SlideShare a Scribd company logo
1 of 31
Frequency Response Method
 Frequency response analysis and design methods
consider response to sinusoids methods rather than steps
and ramps.
 Frequency response is readily determined experimentally
in sinusoidal testing.
 Frequency response is readily obtained from the system
transfer function (s = jω) , where ω is the input frequency).
 Link between frequency and time domains is indirect.
Design criteria help obtain good transient time response.
1
LCS
 The frequency response of a system is steady-state
response of the system to a sinusoidal input signal.
 For linear dynamic systems, the steady state output of
the system is a sinusoid with the same frequency as the
input, but differing in amplitude and phase angle (there is a
phase shift in the output).
 The frequency response can be computed for a single
frequency, and can be plotted for a single frequency, and
can be plotted for a range of frequencies.
Frequency Response Method
2
LCS
Bode Plots
3
LCS
From last class
 Sketching the Root Locus for a given system
 Determine the stability of the system based
on the R-L sketch
4
LCS
Today’s class
 Sketching a bode diagram for a given system
5
LCS
Learning Outcomes
 At the end of this lecture, students should be
able to:
 Sketch the bode diagram for a given system
 Identify the system’s stability based on the
determined Gain Margin & Phase Margin
6
LCS
There are two types of Bode plots:
 The Bode straight-line approximation to the log-
magnitude (LM) plot, LM versus w (with w on
a log scale)
 The Bode straight-line approximation to the
phase plot, (w) versus w (with w on a log
scale)
7
LCS
Num=[a b]
Den=[c d]
Bode(num,den)
8
LCS
Five types of terms in H(jw)
1) K (a constant)
2) (a zero) or (a pole)
3) jw (a zero) or 1/jw (a pole)
4) Any of the terms raised to a positive integer power.
5) Complex zero/poles
1
w
1 j
w

2
2 2 2
0 0
2 2
0 0
2 w w 1
1 j - (a complex zero) or (a complex pole)
2 w w
w w
1 j -
w w




1
1
w
1 j
w

2
1
w
For example, 1 j (a double zero)
w
 

 
 
9
LCS
1. Constant term in H(jw)
If H(jw) = K = K/0
Then LM = 20log(K) and (w) = 0 , so the LM and phase responses are
LM (dB)
w
0
w
0o
(w)
1
20log(K)
10 100
Summary: A constant in H(jw):
• Adds a constant value to the LM graph (shifts the entire graph up or down)
• Has no effect on the phase
10
LCS
Factor Constant ,K
|G(jw)| /G(jw)
LM (dB)
w
0
w
0o
(w)
1
20log(K)
10 100
11
LCS
2. A) 1 + jw/w1 (a zero): The straight-line
approximations are:
2
-1
1 1 1
2
-1
1 1
w w w
If H(jw) 1 j 1 tan
w w w
w w
Then LM 20log 1 and (w) tan
w w

   
    
   
   
 
   
 
  
   
 
   
 
 To determine the LM and phase responses, consider 3 ranges
for w:
1) w << w1
2) w >> w1
3) w = w1 12
LCS
So the Bode approximations (LM and phase) for
1 + jw/w1 are shown below.
Summary: A 1 + jw/w1 (zero) term in H(jw):
• Causes an upward break at w = w1 in the LM plot. There is a 0dB
effect before the break and a slope of +20dB/dec or +6dB/oct after
the break.
• Adds 90 to the phase plot over a 2 decade range beginning a
decade before w1 and ending a decade after w1 .
LM
w
0dB
= +20dB/dec
w
90o
(w)
= + 6dB/oct
20dB
w1
slope
0o
10w1
45o
w1 10w1
0.1w1
= +45 deg/dec
slope
(for 2 decades)
13
LCS
LM
w
0dB
= +20dB/dec
= + 6dB/oct
20dB
w1
slope
10w1
3dB
asymptotic approximation
actual
14
LCS
Factor (a zero):
1
1


j

|G(jw)| /G(jw)
LM
w
0dB
= +20dB/dec
w
90o
(w)
= + 6dB/oct
20dB
w1
slope
0o
10w1
45o
w1 10w1
0.1w1
= +45 deg/dec
slope
(for 2 decades)
15
LCS
2) B (a pole): The straight-line approximations
are:
To determine the LM and phase responses, consider 3 ranges for w:
1) w << w1
2) w >> w1
3) w = w1
-1
2 2
1
-1
1
1 1 1
-1
2
1
1
1 1 0 1 w
If H(jw) tan
w w
1 j w w w
1 tan 1
w
w w w
1 w
Then LM 20log and (w) -tan
w
w
1
w

 

     
 
     

  
     
     
 
 
   
 
   
 
 
 

 
 
 
 
