Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Fort aan de klop

102 views

Published on

Feasibility study concerning sustainable concepts for 'Fort aan de Klop'

Published in: Environment
  • Be the first to comment

  • Be the first to like this

Fort aan de klop

  1. 1.     Feasibility study Fort  aan  de  Klop,  Utrecht   Attn:  Lodewijk  le  Grand   A    study    concerning  the  sustainable  possibilities  for  forts  in  the  Netherlands,     Executed  by    Marjolijn  Bonnike,  De  Groene  Grachten  on  November  21 th  2014.  
  2. 2.   2   This  report  is  intellectual  property  of    ‘Stichting  De    Groene  Grachten’.  Please  do  not  spread  this  feasibility  study.        
  3. 3.   3   “Sustainability is not less, but different and especially more fun.” Wubbo Ockels (1946 – 2014)
  4. 4.   4   1. Introduction This  feasibility  study  concerns  two   forts  in  Utrecht:  ‘Fort  aan  de  Klop’  and   ‘Fort  de  Gagel’.  The  main  goal  is  to   extract  a  more  general  approach  for   these  special,  monumental  structures.   In  this  document  we  study  Fort  aan  de   Klop.       This  feasibility  study  is  part  of  the  ReFoMo  project.   Refomo  stands  for  ‘Reduces  Footprint  Monumental   Structures’  and  is  part  of  Climate  KIC.  Within  this   program  there  are  three  case  studies:  1.  An  old   gasfactory  in  Budapest  (Hungary),  2.  An  university   building  in  Bologna  (Italy)  and  3.  Two  fortresses  in   Utrecht  (The  Netherlands).  When  compared,  these   three  cases  could  generate  common  solutions  for   monuments  and  energy  efficiency  methods.     The  Province  of  Utrecht  asked  De  Groene  Grachten   (‘The  Green  Canals’)  to  establish  the  study  concerning   the  fortresses.  De  Groene  Grachten  is  widely   experienced  in  the  field  of  sustainable  monuments;   our  core  business  is  energy  reduction  and  –generation   in  monuments.  This  expertise  was  shared  through    our   online  ‘Green  Menu’  :  www.degroenemenukaart.nl.  In   the  next  paragraphs  you  find  some  more  information   about  ‘De  Groene  Grachten’  and  our  approach.     Content 1. Introduction   2. De  Groene  Grachten   3. Present  situation   4. Method  &  concept   5. Potential  measures   6. Conclusion   7. Next  steps     Appendix  A  –  Photographs   Appendix  B  –  Measure  analyse   Appendix  C  –  Data  Analyse  
  5. 5.   5   2. De Groene Grachten 1 De  Groene  Grachten     Wubbo  Ockels  –  also  a  citizen  of  the  Amsterdam  city   center  –  had  already  started  with  enhancing   sustainability  in  his  own  home.  It  occurred  to  him  that   there  are  lots  of  possibilities  for  monuments,  but  that   it  is  striking  to  see  that  it  is  not  widely  applied.  How   could  he  make  a  difference?  On  the  occasion  of  “400   years  of  Amsterdam  canals”  Wubbo  Ockels  started  in   2012  the  initiative  ‘De  Groene  Grachten’.  Its  mission?   Realizing  a  breakthrough  in  enhancing  sustainability   for  monuments  throughout  the  Netherlands.  Now,     ‘De  Groene  Grachten’  has  done  projects  for   householders,  hotels  and  company  buildings  of  100   m 2  up  to  more  than  2.500  m 2 .   With  our  sustainable  consultancy  practice  we  hope  to   help  building  owners  to  realize  their  ambition  for  a   more  sustainable  and  comfortable  building.  There  are   5  elements  that  characterize  our  approach  and   strengthen  the  quality  of  our  work:   Research   Through  working  groups  and  research  projects  with   our  partners  we  have  studied  all  sustainable  and   feasible  applications  for  monuments.  Furthermore,   we  started  an  Academy,  called  ‘Ockels  Innovation   Space’,  where  youth  is  the  force  behind  the  newest   developments  within  sustainability  in  historical   buildings.  Within  Ockels  Innovation  Space  they  work   with  our  partners  on  projects  that  contribute  to  a   2 sustainable  and  a  ‘future-­‐proof’  city.  This  is  how  our   knowledge  keeps  growing  and  how  we  stay  up-­‐to-­‐ date,  and  even  ahead,  of  todays  developments.     Experience   ‘De  Groene  Grachten’  focuses  on  sustainability  in   historical  buildings  and  monuments.  Together  with   Stadsherstel  Amsterdam  we  renovated  monuments   sustainably.    Within  these  projects,  like  the  ‘Nieuwe   Prinsengracht’  and  the  ‘Prins  Hendrikkade’  in   Amsterdam,  we  applied  several  sustainable   applications  such  as  solar  panels,  heating  pumps,   draught  proofing,  window  insulation,  roof  insulation   and  heat  recovery  within  ventilation  and  shower   water.     Furthermore,  we  work  on  special  projects  like  the   realisation  of  ‘one  acre  green  roofs’  on  the  roofs  of   Amsterdam  as  well  as  an  innovative  program  that   challenges  solar  PV  producers  to  come  up  with   innovative  solutions  for  monuments.   Pure  motive   ‘De  Groene  Grachten’  is  an  independent  non-­‐profit   foundation.  Within  our  projects  we  use  knowledge   that  is  not  provided  by  commercial  interests,  but  only   by  true  expertise.  Furthermore  we  have  no   commercial  interest  in  the  choice  of  partner  for   execution  of  the  work.  However,  we  do  have  a  pool  of   contractors  of  whom  we  know  that  they  deliver  work   of  a  high  quality.    
  6. 6.   6   3 Complete  approach   Sustainability  is  a  versatile  subject  and  techniques   develop  constantly.  Furthermore,  every  monument   demands  its  own  specific  approach.  What  are  the   wishes  from  the  owners  and/or  users?  What  are  the   possibilities  of  the  building  itself?  These  are  just  two   guidelines  that  give  us  a  direction  within  an  advice.   We  look  at  different  options  within  five  themes   (insulation,  energy,  warmth,  water  and  quick  wins)   and  the  connection  between  the  different  options.     After  an  advice  we  can  also  manage  the  execution.  By   doing  this  we  can  help  you  from  beginning  to  end  and   because  of  this  combination  we  strengthen  as  well  our   advice  as  the  execution.  Our  experience  in  the   execution  improves  our  advice,  because  we  know  how   they  work  out  in  practice.  On  the  other  hand  we   strengthen  the  execution,  because  of  the  acquired   knowledge  and  the  preliminary  work  put  in  the   advice.     Communication   Living  and  working  sustainably  is  a  story  about  the   future.  It  inspires  and  it  moves  people.  That  is  why  ‘De   Groene  Grachten’  attempts  to  inspire  people.  We   show  this  at  the  Amsterdam  Solar  Boat  Parade,  an   event  with  all  kinds  of  sustainable  solutions  on   mobility,  lifestyle,  food,  energy  and  many  other  areas.   The  first  edition  in  2013  was  an  enormous  success   with  8.500  visitors  and  a  new  report  by  BBC  news.  The   second  edition  took  place  this  September  and  was  an   4 even  bigger  success  than  the  first  edition.    For  more   information  visit:  www.solarboatparade.nl   ‘De  Groene  Grachten’  also  provided  a  tool  that   enables  owners  (of  monuments)  to  get  ready  for   action.  This  tool,  the  ‘Green  Menu’,  was  launched  on   March  13th  2014.  People  get  informed,  while  playing,   about  over  more  than  50  sustainable  possibilities.  For   each  possibility  they  see  what  it  means  for  comfort,   how  green  they  are  and  what  the  financial  and  legal   requirements  are.  If  a  certain  sustainable  solution   draws  the  attention  of  the  user,  they  can  add  this  to   their  ‘wish  list’.  In  this  way  you  can  directly  compose   your  personal  overview  of  the  possibilities  of  your   interest.  This  Green  Menu  shows  the  results  of  1,5   years  of  research  and  pilots  by  ‘De  Groene  Grachten’   in  close  cooperation  with  several  partners  such  as  the   municipality  of  Amsterdam.  This  tool  is  not  only   interesting  for  owners  of  monuments,  but  also  for   everyone  who  wants  to  live  of  work  more  sustainably.   “If  it  is  possible  in  a  monument,  then  it  is  possible   everywhere”,  according  to  Wubbo  Ockels.   Visit:  www.degroenemenukaart.nl        
  7. 7.   7   3. Present situation ‘Fort aan de Klop’ 1 ‘Fort  aan  de  Klop’  is  a  characteristic   fort  with  its  main  building  the   ‘wachthuis’  (guardhouse)  that   nowadays  functions  as  a  restaurant.   Five  industrial  buildings  surround  the   guardhouse;  three  of  which  are  group   accommodations  combined  with   business  meeting  rooms.  The  other   are  a  storage/installation  room  and  a   sanitary  facility  for  the  camping,  with   extra  space  for  special  events.       Location   Fort  aan  de  Klop  is  a  part  of  a  Dutch  defensive  line,   the  so  called  ‘Nieuwe  Hollandse  Waterlinie’.  This  is  a   military  defense  line  from  the  nineteenth  century.  It   used  to  be  an  area  that  could  be  flooded  on  purpose,   bringing  the  enemies  to  a  stop.  At  the  moment  this   ‘Water  line’  is  a  green,  recreational  area,  where  the   fortresses  like  Fort  aan  de  Klop  host  modern   functions.  Fort  aan  de  Klop  is  situated  in  the  North-­‐ West  of  Utrecht.  The  old  guardhouse  became  a   restaurant,  where  the  artillery  sheds  became  group   accommodations  and  places  for  events.     2 Building  characteristics   The  fortress  was  built  in  1850.  The  Guarhouse  is  the   most  characteristic  building  of  the  fortress.  However,   almost  all  buildings  on  the  premises  are  monumental.   Modern  functions,  like  the  restaurant,  are  now   accommodated  in  the  Guardhouse.  Since  all  earlier   renovations  have  been  done  with  an  eye  for  the   historic  values,  it  remains  a  beautifully  historic  place.     A  specific  characteristic  of  forts  in  general  are  the   thick  walls.  As  guardhouses  were  a  place  for  hiding   when  the  enemy  surrounded  them,  the  walls  are  at   least  a  meter  thick.  The  guardhouse  at  Fort  aan  de   Klop  has  a  radial  shape  with  arches  forming  the  inside   space.  The  tables  of  the  restaurant  are  placed  in   several  radial  rooms.  In  the  middle  there  is  a  so  called   ‘druipkoker’,  which  collected  rainwater  for  the  people   hiding  in  the  guardhouse.  Currently  it  is  not  in  use,   except  for  ventilation  air  outlet.  Soil,  pebbles  and   grass  cover  the  roof  of  the  guardhouse.  The  basement   accommodates  some  bats,  so  the  climate  of  the   basement  is  strictly  separated  from  the  climate  of  the   restaurant.  The  walls  have  small,  single  glazed   windows  in  a  frame  of  steal.  The  windows  are  set  back   in  the  wall.  Besides  the  guardhouse  there  are  some   industrial  buildings  that  used  to  be  the  artillery  sheds.   Three  of  them  are  group  accommodations.    During   the  renovation  these  sheds  were  insulated  and   provided  with  floor  heating.  The  other  buildings  are   less  used  or  are  used  for  storage  and  installations.    
