & fabrication techniques for working with graphene.
“Gbot” UV curable 3D
printable graphene ink
Extrusion with
thermoplastic polymer
nanocomposite (PNG)
Aerosol jet printing for
graphene interconnects
15Graphene: Performance
Image Credits: Zhu et al., 2015, Zhu et al., 2016, Hersam et al., 2015
Super capacitors, electronic & biomedical applications
16Graphene: Future?
Image Credits: Nokia, Volvo, Columbia University, Pacific Water
17Other Materials & Applications
Image Credits: Molybdenum, John Rogers, Wuhan National Laboratory for Optoelectronics, Drexler & Pamlin,
2013
18
References
Ashby, M. F. (2005). Materials selection in mechanical design. MRS Bull,30(12), 995.
Ashby, M. F. (2012). Materials and the environment: eco-informed material choice. Elsevier.
Bach, C., & Eggenschwiler, P. D. (2011). Ceramic foam catalyst substrates for diesel oxidation catalysts: Pollutant
conversion and operational issues(No. 2011-24-0179). SAE Technical Paper.
Benchmark Mineral Intelligence. (2016, March 23). Chart: Flake graphite capacity utilisation drops below 50% |
Benchmark Minerals. Retrieved from http://benchmarkminerals.com/Blog/chart-flake-graphite-capacity-utilisation-
drops-below-50/
Brodie Method of Oxidizing Graphite (1859) in Staudenmaier, L. (1898). Verfahren zur darstellung der
graphitsäure. Berichte der deutschen chemischen Gesellschaft, 31(2), 1481-1487.
Brown, T. J., Idoine, N., Raycraft, E. R., Shaw, R. A., Deady, E. A., Rippingale, J., ... & Rodley, J. (2014). World
mineral production 2008-12. British Geological Survey.
Bakker, C., den Hollander, M., van Hinte, E., & Zijlstra, Y. (2014). Products that Last: Product Design for Circular
Business Models. TU Delft Library.
19
References
Ball, P. (1999). Made to measure: New materials for the 21st century. Princeton University Press.
Crowley, C., Birchall, M., & Seifalian, A. M. (2015). Trachea transplantation: from laboratory to patient. Journal of
tissue engineering and regenerative medicine, 9(4), 357-367.
Deckers, J., Vleugels, J., & Kruth, J. P. (2014). Additive manufacturing of ceramics: A review. J. Ceram. Sci.
Technol, 5(4), 245-260.
Drexler, K. E. (2013). Radical abundance: How a revolution in nanotechnology will change civilization. PublicAffairs.
Dul, S., Fambri, L., & Pegoretti, A. (2016). Fused deposition modelling with ABS–graphene
nanocomposites. Composites Part A: Applied Science and Manufacturing, 85, 181-191.
Eckel, Z. C., Zhou, C., Martin, J. H., Jacobsen, A. J., Carter, W. B., & Schaedler, T. A. (2016). Additive manufacturing
of polymer-derived ceramics.Science, 351(6268), 58-62.
Feilden, E., Blanca, E. G. T., Giuliani, F., Saiz, E., & Vandeperre, L. (2016). Robocasting of structural ceramic parts
with hydrogel inks. Journal of the European Ceramic Society, 36(10), 2525-2533.
20
References
Galvez, M. E., Martinez, I., Beyssac, O., Benzerara, K., Agrinier, P., & Assayag, N. (2013). Metasomatism and
graphite formation at a lithological interface in Malaspina (Alpine Corsica, France). Contributions to Mineralogy and
Petrology, 166(6), 1687-1708.
Garg, B., Bisht, T., & Ling, Y. C. (2014). Graphene-based nanomaterials as heterogeneous acid catalysts: a
comprehensive perspective. Molecules,19(9), 14582-14614.
Griffiths, L. (2015, October 9). 3D Printing With Graphene - A Material for the 21st Century - TCT Magazine.
Retrieved May 10, 2016, from http://www.tctmagazine.com/3D-printing-news/3d-printing-with-graphene-a-material-
for-the-21st-century/
Hench, L. L. (2006). The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 17(11), 967-978.
Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide.Journal of the American Chemical
Society, 80(6), 1339-1339.
Jabari, E. , & Toyserkani, E. (2015). Micro-scale aerosol-jet printing of graphene interconnects. Carbon, 91, 321-
329.
