SlideShare a Scribd company logo
1 of 7
1
СУПЕРПОВОДЉИВОСТ
Суперпроводљивост је појава која се јавља код неких материјала на ниским
температурама, када долази до потпуног одсуства електричне отпорности.
График зависности промене специфичне отпорности од температуре:
Специфична отпорност свих проводника зависи од температуре. Код металних
проводника отпорност расте са температуром, а код електролита и угља отпорност
опада. При високим температурама отпорност металних проводника брже расте са
температуром него при средњим вредностима температуре. Специфична отпорност
смањивањем температуре равномерно опада, да би на апсолутној нули достигла неку
минималну вредност.
суперпроводник обичан проводник
Tc - критична температура
 
T
T

TTc0 K
2
Повећање отпорности са порастом температуре објашњава се осциловањем кристалне
решетке. Због осциловања нарушава се симетрија решетке, појављују се локалне
нехомогености на којима се расејава де Брољев талас слободних електрона
Уочено је да постоје неки материјали код којих је електрична отпорност нагло пада
(једнака је нули) у близини апсолутне нуле. Код живе, на пример, на температури од
4,1К електрична отпорност нагло пада нанулу. Материјали чијаје електричнаотпорност
једнака нули називају се суперпроводници. Прелаз метала у стање суперпроводности
дешава се нагло (у скоку). Температура на којој долази до ове нагле промене назива се
критична температура. Уочено је да се неки други метали понашају на исти начин, али
су критичне температуре различите, углавном око или испод 4К.
Пример: Критичнетемпературе – олово 7,2К, жива4,12К, кадмијум0,54К, талијум2,38К,
ниобијум 9,5К.
Уочено је да на критичној темеператури скоковито мењају и друга својства материјала,
што указује да се на тој температури дешавају структурне промене материјала.
Суперпроводност се појављује код разних материјала, укључујући и једноставне
елементе попут калаја и алуминијума, неке маталне легуре, и неке полупроводнике,
као и извесна керамичка једињења. Суперпроводност се не појављује код племенитих
метала попут злата и сребра, нити код феромагнетних метала попут гвожђа (мада
гвожђе може да се претворити у суперпроводник ако се подвргне врло високим
притисцима).
Немачки физичар Мајснер (1933. године) је експериментално утврдио да
суперпроводници не дозвољавају магнетном пољу да продре у њихову унутрашњост.
Суперпорводници се понашају као идеални дијамагнетици.
Ако се метална кугла унесе у магнетно поље, магнетно поље ће постојати и у
унутрашњости кугле. Ако је метална кугла у суперпроводном стању, линије магнетног
поља обилазе око кугле, не улазећи у њену унутрашњост.
3
Ова појава се објашњава индуковањем струја на површини суперпроводника. Магнетно
поље тих струја поништава спољашње поље у унутрашњости метала. Ова појава је
названа Мајснеров ефекат.
Магнетно поље у коме се проводник налази може да уништи супрепроводност. При
појачању спољашњег магнетног поља постоји одређена јачина када поље успе да
продре у суперпроводник и да уништи његову суперпроводљивост. Вредност поља на
којој се ово догађа назива се критична магнетна индукција Bc. На основу тога је
извршенаподелана суперпроводникеIврсте(метали1)–мало критично магнетнопоље
и суперпроводнике II врсте (неке легуре) – велико критично магнетно поље.
Пошто струја коју пропуштамо кроз суперпроводник јесте извор магнетног поља, јасно
је дамора дапостоји ограничењењене јачинеидаизнадте граничнејачинеструјенема
суперпроводљивости.
Суперпроводљивост је откривена 1911. (холандски физичар Камерлинг Онес2), али
теоријска основа ове појаве није била позната све до 1957. године. Те године су
амерички физичари Џон Бардин, Лион Купер и Роберт Шрифер објавили теорију
суперпроводљивости (за конвенционалне,тада јединопознате, суперпроводнике), сада
познату као БСЦ теорију, и за то добили Нобелову награду 1972. Значајан је допринос и
руског научника Богољубова.
1 Интересантно је да најбољи проводници као што су сребро и бакар никад не постају суперпроводници.
2 1908.године произвео течни хелијум. Течни хелијум под нормалним условима кључа на 4,2К.
Добијање течног хелијума омогућило је проучавање многобројних појава на ниским температурама –
почела да се развија физика ниских температура.
4
Основни део БСЦ теорије је грађење парова проводних електрона, познатих као
Куперови парови електрона, као последица интеракције са позитивним јонима
кристала.
Њихова идеја је да електрон – фонон интеракција ствара услове да се два електрона
споје у електронски пар (Куперови парови). Ако је температура материјала већа од Tc
онда фонони имају довољно енергије да ове парове и разоре. Међутим ако је
температура материјала мања од Tc тада фонони немају довољно енергије да разарају
Куперове парове, али и даље имају довољно енергије да их стварају.
Куперов пар електрона чине електрони супротног спина тако да је спин пара једнак
нули, па се понаша као бозон. Куперов пар се као Де Брољев талас простире кроз
