SlideShare a Scribd company logo
1 of 30
Download to read offline
Analysis III Functional Analysis
III
25 10 3 2 (10:40-12:10)
1 1
1.1 n Rn
or Cn
. . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 ( ) (Linear sp. (Vector sp.)) . . . . . . . . . . . . . . . . . 1
2 (Normed Spaces) 2
2.1 (Norm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 (Banach Spacses) 2
3.1 Banach (Examples of Banach sps) . . . . . . . . . . . . . . . . . . . . . 3
3.1.1 (Continuous function space) . . . . . . . . . . . . . . . . . 3
3.1.2 Lp
(Lp
-sp.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 (Separable & equivarent norms) . . . . . . . . . . . . . . . 6
3.3 (Completion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 (Hilbert Spaces) 7
4.1 ( ) (Pre-Hilbert sp. (Inner prod. sp.)) . . . . . . . 7
4.2 (Hilbert sp.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 (Projection theorem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.4 (ONS=orthonormal system) . . . . . . . . . . . . . . . . . . . . . . . 10
5 (Linear Operators) 12
5.1 (Examples of bounded operators) . . . . . . . . . . . . . . . . . 13
5.2 (Inverse operators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 ( , , ) 15
6.1 (Uniform bounded principle) . . . . . . . . . . . . . . . . . . . . 16
6.2 (Open mapping theorem) . . . . . . . . . . . . . . . . . . . . . . . . 16
6.3 (Closed graph theorem) . . . . . . . . . . . . . . . . . . . . . . . . 17
7 (Linear Functionals) 18
7.1 (Dual spaces) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.2 (Hahn-Banach’s extension thoerem) . . . . . . . . . 19
1
A 21
A.1 Lp
. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.2 . . . . . . . . . . . . . . . . . . . . . . 21
A.3 Hk,p
(Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
A.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.5 . . . . . . . . . . . . . . . . . 24
A.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.7 A2
(Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
B , 26
B.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
B.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
C 27
D 28
1 , , , , , ,
.
, .
Rn
, Cn
ℓp
, C([a, b]), Lp
(Ω)
(Ω ⊂ Rn
) ∥ · ∥ , ,
.
, (= ) ,
, ,
. , , .
, , ,
, .
, ,
. , , ,
, , , .
, , .
, , ,
, . , .
Functional Analysis 1
1
1.1 n Rn
or Cn
n ∈ N. x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn
(or Cn
), : x + y = (x1 + y1, . . . , xn + yn),
: α ∈ R (or C) , αx = (αx1, . . . , αxn) def. Rn
(or Cn
)
.
(x, y) =
j=1
xjyj in Rn
or (x, y) =
j=1
xjyj in Cn
, , x |x| = (x, x)1/2
.
Rn
, Cn
, n (Euclid spaces)
. ( Hilbert sp. , Banach sp. .)
1.2 ( ) (Linear sp. (Vector sp.))
K = R or C .
1.1 ( ) X K ( )
, i.e., ∀
x, y ∈ X, x + y ∈ X, ∀
α ∈ K, ∀
x ∈ X, αx ∈ X; .
(i) ( ) (x + y) + z = x + (y + z) (x, y, z ∈ X)
(ii) ( ) x + y = y + x (x, y ∈ X)
(iii) ( ) ∃
θ ∈ X; ∀
x ∈ X, x + θ = x (θ = 0 )
(iv) ( ) ∀
x ∈ X, ∃
x′
∈ X; x + x′
= 0 (x′
= −x )
(v) ( ) α(x + y) = αx + αy, (α + β)x = αx + βx (x, y ∈ X, α, β ∈ K)
(vi) ( ) (αβ)x = α(βx) (x ∈ X, α, β ∈ K)
(vii) ( ) 1x = x (∀
x ∈ X)
1.1 . (∃
θ ∈ X; ∀
x ∈ X, x + θ = x θ )
[ ] ∃
θ′
∈ X; ∀
x ∈ X, x + θ′
= x θ = θ + θ′
= θ′
+ θ = θ′
, .
1.2 . (x ∈ X , ∃
x′
∈ X; x + x′
= 0 x′
)
[ ] x ∈ X , ∃
x′′
∈ X; x + x′′
= 0 0 = x + x′
= x + x′′
, ,
x′
= x′
+ (x + x′′
) = (x′
+ x) + x′′
= (x + x′
) + x′′
= x′′
.
(1) X x1, . . . , xn ∈ X
( ) (linear independent)
def
⇐⇒ [α1x1 + · · · + αnxn = 0 (α1, . . . , αn ∈ K) =⇒ α1 = · · · = αn = 0]
( )(linear dependent)
def
⇐⇒ , i.e., ∃
(α1, . . . , αn) ̸= 0; α1x1 + · · · + αnxn = 0.
X n (n-dimensional)
def
⇐⇒ n , n+1
. dim X = n .
X (infinite dimensional)
def
⇐⇒ ∀
n ∈ N, n .
x ∈ X x1, . . . , xn ∈ X (linear combination)
def
⇐⇒ ∃
α1, . . . , αn ∈ K; x = α1x1 + · · · + αnxn
Functional Analysis 2
1.3 X n n ,
, i.e.,
dim X = n =⇒ ∃
x1, . . . , xn ∈ X; lin. indep., ∀
x ∈ X, ∃
α1, . . . , αn ∈ K; x = α1x1 + · · · + αnxn.
(2) X K .
Y ⊂ X (subspace)
def
⇐⇒ ∀
x, y ∈ Y, x + y ∈ Y, , ∀
α ∈ K, αx ∈ Y .
2 (Normed Spaces)
, .
.
2.1 (Norm)
2.1 ( ) X ∥ · ∥ : x → ∥x∥ ∥x∥
X (norm) .
(i) ∥x∥ ≥ 0 (x ∈ X) ( )
(ii) ∥x∥ = 0 ⇐⇒ x = 0 ( )
(iii) ∥αx∥ = |α|∥x∥ (α ∈ K, x ∈ X)
(iv) ∥x + y∥ ≤ ∥x∥ + ∥y∥ (x, y ∈ X) ( )
(X, ∥ · ∥) (normed space) .
(X, ∥ · ∥) d(x, y) = ∥x − y∥ . , .
(d.1) d(x, y) ≥ 0 (x, y ∈ X) ( )
(d.2) d(x, y) = 0 ⇐⇒ x = y ( )
(d.3) d(x, y) = d(y, x) (x, y ∈ X) ( )
(d.4) d(x, z) ≤ d(x, y) + d(y, z) (x, y, z ∈ X) ( )
(X, d) .
{xn} ⊂ X , xn → x (n → ∞)
def
⇐⇒ ∥xn − x∥ → 0 (n → ∞)
x {xn} .
2.1 , i.e.,
(i) xn → x, yn → y =⇒ xn + yn → x + y, (ii) αn → α, xn → x =⇒ αnxn → αx.
2.2 , i.e., xn → x =⇒ ∥xn∥ → ∥x∥.
3 (Banach Spacses)
3.1 (Banach sp.) . ,
, . , (X, ∥ · ∥) ,
{xn} ⊂ X : (Cauchy sequence)
def
⇐⇒ ∥xn − xm∥ → 0 (m, n → ∞)
X (complete)
def
⇐⇒ Cauchy {xn} ⊂ X , i.e., ∃
x ∈ X; xn → x.
Functional Analysis 3
3.1 Banach (Examples of Banach sps)
3.1 Rn
, Cn
Banach sp.
, , ,
, R1
, Cauchy , ,
Cauchy . 2 .
3.2 Pn: n (n ∈ N)
x(t) = antn
+ an−1tn−1
+ · · · + a0 ∈ Pn (ak ∈ C)
(x + y)(t) = x(t) + y(t), (αx)(t) = αx(t), , y(t) = bntn
+ bn−1
n−1 + · · · + b0
, (x + y)(t) = (an + bn)tn
+ · · · + (a0 + b0), (αx)(t) = αantn
+ · · · + αa0 Pn
. dim Pn = n + 1 ({1, t, t2
, . . . , tn
} )
Pn ∋ x(t) =
n
j=0 ajtj
, ∥x∥ =
n
j=0 |aj|.
3.1 Pn Banach .
3.1.1 (Continuous function space)
3.3 Ω ⊂ Rn
C(Ω)
[(x + y)(t) = x(t) + y(t), (αx)(t) = αx(t)] . dim C[0, 1] = ∞.
∥x∥∞ = supt∈Ω |x(t)| , Banach sp. (x(t) = tn−1
(n ≥ 1) )
{xn} Cauchy in C(Ω) . t ∈ Ω ,
|xn(t) − xm(t)| ≤ ∥xn − xm∥∞ → 0(m, n → ∞)
, {xn(t)} R Cauchy . , ∃
x∗
(t) ∈ R; xn(t) → x∗
(t).
n → ∞ ,
|x∗
(t) − xm(t)| ≤ lim
n→∞
∥xn − xm∥∞
t ∈ Ω , supt∈Ω , m → ∞
lim
m→∞
sup
t∈Ω
|x∗
(t) − xm(t)| ≤ lim
m,n→∞
∥xn − xm∥∞ = 0
x∗
{xn} x∗
. xn → x∗
in C(Ω).
Cb(R) = {x ∈ C(R); ∥x∥∞ < ∞} . , (Cb, ∥· ∥∞) Banach sp.
3.1 . Pn ∋ x(t)
n
j=0 ajtj
, ∥x∥∞ =
max |αj|, x(t) ∈ C([0, 1]) , ∥x∥L1 =
[0,1]
|x(t)|dt .
.
3.2 Pn[0, 1]: Pn [0, 1] C[0, 1]
( ). ( ∥x∥∞ = t∈[0,1] |x(t)|)
.
.
Functional Analysis 4
3.1.2 Lp
(Lp
-sp.)
3.4 1 ≤ p < ∞, Ω ⊂ Rn
, Lp
(Ω) Ω u
∥u∥Lp :=
Ω
|u(t)|p
dt
1/p
< ∞
. u = v a.e. , Lp
(Ω) Banach sp. .
p or Lp
.
3.5 Ω ⊂ Rn
, L∞
(Ω) Ω u ∃
α < ∞; |u(t)| ≤ α
a.e. .
∥u∥∞ ≡ ess.supt∈Ω|u(t)| := inf{α; |u(t)| ≤ α a.e.}
. |u| ≤ ∥u∥∞ a.e. . u = v a.e. ,
L∞
(Ω) Banach sp. .
or L∞
.
2 , , normed sp. .
[ (H¨older’s inequality)]
1 ≤ p ≤ ∞ , 1 ≤ q ≤ ∞ 1/p + 1/q = 1 , p = 1 q = ∞ , p = ∞
q = 1 (q p ). ∥uv∥L1 ≤ ∥u∥Lp ∥v∥Lq . ,
Ω
|u(t)v(t)|dt ≤
Ω
|u(t)|p
dt
1/p
Ω
|v(t)|q
dt
1/q
(1 < p < ∞),
Ω
|u(t)v(t)|dt ≤
Ω
|u(t)|dt ∥v∥∞ (p = 1, q = ∞).
p = 1, ∞ . 1 < p < ∞ . ∥u∥Lp = 0 or ∥v∥Lq = 0 uv = 0 a.e.
, ∥u∥Lp ̸= 0 and ∥v∥Lq ̸= 0 . ab ≤ ap
/p + bq
/q (a, b ≥ 0)
. (log , log(ap
/p + bq
/q) ≥ (log ap
)/p + (log bq
)/q = log a + log b = log(ab))
.) a = |u(t)|/∥u∥Lp , b = |v(t)|/∥v∥Lq , .
∥uv∥L1
(∥u∥Lp ∥v∥Lq )
≤
∥u∥p
Lp
p∥u∥p
Lp
+
∥v∥q
Lq
q∥v∥q
Lq
=
1
p
+
1
q
= 1
[ (Minkovsky’s inequality)] ( )
1 ≤ p < ∞. u, v ∈ Lp
(Ω) u + v ∈ Lp
(Ω) , ∥u + v∥Lp ≤ ∥u∥Lp + ∥v∥Lp .
p = 1 . p = ∞ (→ ). 1 < p < ∞ .
. (u + v ∈ Lp
(Ω) .) |u + v|p
≤ (|u| + |v|)|u + v|p−1
H¨older
. , 1/q = 1 − 1/p = (p − 1)/p, i.e., q = p/(p − 1)
∥u + v∥p
Lp ≤
Ω
|u||u + v|p−1
dt +
Ω
|v||u + v|p−1
dt ≤ (∥u∥Lp + ∥v∥Lp )
Ω
|u + v|p
dt
1/q
|u + v|p
dt = 0 , ̸= 0
Ω
|u + v|p
dt
1/q
= ∥u + v∥
p/q
Lp
p/q = p − 1 , .
Functional Analysis 5
3.2 ∥u + v∥∞ ≤ ∥u∥∞ + ∥v∥∞ .
Lp
(Ω) . Banach
.
3.3 (X, ∥ · ∥) , {un} ⊂ X: Cauchy . ∃
{unk
} ⊂ {un}; unk
→ u in X
un → u in X .
∥uk − u∥ ≤ ∥uk − unk
∥ + ∥unk
− u∥ → 0 (nk ≥ k → ∞) .
3.4 Lebesgue , Lebesgue .
[Lp
(Ω) ]
{un} Cauchy in Lp
(Ω) . ∃
{unk
}; ∥unk+1
− unk
∥Lp < 1/2k
.
,
∞
j=1
|unj+1 − unj |
Lp
= lim
m→∞
m
j=1
|unj+1 − unj |
Lp
≤
∞
j=1
∥unj+1 − unj ∥Lp ≤ 1 < ∞.
∞
j=1
|unj+1 − unj | ∈ Lp
(Ω).
∞
j=1
|unj+1 (t) − unj (t)| < ∞ for a.e. t ∈ Ω.
k < m ,
|unm (t) − unk
(t)| ≤
m−1
j=k
|unj+1 (t) − unj (t)| → 0 (m > k → ∞) a.e.
a.e. t ∈ Ω , {unk
(t)} R Cauchy , unk
(t) → ∃
u∗
(t).
u∗
{un} Lp
(Ω) . ,
|unk
(t)| ≤ |un1 (t)| +
k−1
j=1
|unj+1 (t) − unj (t)| ≤ |un1 (t)| +
∞
j=1
|unj+1 (t) − unj (t)| ∈ Lp
(Ω)
, g(t) , k → ∞ a.e. t ∈ Ω , |u∗
(t)| ≤ g(t) ∈ Lp
(Ω), i.e.,
u∗
(t) ∈ Lp
(Ω). k < m ,
∥unm − unk
∥Lp ≤
m−1
j=k
∥unj+1 − unj ∥Lp ≤
∞
j=k
1
2j
=
1
2k−1
.
|unm (t) − unk
(t)| ≤ 2g(t) ∈ Lp
(Ω) Lebsgue , m → ∞
∥u∗
− unk
∥Lp ≤
1
2k−1
→ 0 (k → ∞).
unk
→ u∗
in Lp
(Ω) , un → u∗
in Lp
(Ω) .
(X, F, µ) (X a set, F σ-field on X, µ = µ(dx) on X) ,
f ∈ Lp
(X) or Lp
(X, dµ) or Lp
(X, F, µ)
def
⇐⇒ ∥f∥p
Lp := |f|p
dµ =
X
|f(x)|p
µ(dx) .
L∞
(X) . H¨older , Minkovsky ,
Lp
(X) Banach . . ( .)
Functional Analysis 6
3.6 1 ≤ p < ∞. x = (x1, x2, . . . ) ∥x∥lp =
∞
n=1
|xn|p
1/p
< ∞
lp
Banach sp. .
3.7 x = (x1, x2, . . . ) ∥x∥∞ = sup{|xn|; n ≥ 1} < ∞ l∞
Banach sp. .
3.2 (Separable & equivarent norms)
X Banach sp. .
L ⊂ X X (dense)
def
⇐⇒ L = X , L L (L ; x ∈ L ⇐⇒
∃
{xn} ⊂ L; xn → x).
X (separable)
def
⇐⇒ , i.e., ∃
L ⊂ X; L = X, ♯L ≤ ℵ0 = ♯N.
3.8 Rn
Banach sp. , Qn
.
3.9 Ω ⊂ Rn
, C(Ω) .
C[0, 1] L [0, 1] , ,
, L = C[0, 1] .
X , 2 ∥ · ∥1, ∥ · ∥2
∥ · ∥1 ∥ · ∥2 ; ∥ · ∥1 ∼ ∥ · ∥2
def
⇐⇒ ∃
0 < c, c′
< ∞; c∥x∥2 ≤ ∥x∥1 ≤ c′
∥x∥2.
normed sp. (X, ∥ · ∥1) (X, ∥ · ∥2) . ,
. (X, ∥ · ∥1) (X, ∥ · ∥2) .
3.5 X X 2 . ( )
3.3 (Completion)
X . ,
X , X , X = X .
, X X Cauchy , {xn}, {yn} ∈ X , {xn} ∼ {yn} ⇐⇒ xn −yn → 0
(n → ∞) . , x = [{xn}] ∈ X := X/ ∼
, x = [{xn}] ∈ X ∥x∥ := lim
n→∞
∥xn∥ ({∥xn∥} R Caushy ,
) , (X, ∥ · ∥) , i.e., Banach sp. . (
.)
x ∈ X [{xn ≡ x}] ∈ X , X ⊂ X X = X
. X X (completion) .
3.10 X0 := {x = (x1, x2, . . . , xn, 0, 0, . . . ); xi ∈ R, n ∈ N} ( 0
) . ∥x∥ = ∥x∥lp , X0 . X0 lp
dense , . , x(n)
= (1, 1/2, 1/22
