SlideShare a Scribd company logo
1 of 23
Download to read offline
Ex. (1). A random variable X has the following probability distribution :
Probability Distribution
X = x 0 1 2 3 4 5 6
P(X = x) k 3k 5k 7k 9k 𝟏𝟏𝒌 13𝒌
Find (i) k (ii) p(X < 3) (iii) P(X ≥ 𝟐) (iv) P(0 < X < 4) (v) P(2 ≤ X ≤ 5)
Solution : For a random voriable X we have
𝒑𝒊 = 𝟏
𝒏
𝒊=𝟏
∴ 𝒌 + 𝟑𝒌 + 𝟓𝒌 + 𝟕𝒌 + 𝟗𝒌 + 𝟏𝟏𝒌 + 𝟏𝟑𝒌 = 𝟏
𝒊. 𝒆. 𝟒𝟗𝒌 = 𝟏 ⇒ 𝒌 =
𝟏
𝟒𝟗
X = x 0 1 2 3 4 5 6
P(X = x) 𝟏
𝟒𝟗
𝟑
𝟒𝟗
𝟓
𝟒𝟗
𝟕
𝟒𝟗
𝟗
𝟒𝟗
𝟏𝟏
𝟒𝟗
𝟏𝟑
𝟒𝟗
(𝒊)𝒌 =
𝟏
𝟒𝟗
(ii) p(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)
=
𝟏
𝟒𝟗
+
𝟑
𝟒𝟗
+
𝟓
𝟒𝟗
=
𝟗
𝟒𝟗
(iii) P(X ≥ 𝟐) = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)
(iv) P(0 < X < 4) = P(X = 1) + P(X = 2) + P(X = 3)
(v) P(2 ≤ X ≤5) = P(X = 2) +P(X = 3) + P(X = 4) + P(X = 5)
=
𝟓
𝟒𝟗
+
𝟕
𝟒𝟗
+
𝟗
𝟒𝟗
+
𝟏𝟏
𝟒𝟗
=
𝟑𝟐
𝟒𝟗
Ex. (2). Calculate the Expected value and variance of x if x denotes the number obtained
on the uppermost face when o fir die is thrown.
Solution : When a fair die is thrown, the sample space is S = {1,2, 3, 4, 5, 6}.
The probability distribution is
Let X denotes the number obtained on the upper most face.
∴ X can take values 1, 2, 3, 4, 5, 6.
P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = P(X = 5) = P(X = 6) =
𝟏
𝟔
X = x 1 2 3 4 5 6 Total
P(X = x) 𝟏
𝟔
𝟏
𝟔
𝟏
𝟔
𝟏
𝟔
𝟏
𝟔
𝟏
𝟔
1
x𝒊 . p𝒊 𝟏
𝟔
𝟐
𝟔
𝟑
𝟔
𝟒
𝟔
𝟓
𝟔
𝟔
𝟔
𝟐𝟏
𝟔
=
𝟕
𝟐
𝒙𝒊
𝟐
. p𝒊
𝟏
𝟔
𝟒
𝟔
𝟗
𝟔
𝟏𝟔
𝟔
𝟐𝟓
𝟔
𝟑𝟔
𝟔
𝟗
𝟔
(i) Expected value = E(X) = 𝒙𝒊 , 𝒑𝒊 =
𝟕
𝟐
= 𝟑. 𝟓
𝒏
𝒊=𝟏
(ii) Variance = V(X) = E(𝑿𝟐) – [𝑬 𝑿 ]𝟐
𝒙𝒊
𝟐
, 𝒑𝒊 − 𝒙𝒊 , 𝒑𝒊
𝒏
𝒊=𝟏
𝟐
𝒏
𝒊=𝟏
=
𝟗𝟏
𝟔
−
𝟕
𝟐
𝟐
=
𝟗𝟏
𝟔
−
𝟒𝟗
𝟒
=
𝟏𝟖𝟐 − 𝟏𝟒𝟕
𝟏𝟐
∴ Variance =
𝟑𝟓
𝟏𝟐
= 𝟐. 𝟗𝟏𝟔𝟕
Ex. (3). A discrete random variable X takes the values -1, 0 and 2 with the 111
probabilities
𝟏
𝟒
,
𝟏
𝟐
,
𝟏
𝟒
respectively. Find V(X) and Standard Deviation.
Solution: Given that the random variable X takes the values -1, 0 and 2.
The corresponding probabilities are
𝟏
𝟒
,
𝟏
𝟐
,
𝟏
𝟒
.
P −𝟏 =
𝟏
𝟒
, P 𝟎 =
𝟏
𝟐
, P 𝟐 =
𝟏
𝟒
X = x -1 0 2 Total
P(X = x) 𝟏
𝟒
𝟏
𝟐
𝟏
𝟒
𝟏
𝒙𝒊𝒑𝒊
-
𝟏
𝟒
𝟎 𝟏
𝟐
𝟏
𝟒
𝒙𝒊
𝟐
𝒑𝒊
𝟏
𝟒
0 1 𝟓
𝟒
