SlideShare a Scribd company logo
1 of 39
Interval Estimation and
Sample Size Decision
• Point estimation
• Interval estimation for
 Population Mean
 Population Proportion
 Population Variance
• Sample size decision in estimating
 Population Mean
 Population Proportion
 Population Variance
QAM – II by Gaurav Garg (IIM Lucknow)
Statistical Estimation
• We take data from a sample and say something about the
population from which the sample was drawn
• Sample statistic is used to estimate unknown parameter.
• There are two types of estimation:
• Point Estimation:
 Calculation of a single value of a sample statistic
• Interval Estimation
 Calculation of an interval using a sample statistic
 This interval is calculated at a desired level of confidence
• Eg. 95% confidence, 99% confidence, can not be 100%
 Sample to sample variation (standard error) is also taken
into consideration.
QAM – II by Gaurav Garg (IIM Lucknow)
• Let θ be the unknown parameter.
• Suppose T is the point estimate of θ and E(T) = θ.
• Fix the confidence level at (1-  )x100 %.
•  is the probability of “error”.
• (1- ) is called confidence coefficient.
• Thus, for 95% confidence level,  = 0.05.
• Confidence interval estimate of θ is [T-h, T+h]
• It means that P(T-h ≤ θ ≤ T+h) = 1- 
• Where, h = critical value x standard error
QAM – II by Gaurav Garg (IIM Lucknow)
Confidence Interval Estimates
• Formula for confidence interval is [T-h, T+h]
• T = Unbiased (Point) Estimate of the unknown
parameter
• h = critical value x standard error of the estimate
• Critical Value is obtained using confidence coefficient
(1-  ) (will be discussed later)
• Lower Confidence Limit = T-h
• Upper Confidence Limit = T+h
QAM – II by Gaurav Garg (IIM Lucknow)
Point Estimate
Lower Confidence Limit Upper Confidence Limit
Width of
confidence interval
• Using Central Limit Theorem, for large sample
• Where T is the unbiased point estimate of θ
• SE(T) is the standard error of T.
• Confidence coefficient is fixed as (1-  ).
• Critical value is given by z/2 as below
• P(-z/2 < Z < z/2) = (1-  ), where Z~N(0,1).
QAM – II by Gaurav Garg (IIM Lucknow)
)
1
,
0
(
~
)
(
N
T
SE
T
Z



N(0,1)
•
• For Z~N(0,1)
• This implies
• or
• Thus (1-  )x100 % Confidence interval estimate of θ is
• [T - z/2 x SE(T), T + z/2 x SE(T)]
QAM – II by Gaurav Garg (IIM Lucknow)



 












 1
)
(
2
/
2
/ z
T
SE
T
z
P
  
 
 






 1
)
(
)
( 2
/
2
/ T
SE
z
T
T
SE
z
T
P
)
1
,
0
(
~
)
(
N
T
SE
T
Z



  

 



 1
2
/
2
/ z
Z
z
P
Confidence Interval for Population Mean μ
(σ Known)
• When
 Population standard deviation σ is known
 Population is normally distributed
 If population is not normal, sample size is large
• (1-  )x100 % Confidence interval estimate of μ
is given by
• where P(-z/2 < Z < z/2) = (1-  ), Z~N(0,1).
QAM – II by Gaurav Garg (IIM Lucknow)










n
z
x
n
z
x



 2
/
2
/ ,
Commonly used confidence levels and corresponding
critical values (N(0,1) Distribution)
QAM – II by Gaurav Garg (IIM Lucknow)
-z/2 = - 1.96 z/2 = 1.96
.95
0
1 

025
2
.
α
 025
2
.
α

0
Confidence Level
Confidence
Coefficient α Critical Value
80% 0.8 0.2 1.28
90% 0.9 0.1 1.645
95% 0.95 0.05 1.96
98% 0.98 0.02 2.33
99% 0.99 0.01 2.58
99.80% 0.998 0.002 3.08
99.90% 0.999 0.001 3.27
N(0,1)
QAM – II by Gaurav Garg (IIM Lucknow)
μ
μx 
Distribution of the Sample Mean










n
σ
z
x
n
σ
z
x α/
α/ 2
2 ,
samples)
different
(for
Intervals
Confidence
/2
 /2



1
 
n
N 
,
samples
different
for
Mean
Sample
of
Value x (1-) x100%
of intervals will
contain μ.
• Example:
• A sample of 11 circuits from a large normal population
has a mean resistance of 2.20 ohms.
• We know from past testing that the population standard
deviation is 0.35 ohms.
• Determine a 95% confidence interval for the true mean
resistance of the population.
• Ans.
QAM – II by Gaurav Garg (IIM Lucknow)
2.4068)
,
(1.9932
0.2068
2.20
)
11
(0.35/
1.96
2.20
n
σ




 )
025
.
0
(
z
x
Confidence Interval for Population Mean μ
(σ Unknown)
• Use unbiased estimate of σ, given by
• Case 1: n is small
 Value of s1 varies sample to sample
 This increases extra variability
 Normal distribution can not be used
 We use t distribution with (n -1) d.f.
• Case 2: n is large
 When n is large, t distribution approaches normal distribution
 We use N(0,1) distribution
QAM – II by Gaurav Garg (IIM Lucknow)





n
i
i x
x
n
s
1
2
1 )
(
1
1
Case 1: σ is unknown and n is small
• Assumption: Population has normal distribution
• (1-  )x100 % Confidence interval estimate of μ is given
by
• Where t/2 is given such that
• P(-t/2 < T < t/2) = (1-  ), for T ~ t(n-1).
QAM – II by Gaurav Garg (IIM Lucknow)










n
s
t
x
n
s
t
x 1
2
/
1
2
/ , 

Some Critical Values of t(n-1) distribution for
given α and d.f. (n-1)
QAM – II by Gaurav Garg (IIM Lucknow)
-t/2 t/2


