SlideShare a Scribd company logo
KONSEP DASAR
TERMODINAMIKA
AGUS HARYANTO
FEBRUARI 2010
THERMO vs. HEAT TRANSFER
• Thermodynamics stems from the Greek words
therme (heat) and dynamis (power or motion),
which is most descriptive of the early efforts to
convert heat into power. Today thermodynamics
is broadly interpreted to include all aspects of
energy and energy transformations, including
power generation, refrigeration, and
relationships among the properties of matter.
• Heat transfers the science that deals with the
determination of the rates of such energy
transfer.
THERMO vs. HEAT TRANSFER (cont)
• Thermodynamics membicarakan sistem keseimbangan
(equilibrium), bisa digunakan untuk menaksir besarnya
energi yang diperlukan untuk mengubah suatu sistem
keseimbangan, tetapi tidak dapat dipakai untuk
menaksir seberapa cepat (laju) perubahan itu terjadi
karena selama proses sistem tidak berada dalam
keseimbangan.
• Heat Transfer tidak hanya menerangkan bagaimana
energi itu dihantarkan, tetapi juga menaksir laju
penghantaran energi. Inilah yang membedakan Heat
Transfer dengan thermodinamika.
APLIKASI
• Tubuh manusia
• Meniup kopi panas
• Perkakas elektronik (sirip, heat sink)
• Refrigerator (AC, Kulkas)
• Mobil (siklus engine, sirip, radiator)
• Pembangkit listrik (turbin, boiler)
• Industri (penyulingan, pendinginan,
pengeringan, dll).
DIMENSI dan SATUAN
• Dimensi (M,L,T,θ)  homogen
• Satuan : SI Units (m, s, kg, K)
• Kesalahan umum:
1. Tidak paham
2. Usaha minimal, kurang
latihan
3. Tidak terampil melakukan
konversi satuan
• Trik: perhitungan harus
menyertakan satuan
SECONDARY UNITS
• Secondary units can be formed by
combinations of primary units. Example:
2
s
m
kg
N 
• F = m.a
• P = F/A 2
m
N
Pa  2
2
/
.
m
s
m
kg
Pa 
2
.s
m
kg
Pa 
SISTEM vs. LINGKUNGAN
• A system is defined as a quantity of matter or
a region in space chosen for study.
• The mass or region outside the system is
called the surroundings.
• The real or imaginary surface that
separates the system from
its surroundings is called the
boundary
OPEN vs. CLOSSED SYSTEMS
• Closed system (= control
mass): Mass can’t cross the
boundary, but energy can.
• Volume of a closed system
may change.
• Special case, if no energy
cross the boundary, that
system is called an isolated
system.
CLOSSED SYSTEM
A closed system
with a moving
boundary.
OPEN vs. CLOSSED SYSTEMS
• Open system (= control volume) is a properly
selected region in space. It usually encloses a
device that involves mass flow such as a
compressor, turbine, or nozzle.
• Both mass and energy can cross the boundary
of a control volume.
• The boundaries of a control volume are called
a control surface, and they can be real or
imaginary.
OPEN SYSTEM
OPEN SYSTEM
Open system (= control
volume) with one inlet
and one outlet (exit) and
a real boundary.
SIFAT-SIFAT SISTEM
• Any characteristic of a system is called a property.
• Some familiar properties are pressure P, temperature T,
volume V, and mass m. The list can be extended to include
less familiar ones such as viscosity, thermal conductivity,
modulus of elasticity, thermal expansion coefficient,
electric resistivity, and even velocity and elevation.