(i) Variance = V(X) = E(𝑿𝟐) – [𝑬(𝑿)]𝟐
𝒙𝒊
𝟐 𝒑𝒊 −
𝒏
𝒊=𝟏
𝒙𝒊𝒑𝒊
𝒏
𝒊=𝟏
𝟐
=
𝟓
𝟒
−
𝟏
𝟒
𝟐
=
𝟓
𝟒
−
𝟏
𝟏𝟔
=
𝟓 × 𝟒 − 𝟏
𝟏𝟔
=
𝟐𝟎 − 𝟏
𝟏𝟔
=
𝟏𝟗
𝟏𝟔
= 1.1875
(ii) Standard Deviation = 𝝈 = V(X) =
𝟏𝟗
𝟏𝟔
= 𝟏. 𝟏𝟖𝟕𝟓 = 1.0897
Given data can be tabulated as follows (TABLE ON PREVIOUS PAGE )
Ex. (4). The p.d.f. of X, find P(X<1) and P( 𝑿 < 𝟏) where
Solution : Given that the p.d.f of X is
𝒊 𝑷 𝑿 < 𝟏 = 𝒇 𝒙 𝒅𝒙
𝟏
−𝟐
𝒇 𝒙 =
𝒙 + 𝟐
𝟏𝟖
= 0
𝒊𝒇 − 𝟐 < 𝒙 < 𝟒
𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆.
𝒇 𝒙 =
𝒙 + 𝟐
𝟏𝟖
= 0
𝒊𝒇 − 𝟐 < 𝒙 < 𝟒
𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆.
=
𝒙 + 𝟐
𝟏𝟖
𝒅𝒙
𝟏
−𝟐
=
𝟏
𝟏𝟖
(𝒙 + 𝟐) 𝒅𝒙
𝟏
−𝟐
=
𝟏
𝟏𝟖
(𝒙 + 𝟐)𝟐
𝟐 −𝟐
𝟏
=
𝟏
𝟑𝟔
(𝒙 + 𝟐)𝟐
−𝟐
𝟏
=
𝟏
𝟑𝟔
𝟗 − 𝟎 =
𝟗
𝟑𝟔
=
𝟗
𝟑𝟔
= 𝟎. 𝟐𝟓
(ii) P( 𝑿 < 𝟏) = P (-1 < X < 1)
=
𝒙 + 𝟐
𝟏𝟖
𝒅𝒙
𝟏
−𝟏
=
𝟏
𝟏𝟖
(𝒙 + 𝟐)𝟐
𝟐 −𝟏
𝟏
=
𝟏
𝟑𝟔
(𝒙 + 𝟐)𝟐
−𝟏
𝟏
=
𝟏
𝟑𝟔
𝟗 − 𝟏 =
𝟖
𝟑𝟔
=
𝟐
𝟗
= 𝟎. 𝟐𝟐𝟐𝟐
=
𝟏
𝟏𝟖
(𝒙 + 𝟐) 𝒅𝒙
𝟏
−𝟏
Ex. (5). A random variable X has the following probability distribution :
Solution:
x 0 1 2 3 4 5 6 7
P(X = x) 0 k 2k 2k 3k 𝒌𝟐
2𝒌𝟐
7𝒌𝟐
+ k
Find (i) k (ii) (X < 3) (iii) P(X > 6) (iv) P(0 < X < 3) (v) P(2 ≤ X ≤ 4)
For given probability distribution
𝒑𝒊 = 𝟏
𝒏
𝒊=𝟏
…(∵ P.D is p.m.f )
∴ P(x = 0) + P(x = 1) + P(x = 2) + … + P(x = 7) = 1
∴ 0 + k + 2k + 2k + 3k + 𝒌𝟐 + 2𝒌𝟐 + 7𝒌𝟐 + k = 1
⇨ 𝟗𝒌 + 𝟏𝟎𝒌𝟐 = 𝟏
⇨ 𝟏𝟎𝒌𝟐
+ 𝟗𝒌 − 𝟏 = 𝟎
⇨ 𝟏𝟎𝒌𝟐 + 𝟏𝟎𝒌 − 𝒌 − 𝟏 = 𝟎
⇨ 𝟏𝟎𝒌(𝒌 + 𝟏) − 𝟏(𝒌 + 𝟏) = 𝟎
⇨ (𝒌 + 𝟏) (10k −𝟏) = 0
⇨ 𝒌 + 𝟏 = 0 or 10k −𝟏 = 0
𝒌 = -1 k =
𝟏
𝟏𝟎
or
For 𝒌 = -1 ⇨ P.D value
P 𝒙 = 𝟏 = −𝟏 which contradiction to fact 𝒑𝒊 ≥ 𝟎
∴ 𝒌 ≠ -1 is not consider
𝐏. 𝐃. will as follows
k =
𝟏
𝟏𝟎
∴
x 0 1 2 3 4 5 6 7
P(X = x) 0 𝟏
𝟏𝟎
𝟐
𝟏𝟎
𝟐
𝟏𝟎
𝟑
𝟏𝟎
𝟏
𝟏𝟎𝟎
𝟐
𝟏𝟎𝟎
𝟏𝟕
𝟏𝟎𝟎
(ii) (X < 3) = P(x = 0 or x = 1 o r x = 2)
= P(x = 0) + P(x = 1) + P(x = 2)
(X < 3) = 0 + k + 2k = 3k =
𝟑
𝟏𝟎
(iii) P(X > 6) = P(x = 7)
P(X > 6) = 7𝒌𝟐 + k =
𝟏𝟕
𝟏𝟎𝟎
(iv) P(0 < X < 3) = P(x = 1 or x = 2)
= P(x = 1) + P(x = 2)
P(0 < X < 3) = k + 2k = 3k =
𝟑
𝟏𝟎
(v) P(2 ≤ X ≤ 4) = P(x = 2 or x = 3 or x = 4)
= P(x = 2) + P(x = 3) + P(x = 4)
P(2 ≤ X ≤ 4) = 2k + 2k + 3k = 7k =
𝟕
𝟏𝟎
