PRESENTED BY!
#C2C14!
Using Account-Level Buying Signals and
Predictive Analytics to Score Leads!
Brian Kardon!
CMO!
Lattice Engines!
#C2C14!
#C2C14!
Stock price: from $13 to $35!Forrester	
  stock	
  went	
  from	
  $13	
  to	
  $34	
  per	
  share	
  
#C2C14!
#C2C14!
About Brian Kardon …!
!
CMO !
CMO!
CMO !
CMO !
Partner !
!
@bkardon!
5	
  
#C2C14!
From	
  Art	
  to	
  Science	
  …	
  
Tradi<onal	
  Marke<ng	
   “Modern”	
  Marke<ng”	
   “Predic<ve”	
  Marke<ng	
  and	
  Selling	
  
#C2C14!
Doing all the right things …!
§  Marke<ng	
  automa<on	
  
§  Sales	
  force	
  automa<on	
  
§  Lead	
  nurturing	
  
§  Lead	
  scoring	
  
§  Personas	
  
§  SLAs	
  in	
  place	
  
§  Great	
  marke<ng	
  team	
  
§  Awesome	
  Sales	
  team	
  
94%	
  of	
  your	
  
Marke<ng-­‐Qualified	
  Leads	
  
(MQLs)	
  
will	
  never	
  close	
  
#C2C14!
What’s wrong here?!
§  94% of all Marketing Qualified Leads will never close1!
!
§  52% of sales reps in US did not make quota last year2!
!
§  Sales reps spend 68% of their time on administration
and preparation, not speaking with customers3!
______________________________________	
  
Source:	
  1	
  Sirius	
  Decisions;	
  2	
  CSO	
  Insights;	
  	
  3	
  IDC	
  
What is the pattern?!
Then!
Radio!
Cable TV!
Taxi!
Bookstore!
Hotels!
Thermostat!
Now!
Pandora!
Netflix!
Uber!
Amazon!
Airbnb!
Nest!
#C2C14!
§  Purchases!
§  Items you have added to cart, but abandoned!
§  “Dwell” times!
§  Product ratings !
§  Address!
§  What your neighbors buy!
§  Birthday!
§  Sizes: yours + family + friends!
§  If you are cheating on your partner!!
#C2C14!
$4.95
In Stock
#C2C14!
35%	
  
#C2C14!Proprietary	
  &	
  Confiden<al	
   13	
  
#C2C14!Proprietary	
  &	
  Confiden<al	
   14	
  
#C2C14!
Source! Selected	
  A,ributes!
Marke<ng	
  Automa<on! Contact	
  name,	
  <tle,	
  company,	
  open	
  rates,	
  unsubscribes,	
  web	
  
visits,	
  pages	
  visited,	
  lead	
  score,	
  video	
  views,	
  downloads"
CRM	
  System! Company,	
  contact	
  informa<on,	
  win/loss,	
  deal	
  value"
Product	
  Usage	
  Logs! Features	
  used,	
  logins,	
  session	
  length,	
  collabora<on"
Purchase	
  History! Products	
  purchased,	
  prices	
  paid,	
  discounts,	
  contract	
  terms"
Customer	
  Support	
  History! Complains,	
  resolu<ons"
Public	
  Websites! Job	
  pos<ngs,	
  grants,	
  li<ga<on,	
  patents,	
  contracts,	
  loca<ons.	
  
growth"
Company	
  Websites! Language(s),	
  products,	
  shopping	
  cart,	
  execu<ve	
  team	
  profiles"
Social	
  Websites! Company	
  and	
  personal	
  profiles,	
  likes,	
  comments,	
  updates,	
  
friends/connec<ons/followers,	
  usage"
Media! News	
  ar<cles	
  and	
  stories,	
  product	
  launches,	
  announcements,	
  
press	
  releases,	
  li<ga<on"
Private	
  Databases! Credit	
  ra<ngs,	
  financial	
  history,	
  construc<on	
  permits/starts,	
  
deployed	
  technologies"
#C2C14! 16	
  Proprietary	
  &	
  Confiden<al	
  
Algorithmic	
  trading	
  has	
  replaced	
  human	
  trading.	
  	