кристалну решетку без расејања – тада фонони не само да немају довољно енергије да
разоре Куперов пар, негонемајунидовољно енергиједаизазовуњихово расејање.Зато
је отпорност тада једнака нули.
Постоји и класа материјала,позната као неконвенционални суперпроводници,код којих
се јавља суперпроводност. Такве материјале су 1986. године открили Георг Беднорц и
Карл Милер међу електропроводним керамичким материјалима3. Ови материјали
показују особину суперпроводљивости на температурама далеко вишим него што би то
било могуће по конвенционалној теорији. Још увек нису објашњени механизми
функционисања ових суперпроводника.
Једна од могућих користи суперпроводника је та што би помоћу њих било могуће да се
електрична енергија чува дуго времена, практично без утрошака. Ипак да би се
суперпроводници користили у пракси, потребно је да„функционишу“ натемпературама
приближним собним (иначе би их утрошак енергије за хлађење учинио непрактичним).
3 Технологија је достигла да се производе суперпроводници ове врсте са критичним температурама које
су у областитемепература које се добијају у замрзивачима у домаћинству. Проблем са овим
материјалима јешто не могу да се формирају у облике који су погодни за широку употребу и што су
веома крти.
5
Зато већ дуги низ година научници раде на стварању суперпроводника који раде на све
вишим температурама.
У тим трагањима добијене су легуре ниобијума и германијума (1973) са критичном
температуром 23,2К. Керамички материјал, добијен 1986. године има критичну
темепаратуру 35К. У новије време, добијени су керамички материјали са критичном
температуром око 100К. Већ на овим температурама (100К) пружају се велике
могућности примене, јер за хлађење тела до ове температуре може да се користи течни
азот4.
Провођење електричне струје безикакве отпорности пружа велике могућности. Неке од
могућности примене:
- пренос и складиштење електричне енергије без губитака;
- рачунари са суперпроводљивим елементима могли би да буду знатно мањи,
бржи и ефикасинији;
- лебдећи изнад суперпроводљиве пруге, односно пута возови и аутомобили би
се кретали знатно већим брзинама;
- суперпроводљиви мерни уређаји користили би се за мерење веома слабих
електричних и магнетних поља као што су магнетна поља мозга, срца, за мерење
протока јона кроз ћелијске мембране;
- суперпороводни магнетни у медицинским уређајима за нуклеарну магнетну
резонанцију и у акцелераторима елементарних честица (детаљније у Додатку).
Пример: Левитацијски воз
Ако је температура подлоге вишаод критичне температуре магнетлежи наподлози (воз
на шинама). Када се температура снизи испод критичне, подлога (железничке шине)
постаје суперпроводљива, па из своје унутрашњости потискује магнетно поље сталног
магнета. Јавља се одбојна сила, која се смањује са удаљавањем магнета (железниче
композиције) од површине подлоге. На одређеној висиниизнадподлоге,изједначавају
се одбојна магнетна сила и сила Земљине теже. Тело лебди као да је на магнетном
јастуку.
4 Течни азот кључа на температури 77К. Течи азот је јефтинији и лакши за рад од течног хелијума.
6
ДОДАТАК
Велики хадронски сударач (LHC – Large Hadron Collider) у у ЦЕРН-у чини прстен од две
акцелераторске цеви у којима се убрзавају снопови протона у супротним смеровима.
Оба снопа протона убрзавају се независно до енергија 7 TeV, а затим се сударају при
укупној енергији у систему центра масе од 14 TeV. Једна од основних компоненти овог
синхротронског прстена је суперпроводни диполни магнет у чијем средишту су две
акцелераторске цеви. Диполни магнети омогућавају да се протони, подвргнути
магнетном пољу индукције 8,4Т, крећу по кружним путањама кроз акцелераторске
цеви. Електромагнетни намотаји су од суперпроводног материјала (легуре ниобијума и
татанијума NbTi), који се хладе течним хелијумом до 1,9K.
Температура од 1,9К се постиже пумпањем суперфлуидног хелијума у систем магнета.
Радна температура значајно утиче на суперпроводна својства ниобијум-титанијума.
Диполи у Великом хадронском сударачу садрже каблове од ниобијум-титанијума, који
постају суперпроводни на температури око 10К. Пошто је радна температура 1,9К то
утиче на подизање вредноси критичног магнетног поља на више од 9Т. Радна вредност
магнетног поља је око 8,4Т, коју реализује електрична струја јачине 11850А.
На пример: Када би магнети били на температури од 4,5К, вредност јачине електричне
струје би била око 8500А, који би произвела магнетно поље индукције око 6Т.
Сваки дипол је дугачак 15 метара, а маса је око 35 тона.
Калемови магнета се састоје од 36 уплетених суперпроводних жица. Свака од ових
танких жица састоји се од 6000-9000 појединачних влакана пречника 6-7 m (око десет
пута тање од длаке косе човека).
7
На нормалном притиску хелијум прелази у течну фазу на 4,2К. Али даљим хлађењем, на
температури око 2,17К прелази у нову фазусуперфлуидно стање(хелијум течекроз цеви
без икаквог отпора).

