SlideShare a Scribd company logo
Applied Reservoir Engineering
Applied Reservoir Engineering : Dr. Hamid Khattab
Reservoir Definition
Reservoir Definition
Reservoir Definition
Reservoir Definition
Cap rock
Res. Fluid
Reservoir rock
R i
Reservoir
Shallow Deep
offshare onshare offshare onshare
Applied Reservoir Engineering : Dr. Hamid Khattab
Reservoir
rocks
Sedimentry Chemical
Sandstone Sand L.s Dolomit
Applied Reservoir Engineering : Dr. Hamid Khattab
Rock Properties
Porosity Saturation Permeability Capillary Wettability
Absolute Effective
So
Sw
Sg
Absolute
Eff ti
Relative
Primary Primary
Effective
Ratio
Secondary Seccondary
Applied Reservoir Engineering : Dr. Hamid Khattab
Reservoir fluids
Reservoir fluids
Water Oil Gas
Salt Fresh
Black
Volatile
Drey
Wet Condensate
Low volatile
High volatile Ideal
Real
(non ideal)
Applied Reservoir Engineering : Dr. Hamid Khattab
Fluid properties
Gas Oil Water
AM T P Z C β
ρg AMw γg Tc PC Z Cg βg µg βw rs µw Salinity
Cw
ρo γo APT rs βo βt µo Co

TR PR
Applied Reservoir Engineering : Dr. Hamid Khattab
Applied reservoir Engineering Contents
Applied reservoir Engineering Contents
1. Calculation of original hydrocarbon in place
i. Volumetric method
i. Volumetric method
ii. Material balance equation (MBE)
2 Determination of the reservoir drive mechanism
2. Determination of the reservoir drive mechanism
– Undersaturated
– Depletion
– Gas cap
– Water drive
– Combination
3. Prediction of future reservoir performance
– Primary recovery
Primary recovery
– Secoundry recovery by : Gas injection
Water injection
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original hydrocarbon in place by
Calculation of original hydrocarbon in place by
Calculation of original hydrocarbon in place by
Calculation of original hydrocarbon in place by
volumetric method
volumetric method
● ●
6
7
Well Depth
1 D1
●
●
●4
3
2
1 D1
2 D2
3 D3
4 D4
●
●
●
●
1
9
4 D4
5 D5
6 D6
7 D
●
8
5
9
Scale:1:50000
7 D7
8 D8
9 D9
Location map
Structural contour map
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original hydrocarbon in place by
Calculation of original hydrocarbon in place by
Calculation of original hydrocarbon in place by
Calculation of original hydrocarbon in place by
volumetric method
volumetric method
Well Depth
1 h1
G
1 h1
2 h2
3 h3
4 h4
Goc
Gas
Oil
4 h4
5 h5
6 h6
7 h
Woc
Oil
Water
7 h7
8 h8
9 h9
30
10
0
Isopach map
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original hydrocarbon in place by
Calculation of original hydrocarbon in place by
Calculation of original hydrocarbon in place by
Calculation of original hydrocarbon in place by
volumetric method
volumetric method
)
1
(
. wi
S
BV
N −
= φ
)
1
(
)
( wi
S
Ah −
= φ )
(
)
( wi
φ
wi
S
Ah
β
φ
615
5
)
1
(
43560 −
= SCF
Bbl
g
β
oi
β
615
.
5
wi
S
Ah
N
φ )
1
(
7758 − STB
STB
bbl
o
β
acres
A:
oi
wi
N
β
φ )
(
=
i
S
Ahφ )
1
(
7758 −
STB
SCF
ft
h :
fractions
Swi :
,
φ
gi
wi
S
Ah
G
β
φ )
1
(
7758
=
SCF f
wi
,
φ
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of (BV) using isopach map
Calculation of (BV) using isopach map
Area inch2
C.L
( ) g p p
( ) g p p
1. Trapozoidal method:
A1
10
Ao
0 WOC
5
.
0
1 >
−
n
n A
A
A3
30
A2
20
[ ]
A
A
A
A
A
h
BV n
n +
+
+
+
+
= − 2
2
......
2
2
2
1
2
1
0
A5
50
A4
40
A’
GOC
[ ]
[ ]
A
A
h
n
n
n
′
+
′
+
2
2
1
2
1
0
A7
70
A6
60
O
76
A7
70
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of (BV) using isopach map
Calculation of (BV) using isopach map
Area inch2
C.L
( ) g p p
( ) g p p
2. Pyramid or cone method
5
.
0
1 ≤
−
n
n A
A A1
10
Ao
0 WOC
[ ]
A
A
A
A
h
BV .
3
1
0
1
0 +
+
=
A3
30
A2
20
[ ]
A
A
A
A
h
.
3
2
1
2
1 +
+
+
A5
50
A4
40
A’
GOC
[ ] [ ]
n
n
n
n A
h
A
A
An
A
h
3
.
3
1
1 +
+
+
+ −
−
A7
70
A6
60
O
76
A7
70
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of (BV) using isopach map
Calculation of (BV) using isopach map
( ) g p p
( ) g p p
3. Simpson method
Odd number of contour lines
[ ]
n
n A
A
A
A
A
A
h
BV 2
4
......
4
2
4
3
1
3
2
1
0 +
+
+
+
+
+
= −
[ ]
n
A
h
3
3
′
+
3
Applied Reservoir Engineering : Dr. Hamid Khattab
Converting map areas (inch
Converting map areas (inch2
2) to acres
) to acres
Converting map areas (inch
Converting map areas (inch2
2) to acres
) to acres
Say : Scale 1 : 50000
Say : Scale 1 : 50000
1 inch = 50,000 inch
acres
56
398
(50,000)
inch
1
2
2
acres
56
.
398
43560
144
( )
inch
1 =
×
=
Applied Reservoir Engineering : Dr. Hamid Khattab
Converting map areas (inch
Converting map areas (inch2
2) to acres
) to acres
Example 1 :
Converting map areas (inch
Converting map areas (inch2
2) to acres
) to acres
Gi th f ll i l i t d f it f
Given the following planimetred areas of an oit of
reservoir. Calculate the original oil place (N) if φ =25%,
Swi=30%, βoi=1.4 bbl/STB and map scale=1:15000
C.L : 0 10 20 30 40 50 60 70 80 86
Area inch2 : 250 200 140 98 76 40 26 12 5 0
Applied Reservoir Engineering : Dr. Hamid Khattab
Converting map areas (inch
Converting map areas (inch2
2) to acres
) to acres
Converting map areas (inch
Converting map areas (inch2
2) to acres
) to acres
Solution :
[ ]
[ ] [ ] [ ]
0
50
0
50
6
5
12
5
12
10
12
26
12
26
10
26
40
2
76
2
98
2
140
2
200
2
250
2
10
+
×
+
×
+
×
+
×
+
×
+
=
B
V
[ ] [ ] [ ]
0
50
0
50
3
6
5
12
5
12
3
10
12
26
12
26
2
10
×
+
+
+
×
+
+
+
×
+
+
+
ft
inch :
7198 2
=
acres
87
.
35
43560
144
(15,000)
inch
1
2
2
=
×
=
ft
inch :
7198
acres
BV 39
.
258193
87
.
35
7198 =
×
=
∴
MMSTB
N 38
.
250
4
.
1
)
3
.
0
1
(
25
.
0
39
.
258193
7758
=
−
×
×
×
=
∴
Applied Reservoir Engineering : Dr. Hamid Khattab
Converting map areas (inch
Converting map areas (inch2
2) to acres
) to acres
By using Simpson method
Converting map areas (inch
Converting map areas (inch2
2) to acres
) to acres
[ ]
[ ]
0
5
0
5
6
5
2
12
4
26
2
40
4
76
2
98
4
140
2
200
4
250
3
10
×
+
+
+
×
+
×
+
×
+
×
+
×
+
×
+
×
+
×
+
=
BV
[ ]
0
5
0
5
3
×
+
+
+
ft
inch .
6
.
7156 2
=
ft
acro
f
.
6
.
256709
87
.
35
6
.
7156 =
×
=
)
3
0
1
(
25
0
6
256709
7758
MMSTB
N 94
.
248
4
.
1
)
3
.
0
1
(
25
.
0
6
.
256709
7758
=
−
×
×
×
=
∴
MMSTB
Nav 66
.
249
2
)
94
.
248
38
.
250
( =
+
=
∴
Applied Reservoir Engineering : Dr. Hamid Khattab
Converting map areas (inch
Converting map areas (inch2
2) to acres
) to acres
Example 2 :
If th i f l 1 i i d
Converting map areas (inch
Converting map areas (inch2
2) to acres
) to acres
If the reservoir of example 1 is a gas reservoir and
βg=0.001 bbl/SCF. Calculate the original gas in place
S l ti
Solution :
)
3
0
1
(
25
0
39
258193
7758 −
×
×
×
MMSCF
G 53
.
350
001
.
0
)
3
.
0
1
(
25
.
0
39
.
258193
7758
=
×
×
×
=
Applied Reservoir Engineering : Dr. Hamid Khattab
Converting map areas (inch
Converting map areas (inch2
2) to acres
) to acres
Example 3 :
Converting map areas (inch
Converting map areas (inch2
2) to acres
) to acres
A gas cap has the following data : φ =25%, Swi=30%, βoi=1.3
bbl/STB, βgi=0.001 bbl/SCF and map scale=1:20000
C.L : 0(WOC) 10 20 30 33(GOC) 40 50 60 70 76
Area inch2 : 350 310 270 220 200 190 130 55 25 0
Calculate the original oil in place (N) and the original gas in
place (G)
Applied Reservoir Engineering : Dr. Hamid Khattab
Converting map areas (inch
Converting map areas (inch2
2) to acres
) to acres
Solution :
Converting map areas (inch
Converting map areas (inch2
2) to acres
) to acres
[ ] [ ]
3
10 2
[ ] [ ] ft
inch
BVoil .
9280
200
220
2
3
220
270
2
310
2
350
2
10 2
=
+
+
+
×
+
×
+
=
[ ] [ ] [ ]
BV 55
130
55
130
10
130
190
10
190
200
7
×
+
+
+
+
+
+
= [ ] [ ] [ ]
[ ] [ ] ft
inch
BVgas
.
79
.
4303
25
3
6
25
55
25
55
3
10
55
130
55
130
2
130
190
2
190
200
2
2
=
+
×
+
+
+
×
+
+
+
+
+
+
=
acres
77
.
63
43560
144
(20,000)
inch
1
2
2
=
×
=
MMSTB
N 618
3
.
1
)
3
.
0
1
(
25
.
0
77
.
63
9280
7758
=
−
×
×
×
×
=
MMSCF
G 6
.
372
001
.
0
)
3
.
0
1
(
25
.
0
77
.
63
79
.
4303
7758
=
−
×
×
×
×
=
Applied Reservoir Engineering : Dr. Hamid Khattab
Reservoir drive mechanism
Reservoir drive mechanism
Reservoir drive mechanism
Reservoir drive mechanism
Water reservoir
Water reservoir
P
Gas reservoir
Gas
Gas
Bg
Water
with bottom
water drive
without bottom
water drive
g
Oil reservoir
Applied Reservoir Engineering : Dr. Hamid Khattab
Oil reservoir
Undersaturated
P>Pb
Oil
Oil
Oil
Water
with bottom
without bottom Saturated
water drive
without bottom
water drive
Saturated
P≤Pb
Oil
Oil
Oil
Oil
W
Gas
Gas
Gas
Oil
Water
Gas
Combination
drive
Bottom water
drive
Gas cap
drive
Depletion
drive
Applied Reservoir Engineering : Dr. Hamid Khattab
PVT data for gas and oil reservoirs
PVT data for gas and oil reservoirs
PVT data for gas and oil reservoirs
PVT data for gas and oil reservoirs
Gas reservoirs
Bg
Gas reservoirs
P
ZT
Bg 00504
.
0
=
P
Applied Reservoir Engineering : Dr. Hamid Khattab
PVT data for gas and oil reservoirs
PVT data for gas and oil reservoirs
Saturated oil reservoirs
PVT data for gas and oil reservoirs
PVT data for gas and oil reservoirs
Boi=Bti
µo
B
rsi
Bt = Bo+(rsi-rs)Bg
P
ZT
Bg 00504
.
0
=
Bo
rs
Boi= Bti
P
Bg
0
1
P
0 Pi
Applied Reservoir Engineering : Dr. Hamid Khattab
PVT data for gas and oil reservoirs
PVT data for gas and oil reservoirs
PVT data for gas and oil reservoirs
PVT data for gas and oil reservoirs
Undersaturated oil reservoirs
saturated undersat.
P1 > Pb
Bt
µo
rsi=c
Bo
rs
Bg
1
0
Applied Reservoir Engineering : Dr. Hamid Khattab
Laboratory measurment of PVT data
Laboratory measurment of PVT data
Laboratory measurment of PVT data
Laboratory measurment of PVT data
Gas
Gas
SCF
Oil
P
Oil
Oil
P
Oil
Oil
SCF
STB
undersaturated
saturated
Pb P > Pb Pi
P = 14.7 psi
T = 60o F
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
1. Gas reservoir without bottom water drive
p
G
T
∆ ( ) gi
p B
G
G −
gi
GB
( )
i
p
p∠
i
p
g
p B
G
G =
∴
( ) g
p
gi B
G
G
GB −
=
1
gi
g B
B
G
−
=
∴ 1
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
1. Gas reservoir without bottom water drive
Example 4 :
psi
P SCF
G p SCF
bbl
g
B Z G
201.6
0.81
0.00084
12
3900
0x106
0.83
0.00077
0x10-6
4000
p
G
195.2
0.77
0.00095
37
3700
200.2
0.79
0.00089
27
3800 .
const
G ≠
Solution :
199.7
0.75
0.00107
58
3600
Using eq. (1)
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
MBE as an equation of a straight line
y1
( ) g
p
gi B
G
G
GB −
=
( )
B
B
G
B
G
∴ 2
g
p B
G
G
y1
( )
gi
g
g
p B
B
G
B
G −
=
∴
Another form:
2
gi
g B
B −
x1
( ) 






−
=






 i
p
p
T
Z
p
ZT
G
p
ZT
G 00504
.
0
00504
.
0 Z
Gp
y2





 i
p
p
p
p




−
=
∴ i
Z
Z
G
G
Z
3
p
p
G




=
∴
i
p
p
p
G
G
p 3
i
i P
Z
p
Z −
x2
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Another form:
( ) g
p
gi B
G
G
GB −
=
( ) 
 Z
Z
p
i
i
Z
p
( ) 