. . . . , 1/2n
, 0, 0, . . . ) m > n
, 1 ≤ p < ∞ ∥x(n)
− x(m)
∥lp = (
m
k=n+1 2−kp
)1/p
→ 0 (n → ∞) , Cauchy
Functional Analysis 7
, x = (1, 1/2, 1/22
. . . . , 1/2n
, . . . ) /∈ X0. X0 . (p = ∞ .)
X0 X0 lp
, i.e., lp
.
X0 lp
.
) (X, ∥ · ∥X), (Y, ∥ · ∥Y ) , ∃
f : X → Y ; , ∥f(x)∥Y = ∥x∥X
X Y . ( X Y .)
3.11 [0, 1] X0 , i.e., X0 = n≥1 Pn[0, 1]. x ∈ X0 ,
∥x∥ = supt∈[0,1] |x(t)| , X0 . X0 C[0, 1] .
4 (Hilbert Spaces)
(inner product) ⟨x, y⟩ or
(inner prod. sp. or pre-Hilbert sp.) , ∥x∥ = ⟨x.x⟩ ,
(Hilbert sp.) . Rn
Cn
, ,
.
4.1 ( ) (Pre-Hilbert sp. (Inner prod. sp.))
4.1 X C , x, y ∈ X , ⟨x, y⟩ ∈ C (inner product)
( ) ⟨x, x⟩ ≥ 0 (x ∈ X). ⟨x, x⟩ = 0 ⇐⇒ x = 0.
( ) ⟨x, y⟩ = ⟨y, x⟩ (x, y ∈ X)
( ) ⟨x1 + x2, y⟩ = ⟨x1, y⟩ + ⟨x2, y⟩, ⟨αx, y⟩ = α⟨x, y⟩ (x1, x2, y ∈ X, α ∈ C).
4.2 X or (X, ⟨·, ·⟩) (pre-Hilbert
sp.) or (inner prod. sp.) .
4.1 X , ∥x∥ := ⟨x, x⟩1/2
(x ∈ X) ,
. ( ) ⊂ ( ) .
.
4.1 (Schwartz ) |⟨x, y⟩| ≤ ∥x∥∥y∥ (x, y ∈ X).
∥y∥ = 0 y = 0 , ⟨x, y⟩ = 0 (→ ), , ∥y∥ ̸= 0 .
∀
α ∈ C , 0 ≤ ⟨x + αy, x + αy⟩ , α := −⟨x, y⟩/∥y∥2
.
, 0 ≤ ⟨x + αy, x + αy⟩ = ∥x∥2
+ α⟨x, y⟩ + α⟨x, y⟩ + |α|2
∥y∥2
= ∥x∥2
− |⟨x, y⟩|2
/∥y∥2
.
y = 0 ⟨x, y⟩ = 0 Schwartz . (⟨x, y⟩ = ⟨x, 0y⟩ = 0⟨x, y⟩ = 0)
[ 4.1 ] . , ∥x + y∥2
=
∥x∥2
+ ⟨x, y⟩ + ⟨y, x⟩ + ∥y∥2
≤ ∥x∥2
+ 2∥x∥∥y∥ + ∥y∥2
= (∥x∥ + ∥y∥)2
.
Functional Analysis 8
4.2 X ∥x∥ = ⟨x, x⟩1/2
, .
∥x + y∥2
+ ∥x − y∥2
= 2(∥x∥2
+ ∥y∥2
).
.
⟨x, y⟩ =
1
4
∥x + y∥2
− ∥x − y∥2
+ i∥x + iy∥2
− i∥x − iy∥2
.
X , , ⟨x, y⟩ ,
. , X ⇐⇒ .
.
, .
4.1 ⟨x, y⟩ x, y , i.e., xn → x, yn → y ⟨xn, yn⟩ → ⟨x, y⟩.
Schwartz .
4.2 (Hilbert sp.)
4.3 X (Hilbert
sp.) . K = R , K = C .
[Hilber sps ]
4.1 Rn
, Cn
: , Hilbert .
4.2 l2
: x = (xn), y = (yn) ∈ l2
, ⟨x, y⟩ =
n≥1
xnyn , ,
, ∥x∥2
2 = |xn|2
= ⟨x, x⟩. Hilbert .
4.3 L2
(Ω) (Ω ⊂ Rn
open): u, v ∈ L2
(Ω), ⟨u, v⟩ =
Ω
u(t)v(t)dt Hilbert.
4.4 A2
(Ω) (Ω ⊂ Cn
open, f ∈ A2
(Ω) ,
Ω
|f(z)|2
dxdy < ∞ (z = x + iy))
f, g ∈ A2
(Ω) , ⟨f, g⟩ =
Ω
f(z)g(z)dxdy Hilbert. ( )
4.5 C(Ω) (Ω ⊂ Rn
) L2
(Ω) ,
Hilbert .
4.3 (Projection theorem)
H Hilbert sp. x, y ∈ H, A, B ⊂ H ,
x ⊥ y
def
⇐⇒ ⟨x, y⟩ = 0.
A ⊥ B
def
⇐⇒ ∀
a ∈ A, ∀
b ∈ B, a ⊥ b. ( x ⊥ B
def
⇐⇒ {x} ⊥ B.)
L ⊂ H ,
L⊥
:= {x ∈ H; x ⊥ L} L (orthogonal complement) .
Functional Analysis 9
4.1 L ⊂ H , L⊥
H .
x ⊥ y =⇒ ∥x + y∥2
= ∥x∥2
+ ∥y∥2
( )
L1, L2 ⊂ H , L1, L2 (direct sum) L1 ⊕L2 := L1 +L2; L1 ∩L2 = {0}.
[L1 ∩ L2 = {0} ⇐⇒ x = x1 + x2 ∈ L1 + L2 ] .
.
[ ] (⇒) x1 + x2 = x′
1 + x′
2 (xi, x′
i ∈ Li) x1 − x′
1 = x′
2 − x2 ∈ L1 ∩ L2 = {0} ,
xi = x′
i. (⇐) x ∈ L1 ∩ L2 x = x + 0 = 0 + x ∈ L1 + L2 , x = 0.
4.3 ( ) L ⊂ H H L L⊥
; H =
L ⊕ L⊥
, i.e., ∀
x ∈ H, ∃
y ∈ L, ∃
z ∈ L⊥
; x = y + z , .
y ∈ L x ∈ H L or or . PLx = y ,
PL L ( ) .
x ∈ L ∩ L⊥
⟨x, x⟩ = 0 , x = 0, i.e., L ∩ L⊥
= {0}. .
. ∀
x ∈ H , δ := infy∈L ∥x − y∥ . inf
∃
{yn} ⊂ L; ∥x − yn∥ → δ.
2(∥x − yn∥2
+ ∥x − ym∥2
) = ∥(x − yn) + (x − ym)∥2
+ ∥(x − yn) − (x − ym)∥2
= ∥2x − (yn + ym)∥2
+ ∥yn − ym∥2
.
(yn + ym)/2 ∈ L , δ ≤ ∥x − (yn + ym)/2∥.
∥yn − ym∥2
= 2(∥x − yn∥2
+ ∥x − ym∥2
) − 4 x −
yn + ym
2
2
≤ 2(∥x − yn∥2
+ ∥x − ym∥2
) − 4δ2
( )→ 0 (m, n → ∞). H ∃
y ∈ H; yn → y. L closed y ∈ L.
δ = ∥x − y∥ . z = x − y (∥z∥ = δ). z ⊥ L . ξ ∈ L , γ = ⟨z, ξ⟩
, ϕ(t) = ∥z −γtξ∥2
= ∥x−(y +γtξ)∥2
(t ∈ R) . y +γtξ ∈ L , ϕ(t) ≥ δ2
= ϕ(0)
(δ ).
ϕ(t) = ∥z∥2
− γt⟨z, ξ⟩ − γt⟨ξ, z⟩ + |γ|2
t2
∥ξ∥2
= δ2
− 2|γ|2
t + |γ|2
t2
∥ξ∥2
= δ2
− |γ|2
t(2 − t∥ξ∥2
).
γ ̸= 0 , t > 0 0 , 2 − t∥ξ∥2
> 0 , ϕ(t) < ϕ(0) = δ2
.
γ = 0.
4.6 H = L2
(Ω) (Ω ⊂ Rn
: bdd open) , u ∈ L
def
⇐⇒ u ∈ H;
Ω
u(t)dt = 0
, L , PLu(t) = u(t) −
1
|Ω| Ω
u(t)dt. L⊥
= { }.
4.7 H = L2
(−1, 1) u ∈ L
def
⇐⇒ u ∈ H; u(−t) = u(t) L
, L⊥
= {v ∈ H; v(−t) = −v(t)}.
4.2 2 . ( , M = { } , L ⊂ M⊥
, L ⊃ M⊥
. , [0, 1) , u(t) = v(t) + v(−t) .)
Functional Analysis 10
4.4 (ONS=orthonormal system)
{xk} ⊂ H: (ONS)
def
⇐⇒ ⟨xj, xk⟩ = δjk.
4.8 L2
(0, 1) {
√
2 sin(πkt)}∞
k=1, {e2πkti
}∞
k=0 .
4.2 {xk} ⊂ H: ONS ∀
x ∈ H,
k
|⟨x, xk⟩|2
≤ ∥x∥2
(Bessel ).
x ∈ H , αk = ⟨x, xk⟩ . ∀
n ∈ N ,
0 ≤ ∥x −
n
k=1
αkxk∥2
= ∥x∥2
−
n
k=1
αk⟨x, xk⟩ −
n
k=1
αk⟨xk, x⟩ +
n
j,k=1
αjαk⟨xj, xk⟩
= ∥x∥2
−
n
k=1
|αk|2
n
k=1
|αk|2
≤ ∥x∥2
. n → ∞ .
{xk} ⊂ H , ⟨{xk}⟩ :=
n
k=1
αkxk; αk ∈ K, n ∈ N , L := ⟨{xk}⟩ {xk}
. ( upper bar .)
4.4 {xk} ⊂ H: ONS, L = ⟨{xk}⟩: {xk} . .
(i) L = H
(ii) ∀
x ∈ H, x = k⟨x, xk⟩xk ( Fourier )
(iii) ∀
x, y ∈ H, ⟨x, y⟩ = k⟨x, xk⟩⟨y, xk⟩ ( ).
(iv) ∀
x ∈ H, ∥x∥2
= k |⟨x, xk⟩|2
(Perseval ).
(v) ∀
k, ⟨x, xk⟩ = 0 x = 0.
(i) L = H ⇐⇒ L⊥
= {0} (by Proj. Th.) .
[(i) ⇒ (ii)] x ∈ H , αk = ⟨x, xk⟩ Bessel , k |αk|2
≤ ∥x∥2
, ,
. m > n ,
m
k=1
αkxk −
n
k=1
αkxk
2
=
m
k=n+1
αkxk
2
=
m
k=n+1
|αk|2
→ 0 (m > n → ∞).
{
n
k=1
αkxk} Cauchy in H. ∃
y =
∞
k=1
αkxk ∈ H.
⟨x − y, xk⟩ = ⟨x, xk⟩ − ⟨
n
αnxn, xk⟩ = αk −
n
αn⟨xn, xk⟩ = αk − αk = 0.
(x − y) ⊥ ⟨{xk}⟩, , (x − y) ⊥ ⟨{xk}⟩ = L = H.
x − y = 0, i.e., x = y.
[(ii) ⇒ (iii)] x, y ∈ H , αk = ⟨x, xk⟩, βk = ⟨y, xk⟩ . Schwartz Bessel
n
k=1
|αkβk| ≤
n
k=1
|αk|2
1/2 n
k=1
|βk|2
1/2
≤ ∥x∥∥y∥.
Functional Analysis 11
n → ∞
∞
k=1
αkβk .
⟨x, y⟩ = lim
n→∞
⟨
n
k=1
αkxk,
n
k=1
βkxk⟩ =
∞
k=1
αkβk.
[(iii) ⇒ (iv)], [(iv) ⇒ (v)] .
[(v) ⇒ (i)] x ∈ L⊥ ∀
k ≥ 1, ⟨x, xk⟩ = 0. x = 0 , L⊥
= {0} .
H = L.
4.4 H {xk} , (com-
plete ONS=CONS) .
4.9 l2
ej = (δj,n)n≥1 (j 1, 0) {ej} CONS.
4.10 H = L2
(−π, π) ,
1
√
2π
,
1
√
π
sin nt,
1
√
π
cos nt
∞
n=1
CONS.
∀
x ∈ H ,
x(t) =
1
2
a0 +
∞
n=1
(an cos nt + bn sin nt) an =
1
π
π
−π
x(t) cos ntdt, bn =
1
π
π
−π
x(t) sin ntdt
, Fourier , an, bn Fourier .
4.3 2 .
[Schmidt ] {yk} ⊂ H .
e1 ≡ x1 := y1/∥y1∥, en = xn/∥xn∥ with xn = yn −
n−1
k=1
⟨yn, ek⟩ek (n ≥ 2)
. {ek} ONS . Schmidt .
{ek} ONS .
4.5 Hilbert H CONS .
H {zk} {yn} . Schmidt
, {en} . , ∀
n, ⟨x, en⟩ = 0 x = 0
, CONS .
4.6 .
H . H
. x, y ∈ H , ∃
xn, yn ∈ H; xn → x, yn → y. {⟨xn, yn⟩} Cauchy
(Schwartz {∥xn∥}, {∥yn∥} ). ⟨x, y⟩ := lim⟨xn, yn⟩
, . ( , {xn}, {yn} ⊂ H
, H .)
Functional Analysis 12
5 (Linear Operators)
5.1 X, Y , D ⊂ X , T : D → Y (linear)
(i) T(x1 + x2) = Tx1 + Tx2 (x1, x2 ∈ D), (ii) T(αx) = αTx (α ∈ K, x ∈ D)
(linear operator) . D(T) := D T
(domain), R(T) := T(D) T (range) . Y = X T X
.
5.2 X, Y normed sps, lin. op. T : D(T) ⊂ X → Y
(i) (bounded operator)
def
⇐⇒ ∃
M; ∥Tx∥ ≤ M∥x∥ (x ∈ D(T)).
(ii) (conti. operator)
def
⇐⇒ xn → x in D(T) Txn → Tx.
5.1 X, Y normed sps, T : D(T) ⊂ X → Y ⇐⇒ T
(⇒) . , ∀
n ≥ 1, ∃
xn ∈ D(T); ∥Txn∥ > n∥xn∥ yn :=
xn/(
√
n∥xn∥) , ∥yn∥ = 1/
√
n , yn → 0. , ∥Tyn∥ = ∥Txn∥/(
√
n∥xn∥) >
√
n → ∞
, T . T .
(⇐) xn → x in D(T) . , ∥Txn − Tx∥ = ∥T(x − xn)∥ ≤ M∥xn − x∥ → 0
, Txn → Tx , T .
X, Y normed sps ,
T ∈ L(X, Y )
def
⇐⇒ D(T) = X T : X → Y ; bdd lin. op. L(X) := L(X, X).
, , T : X → Y D(T) = X .
X∗
:= L(X, K) X (conjucate sp.), (lin. conti.
functional) .
T ∈ L(X, Y ) , (operator norm) .
∥T∥ := sup
x∈X{0}
∥Tx∥
∥x∥
= sup
∥x∥=1
∥Tx∥.
∥Tx∥ ≤ ∥T∥∥x∥ . (→ : .)
5.2 X normed sp., Y Banach sp. . L(X, Y ) ∥T∥
Banach sp. .
{Tn} ⊂ L(X, Y ) Cauchy , i.e., ∥Tn − Tm∥ → 0 (m, n → ∞). ∀
x ∈
X, ∥Tnx−Tmx∥ ≤ ∥Tn−Tn∥∥x∥ → 0 , {Tnx} Cauchy in Y . Y : , ∃
y ∈ Y ; Tnx → y.
y x Tx = y , . ,
∀
ε > 0 , n, m , ∥Tn − Tm∥ < ε , ∥Tnx − Tmx∥ ≤ ∥Tn − Tn∥∥x∥ ≤ ε∥x∥ ,
m → ∞ ∥Tnx−Tx∥ ≤ ε∥x∥ . , ∥Tx∥ ≤ ∥Tx−Tnx∥+∥Tnx∥ ≤ (ε+∥Tn∥)∥x∥
, T ∈ L(X, Y ). ∥Tn − T∥ ≤ ε , Tn → T in L(X, Y ). L(X, Y )
.
Functional Analysis 13
5.1 (Examples of bounded operators)
5.1 Ω ⊂ Rn
, k(t) ∈ L∞
(Ω), 1 ≤ p ≤ ∞ . x ∈ Lp
(Ω) ,
(Tx)(t) = k(t)x(t) (t ∈ Ω) T Lp
(Ω) , ∥T∥ = ∥k∥∞.
5.1 . ( , ∥k∥∞ = 0 . > 0 . ∥T∥ ≤ ∥k∥∞ .
∀
ε > 0, Ωε = {|k| > ∥k∥∞ −ε} , Ωε , |Ωε| > 0 , x(t) := |Ωε|−1/p
1Ωε (t)
. , |Ωε| = ∞ , {|t| ≤ n}; n: , .)
5.2 Ω ⊂ Rn
, k(t, s) ∈ L2
(Ω2
), i.e.,
Ω2
|k(t, s)|2
dtds < ∞ . x ∈ L2
(Ω)
, (Tx)(t) =
Ω
k(t, s)x(s)ds T , ∥T∥ ≤
Ω2
|k(t, s)|2
dtds
1/2
.
k , T .
Schwartz ,
|(Tx)(t)| ≤
Ω
|k(t, s)||x(s)|ds ≤
Ω
|k(t, s)|2
ds
1/2
Ω
|x(s)|2
ds
1/2
.
|(Tx)(t)|2
≤
Ω
|k(t, s)|2
ds · ∥x∥2
L2 . t ∥Tx∥2
L2 ,
.
5.3 ( ) ρ ∈ L1
(Rn
) . 1 ≤ p ≤ ∞ , x ∈ Lp
(Rn
) ,
(Tx)(t) = (ρ ∗ x)(t) :=
Rn
ρ(t − s)x(s)ds =
Rn
ρ(s)x(t − s)ds
T Lp
(Rn
) Lp
(Rn
) , ∥Tx∥Lp ≤ ∥ρ∥L1 ∥x∥Lp .
T = ρ ∗ x ρ (convolution op.) .
p = 1, ∞ . 1 < p < ∞ q p (1/p + 1/q = 1)
. |ρ(t − s)x(s)| = (|ρ(t − s)|1/p
|x(s)|)|ρ(t − s)|1/q
H¨older ,
|(Tx)(t)| ≤ |ρ(t − s)||x(s)|p
ds
1/p
|ρ(s)|ds
1/q
= |ρ(t − s)||x(s)|p
ds
1/p
∥ρ∥
1/q
L1 .
p , t ,
∥Tx∥p
Lp ≤ ∥ρ∥
p/q
L1 dt |ρ(t − s)||x(s)|p
ds = ∥ρ∥
p/q+1
L1 ∥x∥p
Lp .
p/q + 1 = p(1/q + 1/p) = p , .
5.2 (Inverse operators)
T ∈ L(X, Y ) , ∃
S ∈ L(Y, X); TS = IY , ST = IX S T
(inv. op.) , T−1
.
T ∈ L(X) y ∈ X , (I − T)x = y x ∈ X
, (I − T)−1
.
Functional Analysis 14
5.3 X: Banach, T ∈ L(X) . ∥T∥ < 1 R(I−T) = X , ∃
(I−T)−1
∈
L(X); (I − T)−1
=
∞
n=0
Tn
= I + T + T2
+ · · · (T0
= I). (Neumann
series) , L(X) . ∥(I − T)−1
∥ ≤
∞
n=0
∥Tn
∥ ≤ 1/(1 − ∥T∥)
. ∥T∥ < 1
∞
n=0
∥Tn
∥ < ∞ , ,
. ∥(I − T)−1
∥ ≤
∞
n=0
∥Tn
∥ < ∞ .
∥T∥ < 1
∞
n=0
∥Tn
∥ ≤
∞
n=0
∥T∥n
= 1/(1 − ∥T∥) < ∞ ,
. X , L(X) .
n
k=0
Tk
−
m
k=0
Tk
≤
n
k=m+1
∥Tk
∥ → 0 (n > m → ∞)
,
n
k=0
Tk
L(X) Cauchy , ∃
S =
∞
k=0
Tk
∈ L(X).
TS = ST =
∞
n=0
Tn+1
=
∞
n=0
Tn
− I = S − I
, (I−T)S = S(I−T) = I, i.e., ∃
(I−T)−1
= S =
∞
n=0 Tn
. ∥(I − T)−1
∥ ≤
∞
n=0
∥Tn
∥
.
5.4 ( ) −∞ < a < b < ∞, y ∈ C[a, b] .
y(t) = x(t) −
b
a
k(t, s)x(s)ds
x ∈ C[a, b] . k(t, s) ∈ C([a, b]2
) , M := maxt,s∈[a,b] |k(t, s)| ,
M(b − a) < 1 . (X, ∥ · ∥) := (C[a, b], ∥ · ∥∞) x ∈ X ,
(Kx)(t) =
b
a
k(t, s)x(s)ds
, K ∈ L(X) , ∥Kx∥ ≤ M(b − a)∥x∥, i.e., ∥K∥ ≤ M(b − a) < 1 .
y = (I − K)x , ∃
(I − K)−1
; x = (I − K)−1
y = y + Ky + K2
y + · · · .
k1(t, s) = k(t, s), kn(t, s) =
b
a
k1(t, r)kn−1(r, s)dr (n ≥ 2)
|kn(t, s)| ≤ Mn
(b − a)n−1
, Kn
y(t) =
b
a
kn(t, s)y(s)ds
. h(t, s) := n≥1 kn(t, s) , ,
h(t, s) ∈ C([a, b]2
) ,
x(t) = y(t) +
∞
n=1
b
a
kn(t, s)y(s)ds = y(t) +
b
a