1
2
α
2
α
0
d.f.
(n-1)
Critical Value
at α = 0.05
Critical Value
at α = 0.10
1 12.706 6.314
2 4.303 2.92
3 3.182 2.353
4 2.776 2.132
5 2.571 2.015
6 2.447 1.943
7 2.365 1.895
t(n-1)
• Consider the same example
• A sample of 11 circuits from a large normal population
has a mean resistance of 2.20 ohms.
• Population standard deviation is not known.
• Sample standard deviation (s1) is 0.35 ohms.
• Determine a 95% confidence interval for the true mean
resistance of the population.
• Ans.
QAM – II by Gaurav Garg (IIM Lucknow)
)
.
,
.
(
.
.
)
/
.
(
.
n
s
t
x )
.
(
4351
2
9649
1
2351
0
20
2
11
35
0
22814
.
2
20
2
1
025
0






Case 2: σ is unknown and n is large
• Population may or may not have normal distribution
• (1-  )x100 % Confidence interval estimate of is μ given
by
• Where z/2 is given such that
• For Z~N(0,1), P(-z/2 < Z < z/2) = (1-  ).
QAM – II by Gaurav Garg (IIM Lucknow)










n
s
z
x
n
s
z
x 1
2
/
1
2
/ , 

QAM – II by Gaurav Garg (IIM Lucknow)
Confidence Interval Estimate of μ
σ known σ Unknown
n small n large
Normal
Distribution
Any
Distribution










n
z
x
n
z
x



 2
/
2
/ ,
n small n large
Normal
Distribution
Any
Distribution










n
s
t
x
n
s
t
x 1
2
/
1
2
/ , 











n
s
z
x
n
s
z
x 1
2
/
1
2
/ , 

Confidence Intervals for Population Proportion π
Case 1:
• Small Sample: out of scope
Case 2:
• Large Sample
• We know that for large n
• For Z~N(0,1), we have
QAM – II by Gaurav Garg (IIM Lucknow)
)
1
,
0
(
~
)
1
(
N
n
p
Z






  














































1
)
1
(
)
1
(
or
1
)
1
(
or
1
)
(
2
/
2
/
2
/
2
/
2
/
2
/
n
z
p
n
z
p
P
z
n
p
z
P
z
Z
z
P
• Thus (1-  )x100 % CI estimate of π is given by
• This expression itself contains π. Which is
unknown
• So, this CI estimate becomes meaningless.
• We use the unbiased estimate of π
• Then, (1-  )x100 % CI estimate of π is given by
• Where q=1-p.
• Required Assumption: Large Sample only.
QAM – II by Gaurav Garg (IIM Lucknow)
 
n
z
p
n
z
p )
1
(
,
)
1
( 2
/
2
/ 


 
 





 
n
pq
z
p
n
pq
z
p 


 2
/
2
/ , 

• Example:
• A random sample of 100 people shows that 25
have opened IRA (individual retirement
arrangement) this year.
• Construct a 95% confidence interval for the true
proportion of population who have opened IRA.
• Ans
QAM – II by Gaurav Garg (IIM Lucknow)
)
.
,
.
(
)
(.
.
.
)/
.
(
.
.
/
p)/n
p(
z
p )
.
(
3349
0
1651
0
0433
96
1
25
0
100
75
0
25
0
96
1
100
25
1
025
0







Confidence Interval for Population Variance  2
• Variance is an inverse measure of the group’s
homogeneity.
• Variance is an important indicator of total quality in
standardized products and services.
• Managers improve processes by reducing variance.
• Variance is a measure of financial risk.
• Variance of rates of return help managers assess
financial and capital investment alternatives.
• Variability is a reality in global markets.
• Productivity, wages, and costs of living vary between
regions and nations.
QAM – II by Gaurav Garg (IIM Lucknow)
Confidence Interval for Population Variance  2
Case 1:
• Small Sample
• Parent Population is Normal
• Let us take a sample from N(μ,σ).
• Then,
• We know that
• So,
n
x
x
x ,...,
, 2
1
QAM – II by Gaurav Garg (IIM Lucknow)
2
)
1
(
2
1
~ 

 




 
n
n
i
i x
x







n
i
i x
x
n
s
1
2
2
1 )
(
1
1
2
)
1
(
2
2
1
~
)
1
(


n
s
n


• Then, (1-  )x100 % CI estimate of  2 is given by
• Or
• Here, are critical values obtained
using Chi Square distribution with (n-1) d.f.
QAM – II by Gaurav Garg (IIM Lucknow)
   


 

2
2
/
1
2
1
2
2
2
/
2
1 1
1




 s
n
s
n
   














 

2
2
/
1
2
1
2
2
/
2
1 1
,
1 s
n
s
n

 

and
2
2
/
1
2
2
/ 
QAM – II by Gaurav Garg (IIM Lucknow)
df = 7
α = 0.10
α /2 = 0.05
α/2 = 0.05
1- α =0.90
2.167 14.067
QAM – II by Gaurav Garg (IIM Lucknow)
• Example:
• The cholesterol concentration in the yolks of a
sample of 18 randomly selected eggs laid by
genetically engineered chickens were found to
have a mean value of 9.38 mg/g of yolk and a
standard deviation of 1.62 mg/g.
• Use this information to construct a confidence
interval estimate of the true variance of the
cholesterol concentration in these egg yolks.
QAM – II by Gaurav Garg (IIM Lucknow)
Confidence Interval for Population Variance  2
Case 2:
• Large Sample
• Parent Population may or may not be Normal
• We know that
• Also, (Proof is out of scope)
• So, for large samples.
• Using this, (1-  )x100 % CI estimate of  2 is given by
•
QAM – II by Gaurav Garg (IIM Lucknow)
2
2
1 )
( 