−
=
p
Z
G
G
G
p
Z
p
i
i
00504
.
0
00504
.
0
p
G
P 


Z
y3 i
i
GZ
p
p
p
p
i
i
p
Z
p
G
G
Z
P







−
=
∴ 1
G
p
i
i
i
i
G
GZ
p
Z
p
Z
p
−
=
∴
at p
G
x3
G
0
0
=
Z
p
p
G
G =
p
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Example 5 :
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Solve the previous example using MBE as a straigh line
Solution :
p P
Z i
i P
Z
p
Z −
g
p B
G
gi
g B
B − Z
P p
G
12
4441
1.75
2.25
1.068
0.00005
3900
0x10-6
4819
― x10-5
2.075x10-4
―x104
―
4000
37
3896
5.91
2.66
3.515
0.00018
3700
27
4177
3.15
2.39
2.403
0.00012
3800
x3
y3
x2
y2
y1
x1
56
3421
8.09
2.88
5.990
0.00030
3600
From Figgers STB
G 6
10
200×
=
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
2.Gas reservoir with bottom water drive
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
R
p
G
p
W
T
∆
∴
Assuming =0 causes an increase in G continuously
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
MBE as a straight line
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
F/
45o
∴
N
∴
/
Assuming is known
33
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
A i i h k b d i h h f ll i
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Example 6 :
A gas reservoir with a known bottom water drive has the following
data: =0 and
B
0x10-6
0.00093
0x109
4000
0
We bbl
T years psi
P SCF
G p SCF
bbl
g
B
7.490
0.00107
72.33
3800
2
2.297
0.00098
27.85
3900
1
13.308
0.00117
113.85
3700
3
18.486
0.00125
151.48
3600
4
34
Calculate the original gas in place
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Tyear F Eg F/Eg x109 We/Eg x109
Solution
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Tyear F Eg F/Eg x10 We/Eg x10
1 27.2x106 0.00005 546 45.93
2 77.39 0.00014 553 53.04
3 133.20 0.00024 555 55.44
4 189.35 0.00032 554 54.25
F/E
F/E
g
45
From Fig: G=500x109 SCF
G=500x109
We/Eg
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Gas Cap Expansion an Shrinkage
G
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Gpc
gas
GOC
Gpc
expansion
GOC
GOC
Oil
shrinkage
Oil
Shrinkage due to: poor planning or accident and corrosion
g p p g
- Assume gas cap expansion = (G-Gpc).Bg-GBgi
Assume gas cap shrinkage = GB (G Gp )B
- Assume gas cap shrinkage = GBgi - (G-Gpc)Bg
Gpc: gas produced from the gas cap and my be = zero
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Example: 7
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Calculate the gas cap volume change if G=40x109 SCF
P Gpc x109 Bg
4000 0 0.0020
3900 4 0 0022
3900 4 0.0022
3800 7 0.0025
3700 10 0.0028
3600 13 0.0031
3500 17 0.0035
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Solution
Calculation of original gas in place by MBE
Calculation of original gas in place by MBE
Assuming gas cap expansion = (G-Gpc).Bg-Ggi
Pressure Gas cap change x103 type
4000 - -
3900 -800 shrinkage
3800 +2500 expansion
3800 +2500 expansion
3700 +4000 expansion
3600 +3700 shrinkage
3500 +5000 expansion
Shrinkage at P=3600 may be due PVT or Gp data
Shrinkage at P=3600 may be due PVT or Gpc data
Applied Reservoir Engineering : Dr. Hamid Khattab
C l l ti f i i l il i l b MBE
C l l ti f i i l il i l b MBE
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
a) Under-saturated oil reservoirs
Characteristics
P>P
- P>Pb
- No free gas, no Wp
- Large volume
Limited K
- Limited K
- Low flow rate
- Produce by Cw and Cf
Applied Reservoir Engineering : Dr. Hamid Khattab
C l l ti f i i l il i l b MBE
C l l ti f i i l il i l b MBE
1- Under-saturated oil reservoirs without bottom water
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
Np
NBoi
P P
(N-Ni)Bo
P>P
Pi>Pb
P>Pb
neglecing Cw and Cf
NBoi=(N-Np)Bo
o
p B
N
N
∴ (1)
oi
o
p
B
B
N
−
=
∴ (1)
Applied Reservoir Engineering : Dr. Hamid Khattab
C l l ti f i i l il i l b MBE
C l l ti f i i l il i l b MBE
Example: 8
C l l t th i i l il i l i t d i d l ti C
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
Calculate the original oil in place assuming no water drive and neglecting Cw
and Cf using the following data
P Np x106 Bo
4000 0 1.40
3800 1 535 1 42
3800 1.535 1.42
3600 3.696 1.45
3400 7.644 1.49
3200 9.545 1.54
Applied Reservoir Engineering : Dr. Hamid Khattab
C l l ti f i i l il i l b MBE
C l l ti f i i l il i l b MBE
Solution
Pressure NpBo x106 Bo-Boi N x106
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
4000 - - -
3800 2.179 0.02 108.95
3600 5 539 0 05 110 78 const
N ≠
3600 5.539 0.05 110.78
3400 11.389 0.09 126.64
3200 14.699 0.14 104.99
rearrange MBE as a straight line
NBoi = (N-Np)Bo
F
F = NEo
From Fig:
6
N
STB
x
N 6
10
110
≠
Eo
Applied Reservoir Engineering : Dr. Hamid Khattab
C l l ti f i i l il i l b MBE
C l l ti f i i l il i l b MBE
o.b.p=1 psi/ftD
Considering Cw and Cf
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
- overburden pressure = 1 psi/ftD
- rock strength = 0.5 psi/ftD
r s rv ir pr ssur 0 5 psi/ftD
- reservoir pressure = 0.5 psi/ftD
o.b.p
Applied Reservoir Engineering : Dr. Hamid Khattab
C l l ti f i i l il i l b MBE
C l l ti f i i l il i l b MBE
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
Considering Cw and Cf
NBoi
Vp
B
N
N
NB f
w
o
p
oi ∆
+
−
= )
( ,
Pi>Pb
dp
V
C
dVp
dVp
C
Vp
Vp
Vp
f
f
w
f
w
→
∆
+
∆
=
∆
1
,
(N-Np)Bo
dVp
dp
V
C
dVp
dp
V
C p
f
f
f
p
f =
→
=
1
.
P>Pb
∆Vp,,w
V
dp
V
C
dVp
dp
dVp
V
C w
w
w
w
w
w =
→
= .
1
dp
V
S
C
dVp
V
S
V
V
V
S p
w
w
w
p
w
w
p
w
w =
→
=
→
=
Applied Reservoir Engineering : Dr. Hamid Khattab
C l l ti f i i l il i l b MBE
C l l ti f i i l il i l b MBE
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
Considering Cw and Cf
dp
V
C
S
C
dVp p
f
w
w
w
f +
=
∴ )
(
,
S
NB
Vp
S
Vp
NB
w
oi
w
oi
−
=
→
−
=
)
1
(
)
1
(
dp
NB
S
C
S
C
dVp oi
f
w
w
w
f
−
+
=
∴ )
1
(
,
p
NB
S
C
S
C
B
N
N
NB
S
oi
f
w
w
o
p
oi
w
∆
+
+
−
=
∴ )
1
(
)
(
1
S
oi
w
o
p
oi
−
1
Applied Reservoir Engineering : Dr. Hamid Khattab
C l l ti f i i l il i l b MBE
C l l ti f i i l il i l b MBE
B
N
N
o
p
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
Considering Cw and Cf
B
B
p
B
S
C
S
C
B
B
N
oi
w
f
w
w
oi
o
o
p
∆
−
+
+
−
=
∴
)
1
(
B
N
B
N
N
p
B
C
B
B
p
B
B
B
C
o
p
o
p
oi
o
oi
o
oi
oi
o
o
=
=
∴
∆
=
−
→
∆
−
=
Q
S
S
where
p
B
S
C
S
C
S
S
C
p
B
S
C
S
C
C
N
w
o
oi
w
f
w
w
w
o
o
oi
w
f
w
w
o
−
=
∆
−
+
+
−
∆
−
+
+
∴
1
]
1
1
[
]
1
[
p
B
S
C
S
C
S
C
B
N
N
oi
f
w
w
o
o
o
p
w
o
∆
+
+
=
∴
]
1
[
p
C
B
B
N
N
S
e
oi
o
p
w
∆
=
−
1
(2)
Applied Reservoir Engineering : Dr. Hamid Khattab
C l l ti f i i l il i l b MBE
C l l ti f i i l il i l b MBE
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
Considering Cw and Cf
P
P
P i −
=
∆
Pi
Pi
V
V
dP
dV
V
C
oi
o −
=
1
.
1
P
B
B
B
C
oi
oi
o
o
∆
−
=
Pi
B
B
P
P
V
V
V
oi
o
i
i
oi
−
−
−
=
)
(
1
.
1
Voi
Vo
P
B
oi
o
oi ∆
=
)
(
.
)
salinity
and
,
,
(
)
(
s
w
f
r
T
P
f
C
f
C
=
= φ
From the following charts
Applied Reservoir Engineering : Dr. Hamid Khattab
C l l ti f i i l il i l b MBE
C l l ti f i i l il i l b MBE
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
Applied Reservoir Engineering : Dr. Hamid Khattab
C l l ti f i i l il i l b MBE
C l l ti f i i l il i l b MBE
Example: 9
l l ( ) d h ff f d
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
Solution
Solve example (8) considering the effect of Cw and Cf
R1(Fig 2)
r (Fig 1)
C (Fig 4)
∆P=(Pi P)
P
B
B
C oi
o −
=
18
2.9x10-6
―
―
4000
R1(Fig.2)
rsf(Fig.1)
Cwp(Fig.4)
∆P=(Pi-P)
P
p
B
C
oi
o
∆
=
0.85
16.8
2.95
8.928
400
3600
17.2
2.93
7.143x10-5
200
3800
15.2
3.00
12.500
800
3200
16
2.98
10.714
600
3400
Applied Reservoir Engineering : Dr. Hamid Khattab
C l l ti f i i l il i l b MBE
C l l ti f i i l il i l b MBE
Continue
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
Cw=CwpxR2
R2 (Fig.3)
rs= rsf x R1
P
w
f
w
w
o
o
S
C
S
C
S
C
−
+
+
1
7.725x10-5
3.311
1.13
14.62
3800
―
3.30x10-6
1.4
15.3
4000
13.569
3.289
1.104
13.60
2400
9.570
3.247
1.11
14.28
3600
13.143
3.17
1.09
12.92
3200
Applied Reservoir Engineering : Dr. Hamid Khattab
C l l ti f i i l il i l b MBE
C l l ti f i i l il i l b MBE
Continue
B
N
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
p
C
B
B
N
N
e
oi
o
p
∆
=
P NpBo NBoiCe∆P N
4000 ― ― ―
3800 2.179x016 0.0218 108.2x106
3600 5.359 0.0536 107.9
N ≠ C
3400 11.389 0.1131 106.5
3200 14 699 0 1470 105 1
3200 14.699 0.1470 105.1
Applied Reservoir Engineering : Dr. Hamid Khattab
C l l ti f i i l il i l b MBE
C l l ti f i i l il i l b MBE
Use MBE as a straight line as follows:
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
P
C
NB
B
N e
oi
o
p ∆
=
B
N
F
Plot the fig
o
NE
F = o
p B
N
F =
6
10
100×
=
N
Plot the fig. 10
100×
=
N
STB
N 6
10
100×
=
P
C
B
E ∆P
C
B
E e
oi
o ∆
=
Applied Reservoir Engineering : Dr. Hamid Khattab
U d t t d il i ith b tt t
U d t t d il i ith b tt t
Undersaturated oil reservoir with bottom water
Undersaturated oil reservoir with bottom water
p
N
p
W p
W
(N-Np)Bo
NBoi
P>Pb
Pi>Pb
Assuming (We) is known and neglect Cw+Cf
( ) ( )
B
w
W
B
N
N
NB −
+
−
= ( ) ( )
( )
i
w
p
e
o
p
w
p
e
o
p
oi
B
B
B
w
W
B
N
N
B
w
W
B
N
N
NB
−
−
−
=
∴
+
=
oi
o B
B
Assuming We=0 will cuse an increase in (N)
Applied Reservoir Engineering : Dr. Hamid Khattab
U d t t d il i ith b tt t
U d t t d il i ith b tt t
Undersaturated oil reservoir with bottom water
Undersaturated oil reservoir with bottom water
Example 11 :
Using the following data in the undersaturated oil reservoir with a
known (We), neglecting Cw & Cf calculate (N): wp= 0
P Np Bo We
4000 ―x106 1.40 ―x106
3800 2.334 1.45 1.135
3600 5 362 1 42 2 416
3600 5.362 1.42 2.416
3400 10.033 1.49 3.561
3200 12 682 1 54 4 832
3200 12.682 1.54 4.832
Applied Reservoir Engineering : Dr. Hamid Khattab
U d t t d il i ith b tt t
U d t t d il i ith b tt t
Undersaturated oil reservoir with bottom water
Undersaturated oil reservoir with bottom water
Solution :
Solution :
( )
oi
o
w
p
e
o
p
B
B
B
w
W
B
N
N
−
−
−
=
P NpBo Bo-Boi N
4000 106 106
4000 ―x106 ― ―x106
3800 3.314 0.02 108.5
3600 7 775 0 05 107 1 N ≠ C
3600 7.775 0.05 107.1
3400 14.950 0.09 126.5
3200 19 531 0 14 105 0
N ≠ C
3200 19.531 0.14 105.0
Applied Reservoir Engineering : Dr. Hamid Khattab
U d t t d il i ith b tt t
U d t t d il i ith b tt t
E
F
Rearrange MBE as a straight line
Undersaturated oil reservoir with bottom water
Undersaturated oil reservoir with bottom water
o
E
o
45
[ ] e
i
o
w
p
o
p W
B
B
N
B
W
B
N +
−
=
+ 0
W
E
N
F +
=
110
=
N
e
o W
E
N
F +
=
o
e
o E
W
N
E
F +
=
∴
o
e E
W
[ ]
i
o
o B
B
E 0
−
= o
e E
W
p o
E
F
o
p B
N
F =
[ ]
i
o
o 0
48 32
155 5
7 775
0 05
3600
56.75
165.7
3.314
0.02
3800
― x10-6
―
― x10-6
―
4000
p p
34.51
139.5
19.531
0.14
3200
39.56
166.4
14.980
0.09
3400
48.32
155.5
7.775
0.05
3600
Applied Reservoir Engineering : Dr. Hamid Khattab
Undersaturated oil reservoir with bottom water
Undersaturated oil reservoir with bottom water
Example 11 :
Solve examole (10) considering Cw and Cf effect
Solution :
So ut on
Cw, Co, Cf and Ce are the same as example (9)
P
e
oi
e
o
e
C
B
W
E
W
∆
=
P
e
oiC
B ∆
P
e
oi
o
P
o C
B
B
N
E
F
∆
=
P
∆
e
C
P
45.07
145.06
0.0536
400
9.570
3600
52.06 x106
152.01 x106
0.0218
200
7.785
3800
―
―
―
―
― x10-5
4000
32.87
132.86
0.1470
800
13.143
3200
31.26
131.25
0.1139
600
13.568
3400
45.07
145.06
0.0536
400
9.570
3600
F
o
E
F
o
45
P
i
e
e
C
B
W
E
W
∆
=
P
i
o
P
C
B
B
N
E
F
∆
=
Plot vs
6
10
100 ×
=
N
o
e E
W
P
e
oi
o C
B
E ∆
P
e
oi
o C
B
E ∆
As in Fig. 6
10
100×
=
N
Applied Reservoir Engineering : Dr. Hamid Khattab
B S t t d il i
B S t t d il i
B. Saturated oil reservoirs
B. Saturated oil reservoirs
1 D l ti d i i
1. Depletion drive reservoirs
Characteristics
b
P
P ≤
• b
0
=
• p
W
rapidly
increases
Rp
•
F
R
low .
•
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
p
G
p
N
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
T
∆
oi
NB ( ) o
p B
N
N −
p
Free gas
( )
b
i P
P≤
Free gas
p
( ) gas
free
B
N
N
NB o
p
oi +
−
=
( ) SCF
R
N
r
N
N
Nr
gas
free p
p
s
p
si −
−
−
=
( ) ( )
[ ] g
p
p
s
p
si
o
p
oi B
R
N
r
N
N
Nr
B
N
N
NB −
−
−
+
−
=
∴
( )
[ ]
( )
[ ]
( ) g
s
si
oi
o
g
s
p
o
p
B
r
r
B
B
B
r
R
B
N
N
−
+
−
−
+
=
∴
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
Example 12 :
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
Calucaltion (N) for a depletion drive reservoir has the following data : Swi=30%
91 50
614
0 001273
1 423
674
3 87
3800
― x106
718
0.001041
1.492
718
― x106
4000
N
rs
Bg
Bo
RP
NP
P
ion
96.01
400
0.002200
1.286
3077
6.44
3400
96.02
510
0.001627
1.355
1937
5.26
3600
91.50
614
0.001273
1.423
674
3.87
3800
Solut
96.01
400
0.002200
1.286
3077
6.44
3400
As shown N ≠ const., so rearrange MBE as a straight line
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
( )
[ ] ( )
[ ]
g
s
si
oi
o
g
s
p
o
p B
r
r
B
B
N
B
r
R
B
N −
+
−
=
−
+
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
o
E
N
F =
Solution :
P F Eo
4000 0 106 0
Solution
F
4000 0x106 0
3800 5.802 0.0634
3600 19 339 0 2014
6
10
96×
=
N
3600 19.339 0.2014
3400 46.124 0.4804
6
o
E
STB
N
Fig
From 6
10
96
: ×
=
o
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
( ) g
s
si
oi
o
p B
r
r
B
B
N
F
R
−
+
−
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
( )
( ) g
s
p
o
g
s
si
oi
o
p
B
r
R
B
N
F
R
−
+
=
=
.
( )
P
R
P
f
F
R &
. = ( )
P
R
P
f
F
R &
.
P
R
F
R 1
. ∝
To increase R.F:
• Working over high producing GOR wells
Working over high producing GOR wells
• Shut-in ,, ,, ,, ,, ,,
• Reduce (q) of ,, ,, ,, ,,
R i j t f d d
• Reinject some of gas produced
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
Example 13 :
For example 12 at P=3400 psi calculate: S and R F without Gi and
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
Solution :
For example 12, at P 3400 psi calculate: Sg and R.F without Gi and
with Gi=60 Gp
gas
free
S =
( )
[ ]
i B
R
N
r
N
N
Nr
gas
free −
−
−
=
volume
pore
S g =
( )
[ ] g
p
p
s
p
si B
R
N
r
N
N
Nr
gas
free
( )
bbls
6
6
6
6
10
05
.
28
0022
.
0
3077
10
44
.
6
406
10
44
.
6
96
718
10
96
×
=
×