Ex. (6). The p.m.f of a random variable X is as follows :
Solution:
X = x 1 2 3 4
P(x) 𝟏
𝟑𝟎
𝟒
𝟑𝟎
𝟗
𝟑𝟎
𝟏𝟔
𝟑𝟎
Find Mean and Variance.
𝒙𝒊 𝒑𝒊 𝒙𝒊𝒑𝒊 𝒙𝒊
𝟐 𝒑𝒊
1 𝟏
𝟑𝟎
𝟏
𝟑𝟎
𝟏
𝟑𝟎
2 𝟏
𝟑𝟎
𝟖
𝟑𝟎
𝟏𝟔
𝟑𝟎
3 𝟗
𝟑𝟎
𝟐𝟕
𝟑𝟎
𝟖𝟏
𝟑𝟎
4 𝟏𝟔
𝟑𝟎
𝟔𝟒
𝟑𝟎
𝟐𝟓𝟔
𝟑𝟎
Total
𝒑𝒊 = 𝟏 𝒙𝒊𝒑𝒊 =
𝟏𝟎𝟎
𝟑𝟎
𝒙𝒊
𝟐
𝒑𝒊 =
𝟑𝟓𝟒
𝟑𝟎
Mean E(X) = 𝒙𝒊𝒑𝒊 =
𝟏𝟎𝟎
𝟑𝟎
𝒏
𝒊=𝟏
Mean =
𝟏𝟎𝟎
𝟑𝟎
Variance V(X) = E(𝑿𝟐
) - [𝐄(𝐗)]𝟐
= 𝒙𝒊
𝟐 𝒑𝒊 − 𝒙𝒊𝒑𝒊
𝒏
𝒊=𝟏
𝟐
𝒏
𝒊=𝟏
=
𝟑𝟓𝟒
𝟑𝟎
−
𝟏𝟎𝟎
𝟑𝟎
𝟐
=
𝟑𝟓𝟒
𝟑𝟎
−
𝟏𝟎,𝟎𝟎𝟎
𝟗𝟎𝟎
Variance =
𝟑𝟓𝟒 ×𝟑𝟎 − 𝟏𝟎,𝟎𝟎𝟎
𝟗𝟎𝟎
=
𝟏𝟖𝟔
𝟐𝟕𝟎
= 0.6888
Ex. (7). From a survey of 20 families in a society, the following data was obtained :
Solution:
No. of children 0 1 2 3 4
No. of families 𝟓 𝟏𝟏 𝟐 𝟎 2
For the random variable X = number of children in a randomly chosen family,
Find E(X) and V(X).
Total no. families = 5 + 11 + 2 + 0 + 2 = 20
X = { 0, 1, 2, 3, 4 }
Denotes random variable of no. children in a chosen family
P[x = 0] =
𝟓
𝟐𝟎
P[x = 1] =
𝟏𝟏
𝟐𝟎
P[x = 2] =
𝟐
𝟐𝟎
, P[x = 3] =
𝟎
𝟐𝟎
and P[x = 4] =
𝟐
𝟐𝟎
𝒙𝒊 𝒑𝒊 𝒙𝒊𝒑𝒊 𝒙𝒊
𝟐 𝒑𝒊
0 𝟓
𝟐𝟎
𝟎 𝟎
1 𝟏𝟏
𝟐𝟎
𝟏𝟏
𝟐𝟎
𝟏𝟏
𝟐𝟎
2 𝟐
𝟐𝟎
𝟒
𝟐𝟎
𝟖
𝟐𝟎
3 𝟎
𝟐𝟎
= 0 𝟎 𝟎
4 𝟐
𝟐𝟎
𝟖
𝟐𝟎
𝟑𝟐
𝟐𝟎
Total
𝒑𝒊 = 𝟏 𝒙𝒊𝒑𝒊 =
𝟐𝟑
𝟐𝟎
𝒙𝒊
𝟐 𝒑𝒊 =
𝟓𝟏
𝟐𝟎
Mean = E(X) = 𝒙𝒊𝒑𝒊 =
𝟐𝟑
𝟐𝟎
𝒏
𝒊=𝟏
Variance = V(X) = E(𝑿𝟐) - [𝐄(𝐗)]𝟐
= 𝒙𝒊
𝟐 𝒑𝒊 − 𝒙𝒊𝒑𝒊
𝒏
𝒊=𝟏
𝟐
𝒏
𝒊=𝟏
=
𝟓𝟏
𝟐𝟎
-
𝟐𝟑
𝟐𝟎
𝟐
=
𝟓𝟏 × 𝟐𝟎 − 𝟓𝟐𝟗
𝟒𝟎𝟎
Variance = V(X) =
𝟒𝟗𝟏
𝟒𝟎𝟎
= 𝟏. 𝟐𝟐𝟕𝟓
Ex. (8). Find the c.d.f F(X) associated with the following p.d.f. f(x):
Solution :
𝒇(𝒙) = 𝒇 𝒙 𝒅𝒙
𝒙
𝟎
𝒇 𝒙 = 𝟏𝟐𝒙𝟐
(𝟏 − 𝒙)
= 0
𝒇𝒐𝒓 𝟎 < 𝒙 < 𝟏
𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆.
= 𝟏𝟐𝒙𝟐(𝟏 − 𝒙)𝒅𝒙
𝒙
𝟎
Also, find P
𝟏
𝟑
< 𝑿 <
𝟏
𝟐
𝒃𝒚 𝒖𝒔𝒊𝒏𝒈 𝒑. 𝒅. 𝒇 𝒂𝒏𝒅 𝒄. 𝒅. 𝒇
= 𝟏𝟐 (𝒙𝟐
− 𝒙𝟑
)𝒅𝒙
𝒙
𝟎
= 𝟏𝟐
𝒙𝟑
𝟑
−
𝒙𝟒
𝟒 𝟎
𝒙
= 𝟏𝟐
𝟒𝒙𝟑 − 𝟑𝒙𝟒
𝟏𝟐
𝒇 𝒙 = 𝟒𝒙𝟑
− 𝟑𝒙𝟒
… … . . (𝑰)
𝑵𝒐𝒘 𝑷
𝟏
𝟑
< 𝒙 <
𝟏
𝟐
𝒖𝒔𝒊𝒏𝒈 𝒑. 𝒅. 𝒇
= 𝟏𝟐𝒙𝟐(𝟏 − 𝒙)𝒅𝒙
𝟏
𝟐
𝟏
𝟑
= 𝟒𝒙𝟑
− 𝟑𝒙𝟒
𝟏
𝟑
𝟏
𝟐
= 𝟒
𝟏
𝟐
𝟑
− 𝟑
𝟏
𝟐
𝟒
− 𝟒
𝟏
𝟑
𝟑
− 𝟑
𝟏
𝟑
𝟒
=
𝟒
𝟖
−
𝟑
𝟏𝟔
−
𝟒
𝟐𝟕
−
𝟑
𝟖𝟏
=
𝟓
𝟏𝟔
−
𝟗
𝟖𝟏
=
𝟒𝟎𝟓 − 𝟏𝟒𝟒
𝟏𝟐𝟗𝟔
=
𝟐𝟗
𝟏𝟒𝟒
𝒇 𝒙 = 𝟎. 𝟐𝟎𝟏𝟑
𝑵𝒐𝒘 𝑷
𝟏
𝟑
< 𝒙 <
𝟏
𝟐
𝒖𝒔𝒊𝒏𝒈 𝒄. 𝒅. 𝒇
𝒇 𝒙 = 𝟒𝒙𝟑 − 𝟑𝒙𝟒
= 𝒇
𝟏
𝟐
− 𝒇
𝟏
𝟑
= 𝟒
𝟏
𝟐
𝟑
− 𝟑
𝟏
𝟐
𝟒
− 𝟒
𝟏
𝟑
𝟑
− 𝟑
𝟏
𝟑
𝟒
=
𝟒
𝟖
−
𝟑
𝟏𝟔
−
𝟒
𝟐𝟕
−
𝟑
𝟖𝟏
=
𝟓
𝟏𝟔
−
𝟗
𝟖𝟏
=
𝟒𝟎𝟓 − 𝟏𝟒𝟒
𝟏𝟐𝟗𝟔
=
𝟐𝟗
𝟏𝟒𝟒
𝒇 𝒙 = 𝟎. 𝟐𝟎𝟏𝟑

