SlideShare a Scribd company logo
INTRODUCTION TO FOOD ENGINEERING
Lecture 5
HEAT TRANSFER IN
FOOD PROCESSING
Objectives
• Calculate convective heat transfer coefficient
• Calculate overall heat transfer coefficient
• Calculate heat transfer area in tubular heat exchanger
Estimation of Convective Heat-Transfer
Coefficient
• h is predicted from empirical correlation for
Newtonian fluids only
• Forced convection
Forced Convection
 
Pr
Re
Nu N
,
N
f
N 
k
hD

NNu = Nusselt number
NRe = Reynold number
NPr = Prandtl number
μ
D
u
ρ
_

k
μcp

(4.
38)
100,
L
D
N
N Pr
Re 





 

14
.
0
w
b
66
.
0
Pr
Re
Pr
Re
Nu
L
D
N
N
045
.
0
1
L
D
N
N
085
.
0
3.66
N 














 







 



Larminar flow in pipes
NRe < 2100
For
b = bulk, w = wall
(4.
39)
100,
L
D
N
N Pr
Re 








14
.
0
w
b
0.33
Pr
Re
Nu
L
D
N
N
1.86
N 














 



For
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
(4.
41)
imeter
wetted per
area
free
4
De


(4.
42)
 70,000
N
1
400
N
6
.
0
3
1
Pr
0.5
Re
Nu
Re
Pr
for
N
0.60N
2
N 






Free Convection
(4.
43)
 m
Pr
Gr
Nu N
N
a
k
hD
N 

CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
Example
• Water flowing at 0.02 kg/s is heated from 20 to 60 C
in a horizontal pipe (D = 2.5 cm). Inside T = 90 C.
Estimate h if the pipe is 1 m long.
– Average T = (20+60)/2 = 40 C
–  = 992.2 kg/m3, cp = 4.175 kJ/kg C
– k = 0.633 W/m C,  = 658.026 x 10-6 Pa.s
– NPr = cp/k = 4.3, w is  at 90 C
D
m
D
u
N



.
_
Re
4


= 1547.9 laminar flow
)
025
.
0
)(
3
.
4
)(
9
.
1547
(
)
( Pr
Re 


L
D
N
N
= 166.4 > 100
NNu = 11.2
14
.
0
6
6
Nu
10
909
.
308
10
026
.
658
33
.
0
)
4
.
166
(
86
.
1 







 

N
(0.025m)
C)
33W/m
(11.2)(0.6
Nu 


D
k
N
h
= 284 W/m2 C
Turbulent flow in pipes
14
.
0
w
b
33
.
0
Pr
8
.
0
Re
Nu
μ
μ
023
.
0 









 N
N
N
Estimation of Overall Heat-Transfer
Coefficient
• Conduction + Convection
• If temperature of fluid in pipe is higher
– Heat flows to outside
– Ti > T
Ui = overall heat transfer coefficient
based on inside area
 

 T
-
T
A
U
q i
i
i
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
 
1
i
i
i T
-
T
A
h

q
 
 
1
2
2
1
lm
r
-
r
T
-
T
A
k
q 
 

 T
-
T
A
h
q 2
0
0
Convection from inside
Conduction
Convection to outside
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
(4.
48)
 
l
i
i
i
T
-
T
A
h
q

(4.
49)
 
2
l
lm
1
2
T
-
T
A
k
r
-
r
q

(4.
50)
 

 T
-
T
A
h
q
2
0
0
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
(4.
51)

 T
-
T
A
U
q
i
i
i
(4.
52)
 
0
0
lm
1
2
i
i
i
i A
h
q
A
k
r
-
r
q
A
h
q
A
U
q



(4.
53)
 
0
0
lm
1
2
i
i
i
i A
h
1
A
k
r
-
r
A
h
1
A
U
1



(4.
Example
• A steel pipe (k = 43 W/mC) inside D = 2.5 cm, 0.5
cm thick, conveys liquid food at 80 C. Inside h = 10
W/m2C. Outside temp = 20 C, outside h = 100
W/m2C. Calculate overall heat transfer coefficient
and heat loss from 1 m length of pipe.
 