  8. 8.   8   3 Use  of  the  building  (present  and  future)   Currently  in  use  is  a  restaurant  in  combination  with   group  accommodations  and  a  camping.    The  fort  is   open  all  year  around,  with  summer  and  spring  as  high   season.  The  restaurant  owner  indicates  that  their  up   time  is  around  3000  hours  a  year.  This  is  more  or  less  8   hours  a  day  every  day  of  the  week  all  year  around,   with  more  hours  in  high  season  and  less  in  winter.   Business  is  going  well  for  the  restaurant  and  group   accommodations.  The  camping  activity  something   that’s  done  on  the  side.     The  restaurant  menu  offers  a  wide  range  of  organic   food.  The  entrepreneur  says  that  the  ambition  is  to   purchase  only  organic  food,  as  long  as  it  is  financially   sound.  This  is  easiest  for  meat.  Organic  fish  is   available  occasionally  and  organic  fruit  and  vegetables   are  too  expensive  to  purchase.  Nonetheless,  this  could   be  an  interesting  item  to  close  the  loop  for  the   restaurant.  They  do  grow  some  herbs  already,  but  this   could  be  expanded.     The  entrepreneur  also  pointed  out  that  the  energy   audit  (‘MKB  advies’)  was  very  helpful,  because  it  had  a   very  practical  approach.  However,  not  much  has  been   done  since  then.  The  restaurant  owner  does  have  the   ambition  to  replace  all  lights  for  LED  and  combine  all   cooling  in  one  cooling  cell.   Wishes  of  the  users   As  a  rentee,  the  restaurant/group  accomodations   owner  has  the  ambition  to  pursue  a  more  sustainable   4 business  strategy.  He  thinks  it  is  part  of  how  we  live   and  work  nowadays  and  should  be  a  subject  for  every   entrepreneur.  However,  financially  it  must  also  be   interesting.  So  he  is  interested  in  those  sustainable   applications  that  have  a  positive  return  on   investment.  The  entrepreneur  does  not  have   complaints  concerning  comfort,  as  the  fort  was   renovated  in  2005  with  a  comfortable  environment  as   its  primary  goal.  However,  the  subsequent  energy  use   was  largely  ignored.  So  he  thinks  there  is  a  lot  to  win   here.     For  example:  the  main  space  of  the  restaurant  has  a   radial  form.  Connected  to  this  space  are  several  radial   rooms  where  people  can  sit  to  have  dinner.  Not  all   alcoves  are  occupied  simultaneously.  All  alcoves  are,   however,  heated  simultaneously.  Separate  and   instant  heating  as  guests  arrive  to  their  table,  could   therefore  have  high  gains.              
  9. 9.   9   The  Guardhouse   m 2   R-­‐value   Surfaces   Walls   (1  meter  thick)   265.6   1.235   Roof   (green  roof)   297.3   1.102   Floor     138.99   2.15   Windows   (single  glazed)   13.6   0.512   The  Guardhouse   m 3     Volume     Guardhouse   591.4       5 Current  energy  use  -­‐  Fort  aan  de  Klop   Energy:  70,264  kWh,  €8,905  (0,13  eurocent/kWh)   Gas:  12,958  m 3  gas,  €6,666  (0,51  eurocent/m 3 )   Water:  1,019  m 3  water,  €1,732  (€1,70/m 3 )   Current  energy  use  –  Guardhouse   The  Guardhouse  is  the  largest  and  most  historic   building  of  the  whole  premises.  The  feasibility  study   will  focus  on  this  guardhouse.  However,  a  plan  for  the   group  accommodations  will  be  added,  but  in  less   detail.     The  scheme  at  the  right  gives  an  idea  of  the  surfaces   of  the  Guardhouse  and  the  current  thermal  resistance   (R-­‐value)  of  the  structures.  The  higher  the  R-­‐value  ,   the  better  the  insulation  is.  For  example,  the  scheme   already  points  out  that  the  single  glazed  windows  are   a  weak  point.         On  the  next  page  you  can  see  a  detailed  overview  of   the  current  energy  use  of  the  buildings  of  the  fort  and   the  Guardhouse  in  specific.  This  scheme  also  shows   the  total  amount  of  CO2  emissions  caused  by  the   current  energy  use.  This  amount  needs  to  decline  by   pursuing  sustainable  measures.     Kitchen  appliances,  product  cooling  and  lighting   consume  most  electricity  of  the  guardhouse.  In  case   of  the  group  accommodations,  most  energy  is   consumed  by  the  circulations  pumps  for  the  floor   heating.  This  adds  focus  to  our  study.   6 A  large  part  of  the  gas  use  goes  to  heating.  The  focus   point  will  therefore  be  how  to  reduce  the  gas  use  on   one  hand  by  reducing  the  need  (e.g.  increase   insulation)  and  on  the  other  hand  to  find  more   sustainable  ways  of  heating.  The  latter  is  also  a  pretty   obvious  direction  for  the  group  accommodations,  as   these  have  already  been  insulated.  This  would  closely   fit  with  the  existing  floor  heating  system  that  in  itself   is  already  more  sustainable  way  of  heating.  The   systems  uses  a  lower  heating  temperature  than   conventional  radiators,  consequently  reducing  the   energy  need.  However,  this  also  is  an  excellent   opportunity  to  place  a  more  sustainable  installation   at  the  backend.      
  10. 10.   10    The  Guardhouse  -­‐  Energy  usage/consumption   Gas   Gas  usage  (m 3 )-­‐space  heating   2,000   Gas  usage  (m 3 )-­‐water  heating   200   Gas  usage  (m 3 )-­‐kitchen   2,045   Total  gas  usage  (m 3 )   4,245   Gas  bill  (€):  0.51/m 3   2,165   CO2  emissions  (kg):  1.76  kg/m 3  gas   7,471   Electricity   Electricity  usage  (kWh)-­‐space  heating   0   Electricity  usage  (kWh)-­‐ventilation   2,500   Electricity  usage  (kWh)-­‐kitchen   30,000   Electricity  usage  (kWh)-­‐production   2,500   Electricity  usage  (kWh)-­‐production  cooling   16,000   Electricity  usage  (kWh)-­‐lighting   3,365   Electricity  usage  (kWh)-­‐other  equipment   264   Total  electricity  usage  (kWh)   54,629   Electricity  bill  (€):  0.13/kWh   7,102   CO2  emissions  (kg):  0.57  kg/kWh   31,139   Total   CO2  emissions  (kg)   38,610     Energy  usage  2012*   Guardhouse   Building  D   Building  E   Building  F   Camping   TOTAL   Gas  usage  (m3)   4,245   2,540   2,995   2,540   638   12,958   Gas  bill  (€)   €  2,165     €  1,295     €  1,527     €  1,295     €  325     €  6,609     Electricity  usage  (kWh)   54,629   4,271   5,551   5,091   2,000   71,543   Electricity  bill  (€)   €  7,102     €  555     €  722     €  662     €  260     €  9,301     CO2  (  kg)   38,610   6,905   8,435   7,372   2,263   63,585   *  The  division  between  the  different  buildings  is  unknown,  this  assumption  is  based  on  existing  data.    