×
×
−
×
×
−
−
×
×
=
3077
10
44
.
6 



( )
bbls
S
NB
volume
pore
w
oi 6
6
10
62
.
204
3
.
0
1
492
.
1
10
96
)
1
(
×
=
−
×
×
=
−
=
( )
w )
(
%
7
.
13
137
.
0
10
62
.
204
10
05
.
28
6
6
=
=
×
×
=
∴ g
S
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
( ) g
s
si
oi
o B
r
r
B
B
F
R
−
+
−
Calculation of original oil in place by MBE
Calculation of original oil in place by MBE
( )
( ) g
s
p
o
g
s
si
oi
o
G
without
B
r
R
B
F
R i
−
+
=
.
( ) 0022
.
0
406
718
492
.
1
286
.
1 ×
−
+
− ( )
( )
%
7
.
6
067
.
0
0022
.
0
406
3077
286
.
1
=
=
×
−
+
=
( )
( )
g
s
si
oi
o
G
with
B
r
R
B
B
r
r
B
B
F
R i
−
+
−
+
−
=
%
60
.
( )
( ) 0022
0
406
3077
4
0
286
1
0022
.
0
406
718
492
.
1
286
.
1
×
−
×
+
×
−
+
−
=
( ) g
s
p
o B
r
R
B +
( )
%
49
.
15
1549
.
0
0022
.
0
406
3077
4
.
0
286
.
1
=
=
×
×
+
Applied Reservoir Engineering : Dr. Hamid Khattab
2 Gas Cap reservoir
2 Gas Cap reservoir
2. Gas Cap reservoir
2. Gas Cap reservoir
Characteristics
• P falls slowly
• No Wp
• High GOR for high structure wells
• R.F > R.Fdepletion
• Ultimate R.F ∝ Kv, gas cap size, 1/µo, 1/qo
Ultimate R.F ∝ Kv, gas cap size, 1/µo, 1/qo
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
y
y
p
N
p
G
gi
GB
(N-Np)Bo
free gas
oi
NB
gi
oi
gi
NB
B
m =
( ) gas
free
B
N
N
NB
GB o
p
oi
gi +
−
=
+
P>Pb
i
P
[ ] ( ) p
p
s
p
si R
N
r
N
N
G
Nr
gas
free −
−
−
+
=
( )
[ ]
g
s
p
o
p B
r
R
B
N
N
−
+
=
∴
( ) ( )
gi
g
gi
oi
g
s
si
oi
o B
B
B
B
m
B
r
r
B
B
N
−
+
−
+
−
∴
( ) ( )
oi
B
R
N
N
N
mNB
N
B
N
N
NB
NB 



+
+
+
∴ ( ) ( ) g
p
p
s
p
gi
oi
si
o
p
oi
oi B
R
N
r
N
N
B
Nr
p
B
N
N
NB
mNB






−
−
−
+
+
−
=
+
∴
This equation contains two unknown (m and N)
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
y
y
Rearrange MBE to give a straight line equation
( )
[ ] ( )
[ ] ( )
gi
g
oi
g
s
si
oi
o
g
s
p
o
p B
B
B
mNB
B
r
r
B
B
N
B
r
R
B
N −
+
−
+
−
=
−
+ g
g
gi
g
g
p
p
B
E
F
g
o GE
NE
F +
=
o
E
G
o
g
o E
E
G
N
E
F
+
=
∴
N
N
o
g E
E
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
y
y
Example 14 :
Calculate (N) and (m) for the following gas cap reservoir
P Np Rp Bo rs Bg
4000 ―x106 510 1.2511 510 0.00087
3900 3.295 1050 1.2353 477 0.00092
3800 5 905 1060 1 2222 450 0 00096
3800 5.905 1060 1.2222 450 0.00096
3700 8.852 1160 1.2122 425 0.00101
3600 11.503 1235 1.2022 401 0.00107
3500 14.513 1265 1.1922 375 0.00113
3400 17.730 1300 1.1822 352 0.00120
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
y
y
Solution :



+
=
∴ g
E
E
G
N
E
F
P F Eo Eg F/Eo Eg/Eo



+
∴
o
o E
G
N
E
4000 ―x106 0 0 ―x106 ―
3900 5.807 0.0145 0.00005 398.8 0.0034
3800 10.671 0.0287 0.00009 371.8 0.0031
3700 17.302 0.0469 0.00014 368.5 0.0029
3600 24.094 0.0677 0.00020 355.7 0.0028
3500 31.898 0.09268 0.00026 340.6 0.0027
3400 41 130 0 1207 0 00033 340 7 0 0027
3400 41.130 0.1207 0.00033 340.7 0.0027
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
y
y
F
o
E
9
10
826 ×
=
G
From Fig.
N = 115 x 106 STB
6
10
115 ×
=
N 10
115 ×
N
o
g E
E
2511
1
10
115 6
×
×
×
m
mNB
00087
.
0
2511
.
1
10
115
10
826 9 ×
×
×
=
=
×
=
m
B
mNB
G
gi
oi
5
0
∴ 5
.
0
=
∴m
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
y
y
Another solution
Assume several values of (m) until the straight line going
through the origin as follows:
g
o GE
NE
F +
=
mNB
g
gi
oi
o E
B
mNB
NE +
=










+
= g
gi
oi
o E
B
mB
E
N
F
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
y
y
oi
E
mB
E +
F
P
m = 0.6
m = 0.5
m = 0.4
g
gi
oi
o E
B
E +
0 106
0 093
0 081
10 671
3800
0.057
0.051
0.043
5.807
3900
0
0
0
0x106
4000
0 240
0 211
0 183
24 094
3600
0.167
0.147
0.127
17.302
3700
0.106
0.093
0.081
10.671
3800
0.405
0.358
0.311
41.130
3400
0.318
0.244
0.243
31.898
3500
0.240
0.211
0.183
24.094
3600
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
y
y
F
From Fig.
m = 0 5
m = 0.5
N = 115 x 106 STB
oi
E
mB
E + g
gi
oi
o E
B
E +
Applied Reservoir Engineering : Dr. Hamid Khattab
3. Water drive reservoirs
3. Water drive reservoirs
Edge water Bottom water
Finite Infinite Finite Infinite
Oil Oil
Water
W W
Water
Applied Reservoir Engineering : Dr. Hamid Khattab
3. Water drive reservoirs
3. Water drive reservoirs
Characteristics
-P decline very gradually
-Wp high for lower structure wells
-Low GOR
-R.F > R.Fgac cap > R.Fdepletion
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
y
y
(N-Np)Bo
NBoi free gas
( ) ( ) gas
free
B
w
W
B
N
N
NB w
p
e
o
p
oi +
−
+
−
=
( ) p
p
s
p
si R
N
r
N
N
Nr
gas
free −
−
−
=
( ) ( ) ( )
[ ]
( )
[ ] ( )
B
w
W
B
r
R
B
N +
( ) ( ) ( )
[ ] g
p
p
s
p
si
w
p
e
o
p
oi B
R
N
r
N
N
Nr
B
w
W
B
N
N
NB −
−
−
+
−
+
−
=
∴
( )
[ ] ( )
( ) g
s
si
oi
o
w
p
e
g
s
p
o
p
B
r
r
B
B
B
w
W
B
r
R
B
N
N
−
+
−
−
−
−
+
=
∴
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
y
y
Rearrange MBE as an equation of a straight line:
( )
[ ] ( )
[ ] e
g
s
si
oi
o
w
p
g
s
p
o
p W
B
r
r
B
B
N
B
w
B
r
R
B
N +
−
+
−
=
+
−
+
∴
e
o W
E
N
F +
=
o
e
o E
W
N
E
F
+
=
∴
o
o
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
y
y
Example 15 :
Calculate (N) for the following bpttom water drive reservoir of
known (We) value:
P Np Bo Rs Rp Bg We
4000 0x106 1.40 700 700 0.0010 0x106
3900 3.385 1.38 680 780 0.0013 3.912
3800 10.660 1.36 660 890 0.0016 13.635
3700 19.580 1.34 630 1050 0.0019 23.265
3600 27.518 1.32 600 1190 0.0022 44.044
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
y
y
Solution :
o
e
o E
W
N
E
F +
=
P F Eo F/Eo We/Eo
4000 ―x106 ― ―x106 ―x106
3900 5.111 0.006 851.89 652
3800 18.420 0.024 767.52 568
3700 41.862 0.073 573.45 373.5
3700 41.862 0.073 573.45 373.5
3600 72.042 0.140 514.38 314.6
o
E
F
o
o
45
From Fig.
6
10
200 ×
=
N
o
e E
W
N = 200 x 106
Applied Reservoir Engineering : Dr. Hamid Khattab
4. Combination drive reservoir
4. Combination drive reservoir
Characteristics:
I W f l t t ll
-Increase Wp from low structure wells
-Increase GOR from high structure wells
-Relativity rapid decline of P
y p f
-R.F > R.Fwater influx
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
y
y
free gas
i
GB gi
GB
(N-Np)Bo
oi
gi
NB
GB
m =
oi
NB
gi
Pi
( ) ( ) gas
free
B
w
W
B
N
N
GB
NB w
p
e
o
p
gi
oi +
−
+
−
=
+
( ) R
N
N
N
N
G
f
P<Pi
Pi
( ) p
p
s
p
si R
N
r
N
N
Nr
G
gas
free −
−
−
+
=
( ) ( )
( )
[ ]
w
p
e
o
p
oi
oi B
w
W
B
N
N
mNB
NB −
+
−
=
+
∴
( )
[ ] ( )
B
w
W
B
r
R
B
N −
−
−
+
( )
[ ] g
p
p
s
p
si B
R
N
r
N
N
Nr −
−
−
+
( )
[ ] ( )
( ) ( )
gi
g
gi
oi
g
s
si
oi
o
w
p
e
g
s
p
o
p
B
B
B
mB
B
r
r
B
B
B
w
W
B
r
R
B
N
N
−
+
−
+
−
+
=
∴
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
y
y
This equation includes 3 unknown (We, m & N)
Rearange this equation as a straight line equation
( )
[ ] ( )
[ ] ( ) e
gi
g
oi
g
s
si
oi
o
w
p
g
s
p
o
p W
B
B
B
mB
N
B
r
r
B
B
N
B
w
B
r
R
B
N +