  	
  
#C2C14! 17	
  Proprietary	
  &	
  Confiden<al	
  
Who	
  is	
  the	
  Jeopardy	
  player	
  in	
  the	
  middle?	
  
#C2C14!
#C2C14!
What is a predictive attribute?!
#C2C14!
#C2C14!
Finding the Trigger …!
Category	
   Predic5ve	
  Trigger	
  
Likelihood	
  to	
  
Convert	
  from	
  
MQL	
  to	
  SQL	
  
Foreign	
  Exchange	
  Services	
   New	
  office	
  opened	
  overseas	
   5x	
  
Switches	
  &	
  Routers	
   New	
  lease	
  is	
  signed	
   3x	
  
Marke5ng	
  SoFware	
   Spike	
  in	
  social	
  media	
  ac<vity	
   3x	
  
Financial	
  SoFware	
  
New	
  CFO	
  hired	
  who	
  previously	
  
bought	
  from	
  you	
   8x	
  
0%	
  
5%	
  
10%	
  
15%	
  
20%	
  
25%	
  
30%	
  
35%	
  
40%	
  
0	
   1,000	
   2,000	
   3,000	
   4,000	
   5,000	
   6,000	
   7,000	
  
Purchase	
  Probability	
  
Accounts	
  
Average	
  
	
  20%	
  	
   	
  40%	
  	
   	
  60%	
  	
   	
  80%	
  	
   	
  100%	
  	
  
Predic5ve	
  Targe5ng	
  
	
  
	
  0%	
  	
  
22"
Business	
  
Banking	
  
Example	
  
0%	
  
5%	
  
10%	
  
15%	
  
20%	
  
25%	
  
30%	
  
35%	
  
40%	
  
0	
   1,000	
   2,000	
   3,000	
   4,000	
   5,000	
   6,000	
   7,000	
  
Purchase	
  Probability	
  
Accounts	
  
Predicted	
  
Average	
  
Predic5ve	
  Targe5ng	
  
Accounts	
  Likely	
  to	
  Have	
  	
  Specific	
  Financial	
  Service	
  Need	
  in	
  Next	
  90	
  Days	
  
	
  20%	
  	
   	
  40%	
  	
   	
  60%	
  	
   	
  80%	
  	
   	
  100%	
  	
  	
  0%	
  	
  
Highest	
  Probability	
  
Segment	
  
23"
0%	
  
5%	
  
10%	
  
15%	
  
20%	
  
25%	
  
30%	
  
35%	
  
40%	
  
0	
   1,000	
   2,000	
   3,000	
   4,000	
   5,000	
   6,000	
   7,000	
  
Purchase	
  Probability	
  
Accounts	
  
Predicted	
  
Average	
  
Predic5ve	
  Targe5ng	
  
	
  
	
  20%	
  	
   	
  40%	
  	
   	
  60%	
  	
   	
  80%	
  	
   	
  100%	
  	
  	
  0%	
  	
  
Companies	
  with	
  the	
  following	
  condi5ons…	
  
	
  
"   Balance	
  of	
  Trade	
  Change	
  
Business	
  has	
  experienced	
  >100%	
  increase	
  in	
  balance	
  of	
  
trade	
  with	
  Canada,	
  China	
  or	
  Mexico	
  in	
  the	
  past	
  30	
  days	
  
	
  
"   Recent	
  Hire	
  of	
  Finance	
  Execu5ve	
  
Business	
  has	
  hired	
  a	
  Chief	
  Financial	
  Officer	
  or	
  senior	
  
controller	
  within	
  the	
  past	
  ninety	
  (90)	
  days	
  
	
  
"   >30%	
  Increase	
  in	
  Search	
  Adver5sing	
  in	
  the	
  past	
  30	
  days	
  
	
  