More Related Content

Similar to 15 Probability Distribution Practical (HSC).pdf

Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference Sheet
Daniel Nolan
 
14 Bivariate Transformations
14 Bivariate Transformations14 Bivariate Transformations
14 Bivariate Transformations
Hadley Wickham
 

Similar to 15 Probability Distribution Practical (HSC).pdf (20)

PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULES
 
Qt random variables notes
Qt random variables notesQt random variables notes
Qt random variables notes
 
Finance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfFinance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdf
 
NCERT Class 9 Maths Polynomials
NCERT Class 9 Maths  PolynomialsNCERT Class 9 Maths  Polynomials
NCERT Class 9 Maths Polynomials
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Some properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesSome properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spaces
 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions
 
3.2 properties of division and roots t
3.2 properties of division and roots t3.2 properties of division and roots t
3.2 properties of division and roots t
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference Sheet
 
cps170_bayes_nets.ppt
cps170_bayes_nets.pptcps170_bayes_nets.ppt
cps170_bayes_nets.ppt
 
Lagranges method of undetermined multiplers.pptx
Lagranges method of undetermined multiplers.pptxLagranges method of undetermined multiplers.pptx
Lagranges method of undetermined multiplers.pptx
 
ゲーム理論BASIC 演習6 -仁を求める-
ゲーム理論BASIC 演習6 -仁を求める-ゲーム理論BASIC 演習6 -仁を求める-
ゲーム理論BASIC 演習6 -仁を求める-
 
Quantitative Techniques random variables
Quantitative Techniques random variablesQuantitative Techniques random variables
Quantitative Techniques random variables
 
Interpolation
InterpolationInterpolation
Interpolation
 
Course notes2summer2012
Course notes2summer2012Course notes2summer2012
Course notes2summer2012
 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
 
Zero Theorem and Rational Roots Presentation
Zero Theorem and Rational Roots PresentationZero Theorem and Rational Roots Presentation
Zero Theorem and Rational Roots Presentation
 
14 Bivariate Transformations
14 Bivariate Transformations14 Bivariate Transformations
14 Bivariate Transformations
 
3.4 looking for real roots of real polynomials t
3.4 looking for real roots of real polynomials t3.4 looking for real roots of real polynomials t
3.4 looking for real roots of real polynomials t
 

Recently uploaded

The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
MateoGardella
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 

Recently uploaded (20)