  11. 11.   11   4. Method & Concept 1 The  ambition  is  to  realise  not  only  a   sustainable  plan  for  this  fort,  but  also  a   more  general  approach  as  a  blueprint   for  other  forts  within  and  far  beyond   the  Netherlands.     Besides  many  similarities,  fortresses  do  differ  a  lot.   The  functions  that  the  fortresses  host,  vary  from  a   restaurant  to  offices  and  everything  in  between.  The   entrepreneurs  and  their  business  differ,  so  this  should   be  considered  when  creating  a  generic  plan.  The   ambition  and  the  financial  possibilities  of  the   entrepreneur  are  an  essential  element  in  what  could   be  done.  That  is  why  we  set  up  a  method  that   contains  four  scenarios  for  each  fortress,  considering   the  current  situation  (scenario  D)  as  the  starting  point.   The  image  on  the  left  shows  this  concept   schematically.  The  scenarios  are  supplementary  to   each  other.  When  moving  from  scenario  D  to  scenario   A,  the  sustainable  ambition  becomes  higher  with  each   ‘scenario-­‐  step’.  At  the  same  time  the  suggested   measures  tend  to  be  more  integrated  and  the  system   is  expected  to  be  more  and  more  self-­‐sufficient.     Scenario  D:  Present  situation   This  is  an  description  of  the  current  state.  For   instance,  the  fort  has  toilets  with  a  dual  flush  and   energy  saving  showerheads,  which  saves  water  and   gas.  A  summary  can  be  found  in  chapter  3.     2 Scenario  C:  first  steps  in  energy  reduction   In  2012  an  energy  audit  was  performed  by  ‘MKB   advise’.  This  advice  gave  practical,  yet  very  generic  tips   to  reduce  the  energy  bill.  Examples  are  the  use  of  LED   instead  of  incandescent  lamps  and  having  one  cooling   space  instead  of  several  freezers.  These  measures  can   be  found  in  the  scheme  on  the  next  page.   Scenario  B:  a  giant  leap  forward   Scenario  B  offers  a  more  integrated  approach  in  energy   reduction  and  generation.  However,  still  taking  into   account  current  systems.  We  are  looking  to  “add-­‐ons”   that  make  a  difference.     Scenario  A:  Towards  energy  independence     This  scenario  has  the  highest  possible  ambition  within   the  field  of  currently  proven  technologies.  This  scenario   tends  to  seek  the  boundaries  of  what  is  possible   technically,  financially  and  legally/aesthetically.     Added  benefits   The  ambition  is  not  only  to  reduce  energy,  but  also  to   create  an  attractive  example  of  sustainability.  The   designs  should  also  have  a  positive  influence  on  the   number  of  visitors.  Water  is  historically  seen  an   interesting  theme  to  work  with.  Once,  it  was  at  the   core  of  how  the  forts  connected  to  one  defence  line  in   Holland.  It  determined  the  total  layout  of  the  forts.   Therefore  we  will  seek  for  measures  that  explicitly  use   water  and  the  green  surroundings  and  side  buildings.     D.     Current   situation   C.     First  step  to     energy  reduction   B.     A  leap  forward   A.     Towards  autarky  
  12. 12.   12   Themes Sub)themes C:)first)step)to)energy)reduction)(MKB)advice) B:)A)leap)foward) ) A Energy Contract Choose)a)green)energy)contract)(windenergy) from)Holland,)"ecogas") Generation) or Place)solar)panels)for)generation)of)electricity or P p Lightning All)buildings Replace)lighting)for)LED)lightning Outside) Replace)building)site)lightning)for)LED Smart)control use)motion)sensors)for)lightning)where)it)is) convenient;)toilets,)hallways,)storage)space Insulation Guardhouse Place)secondary)glazing and Draughtproofing)of)doors)and)windows)and) other)connections Heating Building)heating) Group)accomodations:)optimalisize)the)timing) of)the)floor)heating,)set)a)time)clock)on)the) circulation)pumps)for)heating and Guardhouse:)Infrared)heating) Group+accomodations:)Elga)heating)pump or 1 2 Water)heating Place)solar)boilers Ventilation Guardhouse Present)situation:)air)handling)unit)on)the)roof) with)an)heat)exhanger,)existing)air)holes)for) inlet)and)outlet,)CO2)sensor. Place)inducing)grids)at)the)inside)of)air)inlet) holes)to)increase)the)comfort)level Group)accomodations D)and)E)have)only)mechanical)outlet.)F)has)vent) holes)for)natural)inlet)and)mechanical)outlet. Also)ensure)vent)holes)for)inlet)of)air)in)D)and)E and C se Water Water)saving)equipment toilets)with)dual)flush)(present) water)saving)showr)heads,)flow)stop)for)water) taps,)shower)coach,)water)reducement)toilets Rainwater)reuse water)tank)for)watering)plants and Reuse)of)rainwater)for)the)toilels)(rainwater) collecting)in)the)old)'druipkoker') or R is Water)&)education Water)playground)for)children Green Cultivate small)kitchen)garden)(present) or a)small)greenhouse))with)hydroponics)or)even) aquaponics)(also)with)breeding)fish) and C p Usage Green)purchases install)one)big)cooling)device,)set)the)right) temperature)and)defrost)the)freezer)regularly and Responsable)purchases:)biodegradable)cleaning) liquid,)biological)food,)A+++)devices,)etcetera and U Waste Waste))seperation)system)and)reuse)of) compostable)waste)for)the)green)surroundings Social)impact Smart)use/control appoint)someone)who)is)in)charge)of)the)energy) use and P cr
  13. 13. Scenario)B Scenario)A A:)Towards)autonomy Choice Choice B B Place)the)maximum)amount)of)solar)panels) possible B A C C B B C C B B 1.)Gas)absorptionNheatin)gpump 2.)Biomass)stove B A B B B B Combine)the)mechanical)outlet)with)CO2N) ensors)or)moist)sensors B A B B Reuse)of)toiletwater)with)a)helophyte)filter)(fort) s)of)the)sewage)system) B A B B Create)a)sustainable)parking)lot)(half) pavement/half)green)and)electric)carstations B A Use)biological)paint)for)maintenance B A B A Place)energymangers)in))group)accomodation)to) reate)awareness)under)visitors C A   13   Scenario)B Scenario)A ) A:)Towards)autonomy Choice Choice nergy) B B tricity or Place)the)maximum)amount)of)solar)panels) possible B A C C B B C C and) B B mp or 1.)Gas)absorptionNheatin)gpump 2.)Biomass)stove B A B B nlet) B B D)and)E and Combine)the)mechanical)outlet)with)CO2N) sensors)or)moist)sensors B A water) toilets B B ater) or Reuse)of)toiletwater)with)a)helophyte)filter)(fort) is)of)the)sewage)system) B A B B r)even) and Create)a)sustainable)parking)lot)(half) pavement/half)green)and)electric)carstations B A cleaning) etera and Use)biological)paint)for)maintenance B A ndings B A and Place)energymangers)in))group)accomodation)to) create)awareness)under)visitors C A
  14. 14.   14   1 Scenario  C:     First  steps  in  energy  reduction   Scenario  C  presents  a  series  of  simple   measures  for  Fortress  aan  de  Klop  in  order  to   reduce  the  energy  consumption.  Most  of  the   measures  are  based  on  the  energy  audit   (“MKB  advies”).  The  energy  performance  of   the  fortress  can  be  improved  in  the  following   aspects:  smart  energy  saving  tips,  energy   generation,  lighting,  insulation,  ventilation,   heating  and  water.       In  general   In  Scenario  C  we  propose  smart  saving  measures,   drawing  on  the  ‘MKB  advies’.  For  instance  we  suggest   adding  secondary  glazing  to  the  existing  windows  and   replace  the  lighting  for  LED  bulbs.  The  measures  in   scenario  C  are  mainly  quick  wins  that  can  be   implemented  easily  and  require  a  relatively  low   investment.     Scale  of  the  Fort  area  (with  group  accommodations)     Lighting   Currently,  the  lighting  in  forts  mainly  depends  on   traditional  light  bulbs,  which  can  be  replaced  by  the   energy-­‐efficient  LED  bulbs.  A  wide  range  of  LED  bulbs   have  been  available  on  the  market  for  various   locations  and  functions.  With  careful  choices  of  the   2 LED  bulbs,  the  electricity  consumption  of  lighting   could  be  significantly  reduced  and  the  payback   period  would  be  less  than  3  years.  Additionally,   motion  sensors  would  be  of  help  to  avoid   unnecessary  energy  use  in  toilets,  hallways  and   storages.     Ventilation   The  mechanical  ventilation  system  in  the   guardhouse  is  not  in  use  and  the  group   accommodations  only  have  mechanical  air  outlet.   Natural  ventilation  is  therefore  important.  It  can   provide  sufficient  air  exchange  between  the  internal   and  external  environment.  In  this  scenario,  it  is   suggested  to  make  use  of  natural  ventilation   through  draughts  and  through  opening  windows  and   doors.     Heating     The  heating  of  the  group  accommodations  depends   on  a  floor  heating  system.  Floor  heating  is  an   efficient  low  temperature  heating  system,  which  is   more  efficient  than  the  traditional  way  of  radiator   heating.  However,  the  circulation  pumps  of  the  floor   heating  are  constantly  working.  Given  the  group   accommodations  are  not  always  occupied,  it  is  wise   to  set  a  time  clock  on  the  circulation  pumps  of  floor   heating  in  order  to  avoid  excessive  energy  use.       Water   There  are  some  smart  water  saving  measures  that   C.1.   4.1 Scenario C