h(t, s)y(s)ds
Functional Analysis 15
5.2 x ∈ C[a, b] Kx ∈ C[a, b] .
5.5 ( ) , t .
y(t) = x(t) −
t
a
k(t, s)x(s)ds
x ∈ C[a, b] . , M(b − a) < 1 . x
. , (Kx)(t) =
t
a
k(t, s)x(s)ds
k1(t, s) = k(t, s), kn(t, s) =
t
s
k1(t, r)kn−1(r, s)dr (n ≥ 2)
|kn(t, s)| ≤ Mn (t − s)n−1
(n − 1)!
≤ Mn (b − a)n−1
(n − 1)!
Kn
y(t) =
t
a
kn(t, s)y(s)ds
.
∞
n=1
∥Kn
∥ ≤
∞
n=1
Mn (b − a)n−1
(n − 1)!
< ∞ ,
∃
(I − K)−1
; x = (I − K)−1
y = y + Ky + K2
y + · · · . h(t, s) := n≥1 kn(t, s)
, h(t, s) ∈ C([a, b]2
) , x(t) = y(t) +
t
a
h(t, s)y(s)ds.
5.3 |kn(t, s)| ≤ Mn
(t − s)n−1
/(n − 1)! .
6 ( , , )
3 , , ,
. .
6.1 ( (Baire’s category theorem)) (X, d)
, Xn ⊂ X (n ≥ 1). X =
∞
n=1 Xn , 1 Xn X
, i.e., X ∃
B ⊂ ∃
Xn.
. Xn . X1
X1 ̸= X (X ). ∃
x1 ∈ X  X1. X1 closed , d1 := d(x1, X1) =
infx∈X1 d(x1, x) > 0. ρ1 := 1 ∧ (d1/2) ≤ 1, B1 := B(x1, ρ1) B1 ∩ X1 = ∅.
X2 , ∃
x2 ∈ B1  X2, d2 := d(x2, X2) > 0. x2 /∈ X  B1
( ) , d′
2 := d(x2, X  B1) > 0. ρ2 := min{1/2, d2/2, d′
2/2} ≤ 1/2, B2 := B(x2, ρ2)
B2 ⊂ B1, B2 ∩ X2 = ∅. B1 ⊃ B2 ⊃ · · · , Bk ∩ Xk = ∅, ρk ≤ 1/k
{Bk} . Bk xk k < m d(xk, xm) ≤ ρk ≤ 1/k
, Cauchy . X ∃
x ∈ X; xk → x. ∀
k, x ∈ Bk Bk ∩ Xk = ∅ ,
x /∈ Xk, i.e., x /∈
∞
k=1 Xk ,
∞
k=1 Xk = X .
Functional Analysis 16
6.1 (Uniform bounded principle)
6.2 ( ) X Banach sp., Y normed sp. . {Tλ}λ∈Λ ⊂
L(X, Y ) ,
∀
x ∈ X, sup
λ∈Λ
∥Tλx∥ < ∞ =⇒ sup
λ∈Λ
∥Tλ∥ < ∞.
Xn := λ∈Λ{x ∈ X; ∥Tλx∥ ≤ n} Tλ Xn ,
∞
n=1 Xn = X . X Baire , Xn0
,
i.e., ∃
x0 ∈ X, ρ0 > 0; B(x0, ρ0) ⊂ Xn0 . ∀
y ∈ B(0, ρ0), y + x0 ∈ B(x0, ρ0) , y = (y + x0) − x0
∥Tλy∥ ≤ ∥Tλ(y + x0)∥ + ∥Tλx0∥ ≤ 2n0. ∀
x ∈ X , µ = 2∥x∥/ρ0
∥µ−1
x∥ = ρ0/2 < ρ0 µ−1
x ∈ B(0, ρ0) , ∥Tλx∥ = µ∥Tλ(µ−1
x)∥ ≤ 2n0µ = 4n0∥x∥/ρ0.
, supλ ∥Tλ∥ ≤ 4n0/ρ0 .
6.3 (Banach-Steinhaus theorem) X Banach sp., Y normed sp. {Tn} ⊂
L(X, Y ) . ∀
x ∈ X, {Tnx} , Tx := lim
n→∞
Tnx T ∈ L(X, Y )
∥T∥ ≤ limn→∞ ∥Tn∥.
γ := limn→∞ ∥Tn∥ . {Tnx} , supn ∥Tnx∥ < ∞. X Banach ,
supn ∥Tn∥ < ∞. γ < ∞. ∀
ε > 0 , ∃
{nk}; ∥Tnk
∥ ≤ γ + ε.
∀
x ∈ X , ∥Tx∥ = limk→∞ ∥Tnk
x∥ ≤ (γ + ε)∥x∥. T ∈ L(X, Y ) ,
∥T∥ ≤ γ + ε. ε ∥T∥ ≤ γ.
6.2 (Open mapping theorem)
6.4 ( ) X, Y Banach sps . T ∈ L(X, Y ) , R(T) = Y
T , i.e., ∀
U ⊂ X; open, T(U) ⊂ Y ; open.
(1st Step) ∃
ρ > 0; BY (0, ρ) ⊂ TBX(0, 1) . R(T) = Y ,
Y = T(X) =
∞
n=1
TBX(0, n) =
∞
n=1
TBX(0, n) , Y Baire ,
∃
n ≥ 1, a ∈ Y, δ > 0; BY (a, δ) ⊂ TBX(0, n). ∀
y ∈ BY (0, δ) . y + a, a ∈ BY (a, δ) ⊂
TBX(0, n) , ∃
yk, y′
k ∈ TBX(0, n); yk → y + a, y′
k → a. yk − y′
k ∈ TBX (0, 2n) ,
, y = (y + a) − a = lim(yk − y′
k) ∈ TBX(0, 2n). BY (0, δ) ⊂ TBX (0, 2n).
ρ = δ/(2n) T BY (0, ρ) ⊂ TBX (0, 1).
(2nd Step) ρ , η = ρ/2 > 0 BY (0, η) ⊂ TBX(0, 1) .
BY (0, ρ) ⊂ TBX (0, 2), i.e, ∀
y ∈ BY (0, ρ) , ∃
x ∈ BX(0, 2); y = Tx .
εk = 2−k
(k ≥ 0) , BY (0, εkρ) ⊂ TBX(0, εk). y ∈ BY (0, ρ) ⊂
TBX(0, 1) ∃
x0,n ∈ BX (0, 1); Tx0,n → y , ∃
x0 ∈ BX(0, 1); ∥y − Tx0∥ < ε1ρ.
y − Tx0 ∈ BY (0, ε1ρ) , ∃
x1 ∈ BX(0, ε1); ∥y − Tx0 − Tx1∥ < ε2ρ. ,
∃
xk ∈ BX (0, εk); ∥y −
k
j=0
Txj∥ < εk+1ρ. ∥
m
j=k
xj∥ ≤
m
j=k
∥xj∥ ≤
m
j=k
εj → 0 (m >
k → ∞) , {
k
j=0
xj} Cauchy in X , ∃
x =
∞
k=0
xk ∈ X. T
Functional Analysis 17
Tx =
∞
k=0
Txk. ∥x∥ ≤ ∥x0∥ +
∞
k=1
∥xk∥ < ∥x0∥ +
∞
k=1
εk < 1 + 1 = 2. x ∈ BX (0, 2).
∥y −
k
j=0
Txj∥ < εk+1ρ k → ∞ y =
∞
k=0
Txk = Tx.
(3rd Step) T , i.e., ∀
U ⊂ X; open, T(U) ⊂ Y ; open . T
, ∀
α > 0, BY (0, αη) ⊂ TBX (0, α). ∀
y0 ∈ T(U) . ∃
x0 ∈ U; y0 = Tx0. U open ,
∃
δ > 0; x0 + BX (0, δ) = BX(x0, δ) ⊂ U. ∀
y ∈ BY (y0, δη) , y′
:= y − y0 ∈ BY (0, δη)
. BY (0, δη) ⊂ TBX(0, δ) ∃
x′
∈ BX (0, δ); y′
= Tx′
. x0 + x′
∈ U ,
y = y0 + y′
= Tx0 + Tx′
= T(x0 + x′
) ∈ T(U). BY (y0, δη) ⊂ T(U) , T(U) open.
6.5 ( (range theorem)) X, Y Banach sps. . T ∈ L(X, Y )
, R(T) = Y T 1 to 1 T−1
∈ L(Y, X).
T−1
, Y X .
. ∀
U ⊂ X; open , S := T−1
S−1
(U) = {y ∈ Y ; Sy = T−1
y ∈
U} = {y ∈ Y ; y ∈ T(U)} T(U) . , T(U) open. , S−1
(U)
open , S = T−1
. T−1
∈ L(Y, X).
6.3 (Closed graph theorem)
, T D(T) ̸= X .
6.1 (X, ∥ · ∥X), (Y, ∥ · ∥Y ) normed sps. . T X Y
(closed op.) T : D(T) ⊂ X → Y , T G(T) = {(x, Tx) ∈
X × Y ; x ∈ D(T)} ∥(x, Tx)∥G = ∥x∥X + ∥Tx∥Y ,
xn ∈ D(T) → x in X, Txn → y in Y (x, y) ∈ G(T), i.e., x ∈ D(T) y = Tx.
D = D(T) , T
def
⇐⇒ xn → x in D Txn → Tx in Y ,
T D .
6.6 (i) D(T) closed , T : D(T) ⊂ X → Y (= ) T .
D(T) = X .
(ii) Y Banach , T : D(T) ⊂ X → Y , T D(T) T
, , T .
(iii) X, Y Banach , T ⇐⇒ D(T) ∥x∥G := ∥x∥X + ∥Tx∥Y
.
(i) xn ∈ D(T) → x ∈ X, Txn → y ∈ Y D(T) closed , x ∈ D(T) ,
y = Tx, T .
(ii) xn ∈ D(T) → x ∈ X . {Txn} Y Cauchy , Y
Txn → ∃
y ∈ Y . Tx := y , T D(T) , T = T on D(T),
∥T∥ = ∥T∥ . (i) , T .
(iii) (⇒) {xn} ⊂ D(T); ∥xn − xm∥G → 0 (m, n → ∞) . X, Y xn → ∃
x in
X, Txn → ∃
y in Y . x ∈ D(T), y = Tx. ∥xn − x∥G = ∥xn − x∥X +
∥Txn − Tx∥Y → 0 , D(T) .
Functional Analysis 18
(⇐) xn ∈ D(T) → x ∈ X, Txn → y ∈ Y {xn} D(T) ∥·∥G Cauchy
. ∃
x∗
∈ D(T); ∥xn − x∗
∥G → 0. x∗
= x, Tx = Tx∗
= y
, T closed .
D(T) closed , Y Banach , T
.
6.1 X = C[0, 1], D(T) = C1
[0, 1] (Tx)(t) = x′
(t) , ,
.
6.7 ( ) X, Y Banach sps, T X Y .
D(T) = X T ∈ L(X, Y ).
Z = G(T) = {(x, Tx) ∈ X × Y ; x ∈ D(T) = X} . T
X, Y Banach , ∥(x, Tx)∥Z := ∥x∥ + ∥Tx∥ Banach
. S : Z → X; S(x, Tx) = x S ∈ L(Z, X) ,
R(S) = X S 1 to 1 . X Banach , S−1
. ∥Tx∥ ≤ ∥(x, Tx)∥Z = ∥S−1
x∥Z ≤ ∃
M∥x∥. T , i.e., T ∈ L(X, Y )
.
7 (Linear Functionals)
normed sp X K = R or C
(bdd lin. functional) . , (conti. lin. functional)
. X∗
:= L(X, K) , X (dual sp.) .
K = R or C , X∗
. f ∈ X∗
,
i.e., f : X → K; f(αx + βy) = αf(x) + βf(y) (α, β ∈ K, x, y ∈ X), ∥f∥ < ∞.
7.1 (Dual spaces)
X Hilbert sp. H , H∗
= H . Rn
, Cn
, L2
(Ω), l2
dual sps
. .
7.1 ( (Riesz’s representation theorem)) X = H Hilbert
sp. . ∀
f ∈ H∗
, ∃1
y ∈ H; f(x) = ⟨x, y⟩ (∀
x ∈ H). ∥f∥ = ∥y∥ .
H∗
= H .
f ≡ 0 y = 0 . f ̸≡ 0 . N = {x ∈ H; f(x) = 0}
. ( , x ∈ N, α ∈ K f(αx) = αf(x) = 0 , αx ∈ N. x, x′
∈ N
f(x + x′
) = f(x) + f(x′
) = 0 , x + x′
∈ N. . xn ∈ N → x ∈ H
f(x) = lim f(xn) = 0 x ∈ N. N .) H = N ⊕ N⊥
. f ̸≡ 0
, N⊥
̸= ∅. y0 ∈ N⊥
; y0 ̸= 0 1 . f(y0) ̸= 0. y := (f(y0)/∥y0∥2
)y0 , y ∈ N⊥
, . , ∀
x ∈ H , f(y0)x − f(x)y0 ∈ N ,
0 = ⟨f(y0)x − f(x)y0, y⟩ = f(y0)⟨x, y⟩ − f(x)⟨y0, y⟩ = f(y0)(⟨x, y⟩ − f(x))
Functional Analysis 19
, f(x) = ⟨x, y⟩. ∃
y′
∈ H; f(x) = ⟨x, y⟩ = ⟨x, y′
⟩ ∀
x ∈ H, ⟨x, y−y′
⟩ = 0
, x = y − y′
∥y − y′
∥ = 0, i.e., y = y′
. y . ∥x∥ = 1
, Schwartz , |f(x)| = |⟨x, y⟩| ≤ ∥x∥∥y∥ = ∥y∥. ∥f∥ ≤ ∥y∥. x0 = y/∥y∥
f(x0) = ⟨x0, y⟩ = ∥y∥ ∥y∥ = f(x0) ≤ sup
∥x∥=1
|f(x)| = ∥f∥. ∥f∥ = ∥y∥.
Banach sp. X , X∗
, .
7.1 1 ≤ p < ∞ . q p , i.e., 1/p + 1/q = 1 ( , p = 1
q = ∞). (i) Ω ⊂ Rn
(Lp
(Ω))∗
= Lq
(Ω). (ii) (lp
)∗
= lq
.
7.2 l∞
0 := {(xn) ∈ l∞
; limn→∞ xn = 0} l∞
0 l∞
∥ · ∥∞
Banach , (l∞
0 )∗
= l1
.
7.2 (Hahn-Banach’s extension thoerem)
7.2 ( ) X , L ⊂ X . f
L . ∃
p : X → R; , p(λx) = λp(x) (λ > 0, x ∈ X),
p(x + y) ≤ p(x) + p(y) (x, y ∈ X) , f ≤ p on L , ∃
F ∈ X∗
= L(X, R); F = f
on L, F ≤ p on X . , f X , f ≤ p
.
L = X , L ̸= X . x0 ∈ X  L ,
L1 = L + Rx0 . .
x = y + tx0 ∈ L1 .
f L1 , c ∈ R , F(x) = F(y + tx0) := f(y) + tc .
F L1 .
c F ≤ p on L1.
Zorn f X F ≤ p .
L1 , x = y+tx0 = y′
+t′
x0 (y, y′
∈ L, t, t′
∈ R)
0 = (y−y′
)+(t−t′
)x0, i.e, (t−t′
)x0 = y′
−y ∈ L. t ̸= t′
x0 = (y′
−y)/(t−t′
) ∈ L
, . t = t′
, y = y′
.
xi = yi + tix0 ∈ L1 (yi ∈ L, ti ∈ R) αi ∈ R , F(α1x1 + α2x2) = F((α1y1 +
α2y2)+(α1t1 +α2t2)x0) = f(α1y1 +α2y2)+(α1t1 +α2t2)c = α1(f(y1)+t1c)+α2(f(y2)+t2c) =
α1F(x1) + α2F(x2).
y, y′
∈ L , f(y) + f(y′
) = f(y + y′
) ≤ p(y + y′
) = p(y + x0 + y′
− x0) ≤
p(y + x0) + p(y′
− x0) , f(y′
) − p(y′
− x0) ≤ p(y + x0) − f(y). β1 := supy′∈L(f(y′
) −
p(y′
− x0)), β2 := infy∈L(p(y + x0) − f(y)) , β1 ≤ β2 β1 ≤ c ≤ β2 c
, f(y) + c ≤ p(y + x0), f(y′
) − c ≤ p(y′
− x0) (y, y′
∈ L). t > 0
F(x) = F(y + tx0) = f(y) + tc = t(f(y/t) + c) ≤ tp(y/t + x0) = p(y + tx0) = p(x). t < 0
F(x) = F(y + tx0) = f(y) + tc = (−t)(f(−y/t) − c) ≤ −tp(−y/t − x0) = p(y + tx0) = p(x).
t = 0 F(x) = F(y) = f(y) ≤ p(y) = p(x). F ≤ p on L1.
g ∈ Φ
def
⇐⇒ g : Lg → R; , L ⊂ Lg, g = f on L, g ≤ p on Lg .
Φ ̸= ∅ . Φ ( ) . g, g′
∈ Phi , g ≼ g′ def
⇐⇒
Lg ⊂ Lg′ , g = g′
on Lg . Φ {gλ} . Lλ := Lgλ
Functional Analysis 20
. L0 := Lλ , g0 on L0 g0 = gλ on Lλ , g0 ∈ Φ {gλ}
. Φ . Zorn , ∃
F ∈ Φ
, i.e, g ∈ Φ; F ≼ g g = F. F X .
, , F Φ . F
.
7.3 ( ) X , L ⊂ X . f L
. ∃
p : X → C; , p(λx) = |λ|p(x) (λ ∈ C, x ∈ X),
p(x + y) ≤ p(x) + p(y) (x, y ∈ X) , |f| ≤ p on L , ∃
F ∈ X∗
= L(X, C);
F = f on L, |F| ≤ p on X . , f X , f ≤ p
.
. f(x) = g(x) + ih(x)
. g, h L .
g, h ≤ |f| ≤ p on L. g X G; G ≤ p on X
. −G(x) = G(−x) ≤ p(−x) = p(x) |G| ≤ p. , g(ix) + ih(ix) =
f(ix) = if(x) = ig(x) − h(x) , h(x) = −g(ix). F(x) := G(x) − iG(ix)
, . , F = f on L F(x1 + x2) = F(x1) + F(x2) ,
F(ix) = G(ix)−iG(−x) = i(−iG(ix)+G(x)) = iF(x) a ∈ R F(ax) = aF(x) , α ∈ C
F(αx) = αF(x) . F(x) = reiθ
F(e−iθ
x) = e−iθ
F(x) ∈ R ,
G(e−iθ
x) , |F(x)| = |eiθ
F(x)| = |G(e−iθ
x)| ≤ p(e−iθ
x) = |e−iθ
|p(x) = p(x).
7.1 X ( ) , L ⊂ X . f L ( )
. ∃
F ∈ X∗
; F = f on L, ∥F∥X = ∥f∥L.
p(x) = ∥f∥L∥x∥ , .
7.2 X . ∀
x0 ∈ X, ̸= 0, ∃
g ∈ X∗
; g(x0) = ∥x0∥, ∥g∥ = 1.
L := ⟨x0⟩ = {tx0; t ∈ K} f(x) = f(tx0) := t∥x0∥ (x = tx0 ∈ L) ,
. |f(x)| = |t|∥x0∥ = ∥tx0∥ = ∥x∥ ∥f∥ = 1.
7.3 X , L X . x0 ∈ X  L , d := infy∈L ∥x0 −
y∥ > 0 . ∃
f ∈ X∗
; f = 0 on L, f(x0) = 1, ∥f∥ ≤ 1/d.
L1 := L + Rx0 g(x) = t (x = y + tx0 ∈ L1) g = 0 on L, g(x0) = 1,
∥g∥L1 ≤ 1/d. .
, . 2 , Banach sp., ,
, , , (= compact ) ,
, . ,
, , , .
Functional Analysis 21
A
, .
A.1 Lp
(X, F, µ) (X a set, F σ-field on X, µ = µ(dx) on X) , H¨older
, Minkovsky .
f ∈ Lp
(X) (or Lp
(X, dµ) or Lp
(X, F, µ) ) ∥f∥Lp < ∞ .
,
∥f∥Lp =
X
|f(x)|p
µ(dx)
1/p
(1 ≤ p < ∞),
∥f∥∞ = ess.supx∈X|f(x)| := inf{α; |f(x)| ≤ α µ-a.e}.
, 1 ≤ p ≤ ∞ , 1 ≤ q ≤ ∞ 1/p + 1/q = 1 . ,