• Intensive properties are those that are independent of the
mass of a system, such as temperature, pressure, and
density.
• Extensive properties are those whose values depend on the
size—or extent—of the system.
• Extensive properties per unit mass are called specific
properties (specific volume (v = V/m), specific energy (e =
E/m).
SIFAT INTENSIF vs. EKSTENSIF
TUGAS (dikumpul Senin) :
Sebuah apel dibelah dua.
Buatlah daftar sifat
intensif dan ekstensifnya
Criterion to differentiate
intensive and extensive
properties.
SIFAT-SIFAT SISTEM PENTING
• Densitas atau massa jenis:
masa per satuan volume
• Volume spesifik, kebalikan dari
densitas: volume per satuan
masa (m3/kg)
• Densitas relatif atau specific
gravity: nisbah densitas suatu
substansi dengan densitas
substansi standar pada suhu
tertentu (biasanya air pada 4oC
di mana  = 1000 kg/m3)
ENERGY SISTEM TERMODINAMIKA
• BENTUK ENERGI:
1. Energi Kinetik (KE) 
2. Energi Potensial (PE)  PE = mgh
3. Energi dakhil atau Internal Energy (U)
• ENERGI TOTAL:
E = U + KE + PE
e = u + ke + pe (per satuan massa)
2
2
1
mV
KE 
POSTULAT KEADAAN
• All properties (can be measured or calculated)
completely describes the condition, or the state,
of the system. At a given state, all the properties
of a system have fixed values. If the value of even
one property changes, the state will change to a
different one.
• The number of properties required to fix the state
of a system is given by the state postulate:
The state of a simple compressible system is
completely specified by two independent,
intensive properties.
PROSES dan SIKLUS
• Any change that a
system undergoes from
one equilibrium state to
another is called a
process
• The series of states
through which a system
passes during a process
is called the path
(lintasan) of the process.
MACAM-MACAM PROSES
• Proses isotermal: proses pada suhu T konstan.
• Proses isobaris: proses pada tekanan P konstan.
• Proses isokhoris (isometris): proses pada
volume spesifik  konstan.
• Proses adiabatik: proses di mana tidak terjadi
pertukaran kalor dengan lingkungan.
• Proses isentropik: proses pada entropi S
konstan.
STEADY-FLOW PROCESS
• The terms steady and uniform are used
frequently in engineering, and thus it is
important to have a clear understanding of
their meanings.
• The term steady implies no change with time.
• The opposite of steady is unsteady, or
transient.
• The term uniform, however, implies no change
with location over a specified region.
PROSES dan SIKLUS
• A system undergoes a cycle if it returns to its
initial state at the end of the process.
Siklus dengan 2 lintasan Siklus dengan 4 lintasan
TEKANAN
• Tekanan (P) : gaya (F) per satuan luas (A).
• Satuan tekanan adalah pascal (Pa) = N/m2.
• Untuk benda padat gaya per luas satuan tidak disebut
tekanan, tetapi tegangan (stress).
• Untuk fluida diam, tekanan adalah sama ke segala arah.
• Tekanan di dalam fluida meningkat sesuai dengan
kedalamannya akibat berat fluida (pengaruh gravitasi)
sehingga fluida pada bagian bawah menanggung beban
yang lebih besar daripada fluida di bagian atas.
• Tetapi tekanan tidak bervariasi pada arah horisontal.
• Tekanan gas di dalam tangki dapat dianggap seragam