  15. 15.   15   3 can  be  implemented  in  Fort  aan  de  Klop.  The  fort   can  also  make  use  of  the  rainwater  by  using  a  water   tank  to  collect  the  rainwater  and  use  it  to  water   plants  in  the  small  garden.     Usage   Smart  energy  saving  tips  are  the  easiest  way  to  save   energy  with  little  financial  or  technical  support.  In   this  case,  a  series  of  smart  energy  saving  advices  is   given.  For  example;  defrosting  the  freezer  regularly,   replacing  the  old  separate  freezers/refrigerators  with   one  big  cooling  equipment  and  set  the  suitable   temperature  of  the  cooling  equipment.       Social  impact   Before  starting  to  implement  any  of  the  energy   saving  measures,  it  is  necessary  to  appoint  an   “energy  manager”  who  will  be  in  charge  of  the   energy  use  in  Fortress  aan  de  Klop.  Often,  even  good   plans  of  energy  conservation  cannot  reach   satisfactory  results  due  to  a  lack  of  sufficient   attention  or  determination.  The  energy  manager  is   responsible  for  raising  awareness  of  energy  saving  as   well  as  supervising  the  implementation  of  energy   saving  measures.     The  guardhouse     Insulation   Window  insulation  would  reduce  heat  loss  through   the  single-­‐glazed  windows  in  the  guardhouse.   4 Although  it  is  not  permitted  to  replace  the  existing   monumental  windows  with  HR++  glass,  secondary   glazing  could  be  an  option.  Wherea  window  is   installed  parallel  to  the  existing  single-­‐glazed   window,  resulting  in  enhanced  thermal  performance   of  the  window.  The  installation  of  secondary  glazing   could  reduce  124m 3  gas  consumption  per  year,  which   is  5%  of  the  heating  energy  use  in  the  guardhouse.     Heating     The  thermo-­‐regulator  of  the  guardhouse  is  installed   in  the  kitchen  where  the  temperature  appears   always  higher  than  in  the  dining  area.  This  leads  to   inefficient  heating  as  the  temperature  needs  to  be   set  a  few  degrees  higher  in  order  to  heat  up  the   dining  area  of  the  restaurant,  which  is  one  of  the   main  complains  for  the  entrepreneur.  So  the  ‘MKB   advies’  suggest  relocating  the  thermo-­‐regulator  in   the  dining  area,  preferably  in  the  center,  instead  of  in   the  kitchen.       Green   Fortress  aan  de  Klop  has  a  small  kitchen  garden  in   the  kitchen,  which  fits  the  green  orientation  of  the   entrepreneur’s  ambition.  The  herbs  grown  in  the   kitchen  garden  could  be  used  as  for  cooking.  This  is  a   smart  way  to  show  the  tourists  the  mission  of  the   fortress  to  become  sustainable.     C.2.  
  16. 16.   16   1 Scenario  B:  a  leap  forward   Scenario  B  involves  a  range  of  more  complex   measures  to  achieve  big  improvements  of   energy  saving  and  sustainability  in  Fort  aan   de  Klop.  Suggestions  are  proposed  based  on   Scenario  C,  which  can  provide  a  better  basis   for  the  fortress  to  implement  more  actions  in   many  aspects,  such  as  energy  generation,   insulation,  heating  system,  ventilation  and   water  use,  etcetera.     In  general   In  Scenario  B,  more  energy-­‐efficient  measures  will  be   implemented  to  bring  about  significant  effects  in   energy  consumption  reduction.  The  entrepreneur   could  switch  to  a  green  energy  suppier.  The  heating   system  needs  to  be  replaced  with  a  more  sustainable   one,  such  as  infrared  heating  or  an  heat  pump.  A  small   greenhouse  combined  with  hydroponics  or   aquaponics  system  could  be  an  interesting  measure  to   make  the  fortress  area  “greener”  and  attractive  to  the   tourists.       Scale  of  the  Fort  area  (with  group  accommodations)     Energy     In  Scenario  C,  it  is  proposed  to  use  solar  panels  to   generate  electricity  on  the  south  side  of  building  D,  E   B.1.   4.2 Scenario B 2 and  F.  Another  option  is  to  sign  a  “green  energy   contract”  with  a  green  energy  supplier,  which   provides  energy  generated  from  renewable  sources   such  as  wind  or  biogas.  It  is  a  commitment  to  reduce   the  GHG  (greenhouse  gas)  emissions.     Lighting   As  suggested  in  Scenario  C,  all  the  light  bulbs  will  be   replaced  with  LED  bulbs  in  combination  with  motion   sensors  in  toilets,  hallways  and  storage  space.  And   with  LED  for  the  outside  lanterns.       Ventilation   Mechanical  outlet  of  air  is  present  in  the  group   accommodations.  However,  inlet  of  air  is  mainly   relying  on  natural  ventilation  through  open  windows.   So  here  we  would  propose  to  create  holes  for  air   inlet,  through  which  air  can  enter  in  a  natural  way.       Heating     Hot  tap  water   Solar  boilers  can  provide  hot  water  for  the  fort.  It  is   an  interesting  option  to  heat  up  water  with  solar   energy.  It  this  way,  a  large  amount  of  energy  could  be   saved.     Space  heating   For  the  group  accommodation,  a  more  efficient  way   of  heating  is  to  place  an  ELGA  heat  pump  system.  An   ELGA  heat  pump  is  a  combination  of  an  electric  heat   pump  and  a  gas-­‐fired  boiler.  The  heat  pump  will  
  17. 17.   17   3 provide  the  heat  demand  for  space  heating  and  the   boiler  will  deliver  the  extra  heat  demand  for  water   heating  and  for  extreme  weather  conditions.     Water   Water  saving  equipment  such  as  water  saving   shower  heads  and  flow  stops  for  the  water  taps   could  be  used  to  achieve  more  efficient  use  of  water   in  the  fort.  Besides,  rainwater  could  be  collected   (with  the  old  “druipkoker”  in  the  guardhouse)  and   reused  for  flushing  the  toilets.     Considering  that  Fortress  aan  de  Klop  is  built  along   the  Dutch  waterline,  it  would  be  interesting  to  build   a  symbolic  water  playground  for  the  children.     Green   To  show  the  sustainable  ambition,  a  small   greenhouse  in  combination  with  a  hydroponics  or   aquaponics  system,  could  be  a  good  idea.  A  closed   loop  is  created  here:  fish  are  fed  with  kitchen  waste   and  the  humus  produced  by  the  fish  will  be  used  to   cultivate  the  plants  in  the  greenhouse.       Usage  &  waste   Here  one  can  think  of  responsible  purchase  of  food   (biological),  devices  (A+++)  and  other  equipment.     Furthermore  biodegradable  and  environmentally   friendly  cleaning  agents  can  be  used,  instead  of  for   example  chorine.       It  is  also  suggested  to  establish  a  simple  waste   separation  system  so  that  the  compostable  waste   could  be  reused  as  fertilizer  for  the  green   surroundings  and  the  plants  in  the  greenhouse.   4 The  guardhouse     Insulation   In  addition  to  the  secondary  glazing  proposed  in   Scenario  C,  draught  proofing  could  be  added  to  the   entire  buildings  envelope,  sealing  the  gaps  or  cracks   in  the  walls,  doors,  windows  and  other  connections.   This  would  improve  the  air  tightness  of  the   guardhouse,  leading  to  a  lower  air  exchange  rate  and   the  heat  loss  through  the  building  envelope.     Heating     Space  heating  does  not  always  have  to  gas-­‐based.   Infrared  heating  is  an  interesting  alternative,   replacing  the  radiator  heating  in  the  guardhouse.  It   can  be  a  more  energy  efficient  way  of  heating,  in   comparison  with  the  existing  heating  system.   Infrared  panels  that  convert  electricity  to  infrared   radiation,  to  heat  up  the  space  quickly  when  needed.   This  technology  is  suitable  for  focused  heating  and   achieves  its  energy  saving  potential  best  that  way.     Ventilation   The  Guardhouse  has  an  air  hole  for  air  inlet  in  every   radial  room.  The  restaurant  owner  experienced  that   draught  can  be  caused  around  these  holes.  However,   these  ventilation  holes  do  need  to  exist.  To  improve   the  comfort  we  propose  to  install  inducing  grids  at   the  holes,  so  the  air  inlet  will  be  spread  more   horizontally  into  the  room,  instead  of  vertically,   which  currently  decreases  the  level  of  comfort.     B.2.  