0
0
lm
1
2
i
i
i
i A
h
1
A
k
r
-
r
A
h
1
A
U
1



o
o
i
lm
i
i
o
i
i r
h
r
kr
)r
r
(r
h
1
U
1




– ro = 0.0175 m
– Ri = 0.0125 m
– rlm = 0.01486 m
– 1/Ui = 0.10724 m2 C/W
– Ui = 9.32 W/m2 C
• Heat loss
– q = UiAi(80 – 20)
– = 43.9 W
• Uo = 6.66 W/m2 C
– q = 43.9 W
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
6.Role of Insulation in Reducing Heat Loss from
Process Equipment
(4.
55)
Lh
r
2
1
r
r
ln
Lk
2
l
T
-
T
q
0
0
i
0
i



 
(4.
56)
 
 
  0
r
h
k
-
r
l
r
h
k
r
r
ln
T
-
T
kL
2
-
dr
dq
2
0
0
0
2
0
0
i
0
b
i
0












CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
(4.
57)
0
r
h
k
-
r
l
2
0
0
0









(4.
58)
0
c
h
k
r 
Design of a Tubular Heat Exchanger
• Determine desired heat-transfer area for a given
application. Assuming
– Steady-state conditions
– Overall heat-transfer coefficient is constant
throughout the pipe length
– No axial conduction of heat in metal pipe
– Well insulated, negligible heat loss
(4.
59)
  i
overall
i dA
T
U
dq 

(4.
60)
  i
c
h
i
h
ph
h
c
pc
c
q dA
T
-
T
U
dT
c
m
dT
c
m
d 


(4.
61)
q
T
-
T
dq
T
d l
2 



Design of Tubular Heat Exchanger
• Heat transfer from one fluid to another
• Energy balance for double-pipe heat exchanger
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
(4.
62)
q
T
-
T
1 l
2 









 
 i
i dA
T
d
T
U
(4.
63)
 









i
2
l
A
0
i
l
2
T
T
i
dA
q
T
-
T
T
T
U
1
Slope of T line
CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
(4.
64)
 
 
l
2
l
2
i
i
T
T
ln
T
-
T
A
U
q





(4.
65)
 
  difference
rature
mean tempe
log
T
T
ln
T
-
T
l
2
l
2





Example
• A liquid food (Cp = 4.0 kJ/kgC) flows in inner pipe
of heat exchanger. The food enters at 20 C and exits
at 60 C. Flow rate = 0.5 kg/s. Hot water at 90 C enters
and flows countercurrently at 1 kg/s. Average Cp of
water is 4.18 kJ/kgC.
– Calculate exit temp of water
– Calculate log-mean temperature difference
– If U = 2000 W/m2C and Di = 5 cm calculate L.
– Repeat calculations for parallel flow.
• Liquid food
– Inlet temp = 20 C
– Exit temp = 60 C
– Cp = 4.0 kJ/kg C
– Flow rate = 0.5 kg/s
• Water
– Inlet temp = 90 C exit temp = ?
– Cp = 4.18 kJ/kgC
– Flow rate = 1.0 kg/s
• q = mcCpc Tc = mhCph  Th
• Tc = 70.9 C
• Tlm = 39.5 C
• q = UA(T)lm = UDiL(T)lm
• = mCp T = 80 kJ/s
• L = 6.45 m
• For parallel flow L = 8 m

More Related Content

Similar to 05_convec (1).ppt

10-L1-L2-Heat Exchange.ppt
10-L1-L2-Heat Exchange.ppt10-L1-L2-Heat Exchange.ppt
10-L1-L2-Heat Exchange.ppt
ChandreshTripathi6
 
4.4.heat exchanger
4.4.heat exchanger4.4.heat exchanger
4.4.heat exchanger
cmyan
 
carnot cycle.ppt
carnot cycle.pptcarnot cycle.ppt
carnot cycle.ppt
MrsAnshuSharmaDYPIT
 
carnot cycle (a theoretical thermodynamic cycle).ppt
carnot cycle (a theoretical thermodynamic cycle).pptcarnot cycle (a theoretical thermodynamic cycle).ppt
carnot cycle (a theoretical thermodynamic cycle).ppt
HafizMudaserAhmad
 