s
E
)
1
(
2
)
.(
. 2
2
1 
 n
s
E
S 
)
1
,
0
(
~
)
1
(
2
2
2
2
1
N
n
s















 )
1
(
2
1
,
)
1
(
2
1 2
/
2
1
2
/
2
1
n
z
s
n
z
s


• Example:
• A technologist is developing a new method for processing
a food material.
• For best quality, it is important to control moisture content
in the final product.
• So, as one part of determining the practicality of the new
method, the technologist must estimate the variability of
water content in the resulting product.
• He collects 50 specimens of product from the new
process, and determines the percent water in each.
• These 50 specimens give a sample mean water content of
43.24% and a sample standard deviation of 7.93%.
• Compute a 95% confidence interval estimate of the true
variance of the percentage water for this new process.
QAM – II by Gaurav Garg (IIM Lucknow)
Sample Size Decision
(when Estimating μ)
• We have seen (for sufficiently large n) that
• Error of Estimation
• Fix the confidence level at (1-  )x100 %
• Obtain critical value is z/2 using N(0,1) such that
• Then, we have
QAM – II by Gaurav Garg (IIM Lucknow)
)
,
(
~ n
N
x 
 )
1
,
0
(
~
or N
n
x
Z






 x
e
2
2
/
or 






e
z
n 

n
e
z

 
2
/
• Thus the sample size for estimating population mean μ
is
• Critical value z/2 can be taken from the table.
• Estimation Error (e) should be fixed by the researcher in
advance.
• Clearly, e ≠ 0
• Population standard deviation σ can be estimated from
some other small sample or pilot survey as
• Range/6 or by sample standard deviation
QAM – II by Gaurav Garg (IIM Lucknow)
2
2
/







e
z
n 

• Example:
• In a pilot survey, it is observed that the smallest
observation is 6 and the largest observation is 276.
• What should be the sample size needed to estimate the
population mean within ± 5 with 90% confidence level?
• Ans.
QAM – II by Gaurav Garg (IIM Lucknow)
219
19
.
219
5
645
.
1
45
ˆ
So,
645
.
1
value
critical
level,
confidence
90%
For
5
Error
Estimation
45
6
6
276
ˆ
deviation
standard
population
of
Estimate
2
2
05
.
0
)
05
.
0
(







 













e
z
n
z
e


Sample Size Decision
(when Estimating 𝛑)
• Similarly, the sample size for estimating population
proportion 𝛑 is given by
• For fixed confidence coefficient (1-  ), critical value z/2 can
be taken from the normal table.
• Estimation Error (e = |p – 𝛑|) should be fixed by the
researcher in advance. Clearly, e ≠ 0
• Population proportion 𝛑 can be estimated from some other
small sample or pilot survey.
• If no information is available, it can be decided by the
researcher using past experience or can be taken as 0.5.
QAM – II by Gaurav Garg (IIM Lucknow)
2
2
2
/ )
(
)
1
(
e
z
n 

 

• Example:
• How large a sample would be necessary to
estimate the true proportion defective in a large
population within ±3%, with 95% confidence?
• (Assume a pilot sample yields p = 0.12)
•Ans.
QAM – II by Gaurav Garg (IIM Lucknow)
451
75
.
450
03
.
0
03
.
0
96
.
1
96
.
1
88
.
0
12
.
0
)
(
So,
96
.
1
value
critical
level,
confidence
95%
For
03
.
0
100
/
3
Error
Estimation
12
.
0
proportion
population
of
Estimate
2
2
025
.
0
)
025
.
0
(












e
z
pq
n
z
e
p
Sample Size Decision
(when Estimating  2)
• We know, for large samples,
• Similarly, the sample size for estimating population variance  2 is
given by
• For fixed confidence coefficient (1-  ), critical value z/2 can be
taken from the normal table.
• Estimation Error should be fixed by the
researcher in advance. Clearly, e ≠ 0
• Population variance  2 can be estimated from some other small
sample or pilot survey.
• If no information is available, it can be decided by the researcher
using past experience or can be taken as the square of Range/6.
QAM – II by Gaurav Garg (IIM Lucknow)
)
1
,
0
(
~
)
1
(
2
2
2
2
1
N
n
s




2
2
2
/
4
2
1
e
z
n 



2
2
1 

 s
e
Estimating Total
• In auditing, one is more interested to get the estimate of
population total amount.
• The point estimate of it can be given by 𝑁 × 𝑥
•
• The CI estimate at (1-  )x100 % confidence level is given by
• 𝑁𝑥 ∓ 𝑁𝑧𝛼/2 ×
𝑠1
√𝑛
, for large samples
• 𝑁𝑥 ∓ 𝑁𝑧𝛼
2
×
𝑠1
𝑛
×
𝑁−𝑛
𝑁−1
, for large samples, if
𝑛
𝑁
≥ 0.05.
QAM – II by Gaurav Garg (IIM Lucknow)
Example: A firm has a population of 1000 accounts and
wishes to estimate the total population value.
• A sample of 80 accounts is selected with average
balance of $87.6 and standard deviation of $22.3.
• Find the 95% confidence interval estimate of the total
balance.
• Ans:
QAM – II by Gaurav Garg (IIM Lucknow)
3
22
6
87
80
1000 1 .
, s
.
x
,
, n
N 



)
48
.
92362
,
52
.
82837
(
48
762
4
600
87
1
1000
80
1000
80
3
22
96
1
1000
6
87
1000
1
1
025
0










.
,
,
.
)
.
)(
(
)
.
)(
(
N
n
N
n
s
z
N
x
N .
• Example:
• Econe Dresses has 1200 inventory items.
• In the past 15% items were incorrectly priced.
• A sample of 120 items was selected.
• Tagged cost of each item was compared with the
actual value.
• 15 items differ in their tagged cost and actual
cost.
• These values are as follows:
QAM – II by Gaurav Garg (IIM Lucknow)
QAM – II by Gaurav Garg (IIM Lucknow)
Tagged
Cost
Actual
Value
Di
261 240 21
87 105 -18
201 276 -75
121 110 11
315 298 17
411 356 55
249 211 38
216 305 -89
21 210 -189
140 152 -12
129 112 17
340 216 124
341 402 -61
135 97 38
228 220 8
24482
.
25
95833
.
0
1200
,
120





D
s
D
N
n
]
1
1200
120
1200
120
24482
.
25
96
.
1
1200
)
95833
.
0
(
1200
[
1
)
025
.
0
(



