  18. 18.   18   1 Scenario  A:     Towards  energy  independence   Scenario  A  aims  to  create  an  energy   independent  future  for  Fort  aan  de  Klop.  On   top  of  the  energy-­‐efficiency  gains  of   Scenario  C  and  Scenario  B,  this  scenario   proposes  deeper  commitment  to  become   less  energy  independent.  In  this  section,  a  set   of  measures  is  proposed  to  realize  that  goal.   Most  of  these  measures  do  need  a  higher   level  of  financial  and  technical  support.     In  general   In  Scenario  A,  the  focus  is  on  clean  energy  generation   and  highly  efficient  energy  use  in  combination  with   the  green  surrounding,  making  Fort  aan  de  Klop  a   sustainable  system.  Two  alternatives  for  a  highly   efficient  and  sustainable  heating  system  -­‐  gas   absorption-­‐heating  pump  and  biomass  stove  -­‐  are   presented.  A  helophyte  filter  will  be  built,  which   functions  as  a  sewage  treatment  system  and  the   clarified  wastewater  can  be  reused  in  the  toilets.  Also,   a  special  parking  lot  could  be  created  for  electric  cars.   Furthermore,  we  suggest  to  install  an  energy   monitoring  system  to  keep  track  of  the  energy  use   systematically,  so  that  new  opportunities  of  energy   saving  could  be  discovered.   4.3 Scenario A A.1.   2 Integral  system:  Guardhouse  and  group   accommodations     Energy     We  propose  to  install  solar  panels  on  the  guardhouse   (additional  to  the  solar  panels  on  building  D,  E  and  F   of  scenario  B),  in  addition  to  the  green  energy   contract  that  was  proposed  earlier  scenarios.     Heating     A  biomass  stove  heating  system  could  be  a  good   alternative  for  the  existing  heating  system  of  Fortress   aan  de  Klop.  A  biomass  stove  uses  wooden  pellets  as   a  primary  energy  source.  The  CO2  footprint  of  wood   pellet  is  much  lower  than  traditional  energy  source   such  as  gas  and  electricity.     An  alternative  is  the  installation  of  a  gas  absorption-­‐ heating  pump  (GAPH).  A  gas  absorption-­‐heating   pump  in  combination  with  low  temperature  radiators   is  an  highly  efficient  heating  system.  A  GAHP  is  fired   by  natural  gas  and  makes  use  of  a  renewable  energy   source  such  as  in  this  case,  air.  The  heating  efficiency   of  a  GAHP  system  is  very  high  and  can  significantly   reduce  the  energy  consumption  for  heating.     Both  proposed  systems  could  replace  the  heating   installations  for  the  whole  fort,  including  the  group   accommodations  as  well  as  the  guardhouse.          
  19. 19.   19   3 Ventilation   For  the  group  accommodations  we  propose  CO2  and   moist  sensors  for  respectively  living/main  rooms  and   bathrooms.  This  ensures  the  quality  of  the  inner   climate  as  well  as  an  efficient  use  of  the  ventilation   (only  when  needed  according  to  the  air  levels).       Water   In  this  highly  sustainable  scenario,  a  helophyte  filter   would  an  interesting  option  for  sewage  clarification,   as  it  is  a  completely  natural.  The  helophyte  filter  can   clean  the  water  with  certain  types  of  plants  and   bacteria  that  grow  in  the  filter.  The  quality  of  the   treated  water  becomes  harmless  to  the  environment   and  it  can  be  reused  for  flushing  toilets  and  watering   plants.     Green   A  sustainable  parking  lot  will  be  created  in  the  green   surroundings.  Parking  spaces  can  literally  be  green   by  using  grass  tiles  instead  of  pavement.  As  a   positive  side  effect,  the  parking  space  for  electric   cars  boosts  the  green  image  of  the  Fort.  Solar   carports  can  generate  the  electricity  for  the  cars.       Usage   In  terms  of  maintenance,  it  is  better  to  use   sustainable  biological  paint  instead  of  harmful   chemical  materials  when  renovation  or  repair  is   required.   4 Social  impact   An  energy  monitoring  system  is  proposed  for  the   group  accommodations  to  monitor  and  show  the   exact  energy  consumption.  This  monitoring  system   can  be  used  to  create  awareness  of  energy  use  under   visitors  and  it  can  highlight  further  energy  saving   opportunities.     Lighting   See  scenario  C  and  B.  No  additions  in  scenario  A.       A.2.  
  20. 20.   20   5. Potential measures 1 The  different  scenarios  are  an  addition   to  each  other  in  many  ways.  The  first   step  to  a  more  sustainable  fortress   (scenario  C)  is  the  energy  audit  done   by  ‘MKB  advies’.  We  propose  a  much   more  ambitious  and  tailor  made  set  of   measures  and  therefore  focus  on   scenario  B  and  A.     On  the  next  pages  we  will  discuss  the  sustainable   options  within  the  different  themes  (energy,  lighting,   insulation,  heating,  ventilation,  water,  green,  usage  &   social  impact)  for  the  different  scenarios,  based  on  the   table  on  page  12  &  13.     2 Fort  aan  de  Klop  –  Scenarios     5.1.  Energy   5.1.B.  Scenario  B     5.2.  Lighting   5.2.B.  Scenario  B     5.3.  Insulation   5.3.B.  Scenario  B     5.4.  Heating   5.4.B.  Scenario  B   5.4.A.  Scenario  A     5.5.  Ventilation   5.5.B.  Scenario  B   5.5.A.  Scenario  A     5.6.  Water   5.6.B.  Scenario  B   5.6.A.  Scenario  A     5.7.  Green   5.7.C.  Scenario  C   5.7.B.  Scenario  B   5.7.A.  Scenario  A    
  21. 21.   21   5.1 Energy 1 Here  we  give  a  short  introduction  on   the  proposed  scenarios  within  the   energy  theme.  On  the  next  pages   the  measures  will  be  explained  one   by  one.       Scenario  C   The  ‘MKB  advies’  proposes  to  place  solar   panels  for  generation  of  electricity.  One     side  of  the  group  accommodations  is   orientated  on  the  south  and  could  be   suitable.  The  area  itself  is  assigned  as   2 protected  landscape,  but  the  group   accommodations  itself  are  not  appointed  as   a  monument  and  offer  opportunities  for   solar  energy  production.  However,  shadow   of  the  trees  must  be  taken  into  account.   Scenario  B     Scenario  B  is  an  addition  to  scenario  C  and   looks  for  more  possibilities  to  place  solar   energy.  The  surplus  need  of  energy  that   cannot  be  produced  by  solar  panels,  can   instead  be  supplied  by  a  green  energy   company.   3 Scenario  A   We  have  looked  at  the  possibility  of   generating  electricity  by  wind  turbines.   Sizes  range  from  15  meters  high  for  urban   wind  turbines  up  to  150  meters  for  rural  use.   However,  they  appeared  to  be  less  cost   effective  than  solar  panels.  You  can  find   more  information  in  Appendix  B.  Eventually   solar  panels  in  combination  with  a  green   energy  contract  is  the  most  ambitious,  in   relation  to  financial  feasibility.   Scenario Themes Sub)themes C:)first)step)to)energy)reduction)(MKB)advice) B:)A)leap)foward) ) A:)Towards)autonomy Choice Energy Contract Choose)a)green)energy)contract)(windenergy) from)Holland,)"ecogas") B Generation) or Place)solar)panels)for)generation)of)electricity or Place)the)maximum)amount)of)solar)panels) possible B
  22. 22.   22   5.1.B Energy 5.1.B  Green  energy  contract   The  most  sustainable  energy   companies  of  2014  are  listed  by  a   cooperation  of  7  partners,  including   ‘de  Consumentenbond’,  WNF  and  CE   Delft.  Gazprom  is  not  mentioned  in   this  list.  However,  Gazprom  gets  his   energy  from  gas,  coal  and  nuclear   energy.  Energy  from  wind,  sun  or   other  natural  sources  are  not   included.  So  more  sustainable   options  are  possible,  like  the  top  of   the  sustainable  energy  list:  1.   Windunie,  2.  Raedthuys,  3.  HVC   Energie,  4.  Eneco,  5.  DONG  Energie,   6.  Greenchoice  and  7.  MKB   energiebeheer.   Green  energy  for  Fort  aan  de  Klop   Current  energy  provider  can  be  greener,  but   there  is  even  a  possibility  that  the  energy  bill   can  be  lower.  The  end  date  of  the  Gazprom   contract  is  30-­‐04-­‐2015,  so  a  new  contract  is   possible  in  the  near  future.   We  have  good  experiences  with  ‘MKB   Energiebeheer’,  who  are  specialists  in   collective  procurement.  That  is  why  they  can   arrange  lower  rates,  than  you  could  on  your   own.  Furthermore  they  assure  the  lowest   rates  every  year.  Once  your  contract  is  up   for  renewal,  they  will  make  you  a  new  offer.   Your  contract  can  therefore  not  be  silently   extended  by  a  year  one  the  same  or  higher   rates.   The  offer  of  MKB  energiebeheer  is  visible  on   the  next  page.       Price   Netto  savings  in  comparison  to  current  energy  rates  at  Gazprom  will   be  €411  (excluding  VAT).   Usage   MKB  Energie*   Gazprom   High              33,901  kWh   €0.0570   €0.062494   Low                29,664  kWh   €0.0425   €0.045317   Gas                                        700  m 3   €0.2860   €0.299876   Gas                          12,852  m 3   €0.2860   €0.297072   'Vastrecht‘                1  jaar   €  -­‐   €144     Financiering  en  regelgeving   Not  applicable     *  MKB  energie  is  energy  from  Greenchoice  (100%  Dutch  wind,  CO2   compensated  gas).    