karena berat gas terlalu kecil dan tidak mengakibatkan
pengaruh yang berarti.
TEKANAN: UKUR, ATM, VAKUM
• Tekanan aktual pada posisi tertentu disebut tekanan
absolut dan diukur secara relatif terhadap tekanan
vakum, yaitu tekanan nol mutlak.
• Kebanyakan pengukur tekanan dikalibrasi untuk
membaca nol di atmosfer (tekanan atmosfer lokal).
• Perbedaan tekanan absolut dan tekanan atmosfer
disebut tekanan ukur (pressure gage).
• Tekanan di bawah tekanan atmosfer disebut tekanan
vakum (vacuum pressure) dan diukur dengan
pengukur vakum yang menunjukkan perbedaan antara
tekanan atmosfer dan tekanan absolut.
• Pgage = Pabs – Patm (untuk P > Patm)
• Pvac = Patm – Pabs (untuk P < Patm)
TEKANAN UKUR,
TEKANAN ATMOSFER,
TEKANAN VAKUM
PENGUKUR TEKANAN
PRESSURE GAGE
MANOMETER
BAROMETER
PRINSIP MANOMETER
Perhatikan gambar:
• Seimbang F = 0
• P1 = P2
• A P1 = A Patm + W
di mana W = m g =
 V g =  A h g
• P1 = Patm +  h g
• P = P1 - Patm =  h g = Tekanan ukur di dalam tangki
EXAMPLE : Manometer
A manometer is used to
measure the pressure in a
tank. The fluid used has a
specific gravity of 0.85, and
the manometer column
height is 55 cm, as shown in
Figure. If the local
atmospheric pressure is 96
kPa, determine the absolute
pressure within the tank.
EXAMPLE: SOLUTION
EXAMPLE: MULTIFLUID MANOMETER
Water in a tank is pressurized by
air, and the pressure is measured
by a multifluid manometer (see
Figure). The tank is located on a
mountain at an altitude of 1400 m
where the atmospheric pressure is
85.6 kPa. Determine the air
pressure in the tank if h1 = 0.1 m,
h2 = 0.2 m, and h3 = 0.35 m. Take
the densities of water, oil, and
mercury to be 1000 kg/m3, 850
kg/m3, and 13,600 kg/m3,
respectively.
SOLUTION
APLIKASI MANOMETER
P1 + 1g(a + h) - 2gh - 1ga = P2
P1 - P2 = (2 - 1)gh
Untuk 2 >> 1 :
P1 - P2 ≈ 2 g h
Measuring the
pressure drop across
a flow section or a
flow device by a
differential
manometer:
BAROMETER Torricelli
Patm =  g h
EXAMPLE3: BAROMETER
• Determine the atmospheric pressure at a
location where the barometric reading is 740
mm Hg and the gravitational acceleration is g
9.81 m/s2. Assume the temperature of
mercury to be 10oC, at which its density is
13,570 kg/m3.
EXAMPLE3: SOLUTION
TEKANAN ATMOSFER
ELEVASI
(m)
TEKANAN
(kPa)
TEKANAN
(mmHg)
0 (sea level) 101.325 760.00
1000 89.88 674.15
2000 79.50 596.30
5000 54.05 405.41
10,000 26.5 198.77
20,000 5.53 41.48
Rule of thumb: naik 10 m, tekanan atmosfer turun 1 mmHg
EFEK KETINGGIAN
TEMPERATURE
• Thermodinamika  SUHU MUTLAK
• Satuan kelvin (K) untuk SI
• Satuan renkine (R) untuk USCS
Konversi:
T(K) = T(oC) + 273.15
T(R) = T(oF) + 456.67
T(oC) = 1.8T(oC) + 32
T(R) = 1.8 T(K)
CAUTION:
T(K) = T(oC)
T(R) = T(oF)
EXAMPLE4: TEMPERATURE
• During a heating process, the temperature of
a system rises by 10°C. Express this rise in
temperature in K, °F, and R.
PR:
• Soal No: 1-6C, 1-7C, 1-15C, 1-16C, 1-17C, 1-
20C, 1-21C, 1-22C, 1-23C, 1-24C, 1-29, 1-31, 1-
34C, 1-35C, 1-36C, 1-39C, 1-40, 1-42, 1-43,
1-44, 1-45, 1-48, 1-51, 1-53, 1-55, 1-57, 1-59,
1-61, 1-62, 1-63, 1-65, 1-66, 1-73, 1-85, 1-88,
1-101, 1-103, 1-105, 1-106, 1-108, 1-120,
1-121, 1-122, 1-123, 1-125.
• Kelompok THERMO
• Kelompok DYNAMICS