N
n
N
n
s
Nz
D
N D
is
CI
95%
n/N = 120/1200 = 0.1 > 0.05,
So we use fpc
Population
Mean (μ)
σ is
know
n
Small sample
(Normal Distribution)
Large sample
(Any Distribution)
σ is
not
know
n
Small sample
(Normal Distribution)
Large sample
(Any Distribution)
Population
Proportion (𝛑)
Small sample OUT OF SCOPE
Large sample
(Any Distribution)
Population
Variance (σ2)
Small sample
(Normal Distribution)
Large sample
(Any Distribution)
n
z
x

 
2
/

n
s
t
x 1
2
/ 


n
s
z
x 1
2
/ 


n
pq
z
p 
2
/


   

 

2
2
/
1
2
1
2
2
/
2
1 1
,
1


 s
n
s
n
)
1
(
2
1 2
/
2
1

 n
z
s

SUMMARY
(INTERVAL
ESTIMATES)
QAM – II by Gaurav Garg (IIM Lucknow)
For estimating
Population Mean
(μ)
Large sample
(Any Distribution)
For estimating
Population
Proportion (𝛑)
Large sample
(Any Distribution)
For estimating
Population
Variance (σ2)
Large sample
(Any Distribution)
SUMMARY
(SAMPLE
SIZE
DECISION)
QAM – II by Gaurav Garg (IIM Lucknow)
2
2
2
/
4
2
1
e
z
n 



2
2
2
/ )
(
)
1
(
e
z
n 

 

2
2
/







e
z
n 


More Related Content

Similar to 2_Interval_Estimation.pptx

Lesson04_Static11
Lesson04_Static11Lesson04_Static11
Lesson04_Static11
thangv
 
Lesson04_new
Lesson04_newLesson04_new
Lesson04_new
shengvn
 
Effect of global market on indian market
Effect of global market on indian marketEffect of global market on indian market
Effect of global market on indian market
Arpit Jain
 
Statistik 1 7 estimasi & ci
Statistik 1 7 estimasi & ciStatistik 1 7 estimasi & ci
Statistik 1 7 estimasi & ci
Selvin Hadi
 
การสุ่มตัวอย่างในงานวิจัยสาธารณสุข
การสุ่มตัวอย่างในงานวิจัยสาธารณสุขการสุ่มตัวอย่างในงานวิจัยสาธารณสุข
การสุ่มตัวอย่างในงานวิจัยสาธารณสุข
Ultraman Taro
 
Presentation on Kaplan Meier_official3
Presentation on Kaplan Meier_official3Presentation on Kaplan Meier_official3
Presentation on Kaplan Meier_official3
Thuc Nguyen
 

Similar to 2_Interval_Estimation.pptx (20)

Statistics lecture 8 (chapter 7)
Statistics lecture 8 (chapter 7)Statistics lecture 8 (chapter 7)
Statistics lecture 8 (chapter 7)
 
Hypothesis testing
Hypothesis testingHypothesis testing
Hypothesis testing
 
L estimation
L estimationL estimation
L estimation
 
Biostatics part 7.pdf
Biostatics part 7.pdfBiostatics part 7.pdf
Biostatics part 7.pdf
 
Lesson04_Static11
Lesson04_Static11Lesson04_Static11
Lesson04_Static11
 
BIIntro.ppt
BIIntro.pptBIIntro.ppt
BIIntro.ppt
 
Lesson04_new
Lesson04_newLesson04_new
Lesson04_new
 
Econometrics ch6
Econometrics ch6Econometrics ch6
Econometrics ch6
 
Estimation part I
Estimation part IEstimation part I
Estimation part I
 
Determination of sample size in scientific research.pptx
Determination of sample size in scientific research.pptxDetermination of sample size in scientific research.pptx
Determination of sample size in scientific research.pptx
 
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W3 Confidence Intervals
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W3 Confidence Intervals Javier Garcia - Verdugo Sanchez - Six Sigma Training - W3 Confidence Intervals
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W3 Confidence Intervals
 
STATISTIC ESTIMATION
STATISTIC ESTIMATIONSTATISTIC ESTIMATION
STATISTIC ESTIMATION
 
Dr.Dinesh-BIOSTAT-Tests-of-significance-1-min.pdf
Dr.Dinesh-BIOSTAT-Tests-of-significance-1-min.pdfDr.Dinesh-BIOSTAT-Tests-of-significance-1-min.pdf
Dr.Dinesh-BIOSTAT-Tests-of-significance-1-min.pdf
 
Effect of global market on indian market
Effect of global market on indian marketEffect of global market on indian market
Effect of global market on indian market
 
Statistical Confidence Level
Statistical Confidence LevelStatistical Confidence Level
Statistical Confidence Level
 
Statistik 1 7 estimasi & ci
Statistik 1 7 estimasi & ciStatistik 1 7 estimasi & ci
Statistik 1 7 estimasi & ci
 
การสุ่มตัวอย่างในงานวิจัยสาธารณสุข
การสุ่มตัวอย่างในงานวิจัยสาธารณสุขการสุ่มตัวอย่างในงานวิจัยสาธารณสุข
การสุ่มตัวอย่างในงานวิจัยสาธารณสุข
 
Presentation on Kaplan Meier_official3
Presentation on Kaplan Meier_official3Presentation on Kaplan Meier_official3
Presentation on Kaplan Meier_official3
 
Testing of Hypothesis.pdf
Testing of Hypothesis.pdfTesting of Hypothesis.pdf
Testing of Hypothesis.pdf
 
POINT_INTERVAL_estimates.ppt
POINT_INTERVAL_estimates.pptPOINT_INTERVAL_estimates.ppt
POINT_INTERVAL_estimates.ppt
 

Recently uploaded

Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg PfizerJual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
Pusat Herbal Resmi BPOM
 