−
+
−
+
−
=
+
−
+
∴
g q g q
( )
[ ] [ ] ( )
g
g
gi
g
p
g
p
p
B 



e
g
oi
o W
E
B
mB
E
N
F +








+
= g
gi
B 



e
mB
W
N
mB
F
+
=
∴
g
gi
oi
o E
B
mB
E
F
+
o
45
g
gi
oi
o
g
gi
oi
o E
B
mB
E
E
B
mB
E +
+
45
N
If We is assumed to be known and m is calculated
by geological dat. N can be obtained
g
gi
oi
o
e
E
B
mB
E
W
+
N
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
Example 16 :
y
y
Calculate the original oil in place (N)for the following combination drive
reservoir assuming that m=0.5 and values of (We) are given:
P Np Bo rs Rp Bg We
4000 0x106 1 351 600 600 0 00100 0x106
4000 0x106 1.351 600 600 0.00100 0x106
3800 4.942 1.336 567 1140 0.00105 0.515
3600 8.869 1.322 540 1150 0.00109 1.097
3400 17.154 1.301 491 1325 0.00120 3.011
Applied Reservoir Engineering : Dr. Hamid Khattab
Calculation of OOIP by MBE
Calculation of OOIP by MBE
Solution :
y
y
―
―
―
―
0x106
4000
Eo
F
P g
gi
oi
o E
B
mB
E
F
+ g
gi
oi
o
e
E
B
mB
E
W
+
g
gi
oi
o E
B
mB
E +
13 95
183 95
0 2159
0 0808
39 715
3400
11.29
181.29
0.0972
0.0364
17.622
3600
9.66x106
179.66x106
0.0533
0.0196
9.576
3800
0x10
4000
13.95
183.95
0.2159
0.0808
39.715
3400
g
i
oi
o E
B
mB
E
F
+
F F gi
B
o
45
From Fig.
STB
N 6
10
170×
=
g
gi
oi
o
e
E
B
mB
E
W
+
6
10
170 ×
=
N
Applied Reservoir Engineering : Dr. Hamid Khattab
Uses of MBE
¾ Calculation of (N), (G) and (We)
¾ Prediction of future performance
Difficulties of its application
Difficulties of its application
¾ Lackof PVT data
¾ Assume constant gas composition
¾ Production data (NP, GP and WP)
¾ Pi and We calculations
Limitation of MBE application
¾ Thick formation
¾High permeability
¾High permeability
¾ Homogeneous formation
¾ Low oil viscosity
¾N ti t d i
¾No active water drive
¾ No large gas cap
Applied Reservoir Engineering : Dr. Hamid Khattab
S l ti f PVT d t f MBE ppli ti s
Selection of PVT data for MBE applications
Depletion drive flash
Gas cap drive differential
C bi ti (fl h diff )
rs
Combination (flash + diff.)
Water drive flash
Low volatile oil differential
rs
High volatile oil flash
Moderate volatile (flash + diff.)
p
p
dif
flash f
f
Applied Reservoir Engineering : Dr. Hamid Khattab
Water in flux
Due to: Cw, Cf and artesian flow
We
Oil
Bottom water Edge water Linear flux
Oil
Oil
water
W
W
water
Applied Reservoir Engineering : Dr. Hamid Khattab
Flow regimes
Steady state semi-steady state Unsteady state
Outer boundary condition
Infinite Limited
Infinite Limited
Applied Reservoir Engineering : Dr. Hamid Khattab
Steady state water influx
- Open external boundary
- ∆P/∆r = C with time
- qe=qw=C with time
- Strong We
- Steady state equation (Darcy law)
y q ( y )
pe
qw qe
pw
r
rw
re
r
Applied Reservoir Engineering : Dr. Hamid Khattab
Hydraulic analog
Hydraulic analog
( )
∝
∆
∝
P
P
dt
dW
P
q Pi
( )
( )
( )
∑ ∆
−
=
−
∝
P
P
k
W
P
P
k
dt
dW
P
P
dt
dW
i
e
i
e
Pw
( )
∑ ∆
−
= t
P
P
k
W i
e
x
screen sand
q
constant
influx
water
:
k
( ) curve
(Pust)
under
area
:
∑ ∆
− t
P
Pi
C l l f K
Calculation of K:
Water influx rate = oil rate + gas rate + water prod. rate
dW
dN
dN
dW
)
(
)
( P
P
k
B
dt
dW
B
r
R
dt
dN
B
dt
dN
dt
dW
i
w
P
g
s
p
P
o
P
e
−
=
+
−
+
=
Applied Reservoir Engineering : Dr. Hamid Khattab
Example :
C l l t K i th f ll i d t P 3500 i P 3340
Calculate K using the following data: Pi=3500 psi, P=3340
(Bo=0.00082 bbl/SCF), Qw=0, Bw=1.1 bbl/STB and Qo=13300 STB/day
Solution :
psi
day
bbl
k
day
bbl
dt
dWe
/
/
130
)
3340
3500
(
20800
/
20800
0
00082
.
0
)
700
900
(
13300
4
.
1
13300
=
=
∴
=
+
×
−
×
+
×
=
)
3340
3500
( −
Pi
t1 t2 t3 t4
∆t1 ∆t2 ∆t3 ∆t4
A1 A2 A3 A4
Calculation of ( )
∑ ∆
− t
P
Pi
P1
A1 A2 A3 A4
( )
( )
1
1
4
3
2
1
2
t
P
P
A
A
A
A
t
P
P
i
i
∆
−
=
+
+
+
=
∆
−
∑
P2
P3
( ) ( )
( ) ( )
3
2
2
2
1
2
t
P
P
P
P
t
P
P
P
P
i
i
i
i
∆
−
+
−
+
∆
−
+
−
+
P3
P4
( ) ( )
4
4
3
3
2
2
t
P
P
P
P
t
i
i
∆
−
+
−
+
∆
+
Applied Reservoir Engineering : Dr. Hamid Khattab
Example :
The pressure history of a steady-state water drive reservoir is
given as follows:
Tdays : 0 100 200 300 400
Ppsi : 3500 3450 3410 3380 3340
If k=130 bbl/day/psi,
calculate We at 100, 200,300 & 400 days
e , , y
Applied Reservoir Engineering : Dr. Hamid Khattab
100 100 100 100 t
Solution : 50
90
P
t
( ) bbls
We100 000
,
325
0
100
3450
3500
130 





−
−
=
120
160
P
( )
We
e
200
100
1235000
100
2
90
50
100
2
50
130
,
2
=





 +
+
×
=




We
3
200
160
120
120
90
90
50
50
10
2606
100
2
120
90
100
2
90
50
100
2
50
130

 +
+
+
×
=





 +
+
+
+
×
=
bbls
We
3
200 10
4420
100
2
160
120
100
2
120
90
100
2
90
50
100
2
50
130 ×
=





 +
+
+
+
+
+
×
=
Applied Reservoir Engineering : Dr. Hamid Khattab
Semi
Semi-
-steady
steady-
-state water influx
state water influx
Semi
Semi steady
steady state water influx
state water influx
As the water drains from the aquifer, the aquifer radius (re)
increases with time, there for (re/rw) is replaced by a time
increases with time, there for (re/rw) is replaced by a time
dependent function (re/rw)→at
P
P
C
P
P
C
P
P
kh
dW × −
)
(
)
(
)
(
10
08
7 3
P
P
C
dW
at
n
P
P
C
r
r
n
P
P
C
r
r
n
P
P
kh
dt
dW i
w
e
w
e
w
e
w
e
e −
→
−
=
−
×
=
∴
)
(
)
(
)
(
)
(
)
(
)
(
)
(
10
08
.
7
l
l
l
µ
P
P
at
n
P
P
C
dt
dW i
e −
=
∴
)
(
)
(
)
(
l
t
at
n
P
P
C
W i
e ∆
−
=
∴ ∑ )
(
)
(
l
Applied Reservoir Engineering : Dr. Hamid Khattab
The two unknown constants (a and C) are determined as:
(at)
ln
C
dt
dW
P
P
e
i 1
)
(
)
(
=
−
)
(
)
(
dt
dW
P
P
e
i −
t
a
n ln
l
C
C
dt
dW
P
P
e
i 1
1
)
(
)
(
+
=
−
∴
)
( We
1
C
1
Plott this equation as a straight line:
t
ln
a
n
l
C
1
Gives slop = and intercept =
C
1
C
C
Applied Reservoir Engineering : Dr. Hamid Khattab
Example 18:
Example 18:
Using the following data calculate (a) and (c)
Tmonth P We MBE ∆We (Wen+1-Wen-1) ∆We/ ∆t (Pi-P)
0 3793 0x103 0 0 0
3 3788 4.0 12.4 136 5
6 3774 24.8 35.5 389 19
9 3748 75.5 73.6 806 45
12 3709 172 116.8 1279 84
15 3680 309 154 1687 113
tion
15 3680 309 154 1687 113
18 3643 480 197 2158 150
21 3595 703 249 2727 198
Solut
24 3547 978 291 3187 246
27 3518 1286 319 3494 275
30 3485 1616 351 3844 308
33 3437 1987 386 4228 356
36 3416 2388 407 4458 377
Applied Reservoir Engineering : Dr. Hamid Khattab
tmonth tdays ∆We/ ∆t (Pi-P) Ln t (Pi-P)/ dWe/ dt
0 0 0 0 ― ―
6 182.5 389 19 5.207 0.049
12 365 1279 84 5.900 0.066
12 365 1279 84 5.900 0.066
18 547.5 2158 150 6.305 0.070
24 780 3187 246 6.593 0.077
30 912 5 3844 308 6 816 0 081
30 912.5 3844 308 6.816 0.081
)
(
)
(
dt
dW
P
P
i −
002
.
0
1
=
C
From Fig.
)
( dt
dWe
∴C = 50
Using any point in the straight line
C
002
.
0
1
=
C
Using any point in the straight line
a = 0.064
∑
− P
P
W i
50
t
ln
∑
=
∴
ln(0.064t)
W i
e 50
Applied Reservoir Engineering : Dr. Hamid Khattab
Example 18:
Example 18:
Using data of example (18) calculate the cumulative water influx (We)
after 39 months (1186.25 days) where the pressure equals 3379 psi
Solution :
P
P
P
P 

dt
t
a
P
P
t
a
P
P
W
W i
i
e
e 




 −
+
−
×
+
= 2
50
2
39
1
36
36
39
ln
ln
[ ]
3416
3793
3379
3793
3 
 −
−
[ ]
1095
25
.
1186
2
)
1095
064
.
0
(
3416
3793
)
25
.
1186
064
.
0
(
3379
3793
50
10
2388 3
×
×






×
+
×
×
+
×
=
ln
ln
3
3 3
3
10
508
.
420
10
2388 ×
+
×
=
bbls
3
10
2809×
=
Applied Reservoir Engineering : Dr. Hamid Khattab
Unsteady
Unsteady-
-state water influx
state water influx
Unsteady
Unsteady state water influx
state water influx
- P and q = C with time
- q = 0 at re, q=qmax at rw
Closed extended boundry
rw
- Closed extended boundry
- We due to Cw and Cf
Applied Reservoir Engineering : Dr. Hamid Khattab
Hydraulic analog
Hydraulic analog
Hydraulic analog
Hydraulic analog
Pi
P2
P1
Pw
q
x q
screen
sand sand sand
Applied Reservoir Engineering : Dr. Hamid Khattab
Physical analog
Physical analog
Physical analog
Physical analog

More Related Content

Similar to 1678518855461.pdf

13 l1-l2-reactor design
13 l1-l2-reactor design13 l1-l2-reactor design
13 l1-l2-reactor design
Dinesh Shah
 
Drill.pptx
Drill.pptxDrill.pptx
Drill.pptx
ThomasFermat
 
Reserves Write-Up_2
Reserves Write-Up_2Reserves Write-Up_2
Reserves Write-Up_2Mark Hinaman
 
Conventional & Unconventional Reservoirs.pdf
Conventional & Unconventional Reservoirs.pdfConventional & Unconventional Reservoirs.pdf
Conventional & Unconventional Reservoirs.pdf
SeyedAbolfazlHossein4
 
Lecture four.ppt
Lecture four.pptLecture four.ppt
Lecture four.ppt
Osman Abdi Kulane
 
The fundamental of Reactor Design and it's basis
The fundamental of Reactor Design and it's basisThe fundamental of Reactor Design and it's basis
The fundamental of Reactor Design and it's basis
AkshatRaj55
 
Oil &amp; Gas Meet Greenhouse Gas
Oil &amp; Gas Meet Greenhouse GasOil &amp; Gas Meet Greenhouse Gas
Oil &amp; Gas Meet Greenhouse Gas
Andrew Shroads
 
F05424247
F05424247F05424247
F05424247
IOSR-JEN
 
Absorption Rate of Carbon Dioxide from Gas Mixture
Absorption Rate of Carbon Dioxide from Gas MixtureAbsorption Rate of Carbon Dioxide from Gas Mixture
Absorption Rate of Carbon Dioxide from Gas Mixture
Scientific Review SR
 
IRJET- Analysis of Reserve Estimation using Volumetric Method on Taq Taq Oil ...
IRJET- Analysis of Reserve Estimation using Volumetric Method on Taq Taq Oil ...IRJET- Analysis of Reserve Estimation using Volumetric Method on Taq Taq Oil ...
IRJET- Analysis of Reserve Estimation using Volumetric Method on Taq Taq Oil ...
IRJET Journal
 
Rates of reaction
Rates of reactionRates of reaction
Rates of reactionrudi_z
 
Streamline based history matching of arrival times and bottom-hole pressure d...
Streamline based history matching of arrival times and bottom-hole pressure d...Streamline based history matching of arrival times and bottom-hole pressure d...
Streamline based history matching of arrival times and bottom-hole pressure d...
Shusei Tanaka
 
Greenhouse Gas Emissions From Land Applied Swine Manure: Development of Metho...
Greenhouse Gas Emissions From Land Applied Swine Manure: Development of Metho...Greenhouse Gas Emissions From Land Applied Swine Manure: Development of Metho...
Greenhouse Gas Emissions From Land Applied Swine Manure: Development of Metho...
LPE Learning Center
 
PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016
Anirban Kundu
 
1wz Workshop with ZN for Perf B3 Up in RDT-1P in 2022-ver1.pptx
1wz Workshop with ZN for Perf B3 Up in RDT-1P in 2022-ver1.pptx1wz Workshop with ZN for Perf B3 Up in RDT-1P in 2022-ver1.pptx
1wz Workshop with ZN for Perf B3 Up in RDT-1P in 2022-ver1.pptx
HuaTienDung
 
Water Usage Optimization & Management for Hydraulic Fracturing | Dr. Chris Fr...
Water Usage Optimization & Management for Hydraulic Fracturing | Dr. Chris Fr...Water Usage Optimization & Management for Hydraulic Fracturing | Dr. Chris Fr...
Water Usage Optimization & Management for Hydraulic Fracturing | Dr. Chris Fr...
Cairn India Limited
 
An effective reservoir management by streamline based simulation, history mat...
An effective reservoir management by streamline based simulation, history mat...An effective reservoir management by streamline based simulation, history mat...
An effective reservoir management by streamline based simulation, history mat...
Shusei Tanaka
 
L18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptxL18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptx
SatyamJaiswal90
 

Similar to 1678518855461.pdf (20)

13 l1-l2-reactor design
13 l1-l2-reactor design13 l1-l2-reactor design
13 l1-l2-reactor design
 
Drill.pptx
Drill.pptxDrill.pptx
Drill.pptx
 
Reserves Write-Up_2
Reserves Write-Up_2Reserves Write-Up_2
Reserves Write-Up_2
 
Conventional & Unconventional Reservoirs.pdf
Conventional & Unconventional Reservoirs.pdfConventional & Unconventional Reservoirs.pdf
Conventional & Unconventional Reservoirs.pdf
 
Lecture four.ppt
Lecture four.pptLecture four.ppt
Lecture four.ppt
 
The fundamental of Reactor Design and it's basis
The fundamental of Reactor Design and it's basisThe fundamental of Reactor Design and it's basis
The fundamental of Reactor Design and it's basis
 
Oil &amp; Gas Meet Greenhouse Gas
Oil &amp; Gas Meet Greenhouse GasOil &amp; Gas Meet Greenhouse Gas
Oil &amp; Gas Meet Greenhouse Gas
 
F05424247
F05424247F05424247
F05424247
 
Poster
PosterPoster
Poster
 
Absorption Rate of Carbon Dioxide from Gas Mixture
Absorption Rate of Carbon Dioxide from Gas MixtureAbsorption Rate of Carbon Dioxide from Gas Mixture
Absorption Rate of Carbon Dioxide from Gas Mixture
 
IRJET- Analysis of Reserve Estimation using Volumetric Method on Taq Taq Oil ...
IRJET- Analysis of Reserve Estimation using Volumetric Method on Taq Taq Oil ...IRJET- Analysis of Reserve Estimation using Volumetric Method on Taq Taq Oil ...
IRJET- Analysis of Reserve Estimation using Volumetric Method on Taq Taq Oil ...
 
Rates of reaction
Rates of reactionRates of reaction
Rates of reaction
 
Streamline based history matching of arrival times and bottom-hole pressure d...
Streamline based history matching of arrival times and bottom-hole pressure d...Streamline based history matching of arrival times and bottom-hole pressure d...
Streamline based history matching of arrival times and bottom-hole pressure d...
 
Greenhouse Gas Emissions From Land Applied Swine Manure: Development of Metho...
Greenhouse Gas Emissions From Land Applied Swine Manure: Development of Metho...Greenhouse Gas Emissions From Land Applied Swine Manure: Development of Metho...
Greenhouse Gas Emissions From Land Applied Swine Manure: Development of Metho...
 
PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016
 
1wz Workshop with ZN for Perf B3 Up in RDT-1P in 2022-ver1.pptx
1wz Workshop with ZN for Perf B3 Up in RDT-1P in 2022-ver1.pptx1wz Workshop with ZN for Perf B3 Up in RDT-1P in 2022-ver1.pptx
1wz Workshop with ZN for Perf B3 Up in RDT-1P in 2022-ver1.pptx
 
Water Usage Optimization & Management for Hydraulic Fracturing | Dr. Chris Fr...
Water Usage Optimization & Management for Hydraulic Fracturing | Dr. Chris Fr...Water Usage Optimization & Management for Hydraulic Fracturing | Dr. Chris Fr...
Water Usage Optimization & Management for Hydraulic Fracturing | Dr. Chris Fr...
 
An effective reservoir management by streamline based simulation, history mat...
An effective reservoir management by streamline based simulation, history mat...An effective reservoir management by streamline based simulation, history mat...
An effective reservoir management by streamline based simulation, history mat...
 
L18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptxL18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptx
 
experiment Cstr 40l
experiment Cstr 40lexperiment Cstr 40l
experiment Cstr 40l
 

Recently uploaded

Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptxSecstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
nkrafacyberclub
 
Enhancing Performance with Globus and the Science DMZ
Enhancing Performance with Globus and the Science DMZEnhancing Performance with Globus and the Science DMZ
Enhancing Performance with Globus and the Science DMZ
Globus
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
Adtran
 
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdfSAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
Peter Spielvogel
 
Free Complete Python - A step towards Data Science
Free Complete Python - A step towards Data ScienceFree Complete Python - A step towards Data Science
Free Complete Python - A step towards Data Science
RinaMondal9
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
UiPathCommunity
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
Quantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIsQuantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIs
Vlad Stirbu
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
The Metaverse and AI: how can decision-makers harness the Metaverse for their...
The Metaverse and AI: how can decision-makers harness the Metaverse for their...The Metaverse and AI: how can decision-makers harness the Metaverse for their...
The Metaverse and AI: how can decision-makers harness the Metaverse for their...
Jen Stirrup
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
RESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for studentsRESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for students
KAMESHS29
 

Recently uploaded (20)

Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptxSecstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
 
Enhancing Performance with Globus and the Science DMZ
Enhancing Performance with Globus and the Science DMZEnhancing Performance with Globus and the Science DMZ
Enhancing Performance with Globus and the Science DMZ
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
 
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdfSAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
 
Free Complete Python - A step towards Data Science
Free Complete Python - A step towards Data ScienceFree Complete Python - A step towards Data Science
Free Complete Python - A step towards Data Science
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
Quantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIsQuantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIs
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
The Metaverse and AI: how can decision-makers harness the Metaverse for their...
The Metaverse and AI: how can decision-makers harness the Metaverse for their...The Metaverse and AI: how can decision-makers harness the Metaverse for their...
The Metaverse and AI: how can decision-makers harness the Metaverse for their...
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
RESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for studentsRESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for students
 