More Related Content

Similar to 1konsep-dasar-termodinamika.ppt

Thermo lecture no.2
Thermo lecture no.2Thermo lecture no.2
Basic concepts
Basic conceptsBasic concepts
Basic concepts
R G Sanjay Prakash
 
Engineering Thermodynamics Notes for Quick Reference
Engineering Thermodynamics Notes for Quick ReferenceEngineering Thermodynamics Notes for Quick Reference
Engineering Thermodynamics Notes for Quick Reference
AbdulNazar52
 
thermodynamic chapter1 introduction and basic concepts.pdf
thermodynamic chapter1 introduction and basic concepts.pdfthermodynamic chapter1 introduction and basic concepts.pdf
thermodynamic chapter1 introduction and basic concepts.pdf
DebasDessie1
 
CH 3.pptx
CH 3.pptxCH 3.pptx
CH 3.pptx
JibrilJundi
 
Thermodynamic
ThermodynamicThermodynamic
Thermodynamic
nysa tutorial
 
ch.4.pptx
ch.4.pptxch.4.pptx
ch.4.pptx
JibrilJundi
 
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISHME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
KIT-Kalaignar Karunanidhi Institute of Technology
 
Chapter-1.pdf
Chapter-1.pdfChapter-1.pdf
Chapter-1.pdf
TolossaKebede1
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)
Yuri Melliza
 
Unit 2.1 thm
Unit 2.1 thmUnit 2.1 thm
Unit 2.1 thm
MD ATEEQUE KHAN
 
THERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - ITHERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - I
sureshkcet
 
Lecture No.2 [Repaired].pdf A very important
Lecture No.2 [Repaired].pdf A very importantLecture No.2 [Repaired].pdf A very important
Lecture No.2 [Repaired].pdf A very important
shahzad5098115
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
lashika madaan
 
Introduction to thermodynamics
Introduction to thermodynamicsIntroduction to thermodynamics
Introduction to thermodynamics
VeeramanikandanM1
 
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTESME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
BIBIN CHIDAMBARANATHAN
 
The first law of thermodynamics.ppt
The first law of thermodynamics.pptThe first law of thermodynamics.ppt
The first law of thermodynamics.ppt
Dave376110
 
Introducción y conceptos básicos de Termodinámica
Introducción y conceptos básicos de TermodinámicaIntroducción y conceptos básicos de Termodinámica
Introducción y conceptos básicos de Termodinámica
CristiamRueda
 
Basic Thermodynamics
Basic ThermodynamicsBasic Thermodynamics
Basic Thermodynamics
Harshil Zaveri
 
Basic concept and first law of thermodynamics
Basic concept and first law of thermodynamics Basic concept and first law of thermodynamics
Basic concept and first law of thermodynamics
agsmeice
 

Similar to 1konsep-dasar-termodinamika.ppt (20)

Thermo lecture no.2
Thermo lecture no.2Thermo lecture no.2
Thermo lecture no.2
 
Basic concepts
Basic conceptsBasic concepts
Basic concepts
 
Engineering Thermodynamics Notes for Quick Reference
Engineering Thermodynamics Notes for Quick ReferenceEngineering Thermodynamics Notes for Quick Reference
Engineering Thermodynamics Notes for Quick Reference
 
thermodynamic chapter1 introduction and basic concepts.pdf
thermodynamic chapter1 introduction and basic concepts.pdfthermodynamic chapter1 introduction and basic concepts.pdf
thermodynamic chapter1 introduction and basic concepts.pdf
 
CH 3.pptx
CH 3.pptxCH 3.pptx
CH 3.pptx
 
Thermodynamic
ThermodynamicThermodynamic
Thermodynamic
 
ch.4.pptx
ch.4.pptxch.4.pptx
ch.4.pptx
 
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISHME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
 
Chapter-1.pdf
Chapter-1.pdfChapter-1.pdf
Chapter-1.pdf
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)
 
Unit 2.1 thm
Unit 2.1 thmUnit 2.1 thm
Unit 2.1 thm
 
THERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - ITHERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - I
 
Lecture No.2 [Repaired].pdf A very important
Lecture No.2 [Repaired].pdf A very importantLecture No.2 [Repaired].pdf A very important
Lecture No.2 [Repaired].pdf A very important
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Introduction to thermodynamics
Introduction to thermodynamicsIntroduction to thermodynamics
Introduction to thermodynamics
 
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTESME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
 
The first law of thermodynamics.ppt
The first law of thermodynamics.pptThe first law of thermodynamics.ppt
The first law of thermodynamics.ppt
 
Introducción y conceptos básicos de Termodinámica
Introducción y conceptos básicos de TermodinámicaIntroducción y conceptos básicos de Termodinámica
Introducción y conceptos básicos de Termodinámica
 
Basic Thermodynamics
Basic ThermodynamicsBasic Thermodynamics
Basic Thermodynamics
 
Basic concept and first law of thermodynamics
Basic concept and first law of thermodynamics Basic concept and first law of thermodynamics
Basic concept and first law of thermodynamics
 

Recently uploaded

TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptxTOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
shubhijain836
 