 
1
1
w
1 j
w

16
LCS
So the Bode approximations (LM and phase) for
are shown below. 1
1
w
1 j
w

LM
w
0dB
= -20dB/dec
w
-90o
(w)
= - 6dB/oct
-20dB
w1
slope 0o
10w1
-45o
w1 10w1
0.1w1
= -45 deg/dec
slope
(for 2 decades)
Summary: A 1 + jw/w1 (zero) term in H(jw):
• Causes an downward break at w = w1 in the LM plot. There
is a 0dB effect before the break and a slope of -20dB/dec or -
6dB/oct after the break.
• Adds -90 to the phase plot over a 2 decade range beginning
a decade before w1 and ending a decade after w1 .
17
LCS
Factor (a pole)
1
1
1


j

|G(jw)| /G(jw)
LM
w
0dB
= -20dB/dec
w
-90o
(w)
= - 6dB/oct
-20dB
w1
slope 0o
10w1
-45o
w1 10w1
0.1w1
= -45 deg/dec
slope
(for 2 decades)
18
LCS
LM
w
0dB
= -20dB/dec
-9
= - 6dB/oct
-20dB
w1
slope 0
10w1
-45
-3dB
asymptotic approximation
actual 19
LCS
Lets try!
)
2
(
)
1
(
20
)
(
)
(



s
s
s
s
H
s
G
Plot a bode plot for a transfer function:-
)
10
(
)
1
(
100
)
(
)
(



s
s
s
s
H
s
G
1)
2)
20
LCS
Reminder!!!
 Don’t forget to bring:-
 Ruler
 Pencil
 Eraser
For Bode Plot Sketching…
21
LCS
Plot a Bode Plot!
)
100
(
)
10
)(
1
(
200
)
(
)
(




s
s
s
s
s
H
s
G
22
LCS
)
10
)(
2
(
200
)
(
)
(








j
j
j
j
H
j
G
Replace s=jw into G(s)H(s)
Rearrange form:-
)
10
1
)(
2
1
(
10
)
(
)
(





j
j
j
j
H
j
G



23
LCS
This transfer function has 4 forms:-
i. Factor Constant, K=10
ii. Factor
iii. Factor
iv. Factor

j
1
2
1
1

j

10
1
1

j

Sketch for magnitude and phase!
24
LCS
25
LCS
Stability
)
(
)
(
log
20 M
GM
G
M LM
j
G
G 
 




 
M
j
G
o
M




 


 )
(
180
Gain Margin
Phase Margin
The system is stable if BOTH
0
0


M
M
G

26
LCS
Example : Determine the system’s stability
GM
ΦM
dB
GM 5
.
29
)
5
.
29
( 



o
o
o
M 63
)
117
(
180 




Since
0
0


M
M
G

STABLE
27
LCS
Example : Determine the system’s stability
GM
ΦM
dB
GM 8
.
20
)
8
.
20
( 



o
o
o
M 73
)
253
(
180 





Since
0
0


M
M
G

UN-STABLE
28
LCS
Gain Cross Over frequency
 A gain cross over frequency is any frequency
at which the amplitude ratio for GH = 0.
 The phase margin is the additional negative
phase shift necessary to make the phase
shift of GH equals to +,- 180. at a gain cross
over frequency.
LCS 29
Phase Cross Over Frequency
 A Phase Cross Over Frequency is any
frequency at which the phase shift of GH is +-
180.
 The gain margin of the feed back system is
the additional dB amplitude necessary to
make the amplitude of GH unity at a phase
cross over frequency.
LCS 30
Possibilities
 If the phase shift crosses +- 180, at more
than one frequency, the gain margin is the
smallest value of the two possibilities.
 If there is no phase cross over frequency, the
gain margin can said to be infinite.
LCS 31

More Related Content

Similar to Bode plots-Lecture 1.ppt

EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).pptEE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).pptRyanAnderson41811
 
about power system operation and control13197214.ppt
about power system operation and control13197214.pptabout power system operation and control13197214.ppt
about power system operation and control13197214.pptMohammedAhmed66819
 
NR-Power Flow.pdf
NR-Power Flow.pdfNR-Power Flow.pdf
NR-Power Flow.pdfLucasMogaka
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering fulllieulieuw
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitancePei-Che Chang
 
7-2.Nyquist Stability Criterion.ppt
7-2.Nyquist Stability Criterion.ppt7-2.Nyquist Stability Criterion.ppt
7-2.Nyquist Stability Criterion.pptDummyDummy74
 
Electronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptElectronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptmuhammadzaid733820
 

Similar to Bode plots-Lecture 1.ppt (20)