Jakus, A. E., Secor, E. B., Rutz, A. L., Jordan, S. W., Hersam, M. C., & Shah, R. N. (2015). Three-dimensional
21
References
Joannopoulos, J. D., Johnson, S. G., Winn, J. N., & Meade, R. D. (2011).Photonic crystals: molding the flow of light.
Princeton university press.
Kirihara, S. (2015). Stereolithography of ceramic components: fabrication of photonic crystals with diamond
structures for terahertz wave modulation.Journal of the Ceramic Society of Japan, 123(1441), 816-822.
Kovtyukhova, N. I., Ollivier, P. J., Martin, B. R., Mallouk, T. E., Chizhik, S. A., Buzaneva, E. V., & Gorchinskiy, A. D.
(1999). Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and
polycations. Chemistry of Materials, 11(3), 771-778.
Macfarlane, A., & Martin, G. (2011). The glass bathyscaphe: how glass changed the world. Profile Books.
“Materials Genome Initiative Strategic Plan” ( National Science and Technology Council, Washington, DC, 2014 ),
available at http://acceleratornetwork.org/wp-uploads/2015/01/mgi_strategic_plan_-_dec_2014.pdf (accessed May
2016)
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. A., ... & Firsov, A. A. (2004). Electric
field effect in atomically thin carbon films. science, 306(5696), 666-669.
Novoselov, K. S., Geim, A. K., Ferrari, A. C., Bonaccorso, F., Fal'Ko, V., Roche, S., Bøggild, P., ... & Garrido, J. A.
22
References
Özkol, E., Zhang, W., Ebert, J., & Telle, R. (2012). Potentials of the “Direct inkjet printing” method for manufacturing
3Y-TZP based dental restorations.Journal of the European Ceramic Society, 32(10), 2193-2201.
Pezzotti, G., Bock, R. M., McEntire, B. J., Jones, E., Boffelli, M., Zhu, W., ... & Yamamoto, T. (2016). Silicon Nitride
Bioceramics Induce Chemically Driven Lysis in Porphyromonas gingivalis. Langmuir, 32(12), 3024-3035.
Purnell, P. (2013). The carbon footprint of reinforced concrete. Advances in Cement Research, 25(6), 362-368.
Robocasting: New Way To Fabricate Ceramics". Sandia.gov. N.p., 2016. Web. 10 May 2016.
Robocasting.net. “About” N.p., 2016. Web. 10 May 2016.
Royal Swedish Academy of Sciences. (2010, October 5). The 2010 Nobel Prize in Physics - Press Release.
Retrieved from http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/press.html
Saha, A., Raj, R., & Williamson, D. L. (2006). A Model for the Nanodomains in Polymer‐Derived SiCO. Journal of the
American Ceramic Society, 89(7), 2188-2195.
23
References
Schleunitz, A., Klein, J. J., Houbertz, R., Vogler, M., & Gruetzner, G. (2015, April). Towards high-precision
manufacturing of 3D optical components using UV-curable hybrid polymers. In SPIE OPTO (pp. 93680E-93680E).
International Society for Optics and Photonics.
Teobaldi, G., Ohnishi, H., Tanimura, K., & Shluger, A. L. (2010). The effect of van der Waals interactions on the
properties of intrinsic defects in graphite.Carbon, 48(14), 4145-4161.
Tian, Y., Pesika, N., Zeng, H., Rosenberg, K., Zhao, B., McGuiggan, P., ... & Israelachvili, J. (2006). Adhesion and
friction in gecko toe attachment and detachment. Proceedings of the National Academy of Sciences, 103(51),
19320-19325.
Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved
synthesis of graphene oxide. ACS nano,4(8), 4806-4814.
Travitzky, N., Bonet, A., Dermeik, B., Fey, T., Filbert‐Demut, I., Schlier, L., ... & Greil, P. (2014). Additive
Manufacturing of Ceramic‐Based Materials.Advanced Engineering Materials, 16(6), 729-754.
U.S. Geological Survey, 2016, Mineral commodity summaries 2016: U.S. Geological Survey, 202 p.,
http://dx.doi.org/10.3133/70140094.
24
References
Zhou, F., Cao, W., Dong, B., Reissman, T., Zhang, W., & Sun, C. (2016). Additive Manufacturing of a 3D Terahertz
Gradient‐Refractive Index Lens.Advanced Optical Materials.
Zhu, C., Han, T. Y. J., Duoss, E. B., Golobic, A. M., Kuntz, J. D., Spadaccini, C. M., & Worsley, M. A. (2015). Highly
compressible 3D periodic graphene aerogel microlattices. Nature communications, 6.