Reaching the age of Adolescence- Class 8
Reaching the age of Adolescence- Class 8Reaching the age of Adolescence- Class 8
Reaching the age of Adolescence- Class 8
abhinayakamasamudram
 
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdfAJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR
 
Quality assurance B.pharm 6th semester BP606T UNIT 5
Quality assurance B.pharm 6th semester BP606T UNIT 5Quality assurance B.pharm 6th semester BP606T UNIT 5
Quality assurance B.pharm 6th semester BP606T UNIT 5
vimalveerammal
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
PirithiRaju
 
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdfMending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Selcen Ozturkcan
 
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
Sérgio Sacani
 
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptxLEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
yourprojectpartner05
 
Embracing Deep Variability For Reproducibility and Replicability
Embracing Deep Variability For Reproducibility and ReplicabilityEmbracing Deep Variability For Reproducibility and Replicability
Embracing Deep Variability For Reproducibility and Replicability
University of Rennes, INSA Rennes, Inria/IRISA, CNRS
 
Synopsis presentation VDR gene polymorphism and anemia (2).pptx
Synopsis presentation VDR gene polymorphism and anemia (2).pptxSynopsis presentation VDR gene polymorphism and anemia (2).pptx
Synopsis presentation VDR gene polymorphism and anemia (2).pptx
FarhanaHussain18
 
seed production, Nursery & Gardening.pdf
seed production, Nursery & Gardening.pdfseed production, Nursery & Gardening.pdf
seed production, Nursery & Gardening.pdf
Nistarini College, Purulia (W.B) India
 
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
PsychoTech Services
 
cathode ray oscilloscope and its applications
cathode ray oscilloscope and its applicationscathode ray oscilloscope and its applications
cathode ray oscilloscope and its applications
sandertein
 
Microbiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdfMicrobiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdf
sammy700571
 
Polycythemia vera_causes_disorders_treatment.pptx
Polycythemia vera_causes_disorders_treatment.pptxPolycythemia vera_causes_disorders_treatment.pptx
Polycythemia vera_causes_disorders_treatment.pptx
muralinath2
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
hozt8xgk
 
Flow chart.pdf LIFE SCIENCES CSIR UGC NET CONTENT
Flow chart.pdf  LIFE SCIENCES CSIR UGC NET CONTENTFlow chart.pdf  LIFE SCIENCES CSIR UGC NET CONTENT
Flow chart.pdf LIFE SCIENCES CSIR UGC NET CONTENT
savindersingh16
 
IMPORTANCE OF ALGAE AND ITS BENIFITS.pptx
IMPORTANCE OF ALGAE  AND ITS BENIFITS.pptxIMPORTANCE OF ALGAE  AND ITS BENIFITS.pptx
IMPORTANCE OF ALGAE AND ITS BENIFITS.pptx
OmAle5
 
Physiology of Nervous System presentation.pptx
Physiology of Nervous System presentation.pptxPhysiology of Nervous System presentation.pptx
Physiology of Nervous System presentation.pptx
fatima132662
 
Lattice Defects in ionic solid compound.pptx
Lattice Defects in ionic solid compound.pptxLattice Defects in ionic solid compound.pptx
Lattice Defects in ionic solid compound.pptx
DrRajeshDas
 

Recently uploaded (20)

TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptxTOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
 
Reaching the age of Adolescence- Class 8
Reaching the age of Adolescence- Class 8Reaching the age of Adolescence- Class 8
Reaching the age of Adolescence- Class 8
 
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdfAJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdf
 
Quality assurance B.pharm 6th semester BP606T UNIT 5
Quality assurance B.pharm 6th semester BP606T UNIT 5Quality assurance B.pharm 6th semester BP606T UNIT 5
Quality assurance B.pharm 6th semester BP606T UNIT 5
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
 
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdfMending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
 
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
 
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptxLEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
 
Embracing Deep Variability For Reproducibility and Replicability
Embracing Deep Variability For Reproducibility and ReplicabilityEmbracing Deep Variability For Reproducibility and Replicability
Embracing Deep Variability For Reproducibility and Replicability
 