Heatexchangers 120419133732-phpapp02 (1)
Heatexchangers 120419133732-phpapp02 (1)Heatexchangers 120419133732-phpapp02 (1)
Heatexchangers 120419133732-phpapp02 (1)asim ahsan
 
Heat exchanger lab 2
Heat exchanger lab 2Heat exchanger lab 2
Heat exchanger lab 2
ANDREW MUNYIVA
 
Enthalpy of vaporization of liquid
Enthalpy of vaporization of liquidEnthalpy of vaporization of liquid
Enthalpy of vaporization of liquid
Noaman Ahmed
 
Process equipment numericals problems
Process equipment numericals problemsProcess equipment numericals problems
Process equipment numericals problems
Anand Upadhyay
 
Agitated Vessel
Agitated VesselAgitated Vessel
Agitated Vessel
MiteshThakur5
 
Thermo One
Thermo OneThermo One
Thermo Onesarapot
 
Worked Example_LMTD.pptx
Worked Example_LMTD.pptxWorked Example_LMTD.pptx
Worked Example_LMTD.pptx
Krish72569
 
Week#3_Olefins Production_Steam Cracking_Part2.pdf
Week#3_Olefins Production_Steam Cracking_Part2.pdfWeek#3_Olefins Production_Steam Cracking_Part2.pdf
Week#3_Olefins Production_Steam Cracking_Part2.pdf
shilpyakurniasih1
 
types of heat exchangers.pdf
types of heat exchangers.pdftypes of heat exchangers.pdf
types of heat exchangers.pdf
hassanzain10
 
Team a01 9_lab_2
Team a01 9_lab_2Team a01 9_lab_2
Team a01 9_lab_2
Zichen Zhang
 
Entropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.pptEntropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.ppt
MichaelTegegn
 
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
Bishal Bhandari
 
Beige and Brown Modern Minimalist Company Profile Presentation.pdf
Beige and Brown Modern Minimalist Company Profile Presentation.pdfBeige and Brown Modern Minimalist Company Profile Presentation.pdf
Beige and Brown Modern Minimalist Company Profile Presentation.pdf
SrushtiPatil608123
 
convection-1.ppt
convection-1.pptconvection-1.ppt
convection-1.ppt
OISTMEHOD
 
Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...
Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...
Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...
ijiert bestjournal
 
Thermodynamic, examples a
Thermodynamic, examples aThermodynamic, examples a

Similar to 05_convec (1).ppt (20)

10-L1-L2-Heat Exchange.ppt
10-L1-L2-Heat Exchange.ppt10-L1-L2-Heat Exchange.ppt
10-L1-L2-Heat Exchange.ppt
 
4.4.heat exchanger
4.4.heat exchanger4.4.heat exchanger
4.4.heat exchanger
 
carnot cycle.ppt
carnot cycle.pptcarnot cycle.ppt
carnot cycle.ppt
 
carnot cycle (a theoretical thermodynamic cycle).ppt
carnot cycle (a theoretical thermodynamic cycle).pptcarnot cycle (a theoretical thermodynamic cycle).ppt
carnot cycle (a theoretical thermodynamic cycle).ppt
 
Heatexchangers 120419133732-phpapp02 (1)
Heatexchangers 120419133732-phpapp02 (1)Heatexchangers 120419133732-phpapp02 (1)
Heatexchangers 120419133732-phpapp02 (1)
 
Heat exchanger lab 2
Heat exchanger lab 2Heat exchanger lab 2
Heat exchanger lab 2
 
Enthalpy of vaporization of liquid
Enthalpy of vaporization of liquidEnthalpy of vaporization of liquid
Enthalpy of vaporization of liquid
 
Process equipment numericals problems
Process equipment numericals problemsProcess equipment numericals problems
Process equipment numericals problems
 
Agitated Vessel
Agitated VesselAgitated Vessel
Agitated Vessel
 
Thermo One
Thermo OneThermo One
Thermo One
 
Worked Example_LMTD.pptx
Worked Example_LMTD.pptxWorked Example_LMTD.pptx
Worked Example_LMTD.pptx
 