Resonant circuits
Resonant circuitsResonant circuits
Resonant circuits
 
Bode plot
Bode plot Bode plot
Bode plot
 
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).pptEE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
 
bode_plot By DEV
 bode_plot By DEV bode_plot By DEV
bode_plot By DEV
 
about power system operation and control13197214.ppt
about power system operation and control13197214.pptabout power system operation and control13197214.ppt
about power system operation and control13197214.ppt
 
Bode Plots
Bode Plots Bode Plots
Bode Plots
 
bode plot.pptx
bode plot.pptxbode plot.pptx
bode plot.pptx
 
En mp ggf
En mp ggfEn mp ggf
En mp ggf
 
Bodeplot
BodeplotBodeplot
Bodeplot
 
NR-Power Flow.pdf
NR-Power Flow.pdfNR-Power Flow.pdf
NR-Power Flow.pdf
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering full
 
Lecture4
Lecture4Lecture4
Lecture4
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
 
7-2.Nyquist Stability Criterion.ppt
7-2.Nyquist Stability Criterion.ppt7-2.Nyquist Stability Criterion.ppt
7-2.Nyquist Stability Criterion.ppt
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
 
powerflowproblem.ppt
powerflowproblem.pptpowerflowproblem.ppt
powerflowproblem.ppt
 
Electronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptElectronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.ppt
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
 
3661.pdf
3661.pdf3661.pdf
3661.pdf
 
Ece4510 notes08
Ece4510 notes08Ece4510 notes08
Ece4510 notes08
 

Recently uploaded

Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Ramkumar k
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxpritamlangde
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...jabtakhaidam7
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 

Recently uploaded (20)

Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 

Bode plots-Lecture 1.ppt

  • 1. Frequency Response Method  Frequency response analysis and design methods consider response to sinusoids methods rather than steps and ramps.  Frequency response is readily determined experimentally in sinusoidal testing.  Frequency response is readily obtained from the system transfer function (s = jω) , where ω is the input frequency).  Link between frequency and time domains is indirect. Design criteria help obtain good transient time response. 1 LCS
  • 2.  The frequency response of a system is steady-state response of the system to a sinusoidal input signal.  For linear dynamic systems, the steady state output of the system is a sinusoid with the same frequency as the input, but differing in amplitude and phase angle (there is a phase shift in the output).  The frequency response can be computed for a single frequency, and can be plotted for a single frequency, and can be plotted for a range of frequencies. Frequency Response Method 2 LCS
  • 4. From last class  Sketching the Root Locus for a given system  Determine the stability of the system based on the R-L sketch 4 LCS
  • 5. Today’s class  Sketching a bode diagram for a given system 5 LCS
  • 6. Learning Outcomes  At the end of this lecture, students should be able to:  Sketch the bode diagram for a given system  Identify the system’s stability based on the determined Gain Margin & Phase Margin 6 LCS
  • 7. There are two types of Bode plots:  The Bode straight-line approximation to the log- magnitude (LM) plot, LM versus w (with w on a log scale)  The Bode straight-line approximation to the phase plot, (w) versus w (with w on a log scale) 7 LCS
  • 9. Five types of terms in H(jw) 1) K (a constant) 2) (a zero) or (a pole) 3) jw (a zero) or 1/jw (a pole) 4) Any of the terms raised to a positive integer power. 5) Complex zero/poles 1 w 1 j w  2 2 2 2 0 0 2 2 0 0 2 w w 1 1 j - (a complex zero) or (a complex pole) 2 w w w w 1 j - w w     1 1 w 1 j w  2 1 w For example, 1 j (a double zero) w        9 LCS
  • 10. 1. Constant term in H(jw) If H(jw) = K = K/0 Then LM = 20log(K) and (w) = 0 , so the LM and phase responses are LM (dB) w 0 w 0o (w) 1 20log(K) 10 100 Summary: A constant in H(jw): • Adds a constant value to the LM graph (shifts the entire graph up or down) • Has no effect on the phase 10 LCS
  • 11. Factor Constant ,K |G(jw)| /G(jw) LM (dB) w 0 w 0o (w) 1 20log(K) 10 100 11 LCS
  • 12. 2. A) 1 + jw/w1 (a zero): The straight-line approximations are: 2 -1 1 1 1 2 -1 1 1 w w w If H(jw) 1 j 1 tan w w w w w Then LM 20log 1 and (w) tan w w                                           To determine the LM and phase responses, consider 3 ranges for w: 1) w << w1 2) w >> w1 3) w = w1 12 LCS
  • 13. So the Bode approximations (LM and phase) for 1 + jw/w1 are shown below. Summary: A 1 + jw/w1 (zero) term in H(jw): • Causes an upward break at w = w1 in the LM plot. There is a 0dB effect before the break and a slope of +20dB/dec or +6dB/oct after the break. • Adds 90 to the phase plot over a 2 decade range beginning a decade before w1 and ending a decade after w1 . LM w 0dB = +20dB/dec w 90o (w) = + 6dB/oct 20dB w1 slope 0o 10w1 45o w1 10w1 0.1w1 = +45 deg/dec slope (for 2 decades) 13 LCS
  • 14. LM w 0dB = +20dB/dec = + 6dB/oct 20dB w1 slope 10w1 3dB asymptotic approximation actual 14 LCS
  • 15. Factor (a zero): 1 1   j  |G(jw)| /G(jw) LM w 0dB = +20dB/dec w 90o (w) = + 6dB/oct 20dB w1 slope 0o 10w1 45o w1 10w1 0.1w1 = +45 deg/dec slope (for 2 decades) 15 LCS
  • 16. 2) B (a pole): The straight-line approximations are: To determine the LM and phase responses, consider 3 ranges for w: 1) w << w1 2) w >> w1 3) w = w1 -1 2 2 1 -1 1 1 1 1 -1 2 1 1 1 1 0 1 w If H(jw) tan w w 1 j w w w 1 tan 1 w w w w 1 w Then LM 20log and (w) -tan w w 1 w                                                                  1 1 w 1 j w  16 LCS
  • 17. So the Bode approximations (LM and phase) for are shown below. 1 1 w 1 j w  LM w 0dB = -20dB/dec w -90o (w) = - 6dB/oct -20dB w1 slope 0o 10w1 -45o w1 10w1 0.1w1 = -45 deg/dec slope (for 2 decades) Summary: A 1 + jw/w1 (zero) term in H(jw): • Causes an downward break at w = w1 in the LM plot. There is a 0dB effect before the break and a slope of -20dB/dec or - 6dB/oct after the break. • Adds -90 to the phase plot over a 2 decade range beginning a decade before w1 and ending a decade after w1 . 17 LCS
  • 18. Factor (a pole) 1 1 1   j  |G(jw)| /G(jw) LM w 0dB = -20dB/dec w -90o (w) = - 6dB/oct -20dB w1 slope 0o 10w1 -45o w1 10w1 0.1w1 = -45 deg/dec slope (for 2 decades) 18 LCS
  • 19. LM w 0dB = -20dB/dec -9 = - 6dB/oct -20dB w1 slope 0 10w1 -45 -3dB asymptotic approximation actual 19 LCS
  • 20. Lets try! ) 2 ( ) 1 ( 20 ) ( ) (    s s s s H s G Plot a bode plot for a transfer function:- ) 10 ( ) 1 ( 100 ) ( ) (    s s s s H s G 1) 2) 20 LCS
  • 21. Reminder!!!  Don’t forget to bring:-  Ruler  Pencil  Eraser For Bode Plot Sketching… 21 LCS
  • 22. Plot a Bode Plot! ) 100 ( ) 10 )( 1 ( 200 ) ( ) (     s s s s s H s G 22 LCS
  • 23. ) 10 )( 2 ( 200 ) ( ) (         j j j j H j G Replace s=jw into G(s)H(s) Rearrange form:- ) 10 1 )( 2 1 ( 10 ) ( ) (      j j j j H j G    23 LCS
  • 24. This transfer function has 4 forms:- i. Factor Constant, K=10 ii. Factor iii. Factor iv. Factor  j 1 2 1 1  j  10 1 1  j  Sketch for magnitude and phase! 24 LCS
  • 26. Stability ) ( ) ( log 20 M GM G M LM j G G          M j G o M          ) ( 180 Gain Margin Phase Margin The system is stable if BOTH 0 0   M M G  26 LCS
  • 27. Example : Determine the system’s stability GM ΦM dB GM 5 . 29 ) 5 . 29 (     o o o M 63 ) 117 ( 180      Since 0 0   M M G  STABLE 27 LCS
  • 28. Example : Determine the system’s stability GM ΦM dB GM 8 . 20 ) 8 . 20 (     o o o M 73 ) 253 ( 180       Since 0 0   M M G  UN-STABLE 28 LCS
  • 29. Gain Cross Over frequency  A gain cross over frequency is any frequency at which the amplitude ratio for GH = 0.  The phase margin is the additional negative phase shift necessary to make the phase shift of GH equals to +,- 180. at a gain cross over frequency. LCS 29
  • 30. Phase Cross Over Frequency  A Phase Cross Over Frequency is any frequency at which the phase shift of GH is +- 180.  The gain margin of the feed back system is the additional dB amplitude necessary to make the amplitude of GH unity at a phase cross over frequency. LCS 30
  • 31. Possibilities  If the phase shift crosses +- 180, at more than one frequency, the gain margin is the smallest value of the two possibilities.  If there is no phase cross over frequency, the gain margin can said to be infinite. LCS 31