Synopsis presentation VDR gene polymorphism and anemia (2).pptx
Synopsis presentation VDR gene polymorphism and anemia (2).pptxSynopsis presentation VDR gene polymorphism and anemia (2).pptx
Synopsis presentation VDR gene polymorphism and anemia (2).pptx
 
seed production, Nursery & Gardening.pdf
seed production, Nursery & Gardening.pdfseed production, Nursery & Gardening.pdf
seed production, Nursery & Gardening.pdf
 
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
 
cathode ray oscilloscope and its applications
cathode ray oscilloscope and its applicationscathode ray oscilloscope and its applications
cathode ray oscilloscope and its applications
 
Microbiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdfMicrobiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdf
 
Polycythemia vera_causes_disorders_treatment.pptx
Polycythemia vera_causes_disorders_treatment.pptxPolycythemia vera_causes_disorders_treatment.pptx
Polycythemia vera_causes_disorders_treatment.pptx
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
 
Flow chart.pdf LIFE SCIENCES CSIR UGC NET CONTENT
Flow chart.pdf  LIFE SCIENCES CSIR UGC NET CONTENTFlow chart.pdf  LIFE SCIENCES CSIR UGC NET CONTENT
Flow chart.pdf LIFE SCIENCES CSIR UGC NET CONTENT
 
IMPORTANCE OF ALGAE AND ITS BENIFITS.pptx
IMPORTANCE OF ALGAE  AND ITS BENIFITS.pptxIMPORTANCE OF ALGAE  AND ITS BENIFITS.pptx
IMPORTANCE OF ALGAE AND ITS BENIFITS.pptx
 
Physiology of Nervous System presentation.pptx
Physiology of Nervous System presentation.pptxPhysiology of Nervous System presentation.pptx
Physiology of Nervous System presentation.pptx
 
Lattice Defects in ionic solid compound.pptx
Lattice Defects in ionic solid compound.pptxLattice Defects in ionic solid compound.pptx
Lattice Defects in ionic solid compound.pptx
 