Zhu, C., Liu, T., Qian, F., Han, T. Y. J., Duoss, E. B., Kuntz, J. D., ... & Li, Y. (2016). Supercapacitors based on 3D
hierarchical graphene aerogels with periodic macropores. Nano letters.

Innorobo 2016 I3DP - 3D Printing with Novel Materials Production, Processing & Performance

  • 1.
    1 3D Printing withNovel Materials Production, Processing & Performance Michael Petch – Black Dog Consulting Inside 3D Printing Conference, Paris. 26th May 2016 michael@michaelpetch.com @michaellpetch
  • 2.
  • 3.
    3 MICHAEL PETCH Author, analyst,& consultant. Image Credit: Gyges 3D
  • 4.
    4 Material Discovery &Development 1886 Aluminium $1,200 / kg 2016 Aluminium $2 / kg. 2015 US 100% reliant on imports for 19 critical minerals Image Credits: AP Photo, UT Library, Compound Chem, US Geological Survey. Smartphones contain half elements in periodic table. Av. Life = 3 years (Bakker, 2014)
  • 5.
    5 “Over the longterm, actions to increase resiliency may include the development of new methods of extraction, processing, and manufacturing that promote the efficient use of materials; increased recovery of materials from waste and scrap; and research and development of alternative materials and new product designs to reduce the demand for limited materials.” Testimony to Senate Energy and Natural Resources Committee on May 12, 2015 by Richard Silberglitt, RAND
  • 6.
    6Ceramics: What? Image Credits:Petr Novak Wikipedia , Engineering Civil, Empa 50% of everything made this year will be made from ceramics (Purnell, 2013) Post-hard machining incurs up to 80% of the overall manufacturing costs of a ceramic product (Travitzky et al., 2014)
  • 7.
    7 Ceramics: Materials Ceramics vsFine / Advanced Ceramics Chart Data Source: Fine Ceramics World Ceramic paste Ceramic powder Liquid binder (for binder jet) Photo-curing ceramic composite resin Preceramic paper Materials for AM SiC preceramic paper for LOM (Travizky, 2014) UV curable monomers & UV photo initiator. (Schaedler et al., 2016)
  • 8.
    8Ceramics: Processing Image Credits:Laurens van Lieshout, Sandia National Laboratories/Randy Montoya, Heraclitus by Hendrick ter Brugghen, HRL Laboratories LLC, Schaedler et al., 2016. AM techniques for working with ceramics. 1 Foil supply. 2 Heated roller. 3 Laser beam. 4. Scanning prism. 5 Laser unit. 6 Layers. 7 Moving platform. 8 Waste. Laminated Object Manufacturing with preceramic paper Robocasting with hydrogels & ceramic slurries UV Stereolithography with silicon oxycarbide
  • 9.
    9Ceramics: Performance Image Credits:Özkol et al., 2012, Feilden et al., 2016, Schaedler et al., 2016, HRL Laboratories/Dan Little, General Electric GE9X , Joannopoulos et al., 2011. Biomedical, aerospace, electronics & semiconductors. Complex geometry, low porosity, high strength & thermal resistance.
  • 10.
  • 11.
    11Graphene: What? Image Credits:Nobel Museum, Alexander AIUS, Tian et al. 2006, Novoselov & Geim: Roadmap for Graphene 2015. A two-dimensional, atomic scale, monolayer, polyaromatic hydrocarbon. A single sheet of graphite.
  • 12.
    12 Graphite: Production Graphite demandto increase by 200% within 4 years.* Image Credit: USGS, 2016, *Benchmark Mineral Intelligence China: 72% installed capacity worldwide, 55% total flake graphite production. 3 ton natural flake graphite = 1 ton spheroidal graphite 800 million tons = World recoverable graphite
  • 13.
    13 Graphene: Production Graphite mustbe intercalated to render it susceptible to exfoliation. Image Credit: Garg et al., 2014, Ben Mills Sulfuric acid Potassium permangate Sodium nitrate Potassium persulfate Phosphorus pentoxide 1. Oxidation of graphite Brodie Method (1859) Hummers Method (1958) Modified Hummers (Kovtyukhova, 1999 & Tour, 2010) 2. Exfoliation 3. Reduction 4. Dispersal or Nanocomposite
  • 14.