p = 1 q = ∞, p = ∞ q = 1 . H¨older .
∥fg∥L1 ≤ ∥f∥Lp ∥g∥Lq , ∥fg∥L1 ≤ ∥f∥L1 ∥g∥∞ (∥fg∥L1 ≤ ∥f∥∞∥g∥L1 ).
Minkovsky ∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp , Lp
(X)
.
(X, F) = (N, 2N
) µ = n≥1 δn counting measure ( ) , N
f(n) ,
N
f(n)µ(dn) =
n≥1
f(n) . x = (x1, x2, . . . ) ,
f(n) = |xn|p
n≥1
|xn|p
. lp
Banach sp.
.
A.2
A.1 X , ∃
X Banach sp., ∃
J : X → X ; ∥Jx∥ = ∥x∥
(x ∈ X), J(X) dense in X
J(X) X , X ⊂ X X = X . X X
(completion) .
X X Cauchy . {xn}, {yn} ∈ X , {xn} ∼ {yn} ⇐⇒
xn − yn → 0 (n → ∞) . , x = [{xn}] ∈
X := X/ ∼ .
x = [{xn}], y = [{yn}] ∈ X, α ∈ K , αx := [{αxn}], x + y := [{xn + yn}]
, X . x = [{xn}] ∈ X , |∥xn∥ − ∥xm∥| ≤ ∥xn − xm∥ → 0
, {∥x∥} R Cauchy , ∃
lim
n→∞
∥xn∥ =: ∥x∥ . X
( ).
x ∈ X , xn = x , Jx := [{xn = x}] x
, X ⊂ X . , J : X → X , ∥Jx∥ = ∥x∥ . ∀
x ∈ X ,
Functional Analysis 22
{xn} ∀
ε > 0, ∃
N; ∀
n, m ≥ N, ∥xm − xn∥ < ε , n ≥ N ,
Jxn ∈ X , x − Jxn = [{xm − xn}m≥1]
∥x − Jxn∥ = lim
m→∞
∥xm − xn∥ ≤ ε
∥x − Jxn∥ → 0 (n → ∞). , J(X) dense in X.
X . {xn} X Cauchy . xn {x
(n)
k }k≥1
Cauchy ∃
kn; ∀
m > kn, ∥x
(n)
m − x
(n)
kn
∥ ≤ 1/n. x := [{x
(n)
kn
}]
, x ∈ X , {xn} . , x ∈ X {x
(n)
kn
} ∈ X (i.e., X
Cauchy ) .
(A.1) ∥xn − Jx
(n)
kn
∥ = lim
m→∞
∥x
(n)
km
− x
(n)
kn
∥ ≤
1
n
.
∥x
(n)
kn
− x
(m)
km
∥ = ∥Jx
(n)
kn
− Jx
(m)
km
∥ ≤ ∥Jx
(n)
kn
− xn∥ + ∥xn − xm∥ + ∥xm − Jx
(m)
km
∥
≤ ∥xn − xm∥ +
1
n
+
1
m
→ 0 (n, m → ∞).(A.2)
{x
(n)
kn
} ∈ X. (A.1) ,
∥x − xn∥ ≤ ∥x − Jx
(n)
kn
∥ + ∥Jx
(n)
kn
− xn∥ ≤ ∥x − Jx
(n)
kn
∥ +
1
n
.
(A.2) ,
∥x − Jx
(n)
kn
∥ = lim
p→∞
∥x
(p)
kp
− x
(n)
kn
∥ ≤ lim
p→∞
∥xp − xn∥ +
1
n
. , 2 ,
lim
n→∞
∥x − xn∥ ≤ lim
n→∞
∥x − Jx
(n)
kn
∥ ≤ lim
n,p→∞
∥xp − xn∥ = 0,
xn → x in X , X .
A.3 Hk,p
(Ω)
Ω ⊂ Rn
, Ck
(Ω) k . α =
(α1, . . . , αn) (multi-index ) , |α| := α1 + · · · + αn, ∂α
x := ∂α1
1 · · · ∂αn
n . ,
∂j = ∂/∂xj .
Ck,p
(Ω) :=
⎧
⎪⎨
⎪⎩
u ∈ Ck
(Ω); ∥u∥k,p :=
⎛
⎝
α;|α|≤k Ω
|∂α
x u(x)|p
dx
⎞
⎠
1/p
< ∞
⎫
⎪⎬
⎪⎭
. (Ck,p
(Ω), ∥ · ∥k,p) Hp,k
(Ω) , Sobolev sp. .
{un} Cauchy in Ck,p
(Ω) ⇐⇒ ∀
α; 1 ≤ |α| ≤ k,
Ω
|∂α
x un(x) − ∂α
x um(x)|p
dx → 0 (m, n →
∞). Lp
(Ω) , ∃
uα
∈ Lp
(Ω);
Ω
|∂α
x un(x) − ∂α
x uα
(x)|p
dx → 0 (n → ∞).
(uα
)|α|≤k Hp,k
(Ω) , uα
= ∂α
x u .
Functional Analysis 23
A.4
A.2 [a, b] f(t) Pn(t) ,
i.e., ∃
{Pn(t)}; Pn
→
→ f on [a, b], i.e., lim
n→∞
sup
t∈[a,b]
|Pn(t) − f(t)| = 0.
t′
= (t − a)/(b − a) , [a, b] [0, 1] , (
) , [a, b] = [0, 1] . t ∈ [0, 1] ,
n
k=0
(k − nt)2 n
k
tk
(1 − t)n−k
= nt(1 − t) ≤
1
4
n
. ( t(1 − t) ≤ (t + (1 − t))/2 = 1/2 .) ,
,
n
k=0
n
k
xk
yn−k
= (x + y)n
,
n
k=0
n
k
tk
(1 − t)n−k
= 1
, x , x ,
n
k=0
k
n
k
xk
yn−k
= nx(x + y)n−1
,
n
k=0
k2 n
k
xk
yn−k
= nx(nx + y)(x + y)n−2
x = t, y = 1 − t (k − nt)2
= k2
− 2ntk + n2
t2
.
Pn(t) =
n
k=0
f
k
n
n
k
tk
(1 − t)n−k
Pn [0, 1] , f .
|f(t) − Pn(t)| ≤
n
k=0
f(t) − f
k
n
n
k
tk
(1 − t)n−k
, f [0, 1] , ∀
ε > 0, ∃
δ > 0; ∀
t, t′
∈ [0, 1]; |t−t′
| < δ, |f(t)−f(t′
)| < ε.
t , k |t−k/n| < δ |t−k/n| ≥ δ , S1, S2
,
|f(t) − Pn(t)| ≤ S1 + S2, , S1 ≤ ε
n
k=0
n
k
tk
(1 − t)n−k
= ε.
M = maxt∈[0,1] |f(t)| |f(t) − f(k/n)| ≤ 2M, |t − k/n| ≥ δ 1 ≤
|nt − k|/(nδ) ,
S2 ≤ 2M
n
k=0
|nt − k|
nδ
2
n
k
tk
(1 − t)n−k
≤
M
2nδ2
.
|f(t) − Pn(t)| ≤ ε +
M
2nδ2
.
t ∈ [0, 1] , supt∈[0,1] , n → ∞
lim
n→∞
sup
t∈[0,1]
|f(t) − Pn(t)| ≤ ε
, ε > 0 , ( )= 0 .
Functional Analysis 24
A.5
3.5
dim X = n {x1, . . . , xn} basis ∀
x ∈ X, ∃
(α1, . . . , αn); x = αixi.
∥x∥∞ = max |αi| 1 norm . ∥x∥ .
∥x∥ ≤ |αi|∥xi∥ ≤ max |αi| · ∥xi∥ = c1∥x∥∞ (c1 = ∥xi∥).
. . ∀
k ≥ 1, ∃
yk; ∥yk∥ > k∥yk∥ , ∥(yk/∥yk∥∞)∥ < 1/k → 0.
, zk = yk/∥yk∥∞ , ∥zk∥∞ = 1 , ∥zk∥ < 1/k → 0, i.e., zk → 0 under ∥ · ∥.
, zk =
n
i=1 β
(k)
i xi , 1 = ∥zk∥∞ = max |β
(k)
i | , ∃
β
(kj )
i → ∃
βi in K ,
∃
zkj → ∃
z under ∥ · ∥∞, under ∥ · ∥ by ( ). z = 0 ,
1 = ∥zkj ∥ → ∥z∥ . ∃
c0 > 0; ∥x∥ ≥ c0∥x∥∞ (x ∈ X).
.
[ ] ∃
c0 > 0; ∥x∥ ≥ c0∥x∥∞ (x ∈ X), i.e., 0 < c0 ≤ ∥x∥/∥x∥∞ = ∥(x/∥x∥∞)∥
. y = x/∥x∥∞ , f(y) := ∥y∥ , ∃
miny;∥y∥∞=1 f(y) > 0
. yk → y under ∥ · ∥∞ under ∥ · ∥ ,
f(y) conti. under ∥ · ∥. S := {y; ∥y∥∞ = 1} , compact
. , y =
n
i=1 βixi , 1 = ∥y∥∞ = max |βi| , y (β1, . . . , βn) ∈ Kn
, S = {(β1, . . . , βn); max |βi| = 1} Kn
. S (
) compact . , ∀
y ∈ S, f(y) > 0 , compact set
, ∃
y0 ∈ S; minS f = f(y0) = ∥y0∥ > 0 , c0 = ∥y0∥ .
A.6
A.3 X , ∥x + y∥2
+ ∥x − y∥2
= 2(∥x∥2
+ ∥y∥2
)
,
⟨x, y⟩ =
1
4
∥x + y∥2
− ∥x − y∥2
+ i∥x + iy∥2
− i∥x − iy∥2
, .
.
⟨x, x⟩ = ∥x∥2
, ⟨y, x⟩ = ⟨x, y⟩, ⟨ix, y⟩ = i⟨x, y⟩, ⟨x, −y⟩ = −⟨x, y⟩, ⟨x, 0⟩ = ⟨0, x⟩ = 0.
, , .
(1) Re⟨x1, y⟩ + Re⟨x2, y⟩ =
1
2
Re⟨x1 + x2, 2y⟩ = Re⟨x1 + x2, y⟩.
(2) Re .
(3) α ∈ R ⟨αx, y⟩ = α⟨x, y⟩. γ ∈ C , ⟨γx, y⟩ = γ⟨x, y⟩.
(1) , i.e., ⟨x, y⟩ = Re⟨x, y⟩.
⟨x1, y⟩ + ⟨x2, y⟩ =
1
4
(∥x1 + y∥2
+ ∥x2 + y∥2
) − (∥x1 − y∥2
+ ∥x2 − y∥2
)
=
1
8
(∥x1 + x2 + 2y∥2
+ ∥x1 − x2∥2
) − (∥x1 + x2 − 2y∥2
+ ∥x1 − x2∥2
)
=
1
8
(∥x1 + x2 + 2y∥2
− ∥x1 + x2 − 2y∥2
)
=
1
2
⟨x1 + x2, 2y⟩.
Functional Analysis 25
⟨x1, y⟩ + ⟨x2, y⟩ = ⟨x1 + x2, 2y⟩/2. x2 = 0 , ⟨0, y⟩ = 0 ,
⟨x, y⟩ = ⟨x, 2y⟩/2. , ⟨x1, y⟩ + ⟨x2, y⟩ = ⟨x1 + x2, 2y⟩ = ⟨x1 + x2, y⟩/2.
Re⟨x1, y⟩ + Re⟨x2, y⟩ = Re⟨x1 + x2, y⟩.
(2) ⟨x1 + x2, y⟩ + ⟨y, x1 + x2⟩ = (⟨x1, y⟩ + ⟨y, x1⟩) + (⟨x2, y⟩ + ⟨y, x2⟩) y iy
, ⟨x1 + x2, y⟩ − ⟨y, x1 + x2⟩ = (⟨x1, y⟩ − ⟨y, x1⟩) + (⟨x2, y⟩ − ⟨y, x2⟩) ,
⟨x1 + x2, y⟩ = ⟨x1, y⟩ + ⟨x2, y⟩.
(3) y ∈ X α ∈ R , f(α) := ⟨αx, y⟩ . . (2)
, n ∈ N , f(1) = f(n/n) = nf(1/n), i.e., f(1/n) = (1/n)f(1).
f(m/n) = (m/n)f(1) (m, n ∈ N). f(−α) = −f(α) , , ∀
r ∈ Q, f(r) = rf(1).
, ∀
α ∈ R, f(α) = αf(1), i.e., ⟨αx, y⟩ = α⟨x, y⟩. β ∈ R , ⟨iβx, y⟩ =
i⟨βx, y⟩ = iβ⟨x, y⟩. ∀
γ ∈ C, ⟨γx, y⟩ = γ⟨x, y⟩ .
A.7 A2
(Ω)
Ω ⊂ Cn
open ,
f ∈ A2
(Ω)
def
⇐⇒ f on Ω,
Ω
|f(z)|2
dxdy < ∞ (z = x + iy).
f, g ∈ A2
(Ω) , (f, g) =
Ω
f(z)g(z)dxdy Hilbert.
. {fn} A2
(Ω) Cauchy . z = x+iy ∈ C (x, y) ∈ R2
, fn ∈ L2
(Ω) Cauchy ∃
f ∈ L2
(Ω); ∥fn −f∥L2 → 0.
f . z ∈ Ω , Cauchy ,
fn(z) =
1
2πi |ζ−z|=r
fn(ζ)
ζ − z
dζ (0 < r ≤ ε)
, ε > 0 ; {|ζ − z| < ε} ⊂ Ω. r , r 0 ε
(A.3)
1
2
ε2
fn(z) =
1
2πi
ε
0
drr
|ζ−z|=r
fn(ζ)
ζ − z
dζ =
1
2π |ζ−z|≤ε
fn(ζ)dξdη (ζ = ξ + iη).
( |ζ − z| = r ζ − z = r(cos θ + i sin θ) , dζ = r(− sin θ + i cos θ)dθ =
ir(cos θ + i sin θ)dθ = i(ζ − z)dθ ,
ε
0
drr
|ζ−z|=r
dζ
ζ − z
=
ε
0
drr
2π
0
idθ = i
|ζ−z|≤ε
dξdη.)
fn L2
(Ω) (A.3) z Ω . (∀
K ⊂ Ω
compact 1 , ε > 0 Kε := {ζ; |ζ − z| ≤ ε, z ∈ K} ⊂ Ω .
sup
z∈K |ζ−z|≤ε
|fn(ζ) − f(ζ)|dξdη ≤
Kε
|fn(ζ) − f(ζ)|dξdη ≤ ∥fn − f∥L2 |Kε|1/2
→ 0).
(A.3) 2/ε2
f∗
. fn → f in L2
(Ω) , f = f∗
a.e. f ∈ A2
(Ω).
Functional Analysis 26
B ,
X , X∗∗
:= (X∗
)∗
X 2 . X ⊂ X∗∗
. X∗∗
= X X Banach sp. . 1 < p < ∞ , LP
(Ω)
lp
Banach sps .
B.1
X normed ps. . ,
.
xn → x (strong) in X
def
⇐⇒ ∥xn − x∥ → 0. s-limn→∞ xn = x .
xn → x (weak) in X
def
⇐⇒ ∀
f ∈ X∗
, f(xn) → f(x). w-limn→∞ xn = x
.
.
B.1 xn → x (weak) , .
[ ] xn → x′
(weak) . x ̸= x′
, ∃
f ∈ X∗
; f(x − x′
) =
∥x − x′
∥ ̸= 0, ∥f∥ = 1. f(x − x′
) = f(x) − f(x′
) = w- lim(f(xn) − f(xn)) = 0 ,
. qed
B.1 X = l2
f ∈ l2
, ∃1
y = (yk) ∈ l2
; f(x) = xkyk (x = (xk) ∈ l2
).
x(n)
= (x
(n)
k = δn,k) ∈ l2
f(x(n)
) = yn → 0 , x(n)
→ 0 (weak).
∥x(n)
− x(m)
∥l2 =
√
2 (m ̸= n). {x(n)
} .
B.1 X , xn → x (weak) in X . {∥xn∥}
∥x∥ ≤ lim inf ∥xn∥ .
∀
f ∈ X∗
, Tn(f) := f(xn) Tn ∈ X∗∗
. , {Tn(f)} . X∗
Banach , , sup ∥Tn∥ < ∞. T(f) := f(x) = lim f(xn) = lim Tn(f)
T ∈ X∗∗
, ∥T∥ = ∥x∥. ∥Tn∥ = ∥xn∥ , Banach-Steinhaus
, ∥x∥ = ∥T∥ ≤ lim inf ∥Tn∥ = lim inf ∥xn∥.
B.2 H Hilbert sp. . xn → x (weak) in H, , ∥xn∥ → ∥x∥
xn → x (strong) in H.
xn → x (weak) in H Riesz , ∀
y ∈ H, ⟨xn, y⟩ → ⟨x, y⟩
. ∥xn − x∥2
= ∥xn∥2
+ ∥x∥2
− 2ℜ⟨xn, x⟩ →
∥x∥2
+ ∥x∥2
− 2ℜ⟨x, x⟩ = 0.
X .
fn → f (weak*) in X∗
: ( * )
def
⇐⇒ ∀
x ∈ X, fn(x) → f(x).
B.3 X , fn → f (weak*) in X∗
. ∥f∥ ≤ lim inf ∥fn∥.
B.2 .
Functional Analysis 27
B.2
B.1 X, Y . T : D(T) ⊂ X → Y , D(T)
dense in X . g ∈ D(T∗
) ⊂ Y ∗ ∃
f ∈ X∗
; g ◦ T = f on D(T) ,
T∗
: D(Y ∗
) ⊂ Y ∗
→ X∗
T∗
(g) = f . , T∗
(g) = g ◦ T. T∗
T (adjoint op.) .
g ◦ T = f f g , . , g ◦ T = f′
, f = f′
on D(T) , D(T) dense , f, f′
f = f′
on X .
T , T X ,
D(T) = X . ∀
g ∈ Y ∗
, f := g ◦ T f ∈ X∗
,
D(T∗
) = Y ∗
.
X = H, Y = H′
Hilbert ⟨x, T∗
y⟩ = ⟨Tx, y⟩ (x ∈ D(T), y ∈ D(T∗
)) .
D(T∗
) = D(T) T = T∗
on D(T) T (self-adjoint
op.) . D(T) ⊂ D(T∗
) T = T∗
on D(T) , , ⟨x, Tx⟩ = ⟨Tx, y⟩
(x, y ∈ D(T)) T (symmetric op.) .
B.2 X = Y = Rn
, T Rn
Rn
tj,k := ⟨Tej, ek⟩
, T = (tj,k) . T∗
= t
T; T . X = Y = Cn
T∗
= t
T; .
B.3 H = L2
(0, 1) . k(t, s) [0, 1]2
, x ∈ H ,
Tx(t) =
[0,1]
k(t, s)x(s)ds T H , D(T) = D(T∗
) = H.
T∗
y(t) =
[0,1]
k(t, s)y(s)ds .
C
T n , ∃
λ ∈ C, ∃
x ∈ Rn
; x ̸= 0, Tx = λx λ
T , x T . λ ⇐⇒ det(λI − T) = 0.
λ , , (λI − T)x = 0 x 0 (Ker(λI − T) = {0}, i.e.,
λI − T 1 to 1) , det(λI − T) ̸= 0 , ∃
(λI − T)−1
.
, T X ,
z ∈ ρ(T)
def
⇐⇒ z ∈ C; Ker(zI − T) = {0} (zI − T 1 to 1) (zI − T)−1
∈ L(X).
, ρ(T) T (resolvent set) . R(z) := (zI − T)−1
T
. σ(T) := C  ρ(T) T (spectrum) .
∃
x ∈ D(T); x ̸= 0, Tx = zx, i.e., (zI − T)x = 0 z ∈ C T ,
σp(T) , (point spectrum) . N(zI − T) := Ker(zI − T)
z , z . σp(T) ⊂ σ(T).
z1, z2 ∈ ρ(T) R(z1) − R(z2) = (z1 − z2)R(z1)R(z2) (resolvent eqution) .
ρ(T) . σ(T) .
R(z): holmorphic on ρ(T).
T ∈ L(X) , r(T) := lim sup n
∥Tn∥ (spectral radius) .
Functional Analysis 28
(i) |z| > r(T) =⇒ z ∈ ρ(T), R(z) =
k≥0
1
zk+1
Tk
=
1
z
+
1
z2
T +
1
z3
T2
+ · · ·.
(ii) ∃
z ∈ σ(T); |z| = r(T).
D
X, Y Banach sps .
T : X → Y compact (or )
def
⇐⇒ ∀
{xn} ⊂ X: bdd, ∃
{xnk
}; Txnk
→ ∃
y ∈ Y .
compact op. . ( , ∃
xn ∈ X; ∥xn∥ = 1, ∥Txn∥ ≥
n → ∞ , compact )
T: compact =⇒ xn → x (weak) in X Txn → Tx (strong) in Y .
D.1 H: Hilbert, T : H → H: compact self adj. op. ,
{λn} ⊂ R ONS {xn} ,
∀
x ∈ H, ∃
ck ∈ K, ∃
x′
∈ H; Tx′
= 0, x = ckxk + x′
, Tx = λkckxk.
λn → 0 dim N(λnI − T) < ∞ (∀
n).