ابو ظبي اعلان | - سايتوتك في الامارات حبوب الاجهاض للبيع ف حبوب الإجهاض ... ا...
ابو ظبي اعلان | - سايتوتك في الامارات حبوب الاجهاض للبيع ف حبوب الإجهاض ... ا...ابو ظبي اعلان | - سايتوتك في الامارات حبوب الاجهاض للبيع ف حبوب الإجهاض ... ا...
ابو ظبي اعلان | - سايتوتك في الامارات حبوب الاجهاض للبيع ف حبوب الإجهاض ... ا...
brennadilys816
 
zidauu _business communication.pptx /pdf
zidauu _business  communication.pptx /pdfzidauu _business  communication.pptx /pdf
zidauu _business communication.pptx /pdf
zukhrafshabbir
 
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot ReportFuture of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Dubai Multi Commodity Centre
 
PEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTAR
PEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTARPEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTAR
PEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTAR
doktercalysta
 
Abortion pills in Muscut<Oman(+27737758557) Cytotec available.inn Kuwait City.
Abortion pills in Muscut<Oman(+27737758557) Cytotec available.inn Kuwait City.Abortion pills in Muscut<Oman(+27737758557) Cytotec available.inn Kuwait City.
Abortion pills in Muscut<Oman(+27737758557) Cytotec available.inn Kuwait City.
daisycvs
 

Recently uploaded (20)

بروفايل شركة ميار الخليج للاستشارات الهندسية.pdf
بروفايل شركة ميار الخليج للاستشارات الهندسية.pdfبروفايل شركة ميار الخليج للاستشارات الهندسية.pdf
بروفايل شركة ميار الخليج للاستشارات الهندسية.pdf
 
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg PfizerJual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
 
ابو ظبي اعلان | - سايتوتك في الامارات حبوب الاجهاض للبيع ف حبوب الإجهاض ... ا...
ابو ظبي اعلان | - سايتوتك في الامارات حبوب الاجهاض للبيع ف حبوب الإجهاض ... ا...ابو ظبي اعلان | - سايتوتك في الامارات حبوب الاجهاض للبيع ف حبوب الإجهاض ... ا...
ابو ظبي اعلان | - سايتوتك في الامارات حبوب الاجهاض للبيع ف حبوب الإجهاض ... ا...
 
Raising Seed Capital by Steve Schlafman at RRE Ventures
Raising Seed Capital by Steve Schlafman at RRE VenturesRaising Seed Capital by Steve Schlafman at RRE Ventures
Raising Seed Capital by Steve Schlafman at RRE Ventures
 
Progress Report - UKG Analyst Summit 2024 - A lot to do - Good Progress1-1.pdf
Progress Report - UKG Analyst Summit 2024 - A lot to do - Good Progress1-1.pdfProgress Report - UKG Analyst Summit 2024 - A lot to do - Good Progress1-1.pdf
Progress Report - UKG Analyst Summit 2024 - A lot to do - Good Progress1-1.pdf
 
Stages of Startup Funding - An Explainer
Stages of Startup Funding - An ExplainerStages of Startup Funding - An Explainer
Stages of Startup Funding - An Explainer
 
zidauu _business communication.pptx /pdf
zidauu _business  communication.pptx /pdfzidauu _business  communication.pptx /pdf
zidauu _business communication.pptx /pdf
 
How to refresh to be fit for the future world
How to refresh to be fit for the future worldHow to refresh to be fit for the future world
How to refresh to be fit for the future world
 
(推特)Twitter账号批发(自助购买网址🎉top233.com🎉)
(推特)Twitter账号批发(自助购买网址🎉top233.com🎉)(推特)Twitter账号批发(自助购买网址🎉top233.com🎉)
(推特)Twitter账号批发(自助购买网址🎉top233.com🎉)
 
MichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdfMichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdf
 
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot ReportFuture of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
 
The Risks of Ignoring Bookkeeping in Your Business
The Risks of Ignoring Bookkeeping in Your BusinessThe Risks of Ignoring Bookkeeping in Your Business
The Risks of Ignoring Bookkeeping in Your Business
 
NFS- Operations Presentation - Recurrent
NFS- Operations Presentation - RecurrentNFS- Operations Presentation - Recurrent
NFS- Operations Presentation - Recurrent
 
WAM Corporate Presentation May 2024_w.pdf
WAM Corporate Presentation May 2024_w.pdfWAM Corporate Presentation May 2024_w.pdf
WAM Corporate Presentation May 2024_w.pdf
 
Innomantra Viewpoint - Building Moonshots : May-Jun 2024.pdf
Innomantra Viewpoint - Building Moonshots : May-Jun 2024.pdfInnomantra Viewpoint - Building Moonshots : May-Jun 2024.pdf
Innomantra Viewpoint - Building Moonshots : May-Jun 2024.pdf
 
Guide to Networking Essentials 8th Edition by Greg Tomsho solution manual.doc
Guide to Networking Essentials 8th Edition by Greg Tomsho solution manual.docGuide to Networking Essentials 8th Edition by Greg Tomsho solution manual.doc
Guide to Networking Essentials 8th Edition by Greg Tomsho solution manual.doc
 
PEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTAR
PEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTARPEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTAR
PEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTAR
 
Abortion pills in Muscut<Oman(+27737758557) Cytotec available.inn Kuwait City.
Abortion pills in Muscut<Oman(+27737758557) Cytotec available.inn Kuwait City.Abortion pills in Muscut<Oman(+27737758557) Cytotec available.inn Kuwait City.
Abortion pills in Muscut<Oman(+27737758557) Cytotec available.inn Kuwait City.
 
