SlideShare a Scribd company logo
WORK AND CONSERVATIONWORK AND CONSERVATION
OF ENERGYOF ENERGY
STYMVERLY GAWAT
JENERUS JUAN
AND ALWEN AGYAM
Work is the transfer of energy through motion. In
order for work to take place, a force must be exerted
through a distance. The amount of work done depends
on two things: the amount of force exerted and the
distance over which the force is applied. There are
two factors to keep in mind when deciding when work
is being done: something has to move and the motion
must be in the direction of the applied force. Work
can be calculated by using the following formula:
Work=force x distance
WorkWork
Work is done on the
books when they are
being lifted, but no
work is done on
them when they are
being held or
carried horizontally.
WorkWork
Work can be positive orWork can be positive or
negativenegative
• Man does positive work
lifting box
Man does negative work
lowering box
Gravity does positive work
when box lowers
Gravity does negative work
when box is raised
Work done by a constant ForceWork done by a constant Force
θ
∆Ekin = Wnet
• W = F s = |F| |s| cos θ = Fs s
|F| : magnitude of force
|s| = s : magnitude of displacement
Fs = magnitude of force in
direction of displacement :
Fs = |F| cos θ
θ: angle between displacement and force
vectors
• Kinetic energy : Ekin= 1/2 m v2
• Work-Kinetic Energy Theorem:
F
s
Conservation of Mechanical EnergyConservation of Mechanical Energy
Total mechanical energy of an object remains constant
provided the net work done by non-conservative forces
is zero:
Etot = Ekin + Epot = constant
or
Ekin,f+Epot,f = Ekin,0+Epot,0
Otherwise, in the presence of net work done by
non-conservative forces (e.g. friction):
Wnc = Ekin,f – Ekin,0 + Epot,f-Epot,i
Example ProblemExample Problem
Suppose the initial kinetic and potential energies of a system are 75J
and 250J respectively, and that the final kinetic and potential energies
of the same system are 300J and -25J respectively. How much work
was done on the system by non-conservative forces?
1. 0J
2. 50J
3. -50J
4. 225J
5. -225J
correct
Work done by non-conservative forces equals the
difference between final and initial kinetic energies
plus the difference between the final and initial
gravitational potential energies.
W = (300-75) + ((-25) - 250) = 225 - 275 = -50J.
Samar HathoutSamar Hathout
ExampleExample
Samar Hathout
Conservation of EnergyConservation of Energy
Conservative forces:
• Gravity, electrical, QCD…
Non-conservative forces:
• Friction, air resistance…
Non-conservative forces still conserve energy!
Energy just transfers to thermal energy
PEf + KEf = PEi + KEi
∆KE = −∆PE
Samar Hathout
ExampleExample
A diver of mass m drops from
a board 10.0 m above the
water surface, as in the
Figure. Find his speed 5.00 m
above the water surface.
Neglect air resistance.
9.9 m/s
ExampleExample
A skier slides down the frictionless slope as shown.
What is the skier’s speed at the bottom?
H=40 m
L=250 m
start
finish
28.0 m/s
ExampleExample
Three identical balls are
thrown from the top of a
building with the same initial
speed. Initially,
Ball 1 moves horizontally.
Ball 2 moves upward.
Ball 3 moves downward.
Neglecting air resistance,
which ball has the fastest
speed when it hits the ground?
A) Ball 1
B) Ball 2
C) Ball 3
D) All have the same speed.
Springs (Hooke’s Law)Springs (Hooke’s Law)
Proportional to
displacement
from
equilibrium
F = −kx
Potential Energy of SpringPotential Energy of Spring
∆PE=-F∆x
∆x
F
∆PE∑ =
1
2
(kx)x
PE =
1
2
kx2
x
ExampleExample
b) To what height h does the block rise when moving up
the incline?
A 0.50-kg block rests on a horizontal, frictionless
surface as in the figure; it is pressed against a light
spring having a spring constant of k = 800 N/m, with
an initial compression of 2.0 cm.
3.2 cm
PowerPower
Average power is the average rate at which a net force
does work:
Pav = Wnet / t
SI unit: [P] = J/s = watt (W)
Or Pav = Fnet s /t = Fnet vav
ExampleExample
A 1967 Corvette has a weight of 3020 lbs. The 427
cu-in engine was rated at 435 hp at 5400 rpm.
a) If the engine used all 435 hp at 100% efficiency
during acceleration, what speed would the car attain
after 6 seconds?
b) What is the average acceleration? (in “g”s)
a) 120 mph b) 0.91g
ExampleExample
Consider the Corvette (w=3020 lbs) having constant
acceleration of a=0.91g
a) What is the power when v=10 mph?
b) What is the power output when v=100 mph?
a) 73.1 hp b) 732 hp
(in real world a is larger at low v)