  23. 23.   23   5.1.B/A Energy 1 5.1.B/A  Solar  panels   Solar  panels  can  be  placed  on  flat   roofs  and  roofs  with  a  slope  that  are   mainly  free  of  shadow.  The  best   orientation  is  between  Southwest   and  Southeast  with  a  slope  of  30  to   40  degrees.  For  monuments  there   are  rules  that  could  limit  the   possibilities,  for  instance  that  solar   panels  should  be  visible  from  public   space.  The  ‘MKB  advies’  proposed   200  solar  panels  on  building  A   (camping  sanitary).    However  the   West  side  of  the  roof  is  visible  from   the  fort  and  therefore  not  feasible.   So  we  did  calculations  for  the   guardhouse  and  building  D,  E,  F.       2 Solar  panels  for  Fort  aan  de  Klop   Building  D,  E  and  F  have  one  roof  side   orientated  on  the  South.  However,  building   D  and  F  are  also  close  situated  to  the  tree   border,  which  can  create  shadow  on  the   roof.  Additionally,  building  E  has  roof   windows  that  break  up  the  roof  surface.  We   determined  that  one  continuous  stroke  of   solar  panels  is  possible  on  each  building  just   under  the  roof-­‐ridge.  This  totals  40  solar   panels,  which  can  generate  5.200  kWh  a   year.  With  current  energy  rates,  this  is  €685   (scenario  B).  If  we  include  the  Guardhouse   (scenario  A)  we  have  2  options:   1.  Placing  the  solar  panels  in  strokes  with  a   distance  between  the  strokes  to  prevent   them  from  creating  shadow  on  each  other.   2.  Placing  them  in  a  so-­‐called  ‘east-­‐west’   position.  This  way  you  can  place  more  solar   panels,  increasing  total  production  output.   The  per  panel  production  will,  however,  be   3 lower  given  the  sub-­‐optimal  sun  orientation.   This  option  does  require  higher  investment.     For  Fort  aan  de  Klop  we  determine  that   option  1  is  more  interesting.  The  pay  back   time  of  Option  2  is  too  long,  especially   taking  into  account  that  it  is  already   stretched  by  definition,  because  of  the  low   electricity  price  of  €0,13.  With  option  1  we   can  place  50  solar  panels  more  than  the  40   initially  planned.  The  total  of  90  solar  panels   produces  11,850  kWh,  which  saves  €1,540  on   the  energy  bill  a  year.   Investment   40  panels:  €10,600;  90  panels:  €23,850   Return  of  investment:  ±16  years  (incl.  permit)   Finance  and  regulations   Ÿ  Permit  costs:  €410  (40  panels),  €930  (90).     Ÿ  VAT  can  be  returned.  
  24. 24.   24   5.2 Lighting 1 Here  we  give  a  short  introduction  on   the  proposed  scenarios  within  the   lighting  theme.       Scenario  C   The  ‘MKB  advies’  proposes  to  place  LED   lighting,  where  no  energy  saving  lights  or   LED  is  already  present.  Also,  motion  sensors   are  proposed  for  specific  places,  like  toilets.   However,  when  replacing  light  for  LED,  you   are  producing  light  much  more  efficient,   2 which  make  motion  sensors  less  cost-­‐ effective  and  therefore  relatively  expensive.     Scenario  B     Scenario  B  is  an  addition  to  scenario  C,   suggesting  to  replace  the  light  bulbs  in  the   four  lanterns  outside  for  LED.  Daylight   dependable  sensors  are  not  included,   because  of  the  before  mentioned  low  cost-­‐ effectiveness.  Since  many  spots  such  as  the   setback  windows  inside  the  guardhouse  are   relatedly  dark  throughout  the  year,  the   3 motion  sensors  will  keep  the  LED  lights  on   anyway.     Scenar Themes Sub)themes C:)first)step)to)energy)reduction)(MKB)advice) B:)A)leap)foward) ) A:)Towards)autonomy Choice Lightning All)buildings Replace)lighting)for)LED)lightning C Outside) Replace)building)site)lightning)for)LED C Smart)control use)motion)sensors)for)lightning)where)it)is) convenient;)toilets,)hallways,)storage)space B
  25. 25. rio)B Scenario)A e Choice C C B   25   5.2.B Lighting 1 5.1.B  LED  lighting   Energy  saving  begins  with  lighting.   Lighting  causes  15%  of  all  energy   used  in  a  household.  By  replacing   halogen  and  incandescent  lighting   for  LED  you  can  save  a  lot,  with  little   effort.  Furthermore,  LED  is  available   in  all  kinds  of  colours.  The  times  of   white  and  too  bright  colours  are   behind  us.  LED  is  there  for  all  types   of  lamps,  it  can  be  dimmed  and  it   does  not  have  a  start-­‐up  time  like   energy  saving  light  bulbs.  The  more   lighting  hours,  the  shorter  the   payback  time.  Lifespan  does,   however,  decrease  with  increased   use.   2 LED  for  Fort  aan  de  Klop   The  buildings  of  Fort  aan  de  Klop  are   relatively  dark  inside,  so  lighting  will  be  on   very  often.  Especially  the  guardhouse  is   pretty  dark  with  relatively  small  windows,   which  are  setback  in  the  wall.  LED  is  very   suitable  for  high  lighting  hours,  given  its   long  lifespan  (in  lighting  hours).  Also,  due  to   its  high  savings,  it’s  a  very  cost-­‐effective   measure.  By  replacing  45  incandescent  (25-­‐ 100W),  24  halogen  light  bulbs  (20-­‐35W)  and   3  building  site  lights  (200W)  in  Fort  aan  de   Klop  for  LED  of  3W  to  20W  we  can  save  up   to  8,478  kWh,  which  is  12%  of  the  current   energy  usage.  This  saves  €1,102  per  year.  If   you  also  replace  the  4  lantern  outside  for   LED  this  can  save  another  €56  (430  kWh).   We  looked  at  the  possibility  to  place  motion   sensors.  However,  these  sensors  will  have  a   much  longer  payback  time  with  LED  than   3 incandescent  lighting,  because  the  LED  light   is  more  efficient.  That  is  why  we  only   propose  motion  sensors  in  the  storage  room   and  in  the  camping  sanitary.  This  only  saves   60  kWh  per  year.         Investment   Replacing  all  the  lighting  for  LED  costs     €1,550  (excl.  VAT)  with  another  €120  (excl.   VAT)  for  two  motion  sensors.  In  total   savings  are  €1,205  and  9,270  kWh  per  year.   The  return  of  investment  period  will  be  less   than  two  year.   Finance  and  regulations   Not  applicable.  However,  there  is  a  financial   regulation,  the  ‘EIA’,  that  makes  it  possible   to  deduct  41,5%  of  the  investment  in  LED   from  your  profit.    