More Related Content

Recently uploaded

Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxUmeshTimilsina1
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxPooja Bhuva
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 

Recently uploaded (20)

Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 

Featured

How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Applitools
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at WorkGetSmarter
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...DevGAMM Conference
 
Barbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationErica Santiago
 
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellGood Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellSaba Software
 
Introduction to C Programming Language
Introduction to C Programming LanguageIntroduction to C Programming Language
Introduction to C Programming LanguageSimplilearn
 

Featured (20)

How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 
ChatGPT webinar slides
ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
 
More than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
 
Barbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy Presentation
 
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellGood Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
 
Introduction to C Programming Language
Introduction to C Programming LanguageIntroduction to C Programming Language
Introduction to C Programming Language
 

Norm equiv rc

  • 1. Analysis III Functional Analysis III 25 10 3 2 (10:40-12:10) 1 1 1.1 n Rn or Cn . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ( ) (Linear sp. (Vector sp.)) . . . . . . . . . . . . . . . . . 1 2 (Normed Spaces) 2 2.1 (Norm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 (Banach Spacses) 2 3.1 Banach (Examples of Banach sps) . . . . . . . . . . . . . . . . . . . . . 3 3.1.1 (Continuous function space) . . . . . . . . . . . . . . . . . 3 3.1.2 Lp (Lp -sp.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2 (Separable & equivarent norms) . . . . . . . . . . . . . . . 6 3.3 (Completion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 (Hilbert Spaces) 7 4.1 ( ) (Pre-Hilbert sp. (Inner prod. sp.)) . . . . . . . 7 4.2 (Hilbert sp.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.3 (Projection theorem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.4 (ONS=orthonormal system) . . . . . . . . . . . . . . . . . . . . . . . 10 5 (Linear Operators) 12 5.1 (Examples of bounded operators) . . . . . . . . . . . . . . . . . 13 5.2 (Inverse operators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6 ( , , ) 15 6.1 (Uniform bounded principle) . . . . . . . . . . . . . . . . . . . . 16 6.2 (Open mapping theorem) . . . . . . . . . . . . . . . . . . . . . . . . 16 6.3 (Closed graph theorem) . . . . . . . . . . . . . . . . . . . . . . . . 17 7 (Linear Functionals) 18 7.1 (Dual spaces) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7.2 (Hahn-Banach’s extension thoerem) . . . . . . . . . 19 1
  • 2. A 21 A.1 Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 A.2 . . . . . . . . . . . . . . . . . . . . . . 21 A.3 Hk,p (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 A.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 A.5 . . . . . . . . . . . . . . . . . 24 A.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 A.7 A2 (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 B , 26 B.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 B.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 C 27 D 28 1 , , , , , , . , . Rn , Cn ℓp , C([a, b]), Lp (Ω) (Ω ⊂ Rn ) ∥ · ∥ , , . , (= ) , , , . , , . , , , , . , , . , , , , , , . , , . , , , , . , .
  • 3. Functional Analysis 1 1 1.1 n Rn or Cn n ∈ N. x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn (or Cn ), : x + y = (x1 + y1, . . . , xn + yn), : α ∈ R (or C) , αx = (αx1, . . . , αxn) def. Rn (or Cn ) . (x, y) = j=1 xjyj in Rn or (x, y) = j=1 xjyj in Cn , , x |x| = (x, x)1/2 . Rn , Cn , n (Euclid spaces) . ( Hilbert sp. , Banach sp. .) 1.2 ( ) (Linear sp. (Vector sp.)) K = R or C . 1.1 ( ) X K ( ) , i.e., ∀ x, y ∈ X, x + y ∈ X, ∀ α ∈ K, ∀ x ∈ X, αx ∈ X; . (i) ( ) (x + y) + z = x + (y + z) (x, y, z ∈ X) (ii) ( ) x + y = y + x (x, y ∈ X) (iii) ( ) ∃ θ ∈ X; ∀ x ∈ X, x + θ = x (θ = 0 ) (iv) ( ) ∀ x ∈ X, ∃ x′ ∈ X; x + x′ = 0 (x′ = −x ) (v) ( ) α(x + y) = αx + αy, (α + β)x = αx + βx (x, y ∈ X, α, β ∈ K) (vi) ( ) (αβ)x = α(βx) (x ∈ X, α, β ∈ K) (vii) ( ) 1x = x (∀ x ∈ X) 1.1 . (∃ θ ∈ X; ∀ x ∈ X, x + θ = x θ ) [ ] ∃ θ′ ∈ X; ∀ x ∈ X, x + θ′ = x θ = θ + θ′ = θ′ + θ = θ′ , . 1.2 . (x ∈ X , ∃ x′ ∈ X; x + x′ = 0 x′ ) [ ] x ∈ X , ∃ x′′ ∈ X; x + x′′ = 0 0 = x + x′ = x + x′′ , , x′ = x′ + (x + x′′ ) = (x′ + x) + x′′ = (x + x′ ) + x′′ = x′′ . (1) X x1, . . . , xn ∈ X ( ) (linear independent) def ⇐⇒ [α1x1 + · · · + αnxn = 0 (α1, . . . , αn ∈ K) =⇒ α1 = · · · = αn = 0] ( )(linear dependent) def ⇐⇒ , i.e., ∃ (α1, . . . , αn) ̸= 0; α1x1 + · · · + αnxn = 0. X n (n-dimensional) def ⇐⇒ n , n+1 . dim X = n . X (infinite dimensional) def ⇐⇒ ∀ n ∈ N, n . x ∈ X x1, . . . , xn ∈ X (linear combination) def ⇐⇒ ∃ α1, . . . , αn ∈ K; x = α1x1 + · · · + αnxn
  • 4. Functional Analysis 2 1.3 X n n , , i.e., dim X = n =⇒ ∃ x1, . . . , xn ∈ X; lin. indep., ∀ x ∈ X, ∃ α1, . . . , αn ∈ K; x = α1x1 + · · · + αnxn. (2) X K . Y ⊂ X (subspace) def ⇐⇒ ∀ x, y ∈ Y, x + y ∈ Y, , ∀ α ∈ K, αx ∈ Y . 2 (Normed Spaces) , . . 2.1 (Norm) 2.1 ( ) X ∥ · ∥ : x → ∥x∥ ∥x∥ X (norm) . (i) ∥x∥ ≥ 0 (x ∈ X) ( ) (ii) ∥x∥ = 0 ⇐⇒ x = 0 ( ) (iii) ∥αx∥ = |α|∥x∥ (α ∈ K, x ∈ X) (iv) ∥x + y∥ ≤ ∥x∥ + ∥y∥ (x, y ∈ X) ( ) (X, ∥ · ∥) (normed space) . (X, ∥ · ∥) d(x, y) = ∥x − y∥ . , . (d.1) d(x, y) ≥ 0 (x, y ∈ X) ( ) (d.2) d(x, y) = 0 ⇐⇒ x = y ( ) (d.3) d(x, y) = d(y, x) (x, y ∈ X) ( ) (d.4) d(x, z) ≤ d(x, y) + d(y, z) (x, y, z ∈ X) ( ) (X, d) . {xn} ⊂ X , xn → x (n → ∞) def ⇐⇒ ∥xn − x∥ → 0 (n → ∞) x {xn} . 2.1 , i.e., (i) xn → x, yn → y =⇒ xn + yn → x + y, (ii) αn → α, xn → x =⇒ αnxn → αx. 2.2 , i.e., xn → x =⇒ ∥xn∥ → ∥x∥. 3 (Banach Spacses) 3.1 (Banach sp.) . , , . , (X, ∥ · ∥) , {xn} ⊂ X : (Cauchy sequence) def ⇐⇒ ∥xn − xm∥ → 0 (m, n → ∞) X (complete) def ⇐⇒ Cauchy {xn} ⊂ X , i.e., ∃ x ∈ X; xn → x.
  • 5. Functional Analysis 3 3.1 Banach (Examples of Banach sps) 3.1 Rn , Cn Banach sp. , , , , R1 , Cauchy , , Cauchy . 2 . 3.2 Pn: n (n ∈ N) x(t) = antn + an−1tn−1 + · · · + a0 ∈ Pn (ak ∈ C) (x + y)(t) = x(t) + y(t), (αx)(t) = αx(t), , y(t) = bntn + bn−1 n−1 + · · · + b0 , (x + y)(t) = (an + bn)tn + · · · + (a0 + b0), (αx)(t) = αantn + · · · + αa0 Pn . dim Pn = n + 1 ({1, t, t2 , . . . , tn } ) Pn ∋ x(t) = n j=0 ajtj , ∥x∥ = n j=0 |aj|. 3.1 Pn Banach . 3.1.1 (Continuous function space) 3.3 Ω ⊂ Rn C(Ω) [(x + y)(t) = x(t) + y(t), (αx)(t) = αx(t)] . dim C[0, 1] = ∞. ∥x∥∞ = supt∈Ω |x(t)| , Banach sp. (x(t) = tn−1 (n ≥ 1) ) {xn} Cauchy in C(Ω) . t ∈ Ω , |xn(t) − xm(t)| ≤ ∥xn − xm∥∞ → 0(m, n → ∞) , {xn(t)} R Cauchy . , ∃ x∗ (t) ∈ R; xn(t) → x∗ (t). n → ∞ , |x∗ (t) − xm(t)| ≤ lim n→∞ ∥xn − xm∥∞ t ∈ Ω , supt∈Ω , m → ∞ lim m→∞ sup t∈Ω |x∗ (t) − xm(t)| ≤ lim m,n→∞ ∥xn − xm∥∞ = 0 x∗ {xn} x∗ . xn → x∗ in C(Ω). Cb(R) = {x ∈ C(R); ∥x∥∞ < ∞} . , (Cb, ∥· ∥∞) Banach sp. 3.1 . Pn ∋ x(t) n j=0 ajtj , ∥x∥∞ = max |αj|, x(t) ∈ C([0, 1]) , ∥x∥L1 = [0,1] |x(t)|dt . . 3.2 Pn[0, 1]: Pn [0, 1] C[0, 1] ( ). ( ∥x∥∞ = t∈[0,1] |x(t)|) . .
  • 6. Functional Analysis 4 3.1.2 Lp (Lp -sp.) 3.4 1 ≤ p < ∞, Ω ⊂ Rn , Lp (Ω) Ω u ∥u∥Lp := Ω |u(t)|p dt 1/p < ∞ . u = v a.e. , Lp (Ω) Banach sp. . p or Lp . 3.5 Ω ⊂ Rn , L∞ (Ω) Ω u ∃ α < ∞; |u(t)| ≤ α a.e. . ∥u∥∞ ≡ ess.supt∈Ω|u(t)| := inf{α; |u(t)| ≤ α a.e.} . |u| ≤ ∥u∥∞ a.e. . u = v a.e. , L∞ (Ω) Banach sp. . or L∞ . 2 , , normed sp. . [ (H¨older’s inequality)] 1 ≤ p ≤ ∞ , 1 ≤ q ≤ ∞ 1/p + 1/q = 1 , p = 1 q = ∞ , p = ∞ q = 1 (q p ). ∥uv∥L1 ≤ ∥u∥Lp ∥v∥Lq . , Ω |u(t)v(t)|dt ≤ Ω |u(t)|p dt 1/p Ω |v(t)|q dt 1/q (1 < p < ∞), Ω |u(t)v(t)|dt ≤ Ω |u(t)|dt ∥v∥∞ (p = 1, q = ∞). p = 1, ∞ . 1 < p < ∞ . ∥u∥Lp = 0 or ∥v∥Lq = 0 uv = 0 a.e. , ∥u∥Lp ̸= 0 and ∥v∥Lq ̸= 0 . ab ≤ ap /p + bq /q (a, b ≥ 0) . (log , log(ap /p + bq /q) ≥ (log ap )/p + (log bq )/q = log a + log b = log(ab)) .) a = |u(t)|/∥u∥Lp , b = |v(t)|/∥v∥Lq , . ∥uv∥L1 (∥u∥Lp ∥v∥Lq ) ≤ ∥u∥p Lp p∥u∥p Lp + ∥v∥q Lq q∥v∥q Lq = 1 p + 1 q = 1 [ (Minkovsky’s inequality)] ( ) 1 ≤ p < ∞. u, v ∈ Lp (Ω) u + v ∈ Lp (Ω) , ∥u + v∥Lp ≤ ∥u∥Lp + ∥v∥Lp . p = 1 . p = ∞ (→ ). 1 < p < ∞ . . (u + v ∈ Lp (Ω) .) |u + v|p ≤ (|u| + |v|)|u + v|p−1 H¨older . , 1/q = 1 − 1/p = (p − 1)/p, i.e., q = p/(p − 1) ∥u + v∥p Lp ≤ Ω |u||u + v|p−1 dt + Ω |v||u + v|p−1 dt ≤ (∥u∥Lp + ∥v∥Lp ) Ω |u + v|p dt 1/q |u + v|p dt = 0 , ̸= 0 Ω |u + v|p dt 1/q = ∥u + v∥ p/q Lp p/q = p − 1 , .
  • 7. Functional Analysis 5 3.2 ∥u + v∥∞ ≤ ∥u∥∞ + ∥v∥∞ . Lp (Ω) . Banach . 3.3 (X, ∥ · ∥) , {un} ⊂ X: Cauchy . ∃ {unk } ⊂ {un}; unk → u in X un → u in X . ∥uk − u∥ ≤ ∥uk − unk ∥ + ∥unk − u∥ → 0 (nk ≥ k → ∞) . 3.4 Lebesgue , Lebesgue . [Lp (Ω) ] {un} Cauchy in Lp (Ω) . ∃ {unk }; ∥unk+1 − unk ∥Lp < 1/2k . , ∞ j=1 |unj+1 − unj | Lp = lim m→∞ m j=1 |unj+1 − unj | Lp ≤ ∞ j=1 ∥unj+1 − unj ∥Lp ≤ 1 < ∞. ∞ j=1 |unj+1 − unj | ∈ Lp (Ω). ∞ j=1 |unj+1 (t) − unj (t)| < ∞ for a.e. t ∈ Ω. k < m , |unm (t) − unk (t)| ≤ m−1 j=k |unj+1 (t) − unj (t)| → 0 (m > k → ∞) a.e. a.e. t ∈ Ω , {unk (t)} R Cauchy , unk (t) → ∃ u∗ (t). u∗ {un} Lp (Ω) . , |unk (t)| ≤ |un1 (t)| + k−1 j=1 |unj+1 (t) − unj (t)| ≤ |un1 (t)| + ∞ j=1 |unj+1 (t) − unj (t)| ∈ Lp (Ω) , g(t) , k → ∞ a.e. t ∈ Ω , |u∗ (t)| ≤ g(t) ∈ Lp (Ω), i.e., u∗ (t) ∈ Lp (Ω). k < m , ∥unm − unk ∥Lp ≤ m−1 j=k ∥unj+1 − unj ∥Lp ≤ ∞ j=k 1 2j = 1 2k−1 . |unm (t) − unk (t)| ≤ 2g(t) ∈ Lp (Ω) Lebsgue , m → ∞ ∥u∗ − unk ∥Lp ≤ 1 2k−1 → 0 (k → ∞). unk → u∗ in Lp (Ω) , un → u∗ in Lp (Ω) . (X, F, µ) (X a set, F σ-field on X, µ = µ(dx) on X) , f ∈ Lp (X) or Lp (X, dµ) or Lp (X, F, µ) def ⇐⇒ ∥f∥p Lp := |f|p dµ = X |f(x)|p µ(dx) . L∞ (X) . H¨older , Minkovsky , Lp (X) Banach . . ( .)