More Related Content

What's hot

Nukearna fisija i fuzija
Nukearna fisija i fuzijaNukearna fisija i fuzija
Nukearna fisija i fuzijasavo preradovic
 
Термонуклеарне реакције на звездама - Termonuklearne reakcije na zvezdama
Термонуклеарне реакције на звездама - Termonuklearne reakcije na zvezdamaТермонуклеарне реакције на звездама - Termonuklearne reakcije na zvezdama
Термонуклеарне реакције на звездама - Termonuklearne reakcije na zvezdamaДушан Тадић
 
Cas 59. Nuklearni reaktori
Cas 59. Nuklearni reaktoriCas 59. Nuklearni reaktori
Cas 59. Nuklearni reaktorisavo preradovic
 
L199 - Fizika - Fizika atomskog jezgra - Milena Petrović - Slavoljub Radulović
L199 - Fizika - Fizika atomskog jezgra - Milena Petrović - Slavoljub RadulovićL199 - Fizika - Fizika atomskog jezgra - Milena Petrović - Slavoljub Radulović
L199 - Fizika - Fizika atomskog jezgra - Milena Petrović - Slavoljub RadulovićNašaŠkola.Net
 
Elektromagnetni talasi - Sofija Nikolic
Elektromagnetni talasi - Sofija NikolicElektromagnetni talasi - Sofija Nikolic
Elektromagnetni talasi - Sofija Nikolicsofijanikolic
 
Spektar elektromagnetnih talasa
Spektar elektromagnetnih talasaSpektar elektromagnetnih talasa
Spektar elektromagnetnih talasaSlavica Tomic
 
L195 - Fizika - Fizika čvrstog stanja - Milica Milosavljević - Slavoljub Radu...
L195 - Fizika - Fizika čvrstog stanja - Milica Milosavljević - Slavoljub Radu...L195 - Fizika - Fizika čvrstog stanja - Milica Milosavljević - Slavoljub Radu...
L195 - Fizika - Fizika čvrstog stanja - Milica Milosavljević - Slavoljub Radu...NašaŠkola.Net
 
Elektricno delovanje obnavljanje 6
Elektricno delovanje  obnavljanje 6Elektricno delovanje  obnavljanje 6
Elektricno delovanje obnavljanje 6marinamj
 