More Related Content

What's hot

Ch06 pt 2
Ch06 pt 2Ch06 pt 2
Ch06 pt 2
Austin Wood
 
Lecture09
Lecture09Lecture09
Lecture09
oyunbileg06
 
Work and energy
Work and energyWork and energy
Work and energy
sibo081
 
6161103 11 virtual work
6161103 11 virtual work6161103 11 virtual work
6161103 11 virtual work
etcenterrbru
 
9789810682446 slides chapter 11
9789810682446 slides chapter 119789810682446 slides chapter 11
9789810682446 slides chapter 11
Chiranjeeva Rao Seela
 
Lecture11
Lecture11Lecture11
Lecture11
nomio0703
 
Work
WorkWork
Work
mstf mstf
 
Grade 11, U1B-L3, FBD's & Components
Grade 11, U1B-L3, FBD's & Components Grade 11, U1B-L3, FBD's & Components
Grade 11, U1B-L3, FBD's & Components
gruszecki1
 
Chapter 5.1 work and energy
Chapter 5.1   work and energyChapter 5.1   work and energy
Chapter 5.1 work and energy
rksteel
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
PhysicsJackson
 
Work energy power 2 reading assignment -revision 2 physics
Work energy power 2 reading assignment -revision 2 physicsWork energy power 2 reading assignment -revision 2 physics
Work energy power 2 reading assignment -revision 2 physics
sashrilisdi
 
Ecp5
Ecp5Ecp5
Lecture13
Lecture13Lecture13
Lecture13
nomio0703
 
Math for Physics Cheat sheet
Math for Physics Cheat sheetMath for Physics Cheat sheet
Math for Physics Cheat sheet
Timothy Welsh
 
Work Power and Energy
Work Power and EnergyWork Power and Energy
Work Power and Energy
Zargham Shafi
 
Potential and potential_energy for stoplearn.com
Potential and potential_energy for stoplearn.comPotential and potential_energy for stoplearn.com
Potential and potential_energy for stoplearn.com
Peter Ojike
 
Learning objectives
Learning objectivesLearning objectives
Learning objectives
Chris Cebrero
 
Momentum & Collisions cheat sheet
Momentum & Collisions cheat sheetMomentum & Collisions cheat sheet
Momentum & Collisions cheat sheet
Timothy Welsh
 
Work and energy toolkit 15 may 2020
Work and energy toolkit  15 may 2020Work and energy toolkit  15 may 2020
Work and energy toolkit 15 may 2020
mkhwanda
 
Notes hookes law
Notes hookes lawNotes hookes law
Notes hookes law
JenineCosh
 

What's hot (20)

Ch06 pt 2
Ch06 pt 2Ch06 pt 2
Ch06 pt 2
 
Lecture09
Lecture09Lecture09
Lecture09
 
Work and energy
Work and energyWork and energy
Work and energy
 
6161103 11 virtual work
6161103 11 virtual work6161103 11 virtual work
6161103 11 virtual work
 
9789810682446 slides chapter 11
9789810682446 slides chapter 119789810682446 slides chapter 11
9789810682446 slides chapter 11
 
Lecture11
Lecture11Lecture11
Lecture11
 
Work
WorkWork
Work
 
Grade 11, U1B-L3, FBD's & Components
Grade 11, U1B-L3, FBD's & Components Grade 11, U1B-L3, FBD's & Components
Grade 11, U1B-L3, FBD's & Components
 