1678518855461.pdf

  • 2. Applied Reservoir Engineering : Dr. Hamid Khattab Reservoir Definition Reservoir Definition Reservoir Definition Reservoir Definition Cap rock Res. Fluid Reservoir rock R i Reservoir Shallow Deep offshare onshare offshare onshare
  • 3. Applied Reservoir Engineering : Dr. Hamid Khattab Reservoir rocks Sedimentry Chemical Sandstone Sand L.s Dolomit
  • 4. Applied Reservoir Engineering : Dr. Hamid Khattab Rock Properties Porosity Saturation Permeability Capillary Wettability Absolute Effective So Sw Sg Absolute Eff ti Relative Primary Primary Effective Ratio Secondary Seccondary
  • 5. Applied Reservoir Engineering : Dr. Hamid Khattab Reservoir fluids Reservoir fluids Water Oil Gas Salt Fresh Black Volatile Drey Wet Condensate Low volatile High volatile Ideal Real (non ideal)
  • 6. Applied Reservoir Engineering : Dr. Hamid Khattab Fluid properties Gas Oil Water AM T P Z C β ρg AMw γg Tc PC Z Cg βg µg βw rs µw Salinity Cw ρo γo APT rs βo βt µo Co  TR PR
  • 7. Applied Reservoir Engineering : Dr. Hamid Khattab Applied reservoir Engineering Contents Applied reservoir Engineering Contents 1. Calculation of original hydrocarbon in place i. Volumetric method i. Volumetric method ii. Material balance equation (MBE) 2 Determination of the reservoir drive mechanism 2. Determination of the reservoir drive mechanism – Undersaturated – Depletion – Gas cap – Water drive – Combination 3. Prediction of future reservoir performance – Primary recovery Primary recovery – Secoundry recovery by : Gas injection Water injection
  • 8. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original hydrocarbon in place by Calculation of original hydrocarbon in place by Calculation of original hydrocarbon in place by Calculation of original hydrocarbon in place by volumetric method volumetric method ● ● 6 7 Well Depth 1 D1 ● ● ●4 3 2 1 D1 2 D2 3 D3 4 D4 ● ● ● ● 1 9 4 D4 5 D5 6 D6 7 D ● 8 5 9 Scale:1:50000 7 D7 8 D8 9 D9 Location map Structural contour map
  • 9. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original hydrocarbon in place by Calculation of original hydrocarbon in place by Calculation of original hydrocarbon in place by Calculation of original hydrocarbon in place by volumetric method volumetric method Well Depth 1 h1 G 1 h1 2 h2 3 h3 4 h4 Goc Gas Oil 4 h4 5 h5 6 h6 7 h Woc Oil Water 7 h7 8 h8 9 h9 30 10 0 Isopach map
  • 10. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original hydrocarbon in place by Calculation of original hydrocarbon in place by Calculation of original hydrocarbon in place by Calculation of original hydrocarbon in place by volumetric method volumetric method ) 1 ( . wi S BV N − = φ ) 1 ( ) ( wi S Ah − = φ ) ( ) ( wi φ wi S Ah β φ 615 5 ) 1 ( 43560 − = SCF Bbl g β oi β 615 . 5 wi S Ah N φ ) 1 ( 7758 − STB STB bbl o β acres A: oi wi N β φ ) ( = i S Ahφ ) 1 ( 7758 − STB SCF ft h : fractions Swi : , φ gi wi S Ah G β φ ) 1 ( 7758 = SCF f wi , φ
  • 11. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of (BV) using isopach map Calculation of (BV) using isopach map Area inch2 C.L ( ) g p p ( ) g p p 1. Trapozoidal method: A1 10 Ao 0 WOC 5 . 0 1 > − n n A A A3 30 A2 20 [ ] A A A A A h BV n n + + + + + = − 2 2 ...... 2 2 2 1 2 1 0 A5 50 A4 40 A’ GOC [ ] [ ] A A h n n n ′ + ′ + 2 2 1 2 1 0 A7 70 A6 60 O 76 A7 70
  • 12. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of (BV) using isopach map Calculation of (BV) using isopach map Area inch2 C.L ( ) g p p ( ) g p p 2. Pyramid or cone method 5 . 0 1 ≤ − n n A A A1 10 Ao 0 WOC [ ] A A A A h BV . 3 1 0 1 0 + + = A3 30 A2 20 [ ] A A A A h . 3 2 1 2 1 + + + A5 50 A4 40 A’ GOC [ ] [ ] n n n n A h A A An A h 3 . 3 1 1 + + + + − − A7 70 A6 60 O 76 A7 70
  • 13. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of (BV) using isopach map Calculation of (BV) using isopach map ( ) g p p ( ) g p p 3. Simpson method Odd number of contour lines [ ] n n A A A A A A h BV 2 4 ...... 4 2 4 3 1 3 2 1 0 + + + + + + = − [ ] n A h 3 3 ′ + 3
  • 14. Applied Reservoir Engineering : Dr. Hamid Khattab Converting map areas (inch Converting map areas (inch2 2) to acres ) to acres Converting map areas (inch Converting map areas (inch2 2) to acres ) to acres Say : Scale 1 : 50000 Say : Scale 1 : 50000 1 inch = 50,000 inch acres 56 398 (50,000) inch 1 2 2 acres 56 . 398 43560 144 ( ) inch 1 = × =
  • 15. Applied Reservoir Engineering : Dr. Hamid Khattab Converting map areas (inch Converting map areas (inch2 2) to acres ) to acres Example 1 : Converting map areas (inch Converting map areas (inch2 2) to acres ) to acres Gi th f ll i l i t d f it f Given the following planimetred areas of an oit of reservoir. Calculate the original oil place (N) if φ =25%, Swi=30%, βoi=1.4 bbl/STB and map scale=1:15000 C.L : 0 10 20 30 40 50 60 70 80 86 Area inch2 : 250 200 140 98 76 40 26 12 5 0
  • 16. Applied Reservoir Engineering : Dr. Hamid Khattab Converting map areas (inch Converting map areas (inch2 2) to acres ) to acres Converting map areas (inch Converting map areas (inch2 2) to acres ) to acres Solution : [ ] [ ] [ ] [ ] 0 50 0 50 6 5 12 5 12 10 12 26 12 26 10 26 40 2 76 2 98 2 140 2 200 2 250 2 10 + × + × + × + × + × + = B V [ ] [ ] [ ] 0 50 0 50 3 6 5 12 5 12 3 10 12 26 12 26 2 10 × + + + × + + + × + + + ft inch : 7198 2 = acres 87 . 35 43560 144 (15,000) inch 1 2 2 = × = ft inch : 7198 acres BV 39 . 258193 87 . 35 7198 = × = ∴ MMSTB N 38 . 250 4 . 1 ) 3 . 0 1 ( 25 . 0 39 . 258193 7758 = − × × × = ∴
  • 17. Applied Reservoir Engineering : Dr. Hamid Khattab Converting map areas (inch Converting map areas (inch2 2) to acres ) to acres By using Simpson method Converting map areas (inch Converting map areas (inch2 2) to acres ) to acres [ ] [ ] 0 5 0 5 6 5 2 12 4 26 2 40 4 76 2 98 4 140 2 200 4 250 3 10 × + + + × + × + × + × + × + × + × + × + = BV [ ] 0 5 0 5 3 × + + + ft inch . 6 . 7156 2 = ft acro f . 6 . 256709 87 . 35 6 . 7156 = × = ) 3 0 1 ( 25 0 6 256709 7758 MMSTB N 94 . 248 4 . 1 ) 3 . 0 1 ( 25 . 0 6 . 256709 7758 = − × × × = ∴ MMSTB Nav 66 . 249 2 ) 94 . 248 38 . 250 ( = + = ∴
  • 18. Applied Reservoir Engineering : Dr. Hamid Khattab Converting map areas (inch Converting map areas (inch2 2) to acres ) to acres Example 2 : If th i f l 1 i i d Converting map areas (inch Converting map areas (inch2 2) to acres ) to acres If the reservoir of example 1 is a gas reservoir and βg=0.001 bbl/SCF. Calculate the original gas in place S l ti Solution : ) 3 0 1 ( 25 0 39 258193 7758 − × × × MMSCF G 53 . 350 001 . 0 ) 3 . 0 1 ( 25 . 0 39 . 258193 7758 = × × × =
  • 19. Applied Reservoir Engineering : Dr. Hamid Khattab Converting map areas (inch Converting map areas (inch2 2) to acres ) to acres Example 3 : Converting map areas (inch Converting map areas (inch2 2) to acres ) to acres A gas cap has the following data : φ =25%, Swi=30%, βoi=1.3 bbl/STB, βgi=0.001 bbl/SCF and map scale=1:20000 C.L : 0(WOC) 10 20 30 33(GOC) 40 50 60 70 76 Area inch2 : 350 310 270 220 200 190 130 55 25 0 Calculate the original oil in place (N) and the original gas in place (G)
  • 20. Applied Reservoir Engineering : Dr. Hamid Khattab Converting map areas (inch Converting map areas (inch2 2) to acres ) to acres Solution : Converting map areas (inch Converting map areas (inch2 2) to acres ) to acres [ ] [ ] 3 10 2 [ ] [ ] ft inch BVoil . 9280 200 220 2 3 220 270 2 310 2 350 2 10 2 = + + + × + × + = [ ] [ ] [ ] BV 55 130 55 130 10 130 190 10 190 200 7 × + + + + + + = [ ] [ ] [ ] [ ] [ ] ft inch BVgas . 79 . 4303 25 3 6 25 55 25 55 3 10 55 130 55 130 2 130 190 2 190 200 2 2 = + × + + + × + + + + + + = acres 77 . 63 43560 144 (20,000) inch 1 2 2 = × = MMSTB N 618 3 . 1 ) 3 . 0 1 ( 25 . 0 77 . 63 9280 7758 = − × × × × = MMSCF G 6 . 372 001 . 0 ) 3 . 0 1 ( 25 . 0 77 . 63 79 . 4303 7758 = − × × × × =
  • 21. Applied Reservoir Engineering : Dr. Hamid Khattab Reservoir drive mechanism Reservoir drive mechanism Reservoir drive mechanism Reservoir drive mechanism Water reservoir Water reservoir P Gas reservoir Gas Gas Bg Water with bottom water drive without bottom water drive g Oil reservoir
  • 22. Applied Reservoir Engineering : Dr. Hamid Khattab Oil reservoir Undersaturated P>Pb Oil Oil Oil Water with bottom without bottom Saturated water drive without bottom water drive Saturated P≤Pb Oil Oil Oil Oil W Gas Gas Gas Oil Water Gas Combination drive Bottom water drive Gas cap drive Depletion drive
  • 23. Applied Reservoir Engineering : Dr. Hamid Khattab PVT data for gas and oil reservoirs PVT data for gas and oil reservoirs PVT data for gas and oil reservoirs PVT data for gas and oil reservoirs Gas reservoirs Bg Gas reservoirs P ZT Bg 00504 . 0 = P
  • 24. Applied Reservoir Engineering : Dr. Hamid Khattab PVT data for gas and oil reservoirs PVT data for gas and oil reservoirs Saturated oil reservoirs PVT data for gas and oil reservoirs PVT data for gas and oil reservoirs Boi=Bti µo B rsi Bt = Bo+(rsi-rs)Bg P ZT Bg 00504 . 0 = Bo rs Boi= Bti P Bg 0 1 P 0 Pi
  • 25. Applied Reservoir Engineering : Dr. Hamid Khattab PVT data for gas and oil reservoirs PVT data for gas and oil reservoirs PVT data for gas and oil reservoirs PVT data for gas and oil reservoirs Undersaturated oil reservoirs saturated undersat. P1 > Pb Bt µo rsi=c Bo rs Bg 1 0
  • 26. Applied Reservoir Engineering : Dr. Hamid Khattab Laboratory measurment of PVT data Laboratory measurment of PVT data Laboratory measurment of PVT data Laboratory measurment of PVT data Gas Gas SCF Oil P Oil Oil P Oil Oil SCF STB undersaturated saturated Pb P > Pb Pi P = 14.7 psi T = 60o F
  • 27. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original gas in place by MBE Calculation of original gas in place by MBE Calculation of original gas in place by MBE Calculation of original gas in place by MBE 1. Gas reservoir without bottom water drive p G T ∆ ( ) gi p B G G − gi GB ( ) i p p∠ i p g p B G G = ∴ ( ) g p gi B G G GB − = 1 gi g B B G − = ∴ 1
  • 28. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original gas in place by MBE Calculation of original gas in place by MBE Calculation of original gas in place by MBE Calculation of original gas in place by MBE 1. Gas reservoir without bottom water drive Example 4 : psi P SCF G p SCF bbl g B Z G 201.6 0.81 0.00084 12 3900 0x106 0.83 0.00077 0x10-6 4000 p G 195.2 0.77 0.00095 37 3700 200.2 0.79 0.00089 27 3800 . const G ≠ Solution : 199.7 0.75 0.00107 58 3600 Using eq. (1)
  • 29. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original gas in place by MBE Calculation of original gas in place by MBE Calculation of original gas in place by MBE Calculation of original gas in place by MBE MBE as an equation of a straight line y1 ( ) g p gi B G G GB − = ( ) B B G B G ∴ 2 g p B G G y1 ( ) gi g g p B B G B G − = ∴ Another form: 2 gi g B B − x1 ( )        − =        i p p T Z p ZT G p ZT G 00504 . 0 00504 . 0 Z Gp y2       i p p p p     − = ∴ i Z Z G G Z 3 p p G     = ∴ i p p p G G p 3 i i P Z p Z − x2
  • 30. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original gas in place by MBE Calculation of original gas in place by MBE Calculation of original gas in place by MBE Calculation of original gas in place by MBE Another form: ( ) g p gi B G G GB − = ( )   Z Z p i i Z p ( )        − = p Z G G G p Z p i i 00504 . 0 00504 . 0 p G P    Z y3 i i GZ p p p p i i p Z p G G Z P        − = ∴ 1 G p i i i i G GZ p Z p Z p − = ∴ at p G x3 G 0 0 = Z p p G G = p
  • 31. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original gas in place by MBE Calculation of original gas in place by MBE Example 5 : Calculation of original gas in place by MBE Calculation of original gas in place by MBE Solve the previous example using MBE as a straigh line Solution : p P Z i i P Z p Z − g p B G gi g B B − Z P p G 12 4441 1.75 2.25 1.068 0.00005 3900 0x10-6 4819 ― x10-5 2.075x10-4 ―x104 ― 4000 37 3896 5.91 2.66 3.515 0.00018 3700 27 4177 3.15 2.39 2.403 0.00012 3800 x3 y3 x2 y2 y1 x1 56 3421 8.09 2.88 5.990 0.00030 3600 From Figgers STB G 6 10 200× =
  • 32. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original gas in place by MBE Calculation of original gas in place by MBE 2.Gas reservoir with bottom water drive Calculation of original gas in place by MBE Calculation of original gas in place by MBE R p G p W T ∆ ∴ Assuming =0 causes an increase in G continuously
  • 33. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original gas in place by MBE Calculation of original gas in place by MBE MBE as a straight line Calculation of original gas in place by MBE Calculation of original gas in place by MBE F/ 45o ∴ N ∴ / Assuming is known 33
  • 34. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original gas in place by MBE Calculation of original gas in place by MBE A i i h k b d i h h f ll i Calculation of original gas in place by MBE Calculation of original gas in place by MBE Example 6 : A gas reservoir with a known bottom water drive has the following data: =0 and B 0x10-6 0.00093 0x109 4000 0 We bbl T years psi P SCF G p SCF bbl g B 7.490 0.00107 72.33 3800 2 2.297 0.00098 27.85 3900 1 13.308 0.00117 113.85 3700 3 18.486 0.00125 151.48 3600 4 34 Calculate the original gas in place
  • 35. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original gas in place by MBE Calculation of original gas in place by MBE Tyear F Eg F/Eg x109 We/Eg x109 Solution Calculation of original gas in place by MBE Calculation of original gas in place by MBE Tyear F Eg F/Eg x10 We/Eg x10 1 27.2x106 0.00005 546 45.93 2 77.39 0.00014 553 53.04 3 133.20 0.00024 555 55.44 4 189.35 0.00032 554 54.25 F/E F/E g 45 From Fig: G=500x109 SCF G=500x109 We/Eg