    14Graphene: Processing Image Credits:Griffiths, 2015, Dul et al. 2016, Jabari & Toyserkani, 2015. AM & fabrication techniques for working with graphene. “Gbot” UV curable 3D printable graphene ink Extrusion with thermoplastic polymer nanocomposite (PNG) Aerosol jet printing for graphene interconnects
  • 15.
    15Graphene: Performance Image Credits:Zhu et al., 2015, Zhu et al., 2016, Hersam et al., 2015 Super capacitors, electronic & biomedical applications
  • 16.
    16Graphene: Future? Image Credits:Nokia, Volvo, Columbia University, Pacific Water
  • 17.
    17Other Materials &Applications Image Credits: Molybdenum, John Rogers, Wuhan National Laboratory for Optoelectronics, Drexler & Pamlin, 2013
  • 18.
    18 References Ashby, M. F.(2005). Materials selection in mechanical design. MRS Bull,30(12), 995. Ashby, M. F. (2012). Materials and the environment: eco-informed material choice. Elsevier. Bach, C., & Eggenschwiler, P. D. (2011). Ceramic foam catalyst substrates for diesel oxidation catalysts: Pollutant conversion and operational issues(No. 2011-24-0179). SAE Technical Paper. Benchmark Mineral Intelligence. (2016, March 23). Chart: Flake graphite capacity utilisation drops below 50% | Benchmark Minerals. Retrieved from http://benchmarkminerals.com/Blog/chart-flake-graphite-capacity-utilisation- drops-below-50/ Brodie Method of Oxidizing Graphite (1859) in Staudenmaier, L. (1898). Verfahren zur darstellung der graphitsäure. Berichte der deutschen chemischen Gesellschaft, 31(2), 1481-1487. Brown, T. J., Idoine, N., Raycraft, E. R., Shaw, R. A., Deady, E. A., Rippingale, J., ... & Rodley, J. (2014). World mineral production 2008-12. British Geological Survey. Bakker, C., den Hollander, M., van Hinte, E., & Zijlstra, Y. (2014). Products that Last: Product Design for Circular Business Models. TU Delft Library.
  • 19.
    19 References Ball, P. (1999).Made to measure: New materials for the 21st century. Princeton University Press. Crowley, C., Birchall, M., & Seifalian, A. M. (2015). Trachea transplantation: from laboratory to patient. Journal of tissue engineering and regenerative medicine, 9(4), 357-367. Deckers, J., Vleugels, J., & Kruth, J. P. (2014). Additive manufacturing of ceramics: A review. J. Ceram. Sci. Technol, 5(4), 245-260. Drexler, K. E. (2013). Radical abundance: How a revolution in nanotechnology will change civilization. PublicAffairs. Dul, S., Fambri, L., & Pegoretti, A. (2016). Fused deposition modelling with ABS–graphene nanocomposites. Composites Part A: Applied Science and Manufacturing, 85, 181-191. Eckel, Z. C., Zhou, C., Martin, J. H., Jacobsen, A. J., Carter, W. B., & Schaedler, T. A. (2016). Additive manufacturing of polymer-derived ceramics.Science, 351(6268), 58-62. Feilden, E., Blanca, E. G. T., Giuliani, F., Saiz, E., & Vandeperre, L. (2016). Robocasting of structural ceramic parts with hydrogel inks. Journal of the European Ceramic Society, 36(10), 2525-2533.
  • 20.
    20 References Galvez, M. E.,Martinez, I., Beyssac, O., Benzerara, K., Agrinier, P., & Assayag, N. (2013). Metasomatism and graphite formation at a lithological interface in Malaspina (Alpine Corsica, France). Contributions to Mineralogy and Petrology, 166(6), 1687-1708. Garg, B., Bisht, T., & Ling, Y. C. (2014). Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective. Molecules,19(9), 14582-14614. Griffiths, L. (2015, October 9). 3D Printing With Graphene - A Material for the 21st Century - TCT Magazine. Retrieved May 10, 2016, from http://www.tctmagazine.com/3D-printing-news/3d-printing-with-graphene-a-material- for-the-21st-century/ Hench, L. L. (2006). The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 17(11), 967-978. Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide.Journal of the American Chemical Society, 80(6), 1339-1339. Jabari, E. , & Toyserkani, E. (2015). Micro-scale aerosol-jet printing of graphene interconnects. Carbon, 91, 321- 329. Jakus, A. E., Secor, E. B., Rutz, A. L., Jordan, S. W., Hersam, M. C., & Shah, R. N. (2015). Three-dimensional
  • 21.