"   Recent	
  Expansion	
  in	
  Hiring	
  &	
  Recrui5ng	
  
24"
0%	
  
5%	
  
10%	
  
15%	
  
20%	
  
25%	
  
30%	
  
35%	
  
40%	
  
0	
   1,000	
   2,000	
   3,000	
   4,000	
   5,000	
   6,000	
   7,000	
  
Purchase	
  Probability	
  
Accounts	
  
Predicted	
  
Average	
  
Different	
  Contact	
  Strategy	
  by	
  Segment	
  
	
  20%	
  	
   	
  40%	
  	
   	
  60%	
  	
   	
  80%	
  	
   	
  100%	
  	
  	
  0%	
  	
  
Engage	
  via	
  Front-­‐
Line	
  Bankers	
  
Mid-­‐stage	
  
Nurture	
  
25"
#C2C14!
Where is Marketing Automation?
Cumula5ve	
  
Adop5on	
  
Time	
  
A
B
C
D
E
F
50-70% penetration
Source: Sirius Decisions
Where	
  is	
  marke5ng	
  automa5on?	
  
#C2C14!
Where is Predictive Marketing and Selling?
Cumula5ve	
  
Adop5on	
  
Time	
  
A
B
C
D
E
F
Source: Lattice Engines
Where	
  is	
  predic5ve	
  lead	
  scoring?	
  
#C2C14!
Predictive Analytics for Marketing!
§  The era of big data and predictive analytics is NOW!
!
§  There is more information to discover about a prospect
than ever before – at the account level!
!
§  Leading marketing organizations are embracing predictive
analytics to dramatically improve performance!
!
§  Marketing can do more – from lead scoring to predictive
lead scoring!
!
§  Find your trigger … target selectively and quickly!
#C2C14!
#C2C14!
Thank you!!
Brian Kardon!
CMO, Lattice Engines!
!
bkardon@lattice-engines.com!
!
@bkardon!