Chapter 5.1 work and energy
Chapter 5.1   work and energyChapter 5.1   work and energy
Chapter 5.1 work and energy
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
 
Work energy power 2 reading assignment -revision 2 physics
Work energy power 2 reading assignment -revision 2 physicsWork energy power 2 reading assignment -revision 2 physics
Work energy power 2 reading assignment -revision 2 physics
 
Ecp5
Ecp5Ecp5
Ecp5
 
Lecture13
Lecture13Lecture13
Lecture13
 
Math for Physics Cheat sheet
Math for Physics Cheat sheetMath for Physics Cheat sheet
Math for Physics Cheat sheet
 
Work Power and Energy
Work Power and EnergyWork Power and Energy
Work Power and Energy
 
Potential and potential_energy for stoplearn.com
Potential and potential_energy for stoplearn.comPotential and potential_energy for stoplearn.com
Potential and potential_energy for stoplearn.com
 
Learning objectives
Learning objectivesLearning objectives
Learning objectives
 
Momentum & Collisions cheat sheet
Momentum & Collisions cheat sheetMomentum & Collisions cheat sheet
Momentum & Collisions cheat sheet
 
Work and energy toolkit 15 may 2020
Work and energy toolkit  15 may 2020Work and energy toolkit  15 may 2020
Work and energy toolkit 15 may 2020
 
Notes hookes law
Notes hookes lawNotes hookes law
Notes hookes law
 

Similar to 1 work

Physics Unit 4
Physics Unit 4Physics Unit 4
Physics Unit 4
furmannv
 
work energy theorem and kinetic energy
work energy theorem and kinetic energywork energy theorem and kinetic energy
work energy theorem and kinetic energy
Kharen Adelan
 
Chapter 6 - Giancoli - Work and Energy
Chapter 6 - Giancoli - Work and EnergyChapter 6 - Giancoli - Work and Energy
Chapter 6 - Giancoli - Work and Energy
conquerer742
 
Work energy theorem summary 7 may 2015
Work energy theorem summary 7 may 2015Work energy theorem summary 7 may 2015
Work energy theorem summary 7 may 2015
Mphiriseni Khwanda
 
Third ppt
Third pptThird ppt
Third ppt
Harshit Omer
 
6-a-work-energy-power.ppt
6-a-work-energy-power.ppt6-a-work-energy-power.ppt
6-a-work-energy-power.ppt
Rajbharti12
 
Work energy and_power
Work energy and_power Work energy and_power
Work energy and_power
AJAL A J
 
Sc(phys) chapter 7 work, energy and power
Sc(phys) chapter 7  work, energy and powerSc(phys) chapter 7  work, energy and power
Sc(phys) chapter 7 work, energy and power
hmsoh
 
Chapter 6 Work And Energy
Chapter 6 Work And EnergyChapter 6 Work And Energy
Chapter 6 Work And Energy
Analin Empaynado
 
Energy 2019 (1).ppt
Energy 2019 (1).pptEnergy 2019 (1).ppt
Energy 2019 (1).ppt
lissasalloum
 
Work and energy
Work and energyWork and energy
Work and energy
guestb32189
 
2 work energy power to properties of liquids
2 work energy power to properties of liquids2 work energy power to properties of liquids
2 work energy power to properties of liquids
Antony Jaison
 
2 work energy power to properties of liquids
2 work energy power to properties of liquids2 work energy power to properties of liquids
2 work energy power to properties of liquids
arunjyothi247
 
Work-and-Energy.pptx
Work-and-Energy.pptxWork-and-Energy.pptx
Work-and-Energy.pptx
ydnarpokovlogsky
 
work_energy_and_power.ppt
work_energy_and_power.pptwork_energy_and_power.ppt
work_energy_and_power.ppt
MusaRadhi1
 
Work, energy & power physics
Work, energy & power physics Work, energy & power physics
Work, energy & power physics
sashrilisdi
 
Work,power and energy
Work,power and energyWork,power and energy
Work,power and energy
Sheikh Amman
 
Power Point Presentation ''Work Power Energy"
Power Point Presentation ''Work Power Energy" Power Point Presentation ''Work Power Energy"
Power Point Presentation ''Work Power Energy"
Arun Murali
 