    21 References Joannopoulos, J. D.,Johnson, S. G., Winn, J. N., & Meade, R. D. (2011).Photonic crystals: molding the flow of light. Princeton university press. Kirihara, S. (2015). Stereolithography of ceramic components: fabrication of photonic crystals with diamond structures for terahertz wave modulation.Journal of the Ceramic Society of Japan, 123(1441), 816-822. Kovtyukhova, N. I., Ollivier, P. J., Martin, B. R., Mallouk, T. E., Chizhik, S. A., Buzaneva, E. V., & Gorchinskiy, A. D. (1999). Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials, 11(3), 771-778. Macfarlane, A., & Martin, G. (2011). The glass bathyscaphe: how glass changed the world. Profile Books. “Materials Genome Initiative Strategic Plan” ( National Science and Technology Council, Washington, DC, 2014 ), available at http://acceleratornetwork.org/wp-uploads/2015/01/mgi_strategic_plan_-_dec_2014.pdf (accessed May 2016) Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. A., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669. Novoselov, K. S., Geim, A. K., Ferrari, A. C., Bonaccorso, F., Fal'Ko, V., Roche, S., Bøggild, P., ... & Garrido, J. A.
  • 22.
    22 References Özkol, E., Zhang,W., Ebert, J., & Telle, R. (2012). Potentials of the “Direct inkjet printing” method for manufacturing 3Y-TZP based dental restorations.Journal of the European Ceramic Society, 32(10), 2193-2201. Pezzotti, G., Bock, R. M., McEntire, B. J., Jones, E., Boffelli, M., Zhu, W., ... & Yamamoto, T. (2016). Silicon Nitride Bioceramics Induce Chemically Driven Lysis in Porphyromonas gingivalis. Langmuir, 32(12), 3024-3035. Purnell, P. (2013). The carbon footprint of reinforced concrete. Advances in Cement Research, 25(6), 362-368. Robocasting: New Way To Fabricate Ceramics". Sandia.gov. N.p., 2016. Web. 10 May 2016. Robocasting.net. “About” N.p., 2016. Web. 10 May 2016. Royal Swedish Academy of Sciences. (2010, October 5). The 2010 Nobel Prize in Physics - Press Release. Retrieved from http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/press.html Saha, A., Raj, R., & Williamson, D. L. (2006). A Model for the Nanodomains in Polymer‐Derived SiCO. Journal of the American Ceramic Society, 89(7), 2188-2195.
  • 23.
    23 References Schleunitz, A., Klein,J. J., Houbertz, R., Vogler, M., & Gruetzner, G. (2015, April). Towards high-precision manufacturing of 3D optical components using UV-curable hybrid polymers. In SPIE OPTO (pp. 93680E-93680E). International Society for Optics and Photonics. Teobaldi, G., Ohnishi, H., Tanimura, K., & Shluger, A. L. (2010). The effect of van der Waals interactions on the properties of intrinsic defects in graphite.Carbon, 48(14), 4145-4161. Tian, Y., Pesika, N., Zeng, H., Rosenberg, K., Zhao, B., McGuiggan, P., ... & Israelachvili, J. (2006). Adhesion and friction in gecko toe attachment and detachment. Proceedings of the National Academy of Sciences, 103(51), 19320-19325. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano,4(8), 4806-4814. Travitzky, N., Bonet, A., Dermeik, B., Fey, T., Filbert‐Demut, I., Schlier, L., ... & Greil, P. (2014). Additive Manufacturing of Ceramic‐Based Materials.Advanced Engineering Materials, 16(6), 729-754. U.S. Geological Survey, 2016, Mineral commodity summaries 2016: U.S. Geological Survey, 202 p., http://dx.doi.org/10.3133/70140094.
  • 24.
    24 References Zhou, F., Cao,W., Dong, B., Reissman, T., Zhang, W., & Sun, C. (2016). Additive Manufacturing of a 3D Terahertz Gradient‐Refractive Index Lens.Advanced Optical Materials. Zhu, C., Han, T. Y. J., Duoss, E. B., Golobic, A. M., Kuntz, J. D., Spadaccini, C. M., & Worsley, M. A. (2015). Highly compressible 3D periodic graphene aerogel microlattices. Nature communications, 6. Zhu, C., Liu, T., Qian, F., Han, T. Y. J., Duoss, E. B., Kuntz, J. D., ... & Li, Y. (2016). Supercapacitors based on 3D hierarchical graphene aerogels with periodic macropores. Nano letters.