  • 36. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original gas in place by MBE Calculation of original gas in place by MBE Gas Cap Expansion an Shrinkage G Calculation of original gas in place by MBE Calculation of original gas in place by MBE Gpc gas GOC Gpc expansion GOC GOC Oil shrinkage Oil Shrinkage due to: poor planning or accident and corrosion g p p g - Assume gas cap expansion = (G-Gpc).Bg-GBgi Assume gas cap shrinkage = GB (G Gp )B - Assume gas cap shrinkage = GBgi - (G-Gpc)Bg Gpc: gas produced from the gas cap and my be = zero
  • 37. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original gas in place by MBE Calculation of original gas in place by MBE Example: 7 Calculation of original gas in place by MBE Calculation of original gas in place by MBE Calculate the gas cap volume change if G=40x109 SCF P Gpc x109 Bg 4000 0 0.0020 3900 4 0 0022 3900 4 0.0022 3800 7 0.0025 3700 10 0.0028 3600 13 0.0031 3500 17 0.0035
  • 38. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original gas in place by MBE Calculation of original gas in place by MBE Solution Calculation of original gas in place by MBE Calculation of original gas in place by MBE Assuming gas cap expansion = (G-Gpc).Bg-Ggi Pressure Gas cap change x103 type 4000 - - 3900 -800 shrinkage 3800 +2500 expansion 3800 +2500 expansion 3700 +4000 expansion 3600 +3700 shrinkage 3500 +5000 expansion Shrinkage at P=3600 may be due PVT or Gp data Shrinkage at P=3600 may be due PVT or Gpc data
  • 39. Applied Reservoir Engineering : Dr. Hamid Khattab C l l ti f i i l il i l b MBE C l l ti f i i l il i l b MBE Calculation of original oil in place by MBE Calculation of original oil in place by MBE a) Under-saturated oil reservoirs Characteristics P>P - P>Pb - No free gas, no Wp - Large volume Limited K - Limited K - Low flow rate - Produce by Cw and Cf
  • 40. Applied Reservoir Engineering : Dr. Hamid Khattab C l l ti f i i l il i l b MBE C l l ti f i i l il i l b MBE 1- Under-saturated oil reservoirs without bottom water Calculation of original oil in place by MBE Calculation of original oil in place by MBE Np NBoi P P (N-Ni)Bo P>P Pi>Pb P>Pb neglecing Cw and Cf NBoi=(N-Np)Bo o p B N N ∴ (1) oi o p B B N − = ∴ (1)
  • 41. Applied Reservoir Engineering : Dr. Hamid Khattab C l l ti f i i l il i l b MBE C l l ti f i i l il i l b MBE Example: 8 C l l t th i i l il i l i t d i d l ti C Calculation of original oil in place by MBE Calculation of original oil in place by MBE Calculate the original oil in place assuming no water drive and neglecting Cw and Cf using the following data P Np x106 Bo 4000 0 1.40 3800 1 535 1 42 3800 1.535 1.42 3600 3.696 1.45 3400 7.644 1.49 3200 9.545 1.54
  • 42. Applied Reservoir Engineering : Dr. Hamid Khattab C l l ti f i i l il i l b MBE C l l ti f i i l il i l b MBE Solution Pressure NpBo x106 Bo-Boi N x106 Calculation of original oil in place by MBE Calculation of original oil in place by MBE 4000 - - - 3800 2.179 0.02 108.95 3600 5 539 0 05 110 78 const N ≠ 3600 5.539 0.05 110.78 3400 11.389 0.09 126.64 3200 14.699 0.14 104.99 rearrange MBE as a straight line NBoi = (N-Np)Bo F F = NEo From Fig: 6 N STB x N 6 10 110 ≠ Eo
  • 43. Applied Reservoir Engineering : Dr. Hamid Khattab C l l ti f i i l il i l b MBE C l l ti f i i l il i l b MBE o.b.p=1 psi/ftD Considering Cw and Cf Calculation of original oil in place by MBE Calculation of original oil in place by MBE - overburden pressure = 1 psi/ftD - rock strength = 0.5 psi/ftD r s rv ir pr ssur 0 5 psi/ftD - reservoir pressure = 0.5 psi/ftD o.b.p
  • 44. Applied Reservoir Engineering : Dr. Hamid Khattab C l l ti f i i l il i l b MBE C l l ti f i i l il i l b MBE Calculation of original oil in place by MBE Calculation of original oil in place by MBE Considering Cw and Cf NBoi Vp B N N NB f w o p oi ∆ + − = ) ( , Pi>Pb dp V C dVp dVp C Vp Vp Vp f f w f w → ∆ + ∆ = ∆ 1 , (N-Np)Bo dVp dp V C dVp dp V C p f f f p f = → = 1 . P>Pb ∆Vp,,w V dp V C dVp dp dVp V C w w w w w w = → = . 1 dp V S C dVp V S V V V S p w w w p w w p w w = → = → =
  • 45. Applied Reservoir Engineering : Dr. Hamid Khattab C l l ti f i i l il i l b MBE C l l ti f i i l il i l b MBE Calculation of original oil in place by MBE Calculation of original oil in place by MBE Considering Cw and Cf dp V C S C dVp p f w w w f + = ∴ ) ( , S NB Vp S Vp NB w oi w oi − = → − = ) 1 ( ) 1 ( dp NB S C S C dVp oi f w w w f − + = ∴ ) 1 ( , p NB S C S C B N N NB S oi f w w o p oi w ∆ + + − = ∴ ) 1 ( ) ( 1 S oi w o p oi − 1
  • 46. Applied Reservoir Engineering : Dr. Hamid Khattab C l l ti f i i l il i l b MBE C l l ti f i i l il i l b MBE B N N o p Calculation of original oil in place by MBE Calculation of original oil in place by MBE Considering Cw and Cf B B p B S C S C B B N oi w f w w oi o o p ∆ − + + − = ∴ ) 1 ( B N B N N p B C B B p B B B C o p o p oi o oi o oi oi o o = = ∴ ∆ = − → ∆ − = Q S S where p B S C S C S S C p B S C S C C N w o oi w f w w w o o oi w f w w o − = ∆ − + + − ∆ − + + ∴ 1 ] 1 1 [ ] 1 [ p B S C S C S C B N N oi f w w o o o p w o ∆ + + = ∴ ] 1 [ p C B B N N S e oi o p w ∆ = − 1 (2)
  • 47. Applied Reservoir Engineering : Dr. Hamid Khattab C l l ti f i i l il i l b MBE C l l ti f i i l il i l b MBE Calculation of original oil in place by MBE Calculation of original oil in place by MBE Considering Cw and Cf P P P i − = ∆ Pi Pi V V dP dV V C oi o − = 1 . 1 P B B B C oi oi o o ∆ − = Pi B B P P V V V oi o i i oi − − − = ) ( 1 . 1 Voi Vo P B oi o oi ∆ = ) ( . ) salinity and , , ( ) ( s w f r T P f C f C = = φ From the following charts
  • 48. Applied Reservoir Engineering : Dr. Hamid Khattab C l l ti f i i l il i l b MBE C l l ti f i i l il i l b MBE Calculation of original oil in place by MBE Calculation of original oil in place by MBE
  • 49. Applied Reservoir Engineering : Dr. Hamid Khattab C l l ti f i i l il i l b MBE C l l ti f i i l il i l b MBE Example: 9 l l ( ) d h ff f d Calculation of original oil in place by MBE Calculation of original oil in place by MBE Solution Solve example (8) considering the effect of Cw and Cf R1(Fig 2) r (Fig 1) C (Fig 4) ∆P=(Pi P) P B B C oi o − = 18 2.9x10-6 ― ― 4000 R1(Fig.2) rsf(Fig.1) Cwp(Fig.4) ∆P=(Pi-P) P p B C oi o ∆ = 0.85 16.8 2.95 8.928 400 3600 17.2 2.93 7.143x10-5 200 3800 15.2 3.00 12.500 800 3200 16 2.98 10.714 600 3400
  • 50. Applied Reservoir Engineering : Dr. Hamid Khattab C l l ti f i i l il i l b MBE C l l ti f i i l il i l b MBE Continue Calculation of original oil in place by MBE Calculation of original oil in place by MBE Cw=CwpxR2 R2 (Fig.3) rs= rsf x R1 P w f w w o o S C S C S C − + + 1 7.725x10-5 3.311 1.13 14.62 3800 ― 3.30x10-6 1.4 15.3 4000 13.569 3.289 1.104 13.60 2400 9.570 3.247 1.11 14.28 3600 13.143 3.17 1.09 12.92 3200
  • 51. Applied Reservoir Engineering : Dr. Hamid Khattab C l l ti f i i l il i l b MBE C l l ti f i i l il i l b MBE Continue B N Calculation of original oil in place by MBE Calculation of original oil in place by MBE p C B B N N e oi o p ∆ = P NpBo NBoiCe∆P N 4000 ― ― ― 3800 2.179x016 0.0218 108.2x106 3600 5.359 0.0536 107.9 N ≠ C 3400 11.389 0.1131 106.5 3200 14 699 0 1470 105 1 3200 14.699 0.1470 105.1
  • 52. Applied Reservoir Engineering : Dr. Hamid Khattab C l l ti f i i l il i l b MBE C l l ti f i i l il i l b MBE Use MBE as a straight line as follows: Calculation of original oil in place by MBE Calculation of original oil in place by MBE P C NB B N e oi o p ∆ = B N F Plot the fig o NE F = o p B N F = 6 10 100× = N Plot the fig. 10 100× = N STB N 6 10 100× = P C B E ∆P C B E e oi o ∆ =
  • 53. Applied Reservoir Engineering : Dr. Hamid Khattab U d t t d il i ith b tt t U d t t d il i ith b tt t Undersaturated oil reservoir with bottom water Undersaturated oil reservoir with bottom water p N p W p W (N-Np)Bo NBoi P>Pb Pi>Pb Assuming (We) is known and neglect Cw+Cf ( ) ( ) B w W B N N NB − + − = ( ) ( ) ( ) i w p e o p w p e o p oi B B B w W B N N B w W B N N NB − − − = ∴ + = oi o B B Assuming We=0 will cuse an increase in (N)
  • 54. Applied Reservoir Engineering : Dr. Hamid Khattab U d t t d il i ith b tt t U d t t d il i ith b tt t Undersaturated oil reservoir with bottom water Undersaturated oil reservoir with bottom water Example 11 : Using the following data in the undersaturated oil reservoir with a known (We), neglecting Cw & Cf calculate (N): wp= 0 P Np Bo We 4000 ―x106 1.40 ―x106 3800 2.334 1.45 1.135 3600 5 362 1 42 2 416 3600 5.362 1.42 2.416 3400 10.033 1.49 3.561 3200 12 682 1 54 4 832 3200 12.682 1.54 4.832
  • 55. Applied Reservoir Engineering : Dr. Hamid Khattab U d t t d il i ith b tt t U d t t d il i ith b tt t Undersaturated oil reservoir with bottom water Undersaturated oil reservoir with bottom water Solution : Solution : ( ) oi o w p e o p B B B w W B N N − − − = P NpBo Bo-Boi N 4000 106 106 4000 ―x106 ― ―x106 3800 3.314 0.02 108.5 3600 7 775 0 05 107 1 N ≠ C 3600 7.775 0.05 107.1 3400 14.950 0.09 126.5 3200 19 531 0 14 105 0 N ≠ C 3200 19.531 0.14 105.0
  • 56. Applied Reservoir Engineering : Dr. Hamid Khattab U d t t d il i ith b tt t U d t t d il i ith b tt t E F Rearrange MBE as a straight line Undersaturated oil reservoir with bottom water Undersaturated oil reservoir with bottom water o E o 45 [ ] e i o w p o p W B B N B W B N + − = + 0 W E N F + = 110 = N e o W E N F + = o e o E W N E F + = ∴ o e E W [ ] i o o B B E 0 − = o e E W p o E F o p B N F = [ ] i o o 0 48 32 155 5 7 775 0 05 3600 56.75 165.7 3.314 0.02 3800 ― x10-6 ― ― x10-6 ― 4000 p p 34.51 139.5 19.531 0.14 3200 39.56 166.4 14.980 0.09 3400 48.32 155.5 7.775 0.05 3600
  • 57. Applied Reservoir Engineering : Dr. Hamid Khattab Undersaturated oil reservoir with bottom water Undersaturated oil reservoir with bottom water Example 11 : Solve examole (10) considering Cw and Cf effect Solution : So ut on Cw, Co, Cf and Ce are the same as example (9) P e oi e o e C B W E W ∆ = P e oiC B ∆ P e oi o P o C B B N E F ∆ = P ∆ e C P 45.07 145.06 0.0536 400 9.570 3600 52.06 x106 152.01 x106 0.0218 200 7.785 3800 ― ― ― ― ― x10-5 4000 32.87 132.86 0.1470 800 13.143 3200 31.26 131.25 0.1139 600 13.568 3400 45.07 145.06 0.0536 400 9.570 3600 F o E F o 45 P i e e C B W E W ∆ = P i o P C B B N E F ∆ = Plot vs 6 10 100 × = N o e E W P e oi o C B E ∆ P e oi o C B E ∆ As in Fig. 6 10 100× = N
  • 58. Applied Reservoir Engineering : Dr. Hamid Khattab B S t t d il i B S t t d il i B. Saturated oil reservoirs B. Saturated oil reservoirs 1 D l ti d i i 1. Depletion drive reservoirs Characteristics b P P ≤ • b 0 = • p W rapidly increases Rp • F R low . •
  • 59. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original oil in place by MBE Calculation of original oil in place by MBE p G p N Calculation of original oil in place by MBE Calculation of original oil in place by MBE T ∆ oi NB ( ) o p B N N − p Free gas ( ) b i P P≤ Free gas p ( ) gas free B N N NB o p oi + − = ( ) SCF R N r N N Nr gas free p p s p si − − − = ( ) ( ) [ ] g p p s p si o p oi B R N r N N Nr B N N NB − − − + − = ∴ ( ) [ ] ( ) [ ] ( ) g s si oi o g s p o p B r r B B B r R B N N − + − − + = ∴
  • 60. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original oil in place by MBE Calculation of original oil in place by MBE Example 12 : Calculation of original oil in place by MBE Calculation of original oil in place by MBE Calucaltion (N) for a depletion drive reservoir has the following data : Swi=30% 91 50 614 0 001273 1 423 674 3 87 3800 ― x106 718 0.001041 1.492 718 ― x106 4000 N rs Bg Bo RP NP P ion 96.01 400 0.002200 1.286 3077 6.44 3400 96.02 510 0.001627 1.355 1937 5.26 3600 91.50 614 0.001273 1.423 674 3.87 3800 Solut 96.01 400 0.002200 1.286 3077 6.44 3400 As shown N ≠ const., so rearrange MBE as a straight line
  • 61. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original oil in place by MBE Calculation of original oil in place by MBE ( ) [ ] ( ) [ ] g s si oi o g s p o p B r r B B N B r R B N − + − = − + Calculation of original oil in place by MBE Calculation of original oil in place by MBE o E N F = Solution : P F Eo 4000 0 106 0 Solution F 4000 0x106 0 3800 5.802 0.0634 3600 19 339 0 2014 6 10 96× = N 3600 19.339 0.2014 3400 46.124 0.4804 6 o E STB N Fig From 6 10 96 : × = o
  • 62. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original oil in place by MBE Calculation of original oil in place by MBE ( ) g s si oi o p B r r B B N F R − + − Calculation of original oil in place by MBE Calculation of original oil in place by MBE ( ) ( ) g s p o g s si oi o p B r R B N F R − + = = . ( ) P R P f F R & . = ( ) P R P f F R & . P R F R 1 . ∝ To increase R.F: • Working over high producing GOR wells Working over high producing GOR wells • Shut-in ,, ,, ,, ,, ,, • Reduce (q) of ,, ,, ,, ,, R i j t f d d • Reinject some of gas produced
  • 63. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original oil in place by MBE Calculation of original oil in place by MBE Example 13 : For example 12 at P=3400 psi calculate: S and R F without Gi and Calculation of original oil in place by MBE Calculation of original oil in place by MBE Solution : For example 12, at P 3400 psi calculate: Sg and R.F without Gi and with Gi=60 Gp gas free S = ( ) [ ] i B R N r N N Nr gas free − − − = volume pore S g = ( ) [ ] g p p s p si B R N r N N Nr gas free ( ) bbls 6 6 6 6 10 05 . 28 0022 . 0 3077 10 44 . 6 406 10 44 . 6 96 718 10 96 × = ×         × × − × × − − × × = 3077 10 44 . 6     ( ) bbls S NB volume pore w oi 6 6 10 62 . 204 3 . 0 1 492 . 1 10 96 ) 1 ( × = − × × = − = ( ) w ) ( % 7 . 13 137 . 0 10 62 . 204 10 05 . 28 6 6 = = × × = ∴ g S
  • 64. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of original oil in place by MBE Calculation of original oil in place by MBE ( ) g s si oi o B r r B B F R − + − Calculation of original oil in place by MBE Calculation of original oil in place by MBE ( ) ( ) g s p o g s si oi o G without B r R B F R i − + = . ( ) 0022 . 0 406 718 492 . 1 286 . 1 × − + − ( ) ( ) % 7 . 6 067 . 0 0022 . 0 406 3077 286 . 1 = = × − + = ( ) ( ) g s si oi o G with B r R B B r r B B F R i − + − + − = % 60 . ( ) ( ) 0022 0 406 3077 4 0 286 1 0022 . 0 406 718 492 . 1 286 . 1 × − × + × − + − = ( ) g s p o B r R B + ( ) % 49 . 15 1549 . 0 0022 . 0 406 3077 4 . 0 286 . 1 = = × × +