Week#3_Olefins Production_Steam Cracking_Part2.pdf
Week#3_Olefins Production_Steam Cracking_Part2.pdfWeek#3_Olefins Production_Steam Cracking_Part2.pdf
Week#3_Olefins Production_Steam Cracking_Part2.pdf
 
types of heat exchangers.pdf
types of heat exchangers.pdftypes of heat exchangers.pdf
types of heat exchangers.pdf
 
Team a01 9_lab_2
Team a01 9_lab_2Team a01 9_lab_2
Team a01 9_lab_2
 
Entropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.pptEntropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.ppt
 
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
 
Beige and Brown Modern Minimalist Company Profile Presentation.pdf
Beige and Brown Modern Minimalist Company Profile Presentation.pdfBeige and Brown Modern Minimalist Company Profile Presentation.pdf
Beige and Brown Modern Minimalist Company Profile Presentation.pdf
 
convection-1.ppt
convection-1.pptconvection-1.ppt
convection-1.ppt
 
Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...
Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...
Effect of Wavy (Corrugated) Twisted Tape Inserts on Heat Transfer in a double...
 
Thermodynamic, examples a
Thermodynamic, examples aThermodynamic, examples a
Thermodynamic, examples a
 

Recently uploaded

general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
IqrimaNabilatulhusni
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
AlaminAfendy1
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
yusufzako14
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
yqqaatn0
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
sonaliswain16
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
sachin783648
 
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Studia Poinsotiana
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
ronaldlakony0
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
Wasswaderrick3
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
University of Rennes, INSA Rennes, Inria/IRISA, CNRS
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
Areesha Ahmad
 

Recently uploaded (20)