1konsep-dasar-termodinamika.ppt

  • 2. THERMO vs. HEAT TRANSFER • Thermodynamics stems from the Greek words therme (heat) and dynamis (power or motion), which is most descriptive of the early efforts to convert heat into power. Today thermodynamics is broadly interpreted to include all aspects of energy and energy transformations, including power generation, refrigeration, and relationships among the properties of matter. • Heat transfers the science that deals with the determination of the rates of such energy transfer.
  • 3. THERMO vs. HEAT TRANSFER (cont) • Thermodynamics membicarakan sistem keseimbangan (equilibrium), bisa digunakan untuk menaksir besarnya energi yang diperlukan untuk mengubah suatu sistem keseimbangan, tetapi tidak dapat dipakai untuk menaksir seberapa cepat (laju) perubahan itu terjadi karena selama proses sistem tidak berada dalam keseimbangan. • Heat Transfer tidak hanya menerangkan bagaimana energi itu dihantarkan, tetapi juga menaksir laju penghantaran energi. Inilah yang membedakan Heat Transfer dengan thermodinamika.
  • 4. APLIKASI • Tubuh manusia • Meniup kopi panas • Perkakas elektronik (sirip, heat sink) • Refrigerator (AC, Kulkas) • Mobil (siklus engine, sirip, radiator) • Pembangkit listrik (turbin, boiler) • Industri (penyulingan, pendinginan, pengeringan, dll).
  • 5. DIMENSI dan SATUAN • Dimensi (M,L,T,θ)  homogen • Satuan : SI Units (m, s, kg, K) • Kesalahan umum: 1. Tidak paham 2. Usaha minimal, kurang latihan 3. Tidak terampil melakukan konversi satuan • Trik: perhitungan harus menyertakan satuan
  • 6. SECONDARY UNITS • Secondary units can be formed by combinations of primary units. Example: 2 s m kg N  • F = m.a • P = F/A 2 m N Pa  2 2 / . m s m kg Pa  2 .s m kg Pa 
  • 7. SISTEM vs. LINGKUNGAN • A system is defined as a quantity of matter or a region in space chosen for study. • The mass or region outside the system is called the surroundings. • The real or imaginary surface that separates the system from its surroundings is called the boundary
  • 8. OPEN vs. CLOSSED SYSTEMS • Closed system (= control mass): Mass can’t cross the boundary, but energy can. • Volume of a closed system may change. • Special case, if no energy cross the boundary, that system is called an isolated system.
  • 9. CLOSSED SYSTEM A closed system with a moving boundary.
  • 10. OPEN vs. CLOSSED SYSTEMS • Open system (= control volume) is a properly selected region in space. It usually encloses a device that involves mass flow such as a compressor, turbine, or nozzle. • Both mass and energy can cross the boundary of a control volume. • The boundaries of a control volume are called a control surface, and they can be real or imaginary.
  • 12. OPEN SYSTEM Open system (= control volume) with one inlet and one outlet (exit) and a real boundary.
  • 13. SIFAT-SIFAT SISTEM • Any characteristic of a system is called a property. • Some familiar properties are pressure P, temperature T, volume V, and mass m. The list can be extended to include less familiar ones such as viscosity, thermal conductivity, modulus of elasticity, thermal expansion coefficient, electric resistivity, and even velocity and elevation. • Intensive properties are those that are independent of the mass of a system, such as temperature, pressure, and density. • Extensive properties are those whose values depend on the size—or extent—of the system. • Extensive properties per unit mass are called specific properties (specific volume (v = V/m), specific energy (e = E/m).
  • 14. SIFAT INTENSIF vs. EKSTENSIF TUGAS (dikumpul Senin) : Sebuah apel dibelah dua. Buatlah daftar sifat intensif dan ekstensifnya Criterion to differentiate intensive and extensive properties.
  • 15. SIFAT-SIFAT SISTEM PENTING • Densitas atau massa jenis: masa per satuan volume • Volume spesifik, kebalikan dari densitas: volume per satuan masa (m3/kg) • Densitas relatif atau specific gravity: nisbah densitas suatu substansi dengan densitas substansi standar pada suhu tertentu (biasanya air pada 4oC di mana  = 1000 kg/m3)
  • 16. ENERGY SISTEM TERMODINAMIKA • BENTUK ENERGI: 1. Energi Kinetik (KE)  2. Energi Potensial (PE)  PE = mgh 3. Energi dakhil atau Internal Energy (U) • ENERGI TOTAL: E = U + KE + PE e = u + ke + pe (per satuan massa) 2 2 1 mV KE 
  • 17. POSTULAT KEADAAN • All properties (can be measured or calculated) completely describes the condition, or the state, of the system. At a given state, all the properties of a system have fixed values. If the value of even one property changes, the state will change to a different one. • The number of properties required to fix the state of a system is given by the state postulate: The state of a simple compressible system is completely specified by two independent, intensive properties.