2.3 work, energy & power 2017
2.3 work, energy & power 20172.3 work, energy & power 2017
2.3 work, energy & power 2017
Paula Mills
 
Ch 6 Work & Energy
Ch 6 Work & EnergyCh 6 Work & Energy
Ch 6 Work & Energy
Scott Thomas
 

Similar to 1 work (20)

Physics Unit 4
Physics Unit 4Physics Unit 4
Physics Unit 4
 
work energy theorem and kinetic energy
work energy theorem and kinetic energywork energy theorem and kinetic energy
work energy theorem and kinetic energy
 
Chapter 6 - Giancoli - Work and Energy
Chapter 6 - Giancoli - Work and EnergyChapter 6 - Giancoli - Work and Energy
Chapter 6 - Giancoli - Work and Energy
 
Work energy theorem summary 7 may 2015
Work energy theorem summary 7 may 2015Work energy theorem summary 7 may 2015
Work energy theorem summary 7 may 2015
 
Third ppt
Third pptThird ppt
Third ppt
 
6-a-work-energy-power.ppt
6-a-work-energy-power.ppt6-a-work-energy-power.ppt
6-a-work-energy-power.ppt
 
Work energy and_power
Work energy and_power Work energy and_power
Work energy and_power
 
Sc(phys) chapter 7 work, energy and power
Sc(phys) chapter 7  work, energy and powerSc(phys) chapter 7  work, energy and power
Sc(phys) chapter 7 work, energy and power
 
Chapter 6 Work And Energy
Chapter 6 Work And EnergyChapter 6 Work And Energy
Chapter 6 Work And Energy
 
Energy 2019 (1).ppt
Energy 2019 (1).pptEnergy 2019 (1).ppt
Energy 2019 (1).ppt
 
Work and energy
Work and energyWork and energy
Work and energy
 
2 work energy power to properties of liquids
2 work energy power to properties of liquids2 work energy power to properties of liquids
2 work energy power to properties of liquids
 
2 work energy power to properties of liquids
2 work energy power to properties of liquids2 work energy power to properties of liquids
2 work energy power to properties of liquids
 
Work-and-Energy.pptx
Work-and-Energy.pptxWork-and-Energy.pptx
Work-and-Energy.pptx
 
work_energy_and_power.ppt
work_energy_and_power.pptwork_energy_and_power.ppt
work_energy_and_power.ppt
 
Work, energy & power physics
Work, energy & power physics Work, energy & power physics
Work, energy & power physics
 
Work,power and energy
Work,power and energyWork,power and energy
Work,power and energy
 
Power Point Presentation ''Work Power Energy"
Power Point Presentation ''Work Power Energy" Power Point Presentation ''Work Power Energy"
Power Point Presentation ''Work Power Energy"
 
2.3 work, energy & power 2017
2.3 work, energy & power 20172.3 work, energy & power 2017
2.3 work, energy & power 2017
 
Ch 6 Work & Energy
Ch 6 Work & EnergyCh 6 Work & Energy
Ch 6 Work & Energy
 

More from Jessa Pamonag

Understanding Hypermedia
Understanding HypermediaUnderstanding Hypermedia
Understanding Hypermedia
Jessa Pamonag
 
Philo. activity
Philo. activityPhilo. activity
Philo. activity
Jessa Pamonag
 
Water pollution 2
Water pollution 2Water pollution 2
Water pollution 2
Jessa Pamonag
 
Proverbs
ProverbsProverbs
Proverbs
Jessa Pamonag
 
Sample sayings
Sample sayingsSample sayings
Sample sayings
Jessa Pamonag
 
Sample riddles
Sample riddlesSample riddles
Sample riddles
Jessa Pamonag
 
Layers of ocean
Layers of oceanLayers of ocean
Layers of ocean
Jessa Pamonag
 
Respiratory system
Respiratory systemRespiratory system
Respiratory system
Jessa Pamonag
 
Cloning
CloningCloning
Cloning
Jessa Pamonag
 
The metacognitive process
The metacognitive processThe metacognitive process
The metacognitive process
Jessa Pamonag
 