  • 8. Functional Analysis 6 3.6 1 ≤ p < ∞. x = (x1, x2, . . . ) ∥x∥lp = ∞ n=1 |xn|p 1/p < ∞ lp Banach sp. . 3.7 x = (x1, x2, . . . ) ∥x∥∞ = sup{|xn|; n ≥ 1} < ∞ l∞ Banach sp. . 3.2 (Separable & equivarent norms) X Banach sp. . L ⊂ X X (dense) def ⇐⇒ L = X , L L (L ; x ∈ L ⇐⇒ ∃ {xn} ⊂ L; xn → x). X (separable) def ⇐⇒ , i.e., ∃ L ⊂ X; L = X, ♯L ≤ ℵ0 = ♯N. 3.8 Rn Banach sp. , Qn . 3.9 Ω ⊂ Rn , C(Ω) . C[0, 1] L [0, 1] , , , L = C[0, 1] . X , 2 ∥ · ∥1, ∥ · ∥2 ∥ · ∥1 ∥ · ∥2 ; ∥ · ∥1 ∼ ∥ · ∥2 def ⇐⇒ ∃ 0 < c, c′ < ∞; c∥x∥2 ≤ ∥x∥1 ≤ c′ ∥x∥2. normed sp. (X, ∥ · ∥1) (X, ∥ · ∥2) . , . (X, ∥ · ∥1) (X, ∥ · ∥2) . 3.5 X X 2 . ( ) 3.3 (Completion) X . , X , X , X = X . , X X Cauchy , {xn}, {yn} ∈ X , {xn} ∼ {yn} ⇐⇒ xn −yn → 0 (n → ∞) . , x = [{xn}] ∈ X := X/ ∼ , x = [{xn}] ∈ X ∥x∥ := lim n→∞ ∥xn∥ ({∥xn∥} R Caushy , ) , (X, ∥ · ∥) , i.e., Banach sp. . ( .) x ∈ X [{xn ≡ x}] ∈ X , X ⊂ X X = X . X X (completion) . 3.10 X0 := {x = (x1, x2, . . . , xn, 0, 0, . . . ); xi ∈ R, n ∈ N} ( 0 ) . ∥x∥ = ∥x∥lp , X0 . X0 lp dense , . , x(n) = (1, 1/2, 1/22 . . . . , 1/2n , 0, 0, . . . ) m > n , 1 ≤ p < ∞ ∥x(n) − x(m) ∥lp = ( m k=n+1 2−kp )1/p → 0 (n → ∞) , Cauchy
  • 9. Functional Analysis 7 , x = (1, 1/2, 1/22 . . . . , 1/2n , . . . ) /∈ X0. X0 . (p = ∞ .) X0 X0 lp , i.e., lp . X0 lp . ) (X, ∥ · ∥X), (Y, ∥ · ∥Y ) , ∃ f : X → Y ; , ∥f(x)∥Y = ∥x∥X X Y . ( X Y .) 3.11 [0, 1] X0 , i.e., X0 = n≥1 Pn[0, 1]. x ∈ X0 , ∥x∥ = supt∈[0,1] |x(t)| , X0 . X0 C[0, 1] . 4 (Hilbert Spaces) (inner product) ⟨x, y⟩ or (inner prod. sp. or pre-Hilbert sp.) , ∥x∥ = ⟨x.x⟩ , (Hilbert sp.) . Rn Cn , , . 4.1 ( ) (Pre-Hilbert sp. (Inner prod. sp.)) 4.1 X C , x, y ∈ X , ⟨x, y⟩ ∈ C (inner product) ( ) ⟨x, x⟩ ≥ 0 (x ∈ X). ⟨x, x⟩ = 0 ⇐⇒ x = 0. ( ) ⟨x, y⟩ = ⟨y, x⟩ (x, y ∈ X) ( ) ⟨x1 + x2, y⟩ = ⟨x1, y⟩ + ⟨x2, y⟩, ⟨αx, y⟩ = α⟨x, y⟩ (x1, x2, y ∈ X, α ∈ C). 4.2 X or (X, ⟨·, ·⟩) (pre-Hilbert sp.) or (inner prod. sp.) . 4.1 X , ∥x∥ := ⟨x, x⟩1/2 (x ∈ X) , . ( ) ⊂ ( ) . . 4.1 (Schwartz ) |⟨x, y⟩| ≤ ∥x∥∥y∥ (x, y ∈ X). ∥y∥ = 0 y = 0 , ⟨x, y⟩ = 0 (→ ), , ∥y∥ ̸= 0 . ∀ α ∈ C , 0 ≤ ⟨x + αy, x + αy⟩ , α := −⟨x, y⟩/∥y∥2 . , 0 ≤ ⟨x + αy, x + αy⟩ = ∥x∥2 + α⟨x, y⟩ + α⟨x, y⟩ + |α|2 ∥y∥2 = ∥x∥2 − |⟨x, y⟩|2 /∥y∥2 . y = 0 ⟨x, y⟩ = 0 Schwartz . (⟨x, y⟩ = ⟨x, 0y⟩ = 0⟨x, y⟩ = 0) [ 4.1 ] . , ∥x + y∥2 = ∥x∥2 + ⟨x, y⟩ + ⟨y, x⟩ + ∥y∥2 ≤ ∥x∥2 + 2∥x∥∥y∥ + ∥y∥2 = (∥x∥ + ∥y∥)2 .
  • 10. Functional Analysis 8 4.2 X ∥x∥ = ⟨x, x⟩1/2 , . ∥x + y∥2 + ∥x − y∥2 = 2(∥x∥2 + ∥y∥2 ). . ⟨x, y⟩ = 1 4 ∥x + y∥2 − ∥x − y∥2 + i∥x + iy∥2 − i∥x − iy∥2 . X , , ⟨x, y⟩ , . , X ⇐⇒ . . , . 4.1 ⟨x, y⟩ x, y , i.e., xn → x, yn → y ⟨xn, yn⟩ → ⟨x, y⟩. Schwartz . 4.2 (Hilbert sp.) 4.3 X (Hilbert sp.) . K = R , K = C . [Hilber sps ] 4.1 Rn , Cn : , Hilbert . 4.2 l2 : x = (xn), y = (yn) ∈ l2 , ⟨x, y⟩ = n≥1 xnyn , , , ∥x∥2 2 = |xn|2 = ⟨x, x⟩. Hilbert . 4.3 L2 (Ω) (Ω ⊂ Rn open): u, v ∈ L2 (Ω), ⟨u, v⟩ = Ω u(t)v(t)dt Hilbert. 4.4 A2 (Ω) (Ω ⊂ Cn open, f ∈ A2 (Ω) , Ω |f(z)|2 dxdy < ∞ (z = x + iy)) f, g ∈ A2 (Ω) , ⟨f, g⟩ = Ω f(z)g(z)dxdy Hilbert. ( ) 4.5 C(Ω) (Ω ⊂ Rn ) L2 (Ω) , Hilbert . 4.3 (Projection theorem) H Hilbert sp. x, y ∈ H, A, B ⊂ H , x ⊥ y def ⇐⇒ ⟨x, y⟩ = 0. A ⊥ B def ⇐⇒ ∀ a ∈ A, ∀ b ∈ B, a ⊥ b. ( x ⊥ B def ⇐⇒ {x} ⊥ B.) L ⊂ H , L⊥ := {x ∈ H; x ⊥ L} L (orthogonal complement) .
  • 11. Functional Analysis 9 4.1 L ⊂ H , L⊥ H . x ⊥ y =⇒ ∥x + y∥2 = ∥x∥2 + ∥y∥2 ( ) L1, L2 ⊂ H , L1, L2 (direct sum) L1 ⊕L2 := L1 +L2; L1 ∩L2 = {0}. [L1 ∩ L2 = {0} ⇐⇒ x = x1 + x2 ∈ L1 + L2 ] . . [ ] (⇒) x1 + x2 = x′ 1 + x′ 2 (xi, x′ i ∈ Li) x1 − x′ 1 = x′ 2 − x2 ∈ L1 ∩ L2 = {0} , xi = x′ i. (⇐) x ∈ L1 ∩ L2 x = x + 0 = 0 + x ∈ L1 + L2 , x = 0. 4.3 ( ) L ⊂ H H L L⊥ ; H = L ⊕ L⊥ , i.e., ∀ x ∈ H, ∃ y ∈ L, ∃ z ∈ L⊥ ; x = y + z , . y ∈ L x ∈ H L or or . PLx = y , PL L ( ) . x ∈ L ∩ L⊥ ⟨x, x⟩ = 0 , x = 0, i.e., L ∩ L⊥ = {0}. . . ∀ x ∈ H , δ := infy∈L ∥x − y∥ . inf ∃ {yn} ⊂ L; ∥x − yn∥ → δ. 2(∥x − yn∥2 + ∥x − ym∥2 ) = ∥(x − yn) + (x − ym)∥2 + ∥(x − yn) − (x − ym)∥2 = ∥2x − (yn + ym)∥2 + ∥yn − ym∥2 . (yn + ym)/2 ∈ L , δ ≤ ∥x − (yn + ym)/2∥. ∥yn − ym∥2 = 2(∥x − yn∥2 + ∥x − ym∥2 ) − 4 x − yn + ym 2 2 ≤ 2(∥x − yn∥2 + ∥x − ym∥2 ) − 4δ2 ( )→ 0 (m, n → ∞). H ∃ y ∈ H; yn → y. L closed y ∈ L. δ = ∥x − y∥ . z = x − y (∥z∥ = δ). z ⊥ L . ξ ∈ L , γ = ⟨z, ξ⟩ , ϕ(t) = ∥z −γtξ∥2 = ∥x−(y +γtξ)∥2 (t ∈ R) . y +γtξ ∈ L , ϕ(t) ≥ δ2 = ϕ(0) (δ ). ϕ(t) = ∥z∥2 − γt⟨z, ξ⟩ − γt⟨ξ, z⟩ + |γ|2 t2 ∥ξ∥2 = δ2 − 2|γ|2 t + |γ|2 t2 ∥ξ∥2 = δ2 − |γ|2 t(2 − t∥ξ∥2 ). γ ̸= 0 , t > 0 0 , 2 − t∥ξ∥2 > 0 , ϕ(t) < ϕ(0) = δ2 . γ = 0. 4.6 H = L2 (Ω) (Ω ⊂ Rn : bdd open) , u ∈ L def ⇐⇒ u ∈ H; Ω u(t)dt = 0 , L , PLu(t) = u(t) − 1 |Ω| Ω u(t)dt. L⊥ = { }. 4.7 H = L2 (−1, 1) u ∈ L def ⇐⇒ u ∈ H; u(−t) = u(t) L , L⊥ = {v ∈ H; v(−t) = −v(t)}. 4.2 2 . ( , M = { } , L ⊂ M⊥ , L ⊃ M⊥ . , [0, 1) , u(t) = v(t) + v(−t) .)
  • 12. Functional Analysis 10 4.4 (ONS=orthonormal system) {xk} ⊂ H: (ONS) def ⇐⇒ ⟨xj, xk⟩ = δjk. 4.8 L2 (0, 1) { √ 2 sin(πkt)}∞ k=1, {e2πkti }∞ k=0 . 4.2 {xk} ⊂ H: ONS ∀ x ∈ H, k |⟨x, xk⟩|2 ≤ ∥x∥2 (Bessel ). x ∈ H , αk = ⟨x, xk⟩ . ∀ n ∈ N , 0 ≤ ∥x − n k=1 αkxk∥2 = ∥x∥2 − n k=1 αk⟨x, xk⟩ − n k=1 αk⟨xk, x⟩ + n j,k=1 αjαk⟨xj, xk⟩ = ∥x∥2 − n k=1 |αk|2 n k=1 |αk|2 ≤ ∥x∥2 . n → ∞ . {xk} ⊂ H , ⟨{xk}⟩ := n k=1 αkxk; αk ∈ K, n ∈ N , L := ⟨{xk}⟩ {xk} . ( upper bar .) 4.4 {xk} ⊂ H: ONS, L = ⟨{xk}⟩: {xk} . . (i) L = H (ii) ∀ x ∈ H, x = k⟨x, xk⟩xk ( Fourier ) (iii) ∀ x, y ∈ H, ⟨x, y⟩ = k⟨x, xk⟩⟨y, xk⟩ ( ). (iv) ∀ x ∈ H, ∥x∥2 = k |⟨x, xk⟩|2 (Perseval ). (v) ∀ k, ⟨x, xk⟩ = 0 x = 0. (i) L = H ⇐⇒ L⊥ = {0} (by Proj. Th.) . [(i) ⇒ (ii)] x ∈ H , αk = ⟨x, xk⟩ Bessel , k |αk|2 ≤ ∥x∥2 , , . m > n , m k=1 αkxk − n k=1 αkxk 2 = m k=n+1 αkxk 2 = m k=n+1 |αk|2 → 0 (m > n → ∞). { n k=1 αkxk} Cauchy in H. ∃ y = ∞ k=1 αkxk ∈ H. ⟨x − y, xk⟩ = ⟨x, xk⟩ − ⟨ n αnxn, xk⟩ = αk − n αn⟨xn, xk⟩ = αk − αk = 0. (x − y) ⊥ ⟨{xk}⟩, , (x − y) ⊥ ⟨{xk}⟩ = L = H. x − y = 0, i.e., x = y. [(ii) ⇒ (iii)] x, y ∈ H , αk = ⟨x, xk⟩, βk = ⟨y, xk⟩ . Schwartz Bessel n k=1 |αkβk| ≤ n k=1 |αk|2 1/2 n k=1 |βk|2 1/2 ≤ ∥x∥∥y∥.
  • 13. Functional Analysis 11 n → ∞ ∞ k=1 αkβk . ⟨x, y⟩ = lim n→∞ ⟨ n k=1 αkxk, n k=1 βkxk⟩ = ∞ k=1 αkβk. [(iii) ⇒ (iv)], [(iv) ⇒ (v)] . [(v) ⇒ (i)] x ∈ L⊥ ∀ k ≥ 1, ⟨x, xk⟩ = 0. x = 0 , L⊥ = {0} . H = L. 4.4 H {xk} , (com- plete ONS=CONS) . 4.9 l2 ej = (δj,n)n≥1 (j 1, 0) {ej} CONS. 4.10 H = L2 (−π, π) , 1 √ 2π , 1 √ π sin nt, 1 √ π cos nt ∞ n=1 CONS. ∀ x ∈ H , x(t) = 1 2 a0 + ∞ n=1 (an cos nt + bn sin nt) an = 1 π π −π x(t) cos ntdt, bn = 1 π π −π x(t) sin ntdt , Fourier , an, bn Fourier . 4.3 2 . [Schmidt ] {yk} ⊂ H . e1 ≡ x1 := y1/∥y1∥, en = xn/∥xn∥ with xn = yn − n−1 k=1 ⟨yn, ek⟩ek (n ≥ 2) . {ek} ONS . Schmidt . {ek} ONS . 4.5 Hilbert H CONS . H {zk} {yn} . Schmidt , {en} . , ∀ n, ⟨x, en⟩ = 0 x = 0 , CONS . 4.6 . H . H . x, y ∈ H , ∃ xn, yn ∈ H; xn → x, yn → y. {⟨xn, yn⟩} Cauchy (Schwartz {∥xn∥}, {∥yn∥} ). ⟨x, y⟩ := lim⟨xn, yn⟩ , . ( , {xn}, {yn} ⊂ H , H .)
  • 14. Functional Analysis 12 5 (Linear Operators) 5.1 X, Y , D ⊂ X , T : D → Y (linear) (i) T(x1 + x2) = Tx1 + Tx2 (x1, x2 ∈ D), (ii) T(αx) = αTx (α ∈ K, x ∈ D) (linear operator) . D(T) := D T (domain), R(T) := T(D) T (range) . Y = X T X . 5.2 X, Y normed sps, lin. op. T : D(T) ⊂ X → Y (i) (bounded operator) def ⇐⇒ ∃ M; ∥Tx∥ ≤ M∥x∥ (x ∈ D(T)). (ii) (conti. operator) def ⇐⇒ xn → x in D(T) Txn → Tx. 5.1 X, Y normed sps, T : D(T) ⊂ X → Y ⇐⇒ T (⇒) . , ∀ n ≥ 1, ∃ xn ∈ D(T); ∥Txn∥ > n∥xn∥ yn := xn/( √ n∥xn∥) , ∥yn∥ = 1/ √ n , yn → 0. , ∥Tyn∥ = ∥Txn∥/( √ n∥xn∥) > √ n → ∞ , T . T . (⇐) xn → x in D(T) . , ∥Txn − Tx∥ = ∥T(x − xn)∥ ≤ M∥xn − x∥ → 0 , Txn → Tx , T . X, Y normed sps , T ∈ L(X, Y ) def ⇐⇒ D(T) = X T : X → Y ; bdd lin. op. L(X) := L(X, X). , , T : X → Y D(T) = X . X∗ := L(X, K) X (conjucate sp.), (lin. conti. functional) . T ∈ L(X, Y ) , (operator norm) . ∥T∥ := sup x∈X{0} ∥Tx∥ ∥x∥ = sup ∥x∥=1 ∥Tx∥. ∥Tx∥ ≤ ∥T∥∥x∥ . (→ : .) 5.2 X normed sp., Y Banach sp. . L(X, Y ) ∥T∥ Banach sp. . {Tn} ⊂ L(X, Y ) Cauchy , i.e., ∥Tn − Tm∥ → 0 (m, n → ∞). ∀ x ∈ X, ∥Tnx−Tmx∥ ≤ ∥Tn−Tn∥∥x∥ → 0 , {Tnx} Cauchy in Y . Y : , ∃ y ∈ Y ; Tnx → y. y x Tx = y , . , ∀ ε > 0 , n, m , ∥Tn − Tm∥ < ε , ∥Tnx − Tmx∥ ≤ ∥Tn − Tn∥∥x∥ ≤ ε∥x∥ , m → ∞ ∥Tnx−Tx∥ ≤ ε∥x∥ . , ∥Tx∥ ≤ ∥Tx−Tnx∥+∥Tnx∥ ≤ (ε+∥Tn∥)∥x∥ , T ∈ L(X, Y ). ∥Tn − T∥ ≤ ε , Tn → T in L(X, Y ). L(X, Y ) .
  • 15. Functional Analysis 13 5.1 (Examples of bounded operators) 5.1 Ω ⊂ Rn , k(t) ∈ L∞ (Ω), 1 ≤ p ≤ ∞ . x ∈ Lp (Ω) , (Tx)(t) = k(t)x(t) (t ∈ Ω) T Lp (Ω) , ∥T∥ = ∥k∥∞. 5.1 . ( , ∥k∥∞ = 0 . > 0 . ∥T∥ ≤ ∥k∥∞ . ∀ ε > 0, Ωε = {|k| > ∥k∥∞ −ε} , Ωε , |Ωε| > 0 , x(t) := |Ωε|−1/p 1Ωε (t) . , |Ωε| = ∞ , {|t| ≤ n}; n: , .) 5.2 Ω ⊂ Rn , k(t, s) ∈ L2 (Ω2 ), i.e., Ω2 |k(t, s)|2 dtds < ∞ . x ∈ L2 (Ω) , (Tx)(t) = Ω k(t, s)x(s)ds T , ∥T∥ ≤ Ω2 |k(t, s)|2 dtds 1/2 . k , T . Schwartz , |(Tx)(t)| ≤ Ω |k(t, s)||x(s)|ds ≤ Ω |k(t, s)|2 ds 1/2 Ω |x(s)|2 ds 1/2 . |(Tx)(t)|2 ≤ Ω |k(t, s)|2 ds · ∥x∥2 L2 . t ∥Tx∥2 L2 , . 5.3 ( ) ρ ∈ L1 (Rn ) . 1 ≤ p ≤ ∞ , x ∈ Lp (Rn ) , (Tx)(t) = (ρ ∗ x)(t) := Rn ρ(t − s)x(s)ds = Rn ρ(s)x(t − s)ds T Lp (Rn ) Lp (Rn ) , ∥Tx∥Lp ≤ ∥ρ∥L1 ∥x∥Lp . T = ρ ∗ x ρ (convolution op.) . p = 1, ∞ . 1 < p < ∞ q p (1/p + 1/q = 1) . |ρ(t − s)x(s)| = (|ρ(t − s)|1/p |x(s)|)|ρ(t − s)|1/q H¨older , |(Tx)(t)| ≤ |ρ(t − s)||x(s)|p ds 1/p |ρ(s)|ds 1/q = |ρ(t − s)||x(s)|p ds 1/p ∥ρ∥ 1/q L1 . p , t , ∥Tx∥p Lp ≤ ∥ρ∥ p/q L1 dt |ρ(t − s)||x(s)|p ds = ∥ρ∥ p/q+1 L1 ∥x∥p Lp . p/q + 1 = p(1/q + 1/p) = p , . 5.2 (Inverse operators) T ∈ L(X, Y ) , ∃ S ∈ L(Y, X); TS = IY , ST = IX S T (inv. op.) , T−1 . T ∈ L(X) y ∈ X , (I − T)x = y x ∈ X , (I − T)−1 .