The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 

15 Probability Distribution Practical (HSC).pdf

  • 1. Ex. (1). A random variable X has the following probability distribution : Probability Distribution X = x 0 1 2 3 4 5 6 P(X = x) k 3k 5k 7k 9k 𝟏𝟏𝒌 13𝒌 Find (i) k (ii) p(X < 3) (iii) P(X ≥ 𝟐) (iv) P(0 < X < 4) (v) P(2 ≤ X ≤ 5) Solution : For a random voriable X we have 𝒑𝒊 = 𝟏 𝒏 𝒊=𝟏 ∴ 𝒌 + 𝟑𝒌 + 𝟓𝒌 + 𝟕𝒌 + 𝟗𝒌 + 𝟏𝟏𝒌 + 𝟏𝟑𝒌 = 𝟏 𝒊. 𝒆. 𝟒𝟗𝒌 = 𝟏 ⇒ 𝒌 = 𝟏 𝟒𝟗
  • 2. X = x 0 1 2 3 4 5 6 P(X = x) 𝟏 𝟒𝟗 𝟑 𝟒𝟗 𝟓 𝟒𝟗 𝟕 𝟒𝟗 𝟗 𝟒𝟗 𝟏𝟏 𝟒𝟗 𝟏𝟑 𝟒𝟗 (𝒊)𝒌 = 𝟏 𝟒𝟗 (ii) p(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 𝟏 𝟒𝟗 + 𝟑 𝟒𝟗 + 𝟓 𝟒𝟗 = 𝟗 𝟒𝟗 (iii) P(X ≥ 𝟐) = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) (iv) P(0 < X < 4) = P(X = 1) + P(X = 2) + P(X = 3) (v) P(2 ≤ X ≤5) = P(X = 2) +P(X = 3) + P(X = 4) + P(X = 5) = 𝟓 𝟒𝟗 + 𝟕 𝟒𝟗 + 𝟗 𝟒𝟗 + 𝟏𝟏 𝟒𝟗 = 𝟑𝟐 𝟒𝟗
  • 3. Ex. (2). Calculate the Expected value and variance of x if x denotes the number obtained on the uppermost face when o fir die is thrown. Solution : When a fair die is thrown, the sample space is S = {1,2, 3, 4, 5, 6}. The probability distribution is Let X denotes the number obtained on the upper most face. ∴ X can take values 1, 2, 3, 4, 5, 6. P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = P(X = 5) = P(X = 6) = 𝟏 𝟔 X = x 1 2 3 4 5 6 Total P(X = x) 𝟏 𝟔 𝟏 𝟔 𝟏 𝟔 𝟏 𝟔 𝟏 𝟔 𝟏 𝟔 1
  • 4. x𝒊 . p𝒊 𝟏 𝟔 𝟐 𝟔 𝟑 𝟔 𝟒 𝟔 𝟓 𝟔 𝟔 𝟔 𝟐𝟏 𝟔 = 𝟕 𝟐 𝒙𝒊 𝟐 . p𝒊 𝟏 𝟔 𝟒 𝟔 𝟗 𝟔 𝟏𝟔 𝟔 𝟐𝟓 𝟔 𝟑𝟔 𝟔 𝟗 𝟔 (i) Expected value = E(X) = 𝒙𝒊 , 𝒑𝒊 = 𝟕 𝟐 = 𝟑. 𝟓 𝒏 𝒊=𝟏 (ii) Variance = V(X) = E(𝑿𝟐) – [𝑬 𝑿 ]𝟐 𝒙𝒊 𝟐 , 𝒑𝒊 − 𝒙𝒊 , 𝒑𝒊 𝒏 𝒊=𝟏 𝟐 𝒏 𝒊=𝟏 = 𝟗𝟏 𝟔 − 𝟕 𝟐 𝟐 = 𝟗𝟏 𝟔 − 𝟒𝟗 𝟒 = 𝟏𝟖𝟐 − 𝟏𝟒𝟕 𝟏𝟐 ∴ Variance = 𝟑𝟓 𝟏𝟐 = 𝟐. 𝟗𝟏𝟔𝟕