Daftar Rumpun, Pohon, dan Cabang Ilmu (2024).pdf
Daftar Rumpun, Pohon, dan Cabang Ilmu (2024).pdfDaftar Rumpun, Pohon, dan Cabang Ilmu (2024).pdf
Daftar Rumpun, Pohon, dan Cabang Ilmu (2024).pdf
 
Inside the Black Box of Venture Capital (VC)
Inside the Black Box of Venture Capital (VC)Inside the Black Box of Venture Capital (VC)
Inside the Black Box of Venture Capital (VC)
 

2_Interval_Estimation.pptx

  • 1. Interval Estimation and Sample Size Decision • Point estimation • Interval estimation for  Population Mean  Population Proportion  Population Variance • Sample size decision in estimating  Population Mean  Population Proportion  Population Variance QAM – II by Gaurav Garg (IIM Lucknow)
  • 2. Statistical Estimation • We take data from a sample and say something about the population from which the sample was drawn • Sample statistic is used to estimate unknown parameter. • There are two types of estimation: • Point Estimation:  Calculation of a single value of a sample statistic • Interval Estimation  Calculation of an interval using a sample statistic  This interval is calculated at a desired level of confidence • Eg. 95% confidence, 99% confidence, can not be 100%  Sample to sample variation (standard error) is also taken into consideration. QAM – II by Gaurav Garg (IIM Lucknow)
  • 3. • Let θ be the unknown parameter. • Suppose T is the point estimate of θ and E(T) = θ. • Fix the confidence level at (1-  )x100 %. •  is the probability of “error”. • (1- ) is called confidence coefficient. • Thus, for 95% confidence level,  = 0.05. • Confidence interval estimate of θ is [T-h, T+h] • It means that P(T-h ≤ θ ≤ T+h) = 1-  • Where, h = critical value x standard error QAM – II by Gaurav Garg (IIM Lucknow) Confidence Interval Estimates
  • 4. • Formula for confidence interval is [T-h, T+h] • T = Unbiased (Point) Estimate of the unknown parameter • h = critical value x standard error of the estimate • Critical Value is obtained using confidence coefficient (1-  ) (will be discussed later) • Lower Confidence Limit = T-h • Upper Confidence Limit = T+h QAM – II by Gaurav Garg (IIM Lucknow) Point Estimate Lower Confidence Limit Upper Confidence Limit Width of confidence interval
  • 5. • Using Central Limit Theorem, for large sample • Where T is the unbiased point estimate of θ • SE(T) is the standard error of T. • Confidence coefficient is fixed as (1-  ). • Critical value is given by z/2 as below • P(-z/2 < Z < z/2) = (1-  ), where Z~N(0,1). QAM – II by Gaurav Garg (IIM Lucknow) ) 1 , 0 ( ~ ) ( N T SE T Z    N(0,1)
  • 6. • • For Z~N(0,1) • This implies • or • Thus (1-  )x100 % Confidence interval estimate of θ is • [T - z/2 x SE(T), T + z/2 x SE(T)] QAM – II by Gaurav Garg (IIM Lucknow)                   1 ) ( 2 / 2 / z T SE T z P               1 ) ( ) ( 2 / 2 / T SE z T T SE z T P ) 1 , 0 ( ~ ) ( N T SE T Z              1 2 / 2 / z Z z P
  • 7. Confidence Interval for Population Mean μ (σ Known) • When  Population standard deviation σ is known  Population is normally distributed  If population is not normal, sample size is large • (1-  )x100 % Confidence interval estimate of μ is given by • where P(-z/2 < Z < z/2) = (1-  ), Z~N(0,1). QAM – II by Gaurav Garg (IIM Lucknow)           n z x n z x     2 / 2 / ,
  • 8. Commonly used confidence levels and corresponding critical values (N(0,1) Distribution) QAM – II by Gaurav Garg (IIM Lucknow) -z/2 = - 1.96 z/2 = 1.96 .95 0 1   025 2 . α  025 2 . α  0 Confidence Level Confidence Coefficient α Critical Value 80% 0.8 0.2 1.28 90% 0.9 0.1 1.645 95% 0.95 0.05 1.96 98% 0.98 0.02 2.33 99% 0.99 0.01 2.58 99.80% 0.998 0.002 3.08 99.90% 0.999 0.001 3.27 N(0,1)
  • 9. QAM – II by Gaurav Garg (IIM Lucknow) μ μx  Distribution of the Sample Mean           n σ z x n σ z x α/ α/ 2 2 , samples) different (for Intervals Confidence /2  /2    1   n N  , samples different for Mean Sample of Value x (1-) x100% of intervals will contain μ.
  • 10. • Example: • A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. • We know from past testing that the population standard deviation is 0.35 ohms. • Determine a 95% confidence interval for the true mean resistance of the population. • Ans. QAM – II by Gaurav Garg (IIM Lucknow) 2.4068) , (1.9932 0.2068 2.20 ) 11 (0.35/ 1.96 2.20 n σ      ) 025 . 0 ( z x
  • 11. Confidence Interval for Population Mean μ (σ Unknown) • Use unbiased estimate of σ, given by • Case 1: n is small  Value of s1 varies sample to sample  This increases extra variability  Normal distribution can not be used  We use t distribution with (n -1) d.f. • Case 2: n is large  When n is large, t distribution approaches normal distribution  We use N(0,1) distribution QAM – II by Gaurav Garg (IIM Lucknow)      n i i x x n s 1 2 1 ) ( 1 1
  • 12. Case 1: σ is unknown and n is small • Assumption: Population has normal distribution • (1-  )x100 % Confidence interval estimate of μ is given by • Where t/2 is given such that • P(-t/2 < T < t/2) = (1-  ), for T ~ t(n-1). QAM – II by Gaurav Garg (IIM Lucknow)           n s t x n s t x 1 2 / 1 2 / ,  
  • 13. Some Critical Values of t(n-1) distribution for given α and d.f. (n-1) QAM – II by Gaurav Garg (IIM Lucknow) -t/2 t/2   1 2 α 2 α 0 d.f. (n-1) Critical Value at α = 0.05 Critical Value at α = 0.10 1 12.706 6.314 2 4.303 2.92 3 3.182 2.353 4 2.776 2.132 5 2.571 2.015 6 2.447 1.943 7 2.365 1.895 t(n-1)