  26. 26.   26   5.3 Insulation 1 Here  we  give  a  short  introduction  on   the  proposed  scenarios  within  the   Insulation  theme.  On  the  next  pages   the  measures  will  be  explained.     Scenario  C   The  ‘MKB  advies’  proposes  to  place   secondary  glazing  in  the  guardhouse.  The   best  option  is  to  insulate  yet  preserve  the   historich  window,  is  to  place  secondary   glazing  (‘achterzetramen’).  In  the  next   paragraph  we  will  explain  more  about  this.       2 Scenario  B     The  group  accommodations  already  have   insulated  walls,  roofs  and  windows.  So  we   will  not  give  suggestions  for  these  buildings   and  only  consider  the  guardhouse.   Calculations  of  the  thermal  resistance   pointed  out  that  the  windows  are  the   weakest  points.  Walls,  floor  and  roof  are   considered  a  major  energy  leak.  The  walls   are  one  meter  thick  and  the  roof  has  a  thick   layer  of  sand,  gravel  and  greens,  so  their   thermal  resistance  is  sufficient.  The  floor   was  already  insulated  to  create  a  separate   environment  for  the  bats.  So  in  addition  to   3 the  secondary  glazing  we  only  propose   draught  proofing  of  doors  and  other   connections.  Secondary  glazing  already   takes  care  of  the  draughts  of  the  windows.   Scenario Themes Sub)themes C:)first)step)to)energy)reduction)(MKB)advice) B:)A)leap)foward) ) A:)Towards)autonomy Choice Insulation Guardhouse Place)secondary)glazing and Draughtproofing)of)doors)and)windows)and) other)connections B
  27. 27. o)B Scenario)A Choice B   27   5.3.B Insulation 1 5.3.B  Secondary  glazing  &   draught  proofing   Calculations  on  the  thermal   resistance  of  the  Guardhouse   pointed  out  that  the  outer  shell   creates  a  stable  inner  climate  with  its   thick  walls  and  green  roof.  However,   the  windows  and  draughts  at  doors   and  other  connections  form  the   weakest  points.  The  windows  are   monumental  single  glazed  windows   with  a  steal  frame.  Alterations  to   these  windows  are  not  desirable,  nor   permitted,  but  a  secondary  frame  as   an  ‘add-­‐on’  is.  In  addition  draughts   can  be  closed,  for  instance  the  ones   around  doors.   2 Secondary  glazing  for  Fort  aan  de  Klop   The  thermal  resistance  (the  R-­‐value)  of  the   current  windows  is  0.512.  If  you  place   secondary  glazing  this  becomes  1.087   m2K/W.  When  the  R-­‐value  becomes  higher,   the  thermal  resistance  increases.  This   means  that  less  heat  is  leaving  the  building   through  the  windows.     If  we  calculate  the  new  thermal  resistance   with  secondary  glazing,  savings  turn  out  to   be  €63  per  year.  Financially,  this  is  fairly   insignificant.  However,  the  comfort  level  will   increase.  Decent  secondary  glazing  that  fits   in  nicely  in  a  monumental  building,  is  quite   expensive.  For  the  20  windows  of  the   guardhouse,  the  cost  would  be  €9,280  (excl.   VAT).  So  if  the  aim  for  a  more  sustainable   building  is  based  on  economic  motives,  then   this  is  perhaps  not  advisedly.  But  when   comfort  and  energy  savings  is  the  motive,  it   can  be  considered.     3 Draught  proofing  for  Fort  aan  de  Klop     Draught  proofing  is  considered  a  quick  win.   Most  easy  is  to  place  brush  strips  at  the   down  side  of  doors.  In  addition  aluminium   draught  strips  can  be  placed  on  the  long   (closing)  side  of  the  door.  Furthermore,   other  draughts  around  a  hatch  or  lead-­‐ through  of  pipes  can  be  sealed  by  a   handyman,  saving  up  to  €50  per  year.     Investment   Secondary  glazing  for  20  windows  costs   around  the  €9,280  excluding  VAT.   Draught  proofing  of  doors  and  other   connections  is  around  €730  (excl.  VAT)   based  on  the  ground  surface  and  the   number  of  doors.   Finance  and  regulations   A  permit  is  necessary  for  secondary  glazing.   This  will  cost  €260.  There  are  no  subsidies.     Secondary  glazing  of  Isoglas  
  28. 28.   28   5.4 Heating 1 Here  we  give  a  short  introduction  on   the  proposed  scenarios  within  the   Heating  theme.  On  the  next  pages   the  measures  will  be  explained.     Scenario  C   The  ‘MKB  advies’  proposes  smart  and  quick   wins  on  heating  cost,  like  setting  a  timer  on   the  circulation  pumps  and  optimizing  the   time  schedule  of  the  floor  heating.  These   two  measures  can  save  up  to  €900.  And  this   2 only  costs  €600,  making  it  financially  very   interesting.     Scenario  B     The  group  accommodations  have  floor   heating.  However,  they  are  still  heated  by  a   gas  boiler.  We  propose  a  sustainable  ‘add-­‐ on’  on  the  current  system  with  a  heating   pump.  In  addition  we  suggest  a  solar  boiler   for  the  warm  water  demand  of  the  group   accommodations.  For  the  guardhouse  we   propose  infrared  heating,  because  this  is  a   3 very  comfortable  type  of  heating.  Lastly,  it  is   energy  efficient  because  of  the  focused  way   of  heating.       Scenario  A   Instead  of  the  heating  measurers  of  scenario   B  we  propose  two  options:   1. A  gas  absorption-­‐heating  pump   with  a  gas  boiler  for  peaks.     2. A  biomass  stove,  which  produces   heat  by  burning  wood  pellets.   Scenario Themes Sub)themes C:)first)step)to)energy)reduction)(MKB)advice) B:)A)leap)foward) ) A:)Towards)autonomy Choice Heating Building)heating) Group)accomodations:)optimalisize)the)timing) of)the)floor)heating,)set)a)time)clock)on)the) circulation)pumps)for)heating and Guardhouse:)Infrared)heating) Group+accomodations:)Elga)heating)pump or 1.)Gas)absorptionAheatin)gpump 2.)Biomass)stove B Water)heating Place)solar)boilers B
  29. 29. o)B Scenario)A Choice A B   29   5.4.B Heating 1 5.4.B  Heating   The  majority  of  the  gas  usage  is  due   to  heating  of  the  buildings  and  warm   water.  Cooking  on  a  gas  stove  is  just   a  little  part  of  the  total  gas  bill.  In   scenario  B  we  look  at  sustainable   measures  that  can  be  an  addition  to   the  current  way  of  heating.  Without   making  big  changes  in  the  current   situation,  we  establish  savings  as   well  as  more  comfort.  The  group   accommodations  and  Guardhouse   have  a  separate  system.  We   maintain  this  and  propose  suitable   measures  for  as  well  the  guardhouse   as  the  group  accommodations,   based  on  their  usage.       2 The  guardhouse     The  guardhouse  needs  heating  from   September  until  April.  In  wintertime  the   restaurant  is  in  general  open  for  two  days  a   week.  In  September,  March  and  April  the   restaurant  is  open  6  days  a  week.  Especially   in  wintertime  the  restaurant  will  not  be  fully   occupied.  The  layout  of  the  restaurant  is   extremely  suitable  for  focused  heating.  In   other  words  not  the  whole  restaurant  needs   to  be  heated  when  there  are  two  customers.   Just  one  cove  can  be  heated  in  addition  to   the  space  where  the  employees  often  are.   When  heating  locally,  the  heating  device   does  have  to  be  able  to  quickly  anticipate  on   fluctuations  in  present  visitors.  Infrared   panels  meet  this  condition.  These  panels   (quite  similar  in  aesthetics  to  the  acoustic   panels)  are  connected  to  the  wall/ceiling  and   use  electricity  to  heat  the  local  space.  They   3 create  warmth  efficiently  and  in  a  very   comfortable  way.  Infrared  panels  do  not   heat  the  air,  but  rather  heat  the  present   objects:  the  people,  tables  etc.  The  infrared   panels  heat  up  in  10  minutes,  so  warmth  is   quickly  produced.  They  can  be  combined   with  a  smart  control  system  and  motion   sensors.  This  way,  one  does  not  have  to   control  the  ‘on/off’  switch  of  the  panels  from   an  app  or  screen.  Everything  can  be  run   automatically  based  on  motion  in  the  room.   Also,  infrared  works  well  in  moist   conditions.  They  are  expected  to  have  a   positive  effect  on  the  climate  of  forts.     Taking  into  account  the  visitor  number  of   the  restaurant  and  the  ‘heating  hours’   throughout  the  year,  we  calculated  that  the   infrared  panels  in  the  Guardhouse  can  save   €195/year  each,  totalling  €1.020/year.  An   important  note  is  that  the  expected  energy  
  30. 30.   30   4 savings  are  based  on  a  the  right  use:  focused   way  and  not  non-­‐stop.  To  ensure  the  right   use  we  included  motion  sensors  and  the   smart  control  option  in  the  investment  cost.   The  group  accommodations   The  group  accommodations  have  a  very   good  starting  base  for  sustainable  heating,   because  most  of  them  work  with  Low   Temperature  Heating  (like  floor  heating)  and   need  well  insulated  spaces  to  be  most   effective.  These  requirements  are  already   fulfilled  by  the  current  state.  Two  Elga   heating  pumps  can  easily  be  placed  next  to   the  gas  boiler  (e.g.  the  one  that  already  is   present  for  the  group  accommodations).   These  heat  pumps  extract  heat  from  the   outside  air  to  create  warmth  inside.  When   the  outside  temperature  drops  below  5   degrees  Celcius,  the  heating  pump  will  not   5 work  as  effectively  anymore  and  a  gas  boiler   will  take  over  for  these  peak  moments.  For   the  majority  of  time  the  heating  pumps  can   deliver  the  heating  demand  in  a  sustainable   way.  This  results  in  a  saving  of  €575  a  year.     Water  heating   Group  accommodations  D,  E  and  F  have  12     showers  in  total.  These  are  provided  with   warm  water  from  one  300  litre  water  boiler.   A  rule  of  thumb  is  that  for  every  50  litre   capacity  one  m 2  solar  collector  can  be   added.  In  this  case  around  6  m 2  of  solar   collectors  (three  pieces)  could  be  placed  on   the  storage  building  to  produce  warm  water   through  solar  heating.  Three  solar  collectors   will  heat  the  water  and  when  the  water  is   not  warm  enough,  its  temperature  will  be   raised  by  the  gas  boiler  to  a  minimum  of  60   degrees.  This  is  a  necessary  temperature   level  to  prevent  legionella.  Savings  can  go   6 up  to  €330  a  year.     Investment   Infrared  panels  require  an  investment  of   €4,300  with  a  return  on  investment  of  22   years.  Two  ELGA  heating  pumps  will  cost   €7,600  and  14  years  is  needed  to  cover  this.   The  solar  boilers  costs  €2,610  and  has  a  pay   time  of  9  years.     Finance  and  regulations   A  permit  is  necessary  for  both  the  ELGA   heat  pump  and  the  solar  collectors  as  both   will  be  placed  outside,  adding  permist  cost   to  the  investment.  Lastly,  there  could  be  the   possibility  of  deducting  the  investment  from   profit  tax.  See  Chapter  6  for  an  overview.  