  • 5. Ex. (3). A discrete random variable X takes the values -1, 0 and 2 with the 111 probabilities 𝟏 𝟒 , 𝟏 𝟐 , 𝟏 𝟒 respectively. Find V(X) and Standard Deviation. Solution: Given that the random variable X takes the values -1, 0 and 2. The corresponding probabilities are 𝟏 𝟒 , 𝟏 𝟐 , 𝟏 𝟒 . P −𝟏 = 𝟏 𝟒 , P 𝟎 = 𝟏 𝟐 , P 𝟐 = 𝟏 𝟒 X = x -1 0 2 Total P(X = x) 𝟏 𝟒 𝟏 𝟐 𝟏 𝟒 𝟏 𝒙𝒊𝒑𝒊 - 𝟏 𝟒 𝟎 𝟏 𝟐 𝟏 𝟒 𝒙𝒊 𝟐 𝒑𝒊 𝟏 𝟒 0 1 𝟓 𝟒
  • 6. (i) Variance = V(X) = E(𝑿𝟐) – [𝑬(𝑿)]𝟐 𝒙𝒊 𝟐 𝒑𝒊 − 𝒏 𝒊=𝟏 𝒙𝒊𝒑𝒊 𝒏 𝒊=𝟏 𝟐 = 𝟓 𝟒 − 𝟏 𝟒 𝟐 = 𝟓 𝟒 − 𝟏 𝟏𝟔 = 𝟓 × 𝟒 − 𝟏 𝟏𝟔 = 𝟐𝟎 − 𝟏 𝟏𝟔 = 𝟏𝟗 𝟏𝟔 = 1.1875 (ii) Standard Deviation = 𝝈 = V(X) = 𝟏𝟗 𝟏𝟔 = 𝟏. 𝟏𝟖𝟕𝟓 = 1.0897 Given data can be tabulated as follows (TABLE ON PREVIOUS PAGE )
  • 7. Ex. (4). The p.d.f. of X, find P(X<1) and P( 𝑿 < 𝟏) where Solution : Given that the p.d.f of X is 𝒊 𝑷 𝑿 < 𝟏 = 𝒇 𝒙 𝒅𝒙 𝟏 −𝟐 𝒇 𝒙 = 𝒙 + 𝟐 𝟏𝟖 = 0 𝒊𝒇 − 𝟐 < 𝒙 < 𝟒 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆. 𝒇 𝒙 = 𝒙 + 𝟐 𝟏𝟖 = 0 𝒊𝒇 − 𝟐 < 𝒙 < 𝟒 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆. = 𝒙 + 𝟐 𝟏𝟖 𝒅𝒙 𝟏 −𝟐
  • 8. = 𝟏 𝟏𝟖 (𝒙 + 𝟐) 𝒅𝒙 𝟏 −𝟐 = 𝟏 𝟏𝟖 (𝒙 + 𝟐)𝟐 𝟐 −𝟐 𝟏 = 𝟏 𝟑𝟔 (𝒙 + 𝟐)𝟐 −𝟐 𝟏 = 𝟏 𝟑𝟔 𝟗 − 𝟎 = 𝟗 𝟑𝟔 = 𝟗 𝟑𝟔 = 𝟎. 𝟐𝟓 (ii) P( 𝑿 < 𝟏) = P (-1 < X < 1) = 𝒙 + 𝟐 𝟏𝟖 𝒅𝒙 𝟏 −𝟏
  • 9. = 𝟏 𝟏𝟖 (𝒙 + 𝟐)𝟐 𝟐 −𝟏 𝟏 = 𝟏 𝟑𝟔 (𝒙 + 𝟐)𝟐 −𝟏 𝟏 = 𝟏 𝟑𝟔 𝟗 − 𝟏 = 𝟖 𝟑𝟔 = 𝟐 𝟗 = 𝟎. 𝟐𝟐𝟐𝟐 = 𝟏 𝟏𝟖 (𝒙 + 𝟐) 𝒅𝒙 𝟏 −𝟏