  • 14. • Consider the same example • A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. • Population standard deviation is not known. • Sample standard deviation (s1) is 0.35 ohms. • Determine a 95% confidence interval for the true mean resistance of the population. • Ans. QAM – II by Gaurav Garg (IIM Lucknow) ) . , . ( . . ) / . ( . n s t x ) . ( 4351 2 9649 1 2351 0 20 2 11 35 0 22814 . 2 20 2 1 025 0      
  • 15. Case 2: σ is unknown and n is large • Population may or may not have normal distribution • (1-  )x100 % Confidence interval estimate of is μ given by • Where z/2 is given such that • For Z~N(0,1), P(-z/2 < Z < z/2) = (1-  ). QAM – II by Gaurav Garg (IIM Lucknow)           n s z x n s z x 1 2 / 1 2 / ,  
  • 16. QAM – II by Gaurav Garg (IIM Lucknow) Confidence Interval Estimate of μ σ known σ Unknown n small n large Normal Distribution Any Distribution           n z x n z x     2 / 2 / , n small n large Normal Distribution Any Distribution           n s t x n s t x 1 2 / 1 2 / ,             n s z x n s z x 1 2 / 1 2 / ,  
  • 17. Confidence Intervals for Population Proportion π Case 1: • Small Sample: out of scope Case 2: • Large Sample • We know that for large n • For Z~N(0,1), we have QAM – II by Gaurav Garg (IIM Lucknow) ) 1 , 0 ( ~ ) 1 ( N n p Z                                                        1 ) 1 ( ) 1 ( or 1 ) 1 ( or 1 ) ( 2 / 2 / 2 / 2 / 2 / 2 / n z p n z p P z n p z P z Z z P
  • 18. • Thus (1-  )x100 % CI estimate of π is given by • This expression itself contains π. Which is unknown • So, this CI estimate becomes meaningless. • We use the unbiased estimate of π • Then, (1-  )x100 % CI estimate of π is given by • Where q=1-p. • Required Assumption: Large Sample only. QAM – II by Gaurav Garg (IIM Lucknow)   n z p n z p ) 1 ( , ) 1 ( 2 / 2 /               n pq z p n pq z p     2 / 2 / ,  
  • 19. • Example: • A random sample of 100 people shows that 25 have opened IRA (individual retirement arrangement) this year. • Construct a 95% confidence interval for the true proportion of population who have opened IRA. • Ans QAM – II by Gaurav Garg (IIM Lucknow) ) . , . ( ) (. . . )/ . ( . . / p)/n p( z p ) . ( 3349 0 1651 0 0433 96 1 25 0 100 75 0 25 0 96 1 100 25 1 025 0       
  • 20. Confidence Interval for Population Variance  2 • Variance is an inverse measure of the group’s homogeneity. • Variance is an important indicator of total quality in standardized products and services. • Managers improve processes by reducing variance. • Variance is a measure of financial risk. • Variance of rates of return help managers assess financial and capital investment alternatives. • Variability is a reality in global markets. • Productivity, wages, and costs of living vary between regions and nations. QAM – II by Gaurav Garg (IIM Lucknow)
  • 21. Confidence Interval for Population Variance  2 Case 1: • Small Sample • Parent Population is Normal • Let us take a sample from N(μ,σ). • Then, • We know that • So, n x x x ,..., , 2 1 QAM – II by Gaurav Garg (IIM Lucknow) 2 ) 1 ( 2 1 ~           n n i i x x        n i i x x n s 1 2 2 1 ) ( 1 1 2 ) 1 ( 2 2 1 ~ ) 1 (   n s n  
  • 22. • Then, (1-  )x100 % CI estimate of  2 is given by • Or • Here, are critical values obtained using Chi Square distribution with (n-1) d.f. QAM – II by Gaurav Garg (IIM Lucknow)          2 2 / 1 2 1 2 2 2 / 2 1 1 1      s n s n                      2 2 / 1 2 1 2 2 / 2 1 1 , 1 s n s n     and 2 2 / 1 2 2 / 
  • 23. QAM – II by Gaurav Garg (IIM Lucknow) df = 7 α = 0.10 α /2 = 0.05 α/2 = 0.05 1- α =0.90 2.167 14.067
  • 24. QAM – II by Gaurav Garg (IIM Lucknow)
  • 25. • Example: • The cholesterol concentration in the yolks of a sample of 18 randomly selected eggs laid by genetically engineered chickens were found to have a mean value of 9.38 mg/g of yolk and a standard deviation of 1.62 mg/g. • Use this information to construct a confidence interval estimate of the true variance of the cholesterol concentration in these egg yolks. QAM – II by Gaurav Garg (IIM Lucknow)
  • 26. Confidence Interval for Population Variance  2 Case 2: • Large Sample • Parent Population may or may not be Normal • We know that • Also, (Proof is out of scope) • So, for large samples. • Using this, (1-  )x100 % CI estimate of  2 is given by • QAM – II by Gaurav Garg (IIM Lucknow) 2 2 1 ) (   s E ) 1 ( 2 ) .( . 2 2 1   n s E S  ) 1 , 0 ( ~ ) 1 ( 2 2 2 2 1 N n s                 ) 1 ( 2 1 , ) 1 ( 2 1 2 / 2 1 2 / 2 1 n z s n z s  
  • 27. • Example: • A technologist is developing a new method for processing a food material. • For best quality, it is important to control moisture content in the final product. • So, as one part of determining the practicality of the new method, the technologist must estimate the variability of water content in the resulting product. • He collects 50 specimens of product from the new process, and determines the percent water in each. • These 50 specimens give a sample mean water content of 43.24% and a sample standard deviation of 7.93%. • Compute a 95% confidence interval estimate of the true variance of the percentage water for this new process. QAM – II by Gaurav Garg (IIM Lucknow)
  • 28. Sample Size Decision (when Estimating μ) • We have seen (for sufficiently large n) that • Error of Estimation • Fix the confidence level at (1-  )x100 % • Obtain critical value is z/2 using N(0,1) such that • Then, we have QAM – II by Gaurav Garg (IIM Lucknow) ) , ( ~ n N x   ) 1 , 0 ( ~ or N n x Z        x e 2 2 / or        e z n   n e z    2 /