2.1 energy
2.1 energy2.1 energy
2.1 energy
Jessa Pamonag
 
6 anaerobic and aerobic phases final 1
6 anaerobic and aerobic  phases final 16 anaerobic and aerobic  phases final 1
6 anaerobic and aerobic phases final 1
Jessa Pamonag
 
5 work, power, efficiency
5 work, power, efficiency5 work, power, efficiency
5 work, power, efficiency
Jessa Pamonag
 

More from Jessa Pamonag (14)

Understanding Hypermedia
Understanding HypermediaUnderstanding Hypermedia
Understanding Hypermedia
 
Philo. activity
Philo. activityPhilo. activity
Philo. activity
 
Water pollution 2
Water pollution 2Water pollution 2
Water pollution 2
 
Proverbs
ProverbsProverbs
Proverbs
 
Sample sayings
Sample sayingsSample sayings
Sample sayings
 
Sample riddles
Sample riddlesSample riddles
Sample riddles
 
Layers of ocean
Layers of oceanLayers of ocean
Layers of ocean
 
Respiratory system
Respiratory systemRespiratory system
Respiratory system
 
Cloning
CloningCloning
Cloning
 
The metacognitive process
The metacognitive processThe metacognitive process
The metacognitive process
 
2.1 energy
2.1 energy2.1 energy
2.1 energy
 
6 anaerobic and aerobic phases final 1
6 anaerobic and aerobic  phases final 16 anaerobic and aerobic  phases final 1
6 anaerobic and aerobic phases final 1
 
4 kilowatt hours
4 kilowatt hours4 kilowatt hours
4 kilowatt hours
 
5 work, power, efficiency
5 work, power, efficiency5 work, power, efficiency
5 work, power, efficiency
 

Recently uploaded

TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc
 
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
Zilliz
 
Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1
DianaGray10
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
danishmna97
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
Zilliz
 
Mind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AIMind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AI
Kumud Singh
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
DianaGray10
 
20 Comprehensive Checklist of Designing and Developing a Website
20 Comprehensive Checklist of Designing and Developing a Website20 Comprehensive Checklist of Designing and Developing a Website
20 Comprehensive Checklist of Designing and Developing a Website
Pixlogix Infotech
 
Presentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of GermanyPresentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of Germany
innovationoecd
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
Matthew Sinclair
 
Building RAG with self-deployed Milvus vector database and Snowpark Container...
Building RAG with self-deployed Milvus vector database and Snowpark Container...Building RAG with self-deployed Milvus vector database and Snowpark Container...
Building RAG with self-deployed Milvus vector database and Snowpark Container...
Zilliz
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
Neo4j
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
Adtran
 
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
James Anderson
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
Rohit Gautam
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
Aftab Hussain
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
Neo4j
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
ControlCase
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Aggregage
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
SOFTTECHHUB
 

Recently uploaded (20)

TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
 
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
 
Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
 
Mind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AIMind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AI
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
 
20 Comprehensive Checklist of Designing and Developing a Website
20 Comprehensive Checklist of Designing and Developing a Website20 Comprehensive Checklist of Designing and Developing a Website
20 Comprehensive Checklist of Designing and Developing a Website
 
Presentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of GermanyPresentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of Germany
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
 
Building RAG with self-deployed Milvus vector database and Snowpark Container...
Building RAG with self-deployed Milvus vector database and Snowpark Container...Building RAG with self-deployed Milvus vector database and Snowpark Container...
Building RAG with self-deployed Milvus vector database and Snowpark Container...
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
 