Using Account Level Buying Signals & Predictive Analytics To Score Leads

  • 1.
    PRESENTED BY! #C2C14! Using Account-LevelBuying Signals and Predictive Analytics to Score Leads! Brian Kardon! CMO! Lattice Engines!
  • 2.
  • 3.
    #C2C14! Stock price: from$13 to $35!Forrester  stock  went  from  $13  to  $34  per  share  
  • 4.
  • 5.
    #C2C14! About Brian Kardon…! ! CMO ! CMO! CMO ! CMO ! Partner ! ! @bkardon! 5  
  • 6.
    #C2C14! From  Art  to  Science  …   Tradi<onal  Marke<ng   “Modern”  Marke<ng”   “Predic<ve”  Marke<ng  and  Selling  
  • 7.
    #C2C14! Doing all theright things …! §  Marke<ng  automa<on   §  Sales  force  automa<on   §  Lead  nurturing   §  Lead  scoring   §  Personas   §  SLAs  in  place   §  Great  marke<ng  team   §  Awesome  Sales  team   94%  of  your   Marke<ng-­‐Qualified  Leads   (MQLs)   will  never  close  
  • 8.
    #C2C14! What’s wrong here?! § 94% of all Marketing Qualified Leads will never close1! ! §  52% of sales reps in US did not make quota last year2! ! §  Sales reps spend 68% of their time on administration and preparation, not speaking with customers3! ______________________________________   Source:  1  Sirius  Decisions;  2  CSO  Insights;    3  IDC  
  • 9.
    What is thepattern?! Then! Radio! Cable TV! Taxi! Bookstore! Hotels! Thermostat! Now! Pandora! Netflix! Uber! Amazon! Airbnb! Nest!
  • 10.
    #C2C14! §  Purchases! §  Itemsyou have added to cart, but abandoned! §  “Dwell” times! §  Product ratings ! §  Address! §  What your neighbors buy! §  Birthday! §  Sizes: yours + family + friends! §  If you are cheating on your partner!!
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
    #C2C14! Source! Selected  A,ributes! Marke<ng  Automa<on! Contact  name,  <tle,  company,  open  rates,  unsubscribes,  web   visits,  pages  visited,  lead  score,  video  views,  downloads" CRM  System! Company,  contact  informa<on,  win/loss,  deal  value" Product  Usage  Logs! Features  used,  logins,  session  length,  collabora<on" Purchase  History! Products  purchased,  prices  paid,  discounts,  contract  terms" Customer  Support  History! Complains,  resolu<ons" Public  Websites! Job  pos<ngs,  grants,  li<ga<on,  patents,  contracts,  loca<ons.   growth" Company  Websites! Language(s),  products,  shopping  cart,  execu<ve  team  profiles" Social  Websites! Company  and  personal  profiles,  likes,  comments,  updates,   friends/connec<ons/followers,  usage" Media! News  ar<cles  and  stories,  product  launches,  announcements,   press  releases,  li<ga<on" Private  Databases! Credit  ra<ngs,  financial  history,  construc<on  permits/starts,   deployed  technologies"
  • 16.
    #C2C14! 16  Proprietary  &  Confiden<al   Algorithmic  trading  has  replaced  human  trading.      
  • 17.
    #C2C14! 17  Proprietary  &  Confiden<al   Who  is  the  Jeopardy  player  in  the  middle?  
  • 18.
  • 19.
    #C2C14! What is apredictive attribute?!
  • 20.
  • 21.
    #C2C14! Finding the Trigger…! Category   Predic5ve  Trigger   Likelihood  to   Convert  from   MQL  to  SQL   Foreign  Exchange  Services   New  office  opened  overseas   5x   Switches  &  Routers   New  lease  is  signed   3x   Marke5ng  SoFware   Spike  in  social  media  ac<vity   3x   Financial  SoFware   New  CFO  hired  who  previously   bought  from  you   8x  
  • 22.
    0%   5%   10%   15%   20%   25%   30%   35%   40%   0   1,000   2,000   3,000   4,000   5,000   6,000   7,000   Purchase  Probability   Accounts   Average    20%      40%      60%      80%      100%     Predic5ve  Targe5ng      0%     22" Business   Banking   Example  
  • 23.
    0%   5%   10%   15%   20%   25%   30%   35%   40%   0   1,000   2,000   3,000   4,000   5,000   6,000   7,000   Purchase  Probability   Accounts   Predicted   Average   Predic5ve  Targe5ng   Accounts  Likely  to  Have    Specific  Financial  Service  Need  in  Next  90  Days    20%      40%      60%      80%      100%      0%     Highest  Probability   Segment   23"
  • 24.
    0%   5%   10%   15%   20%   25%   30%   35%   40%   0   1,000   2,000   3,000   4,000   5,000   6,000   7,000   Purchase  Probability   Accounts   Predicted   Average   Predic5ve  Targe5ng      20%      40%      60%      80%      100%      0%     Companies  with  the  following  condi5ons…     "   Balance  of  Trade  Change   Business  has  experienced  >100%  increase  in  balance  of   trade  with  Canada,  China  or  Mexico  in  the  past  30  days     "   Recent  Hire  of  Finance  Execu5ve   Business  has  hired  a  Chief  Financial  Officer  or  senior   controller  within  the  past  ninety  (90)  days     "   >30%  Increase  in  Search  Adver5sing  in  the  past  30  days     "   Recent  Expansion  in  Hiring  &  Recrui5ng   24"
  • 25.
    0%   5%   10%   15%   20%   25%   30%   35%   40%   0   1,000   2,000   3,000   4,000   5,000   6,000   7,000   Purchase  Probability   Accounts   Predicted   Average   Different  Contact  Strategy  by  Segment    20%      40%      60%      80%      100%      0%     Engage  via  Front-­‐ Line  Bankers   Mid-­‐stage   Nurture   25"
  • 26.
    #C2C14! Where is MarketingAutomation? Cumula5ve   Adop5on   Time   A B C D E F 50-70% penetration Source: Sirius Decisions Where  is  marke5ng  automa5on?  
  • 27.
    #C2C14! Where is PredictiveMarketing and Selling? Cumula5ve   Adop5on   Time   A B C D E F Source: Lattice Engines Where  is  predic5ve  lead  scoring?  
  • 28.
    #C2C14! Predictive Analytics forMarketing! §  The era of big data and predictive analytics is NOW! ! §  There is more information to discover about a prospect than ever before – at the account level! ! §  Leading marketing organizations are embracing predictive analytics to dramatically improve performance! ! §  Marketing can do more – from lead scoring to predictive lead scoring! ! §  Find your trigger … target selectively and quickly!
  • 29.
  • 30.
    #C2C14! Thank you!! Brian Kardon! CMO,Lattice Engines! ! bkardon@lattice-engines.com! ! @bkardon!