  • 10. Ex. (5). A random variable X has the following probability distribution : Solution: x 0 1 2 3 4 5 6 7 P(X = x) 0 k 2k 2k 3k 𝒌𝟐 2𝒌𝟐 7𝒌𝟐 + k Find (i) k (ii) (X < 3) (iii) P(X > 6) (iv) P(0 < X < 3) (v) P(2 ≤ X ≤ 4) For given probability distribution 𝒑𝒊 = 𝟏 𝒏 𝒊=𝟏 …(∵ P.D is p.m.f ) ∴ P(x = 0) + P(x = 1) + P(x = 2) + … + P(x = 7) = 1 ∴ 0 + k + 2k + 2k + 3k + 𝒌𝟐 + 2𝒌𝟐 + 7𝒌𝟐 + k = 1 ⇨ 𝟗𝒌 + 𝟏𝟎𝒌𝟐 = 𝟏
  • 11. ⇨ 𝟏𝟎𝒌𝟐 + 𝟗𝒌 − 𝟏 = 𝟎 ⇨ 𝟏𝟎𝒌𝟐 + 𝟏𝟎𝒌 − 𝒌 − 𝟏 = 𝟎 ⇨ 𝟏𝟎𝒌(𝒌 + 𝟏) − 𝟏(𝒌 + 𝟏) = 𝟎 ⇨ (𝒌 + 𝟏) (10k −𝟏) = 0 ⇨ 𝒌 + 𝟏 = 0 or 10k −𝟏 = 0 𝒌 = -1 k = 𝟏 𝟏𝟎 or For 𝒌 = -1 ⇨ P.D value P 𝒙 = 𝟏 = −𝟏 which contradiction to fact 𝒑𝒊 ≥ 𝟎
  • 12. ∴ 𝒌 ≠ -1 is not consider 𝐏. 𝐃. will as follows k = 𝟏 𝟏𝟎 ∴ x 0 1 2 3 4 5 6 7 P(X = x) 0 𝟏 𝟏𝟎 𝟐 𝟏𝟎 𝟐 𝟏𝟎 𝟑 𝟏𝟎 𝟏 𝟏𝟎𝟎 𝟐 𝟏𝟎𝟎 𝟏𝟕 𝟏𝟎𝟎 (ii) (X < 3) = P(x = 0 or x = 1 o r x = 2) = P(x = 0) + P(x = 1) + P(x = 2) (X < 3) = 0 + k + 2k = 3k = 𝟑 𝟏𝟎
  • 13. (iii) P(X > 6) = P(x = 7) P(X > 6) = 7𝒌𝟐 + k = 𝟏𝟕 𝟏𝟎𝟎 (iv) P(0 < X < 3) = P(x = 1 or x = 2) = P(x = 1) + P(x = 2) P(0 < X < 3) = k + 2k = 3k = 𝟑 𝟏𝟎 (v) P(2 ≤ X ≤ 4) = P(x = 2 or x = 3 or x = 4) = P(x = 2) + P(x = 3) + P(x = 4) P(2 ≤ X ≤ 4) = 2k + 2k + 3k = 7k = 𝟕 𝟏𝟎
  • 14. Ex. (6). The p.m.f of a random variable X is as follows : Solution: X = x 1 2 3 4 P(x) 𝟏 𝟑𝟎 𝟒 𝟑𝟎 𝟗 𝟑𝟎 𝟏𝟔 𝟑𝟎 Find Mean and Variance. 𝒙𝒊 𝒑𝒊 𝒙𝒊𝒑𝒊 𝒙𝒊 𝟐 𝒑𝒊 1 𝟏 𝟑𝟎 𝟏 𝟑𝟎 𝟏 𝟑𝟎 2 𝟏 𝟑𝟎 𝟖 𝟑𝟎 𝟏𝟔 𝟑𝟎 3 𝟗 𝟑𝟎 𝟐𝟕 𝟑𝟎 𝟖𝟏 𝟑𝟎 4 𝟏𝟔 𝟑𝟎 𝟔𝟒 𝟑𝟎 𝟐𝟓𝟔 𝟑𝟎 Total 𝒑𝒊 = 𝟏 𝒙𝒊𝒑𝒊 = 𝟏𝟎𝟎 𝟑𝟎 𝒙𝒊 𝟐 𝒑𝒊 = 𝟑𝟓𝟒 𝟑𝟎
  • 15. Mean E(X) = 𝒙𝒊𝒑𝒊 = 𝟏𝟎𝟎 𝟑𝟎 𝒏 𝒊=𝟏 Mean = 𝟏𝟎𝟎 𝟑𝟎 Variance V(X) = E(𝑿𝟐 ) - [𝐄(𝐗)]𝟐 = 𝒙𝒊 𝟐 𝒑𝒊 − 𝒙𝒊𝒑𝒊 𝒏 𝒊=𝟏 𝟐 𝒏 𝒊=𝟏 = 𝟑𝟓𝟒 𝟑𝟎 − 𝟏𝟎𝟎 𝟑𝟎 𝟐 = 𝟑𝟓𝟒 𝟑𝟎 − 𝟏𝟎,𝟎𝟎𝟎 𝟗𝟎𝟎 Variance = 𝟑𝟓𝟒 ×𝟑𝟎 − 𝟏𝟎,𝟎𝟎𝟎 𝟗𝟎𝟎 = 𝟏𝟖𝟔 𝟐𝟕𝟎 = 0.6888