  • 16. Functional Analysis 14 5.3 X: Banach, T ∈ L(X) . ∥T∥ < 1 R(I−T) = X , ∃ (I−T)−1 ∈ L(X); (I − T)−1 = ∞ n=0 Tn = I + T + T2 + · · · (T0 = I). (Neumann series) , L(X) . ∥(I − T)−1 ∥ ≤ ∞ n=0 ∥Tn ∥ ≤ 1/(1 − ∥T∥) . ∥T∥ < 1 ∞ n=0 ∥Tn ∥ < ∞ , , . ∥(I − T)−1 ∥ ≤ ∞ n=0 ∥Tn ∥ < ∞ . ∥T∥ < 1 ∞ n=0 ∥Tn ∥ ≤ ∞ n=0 ∥T∥n = 1/(1 − ∥T∥) < ∞ , . X , L(X) . n k=0 Tk − m k=0 Tk ≤ n k=m+1 ∥Tk ∥ → 0 (n > m → ∞) , n k=0 Tk L(X) Cauchy , ∃ S = ∞ k=0 Tk ∈ L(X). TS = ST = ∞ n=0 Tn+1 = ∞ n=0 Tn − I = S − I , (I−T)S = S(I−T) = I, i.e., ∃ (I−T)−1 = S = ∞ n=0 Tn . ∥(I − T)−1 ∥ ≤ ∞ n=0 ∥Tn ∥ . 5.4 ( ) −∞ < a < b < ∞, y ∈ C[a, b] . y(t) = x(t) − b a k(t, s)x(s)ds x ∈ C[a, b] . k(t, s) ∈ C([a, b]2 ) , M := maxt,s∈[a,b] |k(t, s)| , M(b − a) < 1 . (X, ∥ · ∥) := (C[a, b], ∥ · ∥∞) x ∈ X , (Kx)(t) = b a k(t, s)x(s)ds , K ∈ L(X) , ∥Kx∥ ≤ M(b − a)∥x∥, i.e., ∥K∥ ≤ M(b − a) < 1 . y = (I − K)x , ∃ (I − K)−1 ; x = (I − K)−1 y = y + Ky + K2 y + · · · . k1(t, s) = k(t, s), kn(t, s) = b a k1(t, r)kn−1(r, s)dr (n ≥ 2) |kn(t, s)| ≤ Mn (b − a)n−1 , Kn y(t) = b a kn(t, s)y(s)ds . h(t, s) := n≥1 kn(t, s) , , h(t, s) ∈ C([a, b]2 ) , x(t) = y(t) + ∞ n=1 b a kn(t, s)y(s)ds = y(t) + b a h(t, s)y(s)ds
  • 17. Functional Analysis 15 5.2 x ∈ C[a, b] Kx ∈ C[a, b] . 5.5 ( ) , t . y(t) = x(t) − t a k(t, s)x(s)ds x ∈ C[a, b] . , M(b − a) < 1 . x . , (Kx)(t) = t a k(t, s)x(s)ds k1(t, s) = k(t, s), kn(t, s) = t s k1(t, r)kn−1(r, s)dr (n ≥ 2) |kn(t, s)| ≤ Mn (t − s)n−1 (n − 1)! ≤ Mn (b − a)n−1 (n − 1)! Kn y(t) = t a kn(t, s)y(s)ds . ∞ n=1 ∥Kn ∥ ≤ ∞ n=1 Mn (b − a)n−1 (n − 1)! < ∞ , ∃ (I − K)−1 ; x = (I − K)−1 y = y + Ky + K2 y + · · · . h(t, s) := n≥1 kn(t, s) , h(t, s) ∈ C([a, b]2 ) , x(t) = y(t) + t a h(t, s)y(s)ds. 5.3 |kn(t, s)| ≤ Mn (t − s)n−1 /(n − 1)! . 6 ( , , ) 3 , , , . . 6.1 ( (Baire’s category theorem)) (X, d) , Xn ⊂ X (n ≥ 1). X = ∞ n=1 Xn , 1 Xn X , i.e., X ∃ B ⊂ ∃ Xn. . Xn . X1 X1 ̸= X (X ). ∃ x1 ∈ X X1. X1 closed , d1 := d(x1, X1) = infx∈X1 d(x1, x) > 0. ρ1 := 1 ∧ (d1/2) ≤ 1, B1 := B(x1, ρ1) B1 ∩ X1 = ∅. X2 , ∃ x2 ∈ B1 X2, d2 := d(x2, X2) > 0. x2 /∈ X B1 ( ) , d′ 2 := d(x2, X B1) > 0. ρ2 := min{1/2, d2/2, d′ 2/2} ≤ 1/2, B2 := B(x2, ρ2) B2 ⊂ B1, B2 ∩ X2 = ∅. B1 ⊃ B2 ⊃ · · · , Bk ∩ Xk = ∅, ρk ≤ 1/k {Bk} . Bk xk k < m d(xk, xm) ≤ ρk ≤ 1/k , Cauchy . X ∃ x ∈ X; xk → x. ∀ k, x ∈ Bk Bk ∩ Xk = ∅ , x /∈ Xk, i.e., x /∈ ∞ k=1 Xk , ∞ k=1 Xk = X .
  • 18. Functional Analysis 16 6.1 (Uniform bounded principle) 6.2 ( ) X Banach sp., Y normed sp. . {Tλ}λ∈Λ ⊂ L(X, Y ) , ∀ x ∈ X, sup λ∈Λ ∥Tλx∥ < ∞ =⇒ sup λ∈Λ ∥Tλ∥ < ∞. Xn := λ∈Λ{x ∈ X; ∥Tλx∥ ≤ n} Tλ Xn , ∞ n=1 Xn = X . X Baire , Xn0 , i.e., ∃ x0 ∈ X, ρ0 > 0; B(x0, ρ0) ⊂ Xn0 . ∀ y ∈ B(0, ρ0), y + x0 ∈ B(x0, ρ0) , y = (y + x0) − x0 ∥Tλy∥ ≤ ∥Tλ(y + x0)∥ + ∥Tλx0∥ ≤ 2n0. ∀ x ∈ X , µ = 2∥x∥/ρ0 ∥µ−1 x∥ = ρ0/2 < ρ0 µ−1 x ∈ B(0, ρ0) , ∥Tλx∥ = µ∥Tλ(µ−1 x)∥ ≤ 2n0µ = 4n0∥x∥/ρ0. , supλ ∥Tλ∥ ≤ 4n0/ρ0 . 6.3 (Banach-Steinhaus theorem) X Banach sp., Y normed sp. {Tn} ⊂ L(X, Y ) . ∀ x ∈ X, {Tnx} , Tx := lim n→∞ Tnx T ∈ L(X, Y ) ∥T∥ ≤ limn→∞ ∥Tn∥. γ := limn→∞ ∥Tn∥ . {Tnx} , supn ∥Tnx∥ < ∞. X Banach , supn ∥Tn∥ < ∞. γ < ∞. ∀ ε > 0 , ∃ {nk}; ∥Tnk ∥ ≤ γ + ε. ∀ x ∈ X , ∥Tx∥ = limk→∞ ∥Tnk x∥ ≤ (γ + ε)∥x∥. T ∈ L(X, Y ) , ∥T∥ ≤ γ + ε. ε ∥T∥ ≤ γ. 6.2 (Open mapping theorem) 6.4 ( ) X, Y Banach sps . T ∈ L(X, Y ) , R(T) = Y T , i.e., ∀ U ⊂ X; open, T(U) ⊂ Y ; open. (1st Step) ∃ ρ > 0; BY (0, ρ) ⊂ TBX(0, 1) . R(T) = Y , Y = T(X) = ∞ n=1 TBX(0, n) = ∞ n=1 TBX(0, n) , Y Baire , ∃ n ≥ 1, a ∈ Y, δ > 0; BY (a, δ) ⊂ TBX(0, n). ∀ y ∈ BY (0, δ) . y + a, a ∈ BY (a, δ) ⊂ TBX(0, n) , ∃ yk, y′ k ∈ TBX(0, n); yk → y + a, y′ k → a. yk − y′ k ∈ TBX (0, 2n) , , y = (y + a) − a = lim(yk − y′ k) ∈ TBX(0, 2n). BY (0, δ) ⊂ TBX (0, 2n). ρ = δ/(2n) T BY (0, ρ) ⊂ TBX (0, 1). (2nd Step) ρ , η = ρ/2 > 0 BY (0, η) ⊂ TBX(0, 1) . BY (0, ρ) ⊂ TBX (0, 2), i.e, ∀ y ∈ BY (0, ρ) , ∃ x ∈ BX(0, 2); y = Tx . εk = 2−k (k ≥ 0) , BY (0, εkρ) ⊂ TBX(0, εk). y ∈ BY (0, ρ) ⊂ TBX(0, 1) ∃ x0,n ∈ BX (0, 1); Tx0,n → y , ∃ x0 ∈ BX(0, 1); ∥y − Tx0∥ < ε1ρ. y − Tx0 ∈ BY (0, ε1ρ) , ∃ x1 ∈ BX(0, ε1); ∥y − Tx0 − Tx1∥ < ε2ρ. , ∃ xk ∈ BX (0, εk); ∥y − k j=0 Txj∥ < εk+1ρ. ∥ m j=k xj∥ ≤ m j=k ∥xj∥ ≤ m j=k εj → 0 (m > k → ∞) , { k j=0 xj} Cauchy in X , ∃ x = ∞ k=0 xk ∈ X. T
  • 19. Functional Analysis 17 Tx = ∞ k=0 Txk. ∥x∥ ≤ ∥x0∥ + ∞ k=1 ∥xk∥ < ∥x0∥ + ∞ k=1 εk < 1 + 1 = 2. x ∈ BX (0, 2). ∥y − k j=0 Txj∥ < εk+1ρ k → ∞ y = ∞ k=0 Txk = Tx. (3rd Step) T , i.e., ∀ U ⊂ X; open, T(U) ⊂ Y ; open . T , ∀ α > 0, BY (0, αη) ⊂ TBX (0, α). ∀ y0 ∈ T(U) . ∃ x0 ∈ U; y0 = Tx0. U open , ∃ δ > 0; x0 + BX (0, δ) = BX(x0, δ) ⊂ U. ∀ y ∈ BY (y0, δη) , y′ := y − y0 ∈ BY (0, δη) . BY (0, δη) ⊂ TBX(0, δ) ∃ x′ ∈ BX (0, δ); y′ = Tx′ . x0 + x′ ∈ U , y = y0 + y′ = Tx0 + Tx′ = T(x0 + x′ ) ∈ T(U). BY (y0, δη) ⊂ T(U) , T(U) open. 6.5 ( (range theorem)) X, Y Banach sps. . T ∈ L(X, Y ) , R(T) = Y T 1 to 1 T−1 ∈ L(Y, X). T−1 , Y X . . ∀ U ⊂ X; open , S := T−1 S−1 (U) = {y ∈ Y ; Sy = T−1 y ∈ U} = {y ∈ Y ; y ∈ T(U)} T(U) . , T(U) open. , S−1 (U) open , S = T−1 . T−1 ∈ L(Y, X). 6.3 (Closed graph theorem) , T D(T) ̸= X . 6.1 (X, ∥ · ∥X), (Y, ∥ · ∥Y ) normed sps. . T X Y (closed op.) T : D(T) ⊂ X → Y , T G(T) = {(x, Tx) ∈ X × Y ; x ∈ D(T)} ∥(x, Tx)∥G = ∥x∥X + ∥Tx∥Y , xn ∈ D(T) → x in X, Txn → y in Y (x, y) ∈ G(T), i.e., x ∈ D(T) y = Tx. D = D(T) , T def ⇐⇒ xn → x in D Txn → Tx in Y , T D . 6.6 (i) D(T) closed , T : D(T) ⊂ X → Y (= ) T . D(T) = X . (ii) Y Banach , T : D(T) ⊂ X → Y , T D(T) T , , T . (iii) X, Y Banach , T ⇐⇒ D(T) ∥x∥G := ∥x∥X + ∥Tx∥Y . (i) xn ∈ D(T) → x ∈ X, Txn → y ∈ Y D(T) closed , x ∈ D(T) , y = Tx, T . (ii) xn ∈ D(T) → x ∈ X . {Txn} Y Cauchy , Y Txn → ∃ y ∈ Y . Tx := y , T D(T) , T = T on D(T), ∥T∥ = ∥T∥ . (i) , T . (iii) (⇒) {xn} ⊂ D(T); ∥xn − xm∥G → 0 (m, n → ∞) . X, Y xn → ∃ x in X, Txn → ∃ y in Y . x ∈ D(T), y = Tx. ∥xn − x∥G = ∥xn − x∥X + ∥Txn − Tx∥Y → 0 , D(T) .
  • 20. Functional Analysis 18 (⇐) xn ∈ D(T) → x ∈ X, Txn → y ∈ Y {xn} D(T) ∥·∥G Cauchy . ∃ x∗ ∈ D(T); ∥xn − x∗ ∥G → 0. x∗ = x, Tx = Tx∗ = y , T closed . D(T) closed , Y Banach , T . 6.1 X = C[0, 1], D(T) = C1 [0, 1] (Tx)(t) = x′ (t) , , . 6.7 ( ) X, Y Banach sps, T X Y . D(T) = X T ∈ L(X, Y ). Z = G(T) = {(x, Tx) ∈ X × Y ; x ∈ D(T) = X} . T X, Y Banach , ∥(x, Tx)∥Z := ∥x∥ + ∥Tx∥ Banach . S : Z → X; S(x, Tx) = x S ∈ L(Z, X) , R(S) = X S 1 to 1 . X Banach , S−1 . ∥Tx∥ ≤ ∥(x, Tx)∥Z = ∥S−1 x∥Z ≤ ∃ M∥x∥. T , i.e., T ∈ L(X, Y ) . 7 (Linear Functionals) normed sp X K = R or C (bdd lin. functional) . , (conti. lin. functional) . X∗ := L(X, K) , X (dual sp.) . K = R or C , X∗ . f ∈ X∗ , i.e., f : X → K; f(αx + βy) = αf(x) + βf(y) (α, β ∈ K, x, y ∈ X), ∥f∥ < ∞. 7.1 (Dual spaces) X Hilbert sp. H , H∗ = H . Rn , Cn , L2 (Ω), l2 dual sps . . 7.1 ( (Riesz’s representation theorem)) X = H Hilbert sp. . ∀ f ∈ H∗ , ∃1 y ∈ H; f(x) = ⟨x, y⟩ (∀ x ∈ H). ∥f∥ = ∥y∥ . H∗ = H . f ≡ 0 y = 0 . f ̸≡ 0 . N = {x ∈ H; f(x) = 0} . ( , x ∈ N, α ∈ K f(αx) = αf(x) = 0 , αx ∈ N. x, x′ ∈ N f(x + x′ ) = f(x) + f(x′ ) = 0 , x + x′ ∈ N. . xn ∈ N → x ∈ H f(x) = lim f(xn) = 0 x ∈ N. N .) H = N ⊕ N⊥ . f ̸≡ 0 , N⊥ ̸= ∅. y0 ∈ N⊥ ; y0 ̸= 0 1 . f(y0) ̸= 0. y := (f(y0)/∥y0∥2 )y0 , y ∈ N⊥ , . , ∀ x ∈ H , f(y0)x − f(x)y0 ∈ N , 0 = ⟨f(y0)x − f(x)y0, y⟩ = f(y0)⟨x, y⟩ − f(x)⟨y0, y⟩ = f(y0)(⟨x, y⟩ − f(x))
  • 21. Functional Analysis 19 , f(x) = ⟨x, y⟩. ∃ y′ ∈ H; f(x) = ⟨x, y⟩ = ⟨x, y′ ⟩ ∀ x ∈ H, ⟨x, y−y′ ⟩ = 0 , x = y − y′ ∥y − y′ ∥ = 0, i.e., y = y′ . y . ∥x∥ = 1 , Schwartz , |f(x)| = |⟨x, y⟩| ≤ ∥x∥∥y∥ = ∥y∥. ∥f∥ ≤ ∥y∥. x0 = y/∥y∥ f(x0) = ⟨x0, y⟩ = ∥y∥ ∥y∥ = f(x0) ≤ sup ∥x∥=1 |f(x)| = ∥f∥. ∥f∥ = ∥y∥. Banach sp. X , X∗ , . 7.1 1 ≤ p < ∞ . q p , i.e., 1/p + 1/q = 1 ( , p = 1 q = ∞). (i) Ω ⊂ Rn (Lp (Ω))∗ = Lq (Ω). (ii) (lp )∗ = lq . 7.2 l∞ 0 := {(xn) ∈ l∞ ; limn→∞ xn = 0} l∞ 0 l∞ ∥ · ∥∞ Banach , (l∞ 0 )∗ = l1 . 7.2 (Hahn-Banach’s extension thoerem) 7.2 ( ) X , L ⊂ X . f L . ∃ p : X → R; , p(λx) = λp(x) (λ > 0, x ∈ X), p(x + y) ≤ p(x) + p(y) (x, y ∈ X) , f ≤ p on L , ∃ F ∈ X∗ = L(X, R); F = f on L, F ≤ p on X . , f X , f ≤ p . L = X , L ̸= X . x0 ∈ X L , L1 = L + Rx0 . . x = y + tx0 ∈ L1 . f L1 , c ∈ R , F(x) = F(y + tx0) := f(y) + tc . F L1 . c F ≤ p on L1. Zorn f X F ≤ p . L1 , x = y+tx0 = y′ +t′ x0 (y, y′ ∈ L, t, t′ ∈ R) 0 = (y−y′ )+(t−t′ )x0, i.e, (t−t′ )x0 = y′ −y ∈ L. t ̸= t′ x0 = (y′ −y)/(t−t′ ) ∈ L , . t = t′ , y = y′ . xi = yi + tix0 ∈ L1 (yi ∈ L, ti ∈ R) αi ∈ R , F(α1x1 + α2x2) = F((α1y1 + α2y2)+(α1t1 +α2t2)x0) = f(α1y1 +α2y2)+(α1t1 +α2t2)c = α1(f(y1)+t1c)+α2(f(y2)+t2c) = α1F(x1) + α2F(x2). y, y′ ∈ L , f(y) + f(y′ ) = f(y + y′ ) ≤ p(y + y′ ) = p(y + x0 + y′ − x0) ≤ p(y + x0) + p(y′ − x0) , f(y′ ) − p(y′ − x0) ≤ p(y + x0) − f(y). β1 := supy′∈L(f(y′ ) − p(y′ − x0)), β2 := infy∈L(p(y + x0) − f(y)) , β1 ≤ β2 β1 ≤ c ≤ β2 c , f(y) + c ≤ p(y + x0), f(y′ ) − c ≤ p(y′ − x0) (y, y′ ∈ L). t > 0 F(x) = F(y + tx0) = f(y) + tc = t(f(y/t) + c) ≤ tp(y/t + x0) = p(y + tx0) = p(x). t < 0 F(x) = F(y + tx0) = f(y) + tc = (−t)(f(−y/t) − c) ≤ −tp(−y/t − x0) = p(y + tx0) = p(x). t = 0 F(x) = F(y) = f(y) ≤ p(y) = p(x). F ≤ p on L1. g ∈ Φ def ⇐⇒ g : Lg → R; , L ⊂ Lg, g = f on L, g ≤ p on Lg . Φ ̸= ∅ . Φ ( ) . g, g′ ∈ Phi , g ≼ g′ def ⇐⇒ Lg ⊂ Lg′ , g = g′ on Lg . Φ {gλ} . Lλ := Lgλ
  • 22. Functional Analysis 20 . L0 := Lλ , g0 on L0 g0 = gλ on Lλ , g0 ∈ Φ {gλ} . Φ . Zorn , ∃ F ∈ Φ , i.e, g ∈ Φ; F ≼ g g = F. F X . , , F Φ . F . 7.3 ( ) X , L ⊂ X . f L . ∃ p : X → C; , p(λx) = |λ|p(x) (λ ∈ C, x ∈ X), p(x + y) ≤ p(x) + p(y) (x, y ∈ X) , |f| ≤ p on L , ∃ F ∈ X∗ = L(X, C); F = f on L, |F| ≤ p on X . , f X , f ≤ p . . f(x) = g(x) + ih(x) . g, h L . g, h ≤ |f| ≤ p on L. g X G; G ≤ p on X . −G(x) = G(−x) ≤ p(−x) = p(x) |G| ≤ p. , g(ix) + ih(ix) = f(ix) = if(x) = ig(x) − h(x) , h(x) = −g(ix). F(x) := G(x) − iG(ix) , . , F = f on L F(x1 + x2) = F(x1) + F(x2) , F(ix) = G(ix)−iG(−x) = i(−iG(ix)+G(x)) = iF(x) a ∈ R F(ax) = aF(x) , α ∈ C F(αx) = αF(x) . F(x) = reiθ F(e−iθ x) = e−iθ F(x) ∈ R , G(e−iθ x) , |F(x)| = |eiθ F(x)| = |G(e−iθ x)| ≤ p(e−iθ x) = |e−iθ |p(x) = p(x). 7.1 X ( ) , L ⊂ X . f L ( ) . ∃ F ∈ X∗ ; F = f on L, ∥F∥X = ∥f∥L. p(x) = ∥f∥L∥x∥ , . 7.2 X . ∀ x0 ∈ X, ̸= 0, ∃ g ∈ X∗ ; g(x0) = ∥x0∥, ∥g∥ = 1. L := ⟨x0⟩ = {tx0; t ∈ K} f(x) = f(tx0) := t∥x0∥ (x = tx0 ∈ L) , . |f(x)| = |t|∥x0∥ = ∥tx0∥ = ∥x∥ ∥f∥ = 1. 7.3 X , L X . x0 ∈ X L , d := infy∈L ∥x0 − y∥ > 0 . ∃ f ∈ X∗ ; f = 0 on L, f(x0) = 1, ∥f∥ ≤ 1/d. L1 := L + Rx0 g(x) = t (x = y + tx0 ∈ L1) g = 0 on L, g(x0) = 1, ∥g∥L1 ≤ 1/d. . , . 2 , Banach sp., , , , , (= compact ) , , . , , , , .