  • 18. PROSES dan SIKLUS • Any change that a system undergoes from one equilibrium state to another is called a process • The series of states through which a system passes during a process is called the path (lintasan) of the process.
  • 19. MACAM-MACAM PROSES • Proses isotermal: proses pada suhu T konstan. • Proses isobaris: proses pada tekanan P konstan. • Proses isokhoris (isometris): proses pada volume spesifik  konstan. • Proses adiabatik: proses di mana tidak terjadi pertukaran kalor dengan lingkungan. • Proses isentropik: proses pada entropi S konstan.
  • 20. STEADY-FLOW PROCESS • The terms steady and uniform are used frequently in engineering, and thus it is important to have a clear understanding of their meanings. • The term steady implies no change with time. • The opposite of steady is unsteady, or transient. • The term uniform, however, implies no change with location over a specified region.
  • 21. PROSES dan SIKLUS • A system undergoes a cycle if it returns to its initial state at the end of the process. Siklus dengan 2 lintasan Siklus dengan 4 lintasan
  • 22. TEKANAN • Tekanan (P) : gaya (F) per satuan luas (A). • Satuan tekanan adalah pascal (Pa) = N/m2. • Untuk benda padat gaya per luas satuan tidak disebut tekanan, tetapi tegangan (stress). • Untuk fluida diam, tekanan adalah sama ke segala arah. • Tekanan di dalam fluida meningkat sesuai dengan kedalamannya akibat berat fluida (pengaruh gravitasi) sehingga fluida pada bagian bawah menanggung beban yang lebih besar daripada fluida di bagian atas. • Tetapi tekanan tidak bervariasi pada arah horisontal. • Tekanan gas di dalam tangki dapat dianggap seragam karena berat gas terlalu kecil dan tidak mengakibatkan pengaruh yang berarti.
  • 23. TEKANAN: UKUR, ATM, VAKUM • Tekanan aktual pada posisi tertentu disebut tekanan absolut dan diukur secara relatif terhadap tekanan vakum, yaitu tekanan nol mutlak. • Kebanyakan pengukur tekanan dikalibrasi untuk membaca nol di atmosfer (tekanan atmosfer lokal). • Perbedaan tekanan absolut dan tekanan atmosfer disebut tekanan ukur (pressure gage). • Tekanan di bawah tekanan atmosfer disebut tekanan vakum (vacuum pressure) dan diukur dengan pengukur vakum yang menunjukkan perbedaan antara tekanan atmosfer dan tekanan absolut. • Pgage = Pabs – Patm (untuk P > Patm) • Pvac = Patm – Pabs (untuk P < Patm)
  • 26. PRINSIP MANOMETER Perhatikan gambar: • Seimbang F = 0 • P1 = P2 • A P1 = A Patm + W di mana W = m g =  V g =  A h g • P1 = Patm +  h g • P = P1 - Patm =  h g = Tekanan ukur di dalam tangki
  • 27. EXAMPLE : Manometer A manometer is used to measure the pressure in a tank. The fluid used has a specific gravity of 0.85, and the manometer column height is 55 cm, as shown in Figure. If the local atmospheric pressure is 96 kPa, determine the absolute pressure within the tank.
  • 29. EXAMPLE: MULTIFLUID MANOMETER Water in a tank is pressurized by air, and the pressure is measured by a multifluid manometer (see Figure). The tank is located on a mountain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa. Determine the air pressure in the tank if h1 = 0.1 m, h2 = 0.2 m, and h3 = 0.35 m. Take the densities of water, oil, and mercury to be 1000 kg/m3, 850 kg/m3, and 13,600 kg/m3, respectively.
  • 31. APLIKASI MANOMETER P1 + 1g(a + h) - 2gh - 1ga = P2 P1 - P2 = (2 - 1)gh Untuk 2 >> 1 : P1 - P2 ≈ 2 g h Measuring the pressure drop across a flow section or a flow device by a differential manometer:
  • 33. EXAMPLE3: BAROMETER • Determine the atmospheric pressure at a location where the barometric reading is 740 mm Hg and the gravitational acceleration is g 9.81 m/s2. Assume the temperature of mercury to be 10oC, at which its density is 13,570 kg/m3.
  • 35. TEKANAN ATMOSFER ELEVASI (m) TEKANAN (kPa) TEKANAN (mmHg) 0 (sea level) 101.325 760.00 1000 89.88 674.15 2000 79.50 596.30 5000 54.05 405.41 10,000 26.5 198.77 20,000 5.53 41.48 Rule of thumb: naik 10 m, tekanan atmosfer turun 1 mmHg
  • 37. TEMPERATURE • Thermodinamika  SUHU MUTLAK • Satuan kelvin (K) untuk SI • Satuan renkine (R) untuk USCS Konversi: T(K) = T(oC) + 273.15 T(R) = T(oF) + 456.67 T(oC) = 1.8T(oC) + 32 T(R) = 1.8 T(K) CAUTION: T(K) = T(oC) T(R) = T(oF)
  • 38. EXAMPLE4: TEMPERATURE • During a heating process, the temperature of a system rises by 10°C. Express this rise in temperature in K, °F, and R.
  • 39. PR: • Soal No: 1-6C, 1-7C, 1-15C, 1-16C, 1-17C, 1- 20C, 1-21C, 1-22C, 1-23C, 1-24C, 1-29, 1-31, 1- 34C, 1-35C, 1-36C, 1-39C, 1-40, 1-42, 1-43, 1-44, 1-45, 1-48, 1-51, 1-53, 1-55, 1-57, 1-59, 1-61, 1-62, 1-63, 1-65, 1-66, 1-73, 1-85, 1-88, 1-101, 1-103, 1-105, 1-106, 1-108, 1-120, 1-121, 1-122, 1-123, 1-125. • Kelompok THERMO • Kelompok DYNAMICS