  31. 31.   31   5.4.A Heating 5.4.A  Heating   Instead  of  proposing  separate   systems  for  the  Guardhouse  and   group  accommodations,  we  propose   one  installation  for  all.  This   installation  will  also  work  with  solar   collectors  for  warm  water.  There  are   two  different  options  for  the  main   heating  device.  One  is  a  gas   absorption-­‐heat  pump,  which  uses   gas  to  extracts  warmth  from  the   outside  air  for  heating.  The  other   option  is  a  biomass  stove.  A  biomass   stove  creates  heat  by  burning  wood   pellets.  Pellets  are  less  expensive   than  gas  and  more  sustainable  when   responsibly  acquired.   1 Option1:  Gas  absorption-­‐heating  pump   A  gas  absorption-­‐heat  pump  has  as  a  main   advantage  compared  to  the  electric  version   (like  the  Elga  in  scenario  B)  that  it  remains   efficient  until  -­‐20  degrees  Celcius  instead  of   5  degrees.  The  gas  absorption-­‐heating   pump  is  therefore  useful  during  the  whole   winter.  Furthermore  it  is  possible  to   connection  a  gas  absorption-­‐heating  pump   to  a  High  Temperature  heating  system  with   radiators.  However,  the  efficiency  of  the   heating  pump  will  be  higher  on  a  low   temperature  system,  like  the  floor  heating   of  the  group  accommodations.  The   currently  present  low  Jaga  radiators  are   suitable  for  low  temperature  heating  and   are  therefore  a  good  combination  with  the   heating  pump.  The  gas  absorption-­‐heat   pump  can  produce  warm  water  and  do  so  in   cooperation  with  a  solar-­‐  and  combi-­‐boiler.   Gas  absorption  heating  pump   2 The  last  one  assures  that  the  water   temperature  is  above  60  degrees,   eleminating  legionella  risk.  Furthermore  the   combi-­‐boiler  can  cover  peak  moments.     With  the  gas  absorption-­‐heating  pump  the   system  uses  gas  and  a  little  bit  of  electricity.   Compared  to  the  energy  costs  in  the  current   situation,  it  will  save  around  €560  per  year   on  energy.     Option  2:  Biomass  stove   A  biomass  stove  creates  heat  by  burning   wooden  pellets.  These  pellets  can  be  made   by  ones  self,  though  it  is  time-­‐consuming   and  special  devices  are  needed  to  make  the   pellets  on  the  right  size.  So  eventually  we   will  not  advice  for  using  local  wood   production.  Pellets  can  be  bought  in  big   quantities  and  will  be  delivered  at  the  fort.   One  kilogram  of  pellets  cost  around  €0.28  
  32. 32.   32   Biomass  stove   3 and  1.5  kg  pellets  will  produce  1  m 3   natural  gas.  This  makes  pellets  €0.09   cheaper  than  1  m 3  gas  on  the  energy   market.  The  biomass  stove  is  therefore   financially  interesting.  A  note  is  that  the   pellets  have  to  come  from  wood  that  is   responsibly  gained,  because  otherwise   the  sustainability  of  the  system  can  be   questioned.  The  biomass  stove  uses  a   big  amount  of  pellets  (6,500  kg).  A  large   part  can  be  stored  in  a  container  next  to   the  stove,  which  fills  it  up  automatically.   The  system  does  require  a  lot  of  space,   which  is  not  an  issue  given  the  available   space  at  Fort  aan  de  Klop  and  also  in  the   current  installation  building.  Lastly,  a   biomass  stove  demands  a  fair  amount   of  maintenance.  For  instance  the   ashtray  has  to  be  cleaned  2-­‐5  times  a   year.  A  biomass  stove  can  produce   4 warm  water  and  can  work  well  together  with   a  solar  boiler.  If  necessary,  a  combi-­‐boiler   can  further  raise  the  water  temperature.  A   biomass  stove  can  be  combined  with  floor   heating  as  well  as  radiator  heating.  The   biomass  stove  will  use  up  to  €1,826  of   pellets  and  with  an  efficiency  of  85%  it  will   save  €905  a  year,  in  comparison  to  current   energy  bill.       Investment   A  gas  absorption-­‐heat  pump  in  combination   with  a  solar  boiler  will  cost  up  to  €28,000   (excl.  VAT  and  permit  costs).  The  total   savings  will  come  down  to  about  €1,160  a   year.   A  biomass  installation  with  a  solar  boiler   demands  an  investment  of  up  to  €28,200   (excl.  VAT  and  permit  costs)  and  will  result  in   a  saving  of  €1,500.   5 Finance  and  regulations   A  gas  absorption-­‐heat  pump  needs  an  unit   that  is  placed  outside,  for  which  a  permit  is   needed.  The  biomass  stove  does  not  need  a   permit.  However,  a  solar  boiler  does.  For  the   permit  costs,  please  refer  to  the  scheme  in   Chapter  6.     For  the  gas  absorption-­‐heating  pump,  the   solar  boiler  and  the  biomass  stove  it  is   possible  to  deduct  41,5%  of  the  investment   from  the  profit  tax.  If  profit  is  being  made,   this  could  be  interesting.    
  33. 33.   33   5.5 Ventilation 1 Here  we  give  a  short  introduction  on   the  proposed  scenarios  within  the   Ventilation  theme.  On  the  next   pages  the  measures  will  be   explained.     Scenario  C   The  ‘MKB  advies’  does  not  propose   alterations  to  the  current  ventilation  system.   The  ventilation  of  the  guardhouse  is  already   quite  sustainable.  However  the  ventilation   did  not  work  for  a  certain  amount  of  time   2 and  the  entrepreneur  did  not  experienced   this  as  a  problem  for  the  climate  inside.  The   group  accommodations  are  less  sustainable   and  complete  in  their  ventilation  layout.  But   there  was  no  demand  from  the  users  to   improve  these.  So  we  just  do  some   suggestions.     Scenario  B     The  entrepreneur  of  Fort  aan  de  Klop   mentioned  the  draught  from  the  ventilation   holes.  These  holes  are  used  for  the  air  inlet.   Placing  inducing  grids  into  the  air  holes  at   3 the  inside  of  the  Guardhouse  can  decrease   draught.     In  addition  we  propose  inlet  vent  holes  for   building  D  and  E.  At  the  moment  inlet  of  air   is  only  the  case  when  opening  windows  or   doors  in  these  well-­‐insulated  buildings.     Scenario  A   Here  we  propose  CO2  sensors  in  the   common  rooms  of  building  E  and  moist   sensors  for  the  bathrooms  of  building  E  and   F.   Scenario Themes Sub)themes C:)first)step)to)energy)reduction)(MKB)advice) B:)A)leap)foward) ) A:)Towards)autonomy Choice Ventilation Guardhouse Present)situation:)air)handling)unit)on)the)roof) with)an)heat)exhanger,)existing)air)holes)for) inlet)and)outlet,)CO2)sensor. Place)inducing)grids)at)the)inside)of)air)inlet) holes)to)increase)the)comfort)level B Group)accomodations D)and)E)have)only)mechanical)outlet.)F)has)vent) holes)for)natural)inlet)and)mechanical)outlet. Also)ensure)vent)holes)for)inlet)of)air)in)D)and)E and Combine)the)mechanical)outlet)with)CO2E) sensors)or)moist)sensors B
  34. 34.   34   5.5.B Ventilation 5.5.B  Ventilation   The  ventilation  system  of  the   Guardhouse  can  be  quite   sustainable,  like  we  pointed  out   before.  The  existing  system   combines  an  air-­‐handling  unit  with  a   heat  exchanger  on  the  roof  and  uses   a  CO2  sensor  for  controlling  the  in-­‐   and  outlet  of  air  through  existing  air   holes.  The  group  accommodations   only  have  mechanical  outlet,  except   for  building  F,  which  also  has  vent   holes  for  natural  inlet.  The   mechanical  outlet  is  concentrated  on   bathrooms  and  kitchens.   1 Guardhouse  &  group  accommodations   Because  of  the  draught  that  comes  from  the   inlet  vent  holes  we  propose  inducing  grids  in   front  of  the  openings.  These  grids  divide  the   air,  also  horizontally,  instead  of  just   vertically.  This  increases  the  comfort  level   and  has  not  a  direct  sustainable  aspect,   except  that  the  perception  of  temperature   can  be  much  higher.  There  are  5  of  those   inlet  holes  in  the  radial  rooms.  Along  the   central  chimney  (‘druipkoker’)  there  are   three  outlet  vent  holes  as  well  as  two  in  the   kitchen.  The  five  inlet  holes  in  the  radial   rooms  create  discomfort  along  visitors,  so   here  we  can  place  the  grids.       To  improve  the  inner  climate  of  building  D   and  E,  it  is  wise  to  install  inlet  holes  in  their   North  façade.  At  the  moment  they  only   have  mechanical  outlet  at  the  South  façade.   Building  F  already  has  inlet  holes  for  natural   2 ventilation  in  the  North  façade.  So  the  new   inlet  holes  can  be  similar  to  the  ones  in   building  F.  Again  this  has  not  a  direct   sustainable  impact.  However,  it  is  better  for   the  climate  inside  the  building.     Investment   The  inducing  grids  are  for  instance  available   at  Barcol  for  €124  (excl.  VAT)  per  piece.  The   total  costs  will  then  be    €620  (excl.  VAT  and   installations).   Placing  inlet  holes  will  demand  some   structural  adjustments  in  the  façade.  So  this   will  be  more  costly.  We  do  not  have  an   assumption  for  this.       Finance  and  regulations   Both  proposals  do  not  fall  under  a  certain   financial  regulation.  Structural  adjustments   on  the  façade  in  case  of  the  vent  holes  will   need  a  permit.    

×