  • 65. Applied Reservoir Engineering : Dr. Hamid Khattab 2 Gas Cap reservoir 2 Gas Cap reservoir 2. Gas Cap reservoir 2. Gas Cap reservoir Characteristics • P falls slowly • No Wp • High GOR for high structure wells • R.F > R.Fdepletion • Ultimate R.F ∝ Kv, gas cap size, 1/µo, 1/qo Ultimate R.F ∝ Kv, gas cap size, 1/µo, 1/qo
  • 66. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE y y p N p G gi GB (N-Np)Bo free gas oi NB gi oi gi NB B m = ( ) gas free B N N NB GB o p oi gi + − = + P>Pb i P [ ] ( ) p p s p si R N r N N G Nr gas free − − − + = ( ) [ ] g s p o p B r R B N N − + = ∴ ( ) ( ) gi g gi oi g s si oi o B B B B m B r r B B N − + − + − ∴ ( ) ( ) oi B R N N N mNB N B N N NB NB     + + + ∴ ( ) ( ) g p p s p gi oi si o p oi oi B R N r N N B Nr p B N N NB mNB       − − − + + − = + ∴ This equation contains two unknown (m and N)
  • 67. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE y y Rearrange MBE to give a straight line equation ( ) [ ] ( ) [ ] ( ) gi g oi g s si oi o g s p o p B B B mNB B r r B B N B r R B N − + − + − = − + g g gi g g p p B E F g o GE NE F + = o E G o g o E E G N E F + = ∴ N N o g E E
  • 68. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE y y Example 14 : Calculate (N) and (m) for the following gas cap reservoir P Np Rp Bo rs Bg 4000 ―x106 510 1.2511 510 0.00087 3900 3.295 1050 1.2353 477 0.00092 3800 5 905 1060 1 2222 450 0 00096 3800 5.905 1060 1.2222 450 0.00096 3700 8.852 1160 1.2122 425 0.00101 3600 11.503 1235 1.2022 401 0.00107 3500 14.513 1265 1.1922 375 0.00113 3400 17.730 1300 1.1822 352 0.00120
  • 69. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE y y Solution :    + = ∴ g E E G N E F P F Eo Eg F/Eo Eg/Eo    + ∴ o o E G N E 4000 ―x106 0 0 ―x106 ― 3900 5.807 0.0145 0.00005 398.8 0.0034 3800 10.671 0.0287 0.00009 371.8 0.0031 3700 17.302 0.0469 0.00014 368.5 0.0029 3600 24.094 0.0677 0.00020 355.7 0.0028 3500 31.898 0.09268 0.00026 340.6 0.0027 3400 41 130 0 1207 0 00033 340 7 0 0027 3400 41.130 0.1207 0.00033 340.7 0.0027
  • 70. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE y y F o E 9 10 826 × = G From Fig. N = 115 x 106 STB 6 10 115 × = N 10 115 × N o g E E 2511 1 10 115 6 × × × m mNB 00087 . 0 2511 . 1 10 115 10 826 9 × × × = = × = m B mNB G gi oi 5 0 ∴ 5 . 0 = ∴m
  • 71. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE y y Another solution Assume several values of (m) until the straight line going through the origin as follows: g o GE NE F + = mNB g gi oi o E B mNB NE + =           + = g gi oi o E B mB E N F
  • 72. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE y y oi E mB E + F P m = 0.6 m = 0.5 m = 0.4 g gi oi o E B E + 0 106 0 093 0 081 10 671 3800 0.057 0.051 0.043 5.807 3900 0 0 0 0x106 4000 0 240 0 211 0 183 24 094 3600 0.167 0.147 0.127 17.302 3700 0.106 0.093 0.081 10.671 3800 0.405 0.358 0.311 41.130 3400 0.318 0.244 0.243 31.898 3500 0.240 0.211 0.183 24.094 3600
  • 73. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE y y F From Fig. m = 0 5 m = 0.5 N = 115 x 106 STB oi E mB E + g gi oi o E B E +
  • 74. Applied Reservoir Engineering : Dr. Hamid Khattab 3. Water drive reservoirs 3. Water drive reservoirs Edge water Bottom water Finite Infinite Finite Infinite Oil Oil Water W W Water
  • 75. Applied Reservoir Engineering : Dr. Hamid Khattab 3. Water drive reservoirs 3. Water drive reservoirs Characteristics -P decline very gradually -Wp high for lower structure wells -Low GOR -R.F > R.Fgac cap > R.Fdepletion
  • 76. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE y y (N-Np)Bo NBoi free gas ( ) ( ) gas free B w W B N N NB w p e o p oi + − + − = ( ) p p s p si R N r N N Nr gas free − − − = ( ) ( ) ( ) [ ] ( ) [ ] ( ) B w W B r R B N + ( ) ( ) ( ) [ ] g p p s p si w p e o p oi B R N r N N Nr B w W B N N NB − − − + − + − = ∴ ( ) [ ] ( ) ( ) g s si oi o w p e g s p o p B r r B B B w W B r R B N N − + − − − − + = ∴
  • 77. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE y y Rearrange MBE as an equation of a straight line: ( ) [ ] ( ) [ ] e g s si oi o w p g s p o p W B r r B B N B w B r R B N + − + − = + − + ∴ e o W E N F + = o e o E W N E F + = ∴ o o
  • 78. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE y y Example 15 : Calculate (N) for the following bpttom water drive reservoir of known (We) value: P Np Bo Rs Rp Bg We 4000 0x106 1.40 700 700 0.0010 0x106 3900 3.385 1.38 680 780 0.0013 3.912 3800 10.660 1.36 660 890 0.0016 13.635 3700 19.580 1.34 630 1050 0.0019 23.265 3600 27.518 1.32 600 1190 0.0022 44.044
  • 79. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE y y Solution : o e o E W N E F + = P F Eo F/Eo We/Eo 4000 ―x106 ― ―x106 ―x106 3900 5.111 0.006 851.89 652 3800 18.420 0.024 767.52 568 3700 41.862 0.073 573.45 373.5 3700 41.862 0.073 573.45 373.5 3600 72.042 0.140 514.38 314.6 o E F o o 45 From Fig. 6 10 200 × = N o e E W N = 200 x 106
  • 80. Applied Reservoir Engineering : Dr. Hamid Khattab 4. Combination drive reservoir 4. Combination drive reservoir Characteristics: I W f l t t ll -Increase Wp from low structure wells -Increase GOR from high structure wells -Relativity rapid decline of P y p f -R.F > R.Fwater influx
  • 81. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE y y free gas i GB gi GB (N-Np)Bo oi gi NB GB m = oi NB gi Pi ( ) ( ) gas free B w W B N N GB NB w p e o p gi oi + − + − = + ( ) R N N N N G f P<Pi Pi ( ) p p s p si R N r N N Nr G gas free − − − + = ( ) ( ) ( ) [ ] w p e o p oi oi B w W B N N mNB NB − + − = + ∴ ( ) [ ] ( ) B w W B r R B N − − − + ( ) [ ] g p p s p si B R N r N N Nr − − − + ( ) [ ] ( ) ( ) ( ) gi g gi oi g s si oi o w p e g s p o p B B B mB B r r B B B w W B r R B N N − + − + − + = ∴
  • 82. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE y y This equation includes 3 unknown (We, m & N) Rearange this equation as a straight line equation ( ) [ ] ( ) [ ] ( ) e gi g oi g s si oi o w p g s p o p W B B B mB N B r r B B N B w B r R B N +         − + − + − = + − + ∴ g q g q ( ) [ ] [ ] ( ) g g gi g p g p p B     e g oi o W E B mB E N F +         + = g gi B     e mB W N mB F + = ∴ g gi oi o E B mB E F + o 45 g gi oi o g gi oi o E B mB E E B mB E + + 45 N If We is assumed to be known and m is calculated by geological dat. N can be obtained g gi oi o e E B mB E W + N
  • 83. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE Example 16 : y y Calculate the original oil in place (N)for the following combination drive reservoir assuming that m=0.5 and values of (We) are given: P Np Bo rs Rp Bg We 4000 0x106 1 351 600 600 0 00100 0x106 4000 0x106 1.351 600 600 0.00100 0x106 3800 4.942 1.336 567 1140 0.00105 0.515 3600 8.869 1.322 540 1150 0.00109 1.097 3400 17.154 1.301 491 1325 0.00120 3.011
  • 84. Applied Reservoir Engineering : Dr. Hamid Khattab Calculation of OOIP by MBE Calculation of OOIP by MBE Solution : y y ― ― ― ― 0x106 4000 Eo F P g gi oi o E B mB E F + g gi oi o e E B mB E W + g gi oi o E B mB E + 13 95 183 95 0 2159 0 0808 39 715 3400 11.29 181.29 0.0972 0.0364 17.622 3600 9.66x106 179.66x106 0.0533 0.0196 9.576 3800 0x10 4000 13.95 183.95 0.2159 0.0808 39.715 3400 g i oi o E B mB E F + F F gi B o 45 From Fig. STB N 6 10 170× = g gi oi o e E B mB E W + 6 10 170 × = N
  • 85. Applied Reservoir Engineering : Dr. Hamid Khattab Uses of MBE ¾ Calculation of (N), (G) and (We) ¾ Prediction of future performance Difficulties of its application Difficulties of its application ¾ Lackof PVT data ¾ Assume constant gas composition ¾ Production data (NP, GP and WP) ¾ Pi and We calculations Limitation of MBE application ¾ Thick formation ¾High permeability ¾High permeability ¾ Homogeneous formation ¾ Low oil viscosity ¾N ti t d i ¾No active water drive ¾ No large gas cap
  • 86. Applied Reservoir Engineering : Dr. Hamid Khattab S l ti f PVT d t f MBE ppli ti s Selection of PVT data for MBE applications Depletion drive flash Gas cap drive differential C bi ti (fl h diff ) rs Combination (flash + diff.) Water drive flash Low volatile oil differential rs High volatile oil flash Moderate volatile (flash + diff.) p p dif flash f f
  • 87. Applied Reservoir Engineering : Dr. Hamid Khattab Water in flux Due to: Cw, Cf and artesian flow We Oil Bottom water Edge water Linear flux Oil Oil water W W water
  • 88. Applied Reservoir Engineering : Dr. Hamid Khattab Flow regimes Steady state semi-steady state Unsteady state Outer boundary condition Infinite Limited Infinite Limited
  • 89. Applied Reservoir Engineering : Dr. Hamid Khattab Steady state water influx - Open external boundary - ∆P/∆r = C with time - qe=qw=C with time - Strong We - Steady state equation (Darcy law) y q ( y ) pe qw qe pw r rw re r
  • 90. Applied Reservoir Engineering : Dr. Hamid Khattab Hydraulic analog Hydraulic analog ( ) ∝ ∆ ∝ P P dt dW P q Pi ( ) ( ) ( ) ∑ ∆ − = − ∝ P P k W P P k dt dW P P dt dW i e i e Pw ( ) ∑ ∆ − = t P P k W i e x screen sand q constant influx water : k ( ) curve (Pust) under area : ∑ ∆ − t P Pi C l l f K Calculation of K: Water influx rate = oil rate + gas rate + water prod. rate dW dN dN dW ) ( ) ( P P k B dt dW B r R dt dN B dt dN dt dW i w P g s p P o P e − = + − + =
  • 91. Applied Reservoir Engineering : Dr. Hamid Khattab Example : C l l t K i th f ll i d t P 3500 i P 3340 Calculate K using the following data: Pi=3500 psi, P=3340 (Bo=0.00082 bbl/SCF), Qw=0, Bw=1.1 bbl/STB and Qo=13300 STB/day Solution : psi day bbl k day bbl dt dWe / / 130 ) 3340 3500 ( 20800 / 20800 0 00082 . 0 ) 700 900 ( 13300 4 . 1 13300 = = ∴ = + × − × + × = ) 3340 3500 ( − Pi t1 t2 t3 t4 ∆t1 ∆t2 ∆t3 ∆t4 A1 A2 A3 A4 Calculation of ( ) ∑ ∆ − t P Pi P1 A1 A2 A3 A4 ( ) ( ) 1 1 4 3 2 1 2 t P P A A A A t P P i i ∆ − = + + + = ∆ − ∑ P2 P3 ( ) ( ) ( ) ( ) 3 2 2 2 1 2 t P P P P t P P P P i i i i ∆ − + − + ∆ − + − + P3 P4 ( ) ( ) 4 4 3 3 2 2 t P P P P t i i ∆ − + − + ∆ +
  • 92. Applied Reservoir Engineering : Dr. Hamid Khattab Example : The pressure history of a steady-state water drive reservoir is given as follows: Tdays : 0 100 200 300 400 Ppsi : 3500 3450 3410 3380 3340 If k=130 bbl/day/psi, calculate We at 100, 200,300 & 400 days e , , y
  • 93. Applied Reservoir Engineering : Dr. Hamid Khattab 100 100 100 100 t Solution : 50 90 P t ( ) bbls We100 000 , 325 0 100 3450 3500 130       − − = 120 160 P ( ) We e 200 100 1235000 100 2 90 50 100 2 50 130 , 2 =       + + × =     We 3 200 160 120 120 90 90 50 50 10 2606 100 2 120 90 100 2 90 50 100 2 50 130   + + + × =       + + + + × = bbls We 3 200 10 4420 100 2 160 120 100 2 120 90 100 2 90 50 100 2 50 130 × =       + + + + + + × =
  • 94. Applied Reservoir Engineering : Dr. Hamid Khattab Semi Semi- -steady steady- -state water influx state water influx Semi Semi steady steady state water influx state water influx As the water drains from the aquifer, the aquifer radius (re) increases with time, there for (re/rw) is replaced by a time increases with time, there for (re/rw) is replaced by a time dependent function (re/rw)→at P P C P P C P P kh dW × − ) ( ) ( ) ( 10 08 7 3 P P C dW at n P P C r r n P P C r r n P P kh dt dW i w e w e w e w e e − → − = − × = ∴ ) ( ) ( ) ( ) ( ) ( ) ( ) ( 10 08 . 7 l l l µ P P at n P P C dt dW i e − = ∴ ) ( ) ( ) ( l t at n P P C W i e ∆ − = ∴ ∑ ) ( ) ( l
  • 95. Applied Reservoir Engineering : Dr. Hamid Khattab The two unknown constants (a and C) are determined as: (at) ln C dt dW P P e i 1 ) ( ) ( = − ) ( ) ( dt dW P P e i − t a n ln l C C dt dW P P e i 1 1 ) ( ) ( + = − ∴ ) ( We 1 C 1 Plott this equation as a straight line: t ln a n l C 1 Gives slop = and intercept = C 1 C C
  • 96. Applied Reservoir Engineering : Dr. Hamid Khattab Example 18: Example 18: Using the following data calculate (a) and (c) Tmonth P We MBE ∆We (Wen+1-Wen-1) ∆We/ ∆t (Pi-P) 0 3793 0x103 0 0 0 3 3788 4.0 12.4 136 5 6 3774 24.8 35.5 389 19 9 3748 75.5 73.6 806 45 12 3709 172 116.8 1279 84 15 3680 309 154 1687 113 tion 15 3680 309 154 1687 113 18 3643 480 197 2158 150 21 3595 703 249 2727 198 Solut 24 3547 978 291 3187 246 27 3518 1286 319 3494 275 30 3485 1616 351 3844 308 33 3437 1987 386 4228 356 36 3416 2388 407 4458 377
  • 97. Applied Reservoir Engineering : Dr. Hamid Khattab tmonth tdays ∆We/ ∆t (Pi-P) Ln t (Pi-P)/ dWe/ dt 0 0 0 0 ― ― 6 182.5 389 19 5.207 0.049 12 365 1279 84 5.900 0.066 12 365 1279 84 5.900 0.066 18 547.5 2158 150 6.305 0.070 24 780 3187 246 6.593 0.077 30 912 5 3844 308 6 816 0 081 30 912.5 3844 308 6.816 0.081 ) ( ) ( dt dW P P i − 002 . 0 1 = C From Fig. ) ( dt dWe ∴C = 50 Using any point in the straight line C 002 . 0 1 = C Using any point in the straight line a = 0.064 ∑ − P P W i 50 t ln ∑ = ∴ ln(0.064t) W i e 50
  • 98. Applied Reservoir Engineering : Dr. Hamid Khattab Example 18: Example 18: Using data of example (18) calculate the cumulative water influx (We) after 39 months (1186.25 days) where the pressure equals 3379 psi Solution : P P P P   dt t a P P t a P P W W i i e e       − + − × + = 2 50 2 39 1 36 36 39 ln ln [ ] 3416 3793 3379 3793 3   − − [ ] 1095 25 . 1186 2 ) 1095 064 . 0 ( 3416 3793 ) 25 . 1186 064 . 0 ( 3379 3793 50 10 2388 3 × ×       × + × × + × = ln ln 3 3 3 3 10 508 . 420 10 2388 × + × = bbls 3 10 2809× =
  • 99. Applied Reservoir Engineering : Dr. Hamid Khattab Unsteady Unsteady- -state water influx state water influx Unsteady Unsteady state water influx state water influx - P and q = C with time - q = 0 at re, q=qmax at rw Closed extended boundry rw - Closed extended boundry - We due to Cw and Cf
  • 100. Applied Reservoir Engineering : Dr. Hamid Khattab Hydraulic analog Hydraulic analog Hydraulic analog Hydraulic analog Pi P2 P1 Pw q x q screen sand sand sand
  • 101. Applied Reservoir Engineering : Dr. Hamid Khattab Physical analog Physical analog Physical analog Physical analog