  • 16. Ex. (7). From a survey of 20 families in a society, the following data was obtained : Solution: No. of children 0 1 2 3 4 No. of families 𝟓 𝟏𝟏 𝟐 𝟎 2 For the random variable X = number of children in a randomly chosen family, Find E(X) and V(X). Total no. families = 5 + 11 + 2 + 0 + 2 = 20 X = { 0, 1, 2, 3, 4 } Denotes random variable of no. children in a chosen family P[x = 0] = 𝟓 𝟐𝟎 P[x = 1] = 𝟏𝟏 𝟐𝟎
  • 17. P[x = 2] = 𝟐 𝟐𝟎 , P[x = 3] = 𝟎 𝟐𝟎 and P[x = 4] = 𝟐 𝟐𝟎 𝒙𝒊 𝒑𝒊 𝒙𝒊𝒑𝒊 𝒙𝒊 𝟐 𝒑𝒊 0 𝟓 𝟐𝟎 𝟎 𝟎 1 𝟏𝟏 𝟐𝟎 𝟏𝟏 𝟐𝟎 𝟏𝟏 𝟐𝟎 2 𝟐 𝟐𝟎 𝟒 𝟐𝟎 𝟖 𝟐𝟎 3 𝟎 𝟐𝟎 = 0 𝟎 𝟎 4 𝟐 𝟐𝟎 𝟖 𝟐𝟎 𝟑𝟐 𝟐𝟎 Total 𝒑𝒊 = 𝟏 𝒙𝒊𝒑𝒊 = 𝟐𝟑 𝟐𝟎 𝒙𝒊 𝟐 𝒑𝒊 = 𝟓𝟏 𝟐𝟎
  • 18. Mean = E(X) = 𝒙𝒊𝒑𝒊 = 𝟐𝟑 𝟐𝟎 𝒏 𝒊=𝟏 Variance = V(X) = E(𝑿𝟐) - [𝐄(𝐗)]𝟐 = 𝒙𝒊 𝟐 𝒑𝒊 − 𝒙𝒊𝒑𝒊 𝒏 𝒊=𝟏 𝟐 𝒏 𝒊=𝟏 = 𝟓𝟏 𝟐𝟎 - 𝟐𝟑 𝟐𝟎 𝟐 = 𝟓𝟏 × 𝟐𝟎 − 𝟓𝟐𝟗 𝟒𝟎𝟎 Variance = V(X) = 𝟒𝟗𝟏 𝟒𝟎𝟎 = 𝟏. 𝟐𝟐𝟕𝟓
  • 19. Ex. (8). Find the c.d.f F(X) associated with the following p.d.f. f(x): Solution : 𝒇(𝒙) = 𝒇 𝒙 𝒅𝒙 𝒙 𝟎 𝒇 𝒙 = 𝟏𝟐𝒙𝟐 (𝟏 − 𝒙) = 0 𝒇𝒐𝒓 𝟎 < 𝒙 < 𝟏 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆. = 𝟏𝟐𝒙𝟐(𝟏 − 𝒙)𝒅𝒙 𝒙 𝟎 Also, find P 𝟏 𝟑 < 𝑿 < 𝟏 𝟐 𝒃𝒚 𝒖𝒔𝒊𝒏𝒈 𝒑. 𝒅. 𝒇 𝒂𝒏𝒅 𝒄. 𝒅. 𝒇 = 𝟏𝟐 (𝒙𝟐 − 𝒙𝟑 )𝒅𝒙 𝒙 𝟎
  • 20. = 𝟏𝟐 𝒙𝟑 𝟑 − 𝒙𝟒 𝟒 𝟎 𝒙 = 𝟏𝟐 𝟒𝒙𝟑 − 𝟑𝒙𝟒 𝟏𝟐 𝒇 𝒙 = 𝟒𝒙𝟑 − 𝟑𝒙𝟒 … … . . (𝑰) 𝑵𝒐𝒘 𝑷 𝟏 𝟑 < 𝒙 < 𝟏 𝟐 𝒖𝒔𝒊𝒏𝒈 𝒑. 𝒅. 𝒇 = 𝟏𝟐𝒙𝟐(𝟏 − 𝒙)𝒅𝒙 𝟏 𝟐 𝟏 𝟑
  • 21. = 𝟒𝒙𝟑 − 𝟑𝒙𝟒 𝟏 𝟑 𝟏 𝟐 = 𝟒 𝟏 𝟐 𝟑 − 𝟑 𝟏 𝟐 𝟒 − 𝟒 𝟏 𝟑 𝟑 − 𝟑 𝟏 𝟑 𝟒 = 𝟒 𝟖 − 𝟑 𝟏𝟔 − 𝟒 𝟐𝟕 − 𝟑 𝟖𝟏 = 𝟓 𝟏𝟔 − 𝟗 𝟖𝟏 = 𝟒𝟎𝟓 − 𝟏𝟒𝟒 𝟏𝟐𝟗𝟔 = 𝟐𝟗 𝟏𝟒𝟒 𝒇 𝒙 = 𝟎. 𝟐𝟎𝟏𝟑
  • 22. 𝑵𝒐𝒘 𝑷 𝟏 𝟑 < 𝒙 < 𝟏 𝟐 𝒖𝒔𝒊𝒏𝒈 𝒄. 𝒅. 𝒇 𝒇 𝒙 = 𝟒𝒙𝟑 − 𝟑𝒙𝟒 = 𝒇 𝟏 𝟐 − 𝒇 𝟏 𝟑 = 𝟒 𝟏 𝟐 𝟑 − 𝟑 𝟏 𝟐 𝟒 − 𝟒 𝟏 𝟑 𝟑 − 𝟑 𝟏 𝟑 𝟒 = 𝟒 𝟖 − 𝟑 𝟏𝟔 − 𝟒 𝟐𝟕 − 𝟑 𝟖𝟏 = 𝟓 𝟏𝟔 − 𝟗 𝟖𝟏 = 𝟒𝟎𝟓 − 𝟏𝟒𝟒 𝟏𝟐𝟗𝟔
  • 23. = 𝟐𝟗 𝟏𝟒𝟒 𝒇 𝒙 = 𝟎. 𝟐𝟎𝟏𝟑