Kada nestane poslednja kap nafte
Kada nestane poslednja kap nafteKada nestane poslednja kap nafte
Kada nestane poslednja kap nafteZvonko Gašparović
 
Elektromagnetni talasi - Sofija Tomić - Vladimir Milićević
Elektromagnetni talasi - Sofija Tomić - Vladimir MilićevićElektromagnetni talasi - Sofija Tomić - Vladimir Milićević
Elektromagnetni talasi - Sofija Tomić - Vladimir MilićevićNašaŠkola.Net
 
Radioaktivnost
RadioaktivnostRadioaktivnost
Radioaktivnostsaculatac
 
Tehn pred elektricitet i magnetizam
Tehn pred elektricitet i magnetizamTehn pred elektricitet i magnetizam
Tehn pred elektricitet i magnetizamsmail hondo
 
Spektar elektromagnetnih talasa - Ksenija Tomić - Vladimir Milićević
Spektar elektromagnetnih talasa - Ksenija Tomić - Vladimir MilićevićSpektar elektromagnetnih talasa - Ksenija Tomić - Vladimir Milićević
Spektar elektromagnetnih talasa - Ksenija Tomić - Vladimir MilićevićNašaŠkola.Net
 

What's hot (20)

Superprovodnost
SuperprovodnostSuperprovodnost
Superprovodnost
 
Nukearna fisija i fuzija
Nukearna fisija i fuzijaNukearna fisija i fuzija
Nukearna fisija i fuzija
 
Термонуклеарне реакције на звездама - Termonuklearne reakcije na zvezdama
Термонуклеарне реакције на звездама - Termonuklearne reakcije na zvezdamaТермонуклеарне реакције на звездама - Termonuklearne reakcije na zvezdama
Термонуклеарне реакције на звездама - Termonuklearne reakcije na zvezdama
 
Cas 59. Nuklearni reaktori
Cas 59. Nuklearni reaktoriCas 59. Nuklearni reaktori
Cas 59. Nuklearni reaktori
 
Frank Hercov eksperiment
Frank Hercov eksperimentFrank Hercov eksperiment
Frank Hercov eksperiment
 
Struja
StrujaStruja
Struja
 
L199 - Fizika - Fizika atomskog jezgra - Milena Petrović - Slavoljub Radulović
L199 - Fizika - Fizika atomskog jezgra - Milena Petrović - Slavoljub RadulovićL199 - Fizika - Fizika atomskog jezgra - Milena Petrović - Slavoljub Radulović
L199 - Fizika - Fizika atomskog jezgra - Milena Petrović - Slavoljub Radulović
 
Elektromagnetni talasi - Sofija Nikolic
Elektromagnetni talasi - Sofija NikolicElektromagnetni talasi - Sofija Nikolic
Elektromagnetni talasi - Sofija Nikolic
 
Test
TestTest
Test
 
Spektar elektromagnetnih talasa
Spektar elektromagnetnih talasaSpektar elektromagnetnih talasa
Spektar elektromagnetnih talasa
 
L195 - Fizika - Fizika čvrstog stanja - Milica Milosavljević - Slavoljub Radu...
L195 - Fizika - Fizika čvrstog stanja - Milica Milosavljević - Slavoljub Radu...L195 - Fizika - Fizika čvrstog stanja - Milica Milosavljević - Slavoljub Radu...
L195 - Fizika - Fizika čvrstog stanja - Milica Milosavljević - Slavoljub Radu...
 
Elektricno delovanje obnavljanje 6
Elektricno delovanje  obnavljanje 6Elektricno delovanje  obnavljanje 6
Elektricno delovanje obnavljanje 6
 
Kada nestane poslednja kap nafte
Kada nestane poslednja kap nafteKada nestane poslednja kap nafte
Kada nestane poslednja kap nafte
 
Elektromagnetni talasi - Sofija Tomić - Vladimir Milićević
Elektromagnetni talasi - Sofija Tomić - Vladimir MilićevićElektromagnetni talasi - Sofija Tomić - Vladimir Milićević
Elektromagnetni talasi - Sofija Tomić - Vladimir