general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
 
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
 

05_convec (1).ppt

  • 1. INTRODUCTION TO FOOD ENGINEERING Lecture 5 HEAT TRANSFER IN FOOD PROCESSING
  • 2. Objectives • Calculate convective heat transfer coefficient • Calculate overall heat transfer coefficient • Calculate heat transfer area in tubular heat exchanger
  • 3. Estimation of Convective Heat-Transfer Coefficient • h is predicted from empirical correlation for Newtonian fluids only • Forced convection
  • 4. Forced Convection   Pr Re Nu N , N f N  k hD  NNu = Nusselt number NRe = Reynold number NPr = Prandtl number μ D u ρ _  k μcp 
  • 5. (4. 38) 100, L D N N Pr Re          14 . 0 w b 66 . 0 Pr Re Pr Re Nu L D N N 045 . 0 1 L D N N 085 . 0 3.66 N                              Larminar flow in pipes NRe < 2100 For b = bulk, w = wall
  • 6. (4. 39) 100, L D N N Pr Re          14 . 0 w b 0.33 Pr Re Nu L D N N 1.86 N                     For
  • 7. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
  • 8. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING (4. 41) imeter wetted per area free 4 De   (4. 42)  70,000 N 1 400 N 6 . 0 3 1 Pr 0.5 Re Nu Re Pr for N 0.60N 2 N       
  • 10. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
  • 11. Example • Water flowing at 0.02 kg/s is heated from 20 to 60 C in a horizontal pipe (D = 2.5 cm). Inside T = 90 C. Estimate h if the pipe is 1 m long. – Average T = (20+60)/2 = 40 C –  = 992.2 kg/m3, cp = 4.175 kJ/kg C – k = 0.633 W/m C,  = 658.026 x 10-6 Pa.s – NPr = cp/k = 4.3, w is  at 90 C
  • 12. D m D u N    . _ Re 4   = 1547.9 laminar flow ) 025 . 0 )( 3 . 4 )( 9 . 1547 ( ) ( Pr Re    L D N N = 166.4 > 100 NNu = 11.2 14 . 0 6 6 Nu 10 909 . 308 10 026 . 658 33 . 0 ) 4 . 166 ( 86 . 1            N
  • 14. Turbulent flow in pipes 14 . 0 w b 33 . 0 Pr 8 . 0 Re Nu μ μ 023 . 0            N N N
  • 15. Estimation of Overall Heat-Transfer Coefficient • Conduction + Convection
  • 16. • If temperature of fluid in pipe is higher – Heat flows to outside – Ti > T Ui = overall heat transfer coefficient based on inside area     T - T A U q i i i
  • 17. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING   1 i i i T - T A h  q     1 2 2 1 lm r - r T - T A k q      T - T A h q 2 0 0 Convection from inside Conduction Convection to outside
  • 18. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING (4. 48)   l i i i T - T A h q  (4. 49)   2 l lm 1 2 T - T A k r - r q  (4. 50)     T - T A h q 2 0 0
  • 19. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING (4. 51)   T - T A U q i i i (4. 52)   0 0 lm 1 2 i i i i A h q A k r - r q A h q A U q    (4. 53)   0 0 lm 1 2 i i i i A h 1 A k r - r A h 1 A U 1    (4.
  • 20. Example • A steel pipe (k = 43 W/mC) inside D = 2.5 cm, 0.5 cm thick, conveys liquid food at 80 C. Inside h = 10 W/m2C. Outside temp = 20 C, outside h = 100 W/m2C. Calculate overall heat transfer coefficient and heat loss from 1 m length of pipe.   0 0 lm 1 2 i i i i A h 1 A k r - r A h 1 A U 1    o o i lm i i o i i r h r kr )r r (r h 1 U 1    
  • 21. – ro = 0.0175 m – Ri = 0.0125 m – rlm = 0.01486 m – 1/Ui = 0.10724 m2 C/W – Ui = 9.32 W/m2 C • Heat loss – q = UiAi(80 – 20) – = 43.9 W • Uo = 6.66 W/m2 C – q = 43.9 W
  • 22. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING 6.Role of Insulation in Reducing Heat Loss from Process Equipment (4. 55) Lh r 2 1 r r ln Lk 2 l T - T q 0 0 i 0 i      (4. 56)       0 r h k - r l r h k r r ln T - T kL 2 - dr dq 2 0 0 0 2 0 0 i 0 b i 0            
  • 23. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING (4. 57) 0 r h k - r l 2 0 0 0          (4. 58) 0 c h k r 
  • 24. Design of a Tubular Heat Exchanger • Determine desired heat-transfer area for a given application. Assuming – Steady-state conditions – Overall heat-transfer coefficient is constant throughout the pipe length – No axial conduction of heat in metal pipe – Well insulated, negligible heat loss
  • 25. (4. 59)   i overall i dA T U dq   (4. 60)   i c h i h ph h c pc c q dA T - T U dT c m dT c m d    (4. 61) q T - T dq T d l 2     Design of Tubular Heat Exchanger • Heat transfer from one fluid to another • Energy balance for double-pipe heat exchanger
  • 26. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING
  • 27. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING (4. 62) q T - T 1 l 2              i i dA T d T U (4. 63)            i 2 l A 0 i l 2 T T i dA q T - T T T U 1 Slope of T line
  • 28. CHAPTER 3  HEAT TRAMSFER IN FOOD PROCESSING (4. 64)     l 2 l 2 i i T T ln T - T A U q      (4. 65)     difference rature mean tempe log T T ln T - T l 2 l 2     
  • 29. Example • A liquid food (Cp = 4.0 kJ/kgC) flows in inner pipe of heat exchanger. The food enters at 20 C and exits at 60 C. Flow rate = 0.5 kg/s. Hot water at 90 C enters and flows countercurrently at 1 kg/s. Average Cp of water is 4.18 kJ/kgC. – Calculate exit temp of water – Calculate log-mean temperature difference – If U = 2000 W/m2C and Di = 5 cm calculate L. – Repeat calculations for parallel flow.
  • 30. • Liquid food – Inlet temp = 20 C – Exit temp = 60 C – Cp = 4.0 kJ/kg C – Flow rate = 0.5 kg/s • Water – Inlet temp = 90 C exit temp = ? – Cp = 4.18 kJ/kgC – Flow rate = 1.0 kg/s
  • 31. • q = mcCpc Tc = mhCph  Th • Tc = 70.9 C • Tlm = 39.5 C • q = UA(T)lm = UDiL(T)lm • = mCp T = 80 kJ/s • L = 6.45 m • For parallel flow L = 8 m