  • 23. Functional Analysis 21 A , . A.1 Lp (X, F, µ) (X a set, F σ-field on X, µ = µ(dx) on X) , H¨older , Minkovsky . f ∈ Lp (X) (or Lp (X, dµ) or Lp (X, F, µ) ) ∥f∥Lp < ∞ . , ∥f∥Lp = X |f(x)|p µ(dx) 1/p (1 ≤ p < ∞), ∥f∥∞ = ess.supx∈X|f(x)| := inf{α; |f(x)| ≤ α µ-a.e}. , 1 ≤ p ≤ ∞ , 1 ≤ q ≤ ∞ 1/p + 1/q = 1 . , p = 1 q = ∞, p = ∞ q = 1 . H¨older . ∥fg∥L1 ≤ ∥f∥Lp ∥g∥Lq , ∥fg∥L1 ≤ ∥f∥L1 ∥g∥∞ (∥fg∥L1 ≤ ∥f∥∞∥g∥L1 ). Minkovsky ∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp , Lp (X) . (X, F) = (N, 2N ) µ = n≥1 δn counting measure ( ) , N f(n) , N f(n)µ(dn) = n≥1 f(n) . x = (x1, x2, . . . ) , f(n) = |xn|p n≥1 |xn|p . lp Banach sp. . A.2 A.1 X , ∃ X Banach sp., ∃ J : X → X ; ∥Jx∥ = ∥x∥ (x ∈ X), J(X) dense in X J(X) X , X ⊂ X X = X . X X (completion) . X X Cauchy . {xn}, {yn} ∈ X , {xn} ∼ {yn} ⇐⇒ xn − yn → 0 (n → ∞) . , x = [{xn}] ∈ X := X/ ∼ . x = [{xn}], y = [{yn}] ∈ X, α ∈ K , αx := [{αxn}], x + y := [{xn + yn}] , X . x = [{xn}] ∈ X , |∥xn∥ − ∥xm∥| ≤ ∥xn − xm∥ → 0 , {∥x∥} R Cauchy , ∃ lim n→∞ ∥xn∥ =: ∥x∥ . X ( ). x ∈ X , xn = x , Jx := [{xn = x}] x , X ⊂ X . , J : X → X , ∥Jx∥ = ∥x∥ . ∀ x ∈ X ,
  • 24. Functional Analysis 22 {xn} ∀ ε > 0, ∃ N; ∀ n, m ≥ N, ∥xm − xn∥ < ε , n ≥ N , Jxn ∈ X , x − Jxn = [{xm − xn}m≥1] ∥x − Jxn∥ = lim m→∞ ∥xm − xn∥ ≤ ε ∥x − Jxn∥ → 0 (n → ∞). , J(X) dense in X. X . {xn} X Cauchy . xn {x (n) k }k≥1 Cauchy ∃ kn; ∀ m > kn, ∥x (n) m − x (n) kn ∥ ≤ 1/n. x := [{x (n) kn }] , x ∈ X , {xn} . , x ∈ X {x (n) kn } ∈ X (i.e., X Cauchy ) . (A.1) ∥xn − Jx (n) kn ∥ = lim m→∞ ∥x (n) km − x (n) kn ∥ ≤ 1 n . ∥x (n) kn − x (m) km ∥ = ∥Jx (n) kn − Jx (m) km ∥ ≤ ∥Jx (n) kn − xn∥ + ∥xn − xm∥ + ∥xm − Jx (m) km ∥ ≤ ∥xn − xm∥ + 1 n + 1 m → 0 (n, m → ∞).(A.2) {x (n) kn } ∈ X. (A.1) , ∥x − xn∥ ≤ ∥x − Jx (n) kn ∥ + ∥Jx (n) kn − xn∥ ≤ ∥x − Jx (n) kn ∥ + 1 n . (A.2) , ∥x − Jx (n) kn ∥ = lim p→∞ ∥x (p) kp − x (n) kn ∥ ≤ lim p→∞ ∥xp − xn∥ + 1 n . , 2 , lim n→∞ ∥x − xn∥ ≤ lim n→∞ ∥x − Jx (n) kn ∥ ≤ lim n,p→∞ ∥xp − xn∥ = 0, xn → x in X , X . A.3 Hk,p (Ω) Ω ⊂ Rn , Ck (Ω) k . α = (α1, . . . , αn) (multi-index ) , |α| := α1 + · · · + αn, ∂α x := ∂α1 1 · · · ∂αn n . , ∂j = ∂/∂xj . Ck,p (Ω) := ⎧ ⎪⎨ ⎪⎩ u ∈ Ck (Ω); ∥u∥k,p := ⎛ ⎝ α;|α|≤k Ω |∂α x u(x)|p dx ⎞ ⎠ 1/p < ∞ ⎫ ⎪⎬ ⎪⎭ . (Ck,p (Ω), ∥ · ∥k,p) Hp,k (Ω) , Sobolev sp. . {un} Cauchy in Ck,p (Ω) ⇐⇒ ∀ α; 1 ≤ |α| ≤ k, Ω |∂α x un(x) − ∂α x um(x)|p dx → 0 (m, n → ∞). Lp (Ω) , ∃ uα ∈ Lp (Ω); Ω |∂α x un(x) − ∂α x uα (x)|p dx → 0 (n → ∞). (uα )|α|≤k Hp,k (Ω) , uα = ∂α x u .
  • 25. Functional Analysis 23 A.4 A.2 [a, b] f(t) Pn(t) , i.e., ∃ {Pn(t)}; Pn → → f on [a, b], i.e., lim n→∞ sup t∈[a,b] |Pn(t) − f(t)| = 0. t′ = (t − a)/(b − a) , [a, b] [0, 1] , ( ) , [a, b] = [0, 1] . t ∈ [0, 1] , n k=0 (k − nt)2 n k tk (1 − t)n−k = nt(1 − t) ≤ 1 4 n . ( t(1 − t) ≤ (t + (1 − t))/2 = 1/2 .) , , n k=0 n k xk yn−k = (x + y)n , n k=0 n k tk (1 − t)n−k = 1 , x , x , n k=0 k n k xk yn−k = nx(x + y)n−1 , n k=0 k2 n k xk yn−k = nx(nx + y)(x + y)n−2 x = t, y = 1 − t (k − nt)2 = k2 − 2ntk + n2 t2 . Pn(t) = n k=0 f k n n k tk (1 − t)n−k Pn [0, 1] , f . |f(t) − Pn(t)| ≤ n k=0 f(t) − f k n n k tk (1 − t)n−k , f [0, 1] , ∀ ε > 0, ∃ δ > 0; ∀ t, t′ ∈ [0, 1]; |t−t′ | < δ, |f(t)−f(t′ )| < ε. t , k |t−k/n| < δ |t−k/n| ≥ δ , S1, S2 , |f(t) − Pn(t)| ≤ S1 + S2, , S1 ≤ ε n k=0 n k tk (1 − t)n−k = ε. M = maxt∈[0,1] |f(t)| |f(t) − f(k/n)| ≤ 2M, |t − k/n| ≥ δ 1 ≤ |nt − k|/(nδ) , S2 ≤ 2M n k=0 |nt − k| nδ 2 n k tk (1 − t)n−k ≤ M 2nδ2 . |f(t) − Pn(t)| ≤ ε + M 2nδ2 . t ∈ [0, 1] , supt∈[0,1] , n → ∞ lim n→∞ sup t∈[0,1] |f(t) − Pn(t)| ≤ ε , ε > 0 , ( )= 0 .
  • 26. Functional Analysis 24 A.5 3.5 dim X = n {x1, . . . , xn} basis ∀ x ∈ X, ∃ (α1, . . . , αn); x = αixi. ∥x∥∞ = max |αi| 1 norm . ∥x∥ . ∥x∥ ≤ |αi|∥xi∥ ≤ max |αi| · ∥xi∥ = c1∥x∥∞ (c1 = ∥xi∥). . . ∀ k ≥ 1, ∃ yk; ∥yk∥ > k∥yk∥ , ∥(yk/∥yk∥∞)∥ < 1/k → 0. , zk = yk/∥yk∥∞ , ∥zk∥∞ = 1 , ∥zk∥ < 1/k → 0, i.e., zk → 0 under ∥ · ∥. , zk = n i=1 β (k) i xi , 1 = ∥zk∥∞ = max |β (k) i | , ∃ β (kj ) i → ∃ βi in K , ∃ zkj → ∃ z under ∥ · ∥∞, under ∥ · ∥ by ( ). z = 0 , 1 = ∥zkj ∥ → ∥z∥ . ∃ c0 > 0; ∥x∥ ≥ c0∥x∥∞ (x ∈ X). . [ ] ∃ c0 > 0; ∥x∥ ≥ c0∥x∥∞ (x ∈ X), i.e., 0 < c0 ≤ ∥x∥/∥x∥∞ = ∥(x/∥x∥∞)∥ . y = x/∥x∥∞ , f(y) := ∥y∥ , ∃ miny;∥y∥∞=1 f(y) > 0 . yk → y under ∥ · ∥∞ under ∥ · ∥ , f(y) conti. under ∥ · ∥. S := {y; ∥y∥∞ = 1} , compact . , y = n i=1 βixi , 1 = ∥y∥∞ = max |βi| , y (β1, . . . , βn) ∈ Kn , S = {(β1, . . . , βn); max |βi| = 1} Kn . S ( ) compact . , ∀ y ∈ S, f(y) > 0 , compact set , ∃ y0 ∈ S; minS f = f(y0) = ∥y0∥ > 0 , c0 = ∥y0∥ . A.6 A.3 X , ∥x + y∥2 + ∥x − y∥2 = 2(∥x∥2 + ∥y∥2 ) , ⟨x, y⟩ = 1 4 ∥x + y∥2 − ∥x − y∥2 + i∥x + iy∥2 − i∥x − iy∥2 , . . ⟨x, x⟩ = ∥x∥2 , ⟨y, x⟩ = ⟨x, y⟩, ⟨ix, y⟩ = i⟨x, y⟩, ⟨x, −y⟩ = −⟨x, y⟩, ⟨x, 0⟩ = ⟨0, x⟩ = 0. , , . (1) Re⟨x1, y⟩ + Re⟨x2, y⟩ = 1 2 Re⟨x1 + x2, 2y⟩ = Re⟨x1 + x2, y⟩. (2) Re . (3) α ∈ R ⟨αx, y⟩ = α⟨x, y⟩. γ ∈ C , ⟨γx, y⟩ = γ⟨x, y⟩. (1) , i.e., ⟨x, y⟩ = Re⟨x, y⟩. ⟨x1, y⟩ + ⟨x2, y⟩ = 1 4 (∥x1 + y∥2 + ∥x2 + y∥2 ) − (∥x1 − y∥2 + ∥x2 − y∥2 ) = 1 8 (∥x1 + x2 + 2y∥2 + ∥x1 − x2∥2 ) − (∥x1 + x2 − 2y∥2 + ∥x1 − x2∥2 ) = 1 8 (∥x1 + x2 + 2y∥2 − ∥x1 + x2 − 2y∥2 ) = 1 2 ⟨x1 + x2, 2y⟩.
  • 27. Functional Analysis 25 ⟨x1, y⟩ + ⟨x2, y⟩ = ⟨x1 + x2, 2y⟩/2. x2 = 0 , ⟨0, y⟩ = 0 , ⟨x, y⟩ = ⟨x, 2y⟩/2. , ⟨x1, y⟩ + ⟨x2, y⟩ = ⟨x1 + x2, 2y⟩ = ⟨x1 + x2, y⟩/2. Re⟨x1, y⟩ + Re⟨x2, y⟩ = Re⟨x1 + x2, y⟩. (2) ⟨x1 + x2, y⟩ + ⟨y, x1 + x2⟩ = (⟨x1, y⟩ + ⟨y, x1⟩) + (⟨x2, y⟩ + ⟨y, x2⟩) y iy , ⟨x1 + x2, y⟩ − ⟨y, x1 + x2⟩ = (⟨x1, y⟩ − ⟨y, x1⟩) + (⟨x2, y⟩ − ⟨y, x2⟩) , ⟨x1 + x2, y⟩ = ⟨x1, y⟩ + ⟨x2, y⟩. (3) y ∈ X α ∈ R , f(α) := ⟨αx, y⟩ . . (2) , n ∈ N , f(1) = f(n/n) = nf(1/n), i.e., f(1/n) = (1/n)f(1). f(m/n) = (m/n)f(1) (m, n ∈ N). f(−α) = −f(α) , , ∀ r ∈ Q, f(r) = rf(1). , ∀ α ∈ R, f(α) = αf(1), i.e., ⟨αx, y⟩ = α⟨x, y⟩. β ∈ R , ⟨iβx, y⟩ = i⟨βx, y⟩ = iβ⟨x, y⟩. ∀ γ ∈ C, ⟨γx, y⟩ = γ⟨x, y⟩ . A.7 A2 (Ω) Ω ⊂ Cn open , f ∈ A2 (Ω) def ⇐⇒ f on Ω, Ω |f(z)|2 dxdy < ∞ (z = x + iy). f, g ∈ A2 (Ω) , (f, g) = Ω f(z)g(z)dxdy Hilbert. . {fn} A2 (Ω) Cauchy . z = x+iy ∈ C (x, y) ∈ R2 , fn ∈ L2 (Ω) Cauchy ∃ f ∈ L2 (Ω); ∥fn −f∥L2 → 0. f . z ∈ Ω , Cauchy , fn(z) = 1 2πi |ζ−z|=r fn(ζ) ζ − z dζ (0 < r ≤ ε) , ε > 0 ; {|ζ − z| < ε} ⊂ Ω. r , r 0 ε (A.3) 1 2 ε2 fn(z) = 1 2πi ε 0 drr |ζ−z|=r fn(ζ) ζ − z dζ = 1 2π |ζ−z|≤ε fn(ζ)dξdη (ζ = ξ + iη). ( |ζ − z| = r ζ − z = r(cos θ + i sin θ) , dζ = r(− sin θ + i cos θ)dθ = ir(cos θ + i sin θ)dθ = i(ζ − z)dθ , ε 0 drr |ζ−z|=r dζ ζ − z = ε 0 drr 2π 0 idθ = i |ζ−z|≤ε dξdη.) fn L2 (Ω) (A.3) z Ω . (∀ K ⊂ Ω compact 1 , ε > 0 Kε := {ζ; |ζ − z| ≤ ε, z ∈ K} ⊂ Ω . sup z∈K |ζ−z|≤ε |fn(ζ) − f(ζ)|dξdη ≤ Kε |fn(ζ) − f(ζ)|dξdη ≤ ∥fn − f∥L2 |Kε|1/2 → 0). (A.3) 2/ε2 f∗ . fn → f in L2 (Ω) , f = f∗ a.e. f ∈ A2 (Ω).
  • 28. Functional Analysis 26 B , X , X∗∗ := (X∗ )∗ X 2 . X ⊂ X∗∗ . X∗∗ = X X Banach sp. . 1 < p < ∞ , LP (Ω) lp Banach sps . B.1 X normed ps. . , . xn → x (strong) in X def ⇐⇒ ∥xn − x∥ → 0. s-limn→∞ xn = x . xn → x (weak) in X def ⇐⇒ ∀ f ∈ X∗ , f(xn) → f(x). w-limn→∞ xn = x . . B.1 xn → x (weak) , . [ ] xn → x′ (weak) . x ̸= x′ , ∃ f ∈ X∗ ; f(x − x′ ) = ∥x − x′ ∥ ̸= 0, ∥f∥ = 1. f(x − x′ ) = f(x) − f(x′ ) = w- lim(f(xn) − f(xn)) = 0 , . qed B.1 X = l2 f ∈ l2 , ∃1 y = (yk) ∈ l2 ; f(x) = xkyk (x = (xk) ∈ l2 ). x(n) = (x (n) k = δn,k) ∈ l2 f(x(n) ) = yn → 0 , x(n) → 0 (weak). ∥x(n) − x(m) ∥l2 = √ 2 (m ̸= n). {x(n) } . B.1 X , xn → x (weak) in X . {∥xn∥} ∥x∥ ≤ lim inf ∥xn∥ . ∀ f ∈ X∗ , Tn(f) := f(xn) Tn ∈ X∗∗ . , {Tn(f)} . X∗ Banach , , sup ∥Tn∥ < ∞. T(f) := f(x) = lim f(xn) = lim Tn(f) T ∈ X∗∗ , ∥T∥ = ∥x∥. ∥Tn∥ = ∥xn∥ , Banach-Steinhaus , ∥x∥ = ∥T∥ ≤ lim inf ∥Tn∥ = lim inf ∥xn∥. B.2 H Hilbert sp. . xn → x (weak) in H, , ∥xn∥ → ∥x∥ xn → x (strong) in H. xn → x (weak) in H Riesz , ∀ y ∈ H, ⟨xn, y⟩ → ⟨x, y⟩ . ∥xn − x∥2 = ∥xn∥2 + ∥x∥2 − 2ℜ⟨xn, x⟩ → ∥x∥2 + ∥x∥2 − 2ℜ⟨x, x⟩ = 0. X . fn → f (weak*) in X∗ : ( * ) def ⇐⇒ ∀ x ∈ X, fn(x) → f(x). B.3 X , fn → f (weak*) in X∗ . ∥f∥ ≤ lim inf ∥fn∥. B.2 .
  • 29. Functional Analysis 27 B.2 B.1 X, Y . T : D(T) ⊂ X → Y , D(T) dense in X . g ∈ D(T∗ ) ⊂ Y ∗ ∃ f ∈ X∗ ; g ◦ T = f on D(T) , T∗ : D(Y ∗ ) ⊂ Y ∗ → X∗ T∗ (g) = f . , T∗ (g) = g ◦ T. T∗ T (adjoint op.) . g ◦ T = f f g , . , g ◦ T = f′ , f = f′ on D(T) , D(T) dense , f, f′ f = f′ on X . T , T X , D(T) = X . ∀ g ∈ Y ∗ , f := g ◦ T f ∈ X∗ , D(T∗ ) = Y ∗ . X = H, Y = H′ Hilbert ⟨x, T∗ y⟩ = ⟨Tx, y⟩ (x ∈ D(T), y ∈ D(T∗ )) . D(T∗ ) = D(T) T = T∗ on D(T) T (self-adjoint op.) . D(T) ⊂ D(T∗ ) T = T∗ on D(T) , , ⟨x, Tx⟩ = ⟨Tx, y⟩ (x, y ∈ D(T)) T (symmetric op.) . B.2 X = Y = Rn , T Rn Rn tj,k := ⟨Tej, ek⟩ , T = (tj,k) . T∗ = t T; T . X = Y = Cn T∗ = t T; . B.3 H = L2 (0, 1) . k(t, s) [0, 1]2 , x ∈ H , Tx(t) = [0,1] k(t, s)x(s)ds T H , D(T) = D(T∗ ) = H. T∗ y(t) = [0,1] k(t, s)y(s)ds . C T n , ∃ λ ∈ C, ∃ x ∈ Rn ; x ̸= 0, Tx = λx λ T , x T . λ ⇐⇒ det(λI − T) = 0. λ , , (λI − T)x = 0 x 0 (Ker(λI − T) = {0}, i.e., λI − T 1 to 1) , det(λI − T) ̸= 0 , ∃ (λI − T)−1 . , T X , z ∈ ρ(T) def ⇐⇒ z ∈ C; Ker(zI − T) = {0} (zI − T 1 to 1) (zI − T)−1 ∈ L(X). , ρ(T) T (resolvent set) . R(z) := (zI − T)−1 T . σ(T) := C ρ(T) T (spectrum) . ∃ x ∈ D(T); x ̸= 0, Tx = zx, i.e., (zI − T)x = 0 z ∈ C T , σp(T) , (point spectrum) . N(zI − T) := Ker(zI − T) z , z . σp(T) ⊂ σ(T). z1, z2 ∈ ρ(T) R(z1) − R(z2) = (z1 − z2)R(z1)R(z2) (resolvent eqution) . ρ(T) . σ(T) . R(z): holmorphic on ρ(T). T ∈ L(X) , r(T) := lim sup n ∥Tn∥ (spectral radius) .
  • 30. Functional Analysis 28 (i) |z| > r(T) =⇒ z ∈ ρ(T), R(z) = k≥0 1 zk+1 Tk = 1 z + 1 z2 T + 1 z3 T2 + · · ·. (ii) ∃ z ∈ σ(T); |z| = r(T). D X, Y Banach sps . T : X → Y compact (or ) def ⇐⇒ ∀ {xn} ⊂ X: bdd, ∃ {xnk }; Txnk → ∃ y ∈ Y . compact op. . ( , ∃ xn ∈ X; ∥xn∥ = 1, ∥Txn∥ ≥ n → ∞ , compact ) T: compact =⇒ xn → x (weak) in X Txn → Tx (strong) in Y . D.1 H: Hilbert, T : H → H: compact self adj. op. , {λn} ⊂ R ONS {xn} , ∀ x ∈ H, ∃ ck ∈ K, ∃ x′ ∈ H; Tx′ = 0, x = ckxk + x′ , Tx = λkckxk. λn → 0 dim N(λnI − T) < ∞ (∀ n).