  • 29. • Thus the sample size for estimating population mean μ is • Critical value z/2 can be taken from the table. • Estimation Error (e) should be fixed by the researcher in advance. • Clearly, e ≠ 0 • Population standard deviation σ can be estimated from some other small sample or pilot survey as • Range/6 or by sample standard deviation QAM – II by Gaurav Garg (IIM Lucknow) 2 2 /        e z n  
  • 30. • Example: • In a pilot survey, it is observed that the smallest observation is 6 and the largest observation is 276. • What should be the sample size needed to estimate the population mean within ± 5 with 90% confidence level? • Ans. QAM – II by Gaurav Garg (IIM Lucknow) 219 19 . 219 5 645 . 1 45 ˆ So, 645 . 1 value critical level, confidence 90% For 5 Error Estimation 45 6 6 276 ˆ deviation standard population of Estimate 2 2 05 . 0 ) 05 . 0 (                       e z n z e  
  • 31. Sample Size Decision (when Estimating 𝛑) • Similarly, the sample size for estimating population proportion 𝛑 is given by • For fixed confidence coefficient (1-  ), critical value z/2 can be taken from the normal table. • Estimation Error (e = |p – 𝛑|) should be fixed by the researcher in advance. Clearly, e ≠ 0 • Population proportion 𝛑 can be estimated from some other small sample or pilot survey. • If no information is available, it can be decided by the researcher using past experience or can be taken as 0.5. QAM – II by Gaurav Garg (IIM Lucknow) 2 2 2 / ) ( ) 1 ( e z n     
  • 32. • Example: • How large a sample would be necessary to estimate the true proportion defective in a large population within ±3%, with 95% confidence? • (Assume a pilot sample yields p = 0.12) •Ans. QAM – II by Gaurav Garg (IIM Lucknow) 451 75 . 450 03 . 0 03 . 0 96 . 1 96 . 1 88 . 0 12 . 0 ) ( So, 96 . 1 value critical level, confidence 95% For 03 . 0 100 / 3 Error Estimation 12 . 0 proportion population of Estimate 2 2 025 . 0 ) 025 . 0 (             e z pq n z e p
  • 33. Sample Size Decision (when Estimating  2) • We know, for large samples, • Similarly, the sample size for estimating population variance  2 is given by • For fixed confidence coefficient (1-  ), critical value z/2 can be taken from the normal table. • Estimation Error should be fixed by the researcher in advance. Clearly, e ≠ 0 • Population variance  2 can be estimated from some other small sample or pilot survey. • If no information is available, it can be decided by the researcher using past experience or can be taken as the square of Range/6. QAM – II by Gaurav Garg (IIM Lucknow) ) 1 , 0 ( ~ ) 1 ( 2 2 2 2 1 N n s     2 2 2 / 4 2 1 e z n     2 2 1    s e
  • 34. Estimating Total • In auditing, one is more interested to get the estimate of population total amount. • The point estimate of it can be given by 𝑁 × 𝑥 • • The CI estimate at (1-  )x100 % confidence level is given by • 𝑁𝑥 ∓ 𝑁𝑧𝛼/2 × 𝑠1 √𝑛 , for large samples • 𝑁𝑥 ∓ 𝑁𝑧𝛼 2 × 𝑠1 𝑛 × 𝑁−𝑛 𝑁−1 , for large samples, if 𝑛 𝑁 ≥ 0.05. QAM – II by Gaurav Garg (IIM Lucknow)
  • 35. Example: A firm has a population of 1000 accounts and wishes to estimate the total population value. • A sample of 80 accounts is selected with average balance of $87.6 and standard deviation of $22.3. • Find the 95% confidence interval estimate of the total balance. • Ans: QAM – II by Gaurav Garg (IIM Lucknow) 3 22 6 87 80 1000 1 . , s . x , , n N     ) 48 . 92362 , 52 . 82837 ( 48 762 4 600 87 1 1000 80 1000 80 3 22 96 1 1000 6 87 1000 1 1 025 0           . , , . ) . )( ( ) . )( ( N n N n s z N x N .
  • 36. • Example: • Econe Dresses has 1200 inventory items. • In the past 15% items were incorrectly priced. • A sample of 120 items was selected. • Tagged cost of each item was compared with the actual value. • 15 items differ in their tagged cost and actual cost. • These values are as follows: QAM – II by Gaurav Garg (IIM Lucknow)
  • 37. QAM – II by Gaurav Garg (IIM Lucknow) Tagged Cost Actual Value Di 261 240 21 87 105 -18 201 276 -75 121 110 11 315 298 17 411 356 55 249 211 38 216 305 -89 21 210 -189 140 152 -12 129 112 17 340 216 124 341 402 -61 135 97 38 228 220 8 24482 . 25 95833 . 0 1200 , 120      D s D N n ] 1 1200 120 1200 120 24482 . 25 96 . 1 1200 ) 95833 . 0 ( 1200 [ 1 ) 025 . 0 (                    N n N n s Nz D N D is CI 95% n/N = 120/1200 = 0.1 > 0.05, So we use fpc
  • 38. Population Mean (μ) σ is know n Small sample (Normal Distribution) Large sample (Any Distribution) σ is not know n Small sample (Normal Distribution) Large sample (Any Distribution) Population Proportion (𝛑) Small sample OUT OF SCOPE Large sample (Any Distribution) Population Variance (σ2) Small sample (Normal Distribution) Large sample (Any Distribution) n z x    2 /  n s t x 1 2 /    n s z x 1 2 /    n pq z p  2 /           2 2 / 1 2 1 2 2 / 2 1 1 , 1    s n s n ) 1 ( 2 1 2 / 2 1   n z s  SUMMARY (INTERVAL ESTIMATES) QAM – II by Gaurav Garg (IIM Lucknow)
  • 39. For estimating Population Mean (μ) Large sample (Any Distribution) For estimating Population Proportion (𝛑) Large sample (Any Distribution) For estimating Population Variance (σ2) Large sample (Any Distribution) SUMMARY (SAMPLE SIZE DECISION) QAM – II by Gaurav Garg (IIM Lucknow) 2 2 2 / 4 2 1 e z n     2 2 2 / ) ( ) 1 ( e z n      2 2 /        e z n  