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
 

1 work

  • 1. WORK AND CONSERVATIONWORK AND CONSERVATION OF ENERGYOF ENERGY STYMVERLY GAWAT JENERUS JUAN AND ALWEN AGYAM
  • 2. Work is the transfer of energy through motion. In order for work to take place, a force must be exerted through a distance. The amount of work done depends on two things: the amount of force exerted and the distance over which the force is applied. There are two factors to keep in mind when deciding when work is being done: something has to move and the motion must be in the direction of the applied force. Work can be calculated by using the following formula: Work=force x distance WorkWork
  • 3. Work is done on the books when they are being lifted, but no work is done on them when they are being held or carried horizontally. WorkWork
  • 4. Work can be positive orWork can be positive or negativenegative • Man does positive work lifting box Man does negative work lowering box Gravity does positive work when box lowers Gravity does negative work when box is raised
  • 5. Work done by a constant ForceWork done by a constant Force θ ∆Ekin = Wnet • W = F s = |F| |s| cos θ = Fs s |F| : magnitude of force |s| = s : magnitude of displacement Fs = magnitude of force in direction of displacement : Fs = |F| cos θ θ: angle between displacement and force vectors • Kinetic energy : Ekin= 1/2 m v2 • Work-Kinetic Energy Theorem: F s
  • 6. Conservation of Mechanical EnergyConservation of Mechanical Energy Total mechanical energy of an object remains constant provided the net work done by non-conservative forces is zero: Etot = Ekin + Epot = constant or Ekin,f+Epot,f = Ekin,0+Epot,0 Otherwise, in the presence of net work done by non-conservative forces (e.g. friction): Wnc = Ekin,f – Ekin,0 + Epot,f-Epot,i
  • 7. Example ProblemExample Problem Suppose the initial kinetic and potential energies of a system are 75J and 250J respectively, and that the final kinetic and potential energies of the same system are 300J and -25J respectively. How much work was done on the system by non-conservative forces? 1. 0J 2. 50J 3. -50J 4. 225J 5. -225J correct Work done by non-conservative forces equals the difference between final and initial kinetic energies plus the difference between the final and initial gravitational potential energies. W = (300-75) + ((-25) - 250) = 225 - 275 = -50J. Samar HathoutSamar Hathout
  • 9. Conservation of EnergyConservation of Energy Conservative forces: • Gravity, electrical, QCD… Non-conservative forces: • Friction, air resistance… Non-conservative forces still conserve energy! Energy just transfers to thermal energy PEf + KEf = PEi + KEi ∆KE = −∆PE Samar Hathout
  • 10. ExampleExample A diver of mass m drops from a board 10.0 m above the water surface, as in the Figure. Find his speed 5.00 m above the water surface. Neglect air resistance. 9.9 m/s
  • 11. ExampleExample A skier slides down the frictionless slope as shown. What is the skier’s speed at the bottom? H=40 m L=250 m start finish 28.0 m/s
  • 12. ExampleExample Three identical balls are thrown from the top of a building with the same initial speed. Initially, Ball 1 moves horizontally. Ball 2 moves upward. Ball 3 moves downward. Neglecting air resistance, which ball has the fastest speed when it hits the ground? A) Ball 1 B) Ball 2 C) Ball 3 D) All have the same speed.
  • 13. Springs (Hooke’s Law)Springs (Hooke’s Law) Proportional to displacement from equilibrium F = −kx
  • 14. Potential Energy of SpringPotential Energy of Spring ∆PE=-F∆x ∆x F ∆PE∑ = 1 2 (kx)x PE = 1 2 kx2
  • 15. x ExampleExample b) To what height h does the block rise when moving up the incline? A 0.50-kg block rests on a horizontal, frictionless surface as in the figure; it is pressed against a light spring having a spring constant of k = 800 N/m, with an initial compression of 2.0 cm. 3.2 cm
  • 16. PowerPower Average power is the average rate at which a net force does work: Pav = Wnet / t SI unit: [P] = J/s = watt (W) Or Pav = Fnet s /t = Fnet vav
  • 17. ExampleExample A 1967 Corvette has a weight of 3020 lbs. The 427 cu-in engine was rated at 435 hp at 5400 rpm. a) If the engine used all 435 hp at 100% efficiency during acceleration, what speed would the car attain after 6 seconds? b) What is the average acceleration? (in “g”s) a) 120 mph b) 0.91g
  • 18. ExampleExample Consider the Corvette (w=3020 lbs) having constant acceleration of a=0.91g a) What is the power when v=10 mph? b) What is the power output when v=100 mph? a) 73.1 hp b) 732 hp (in real world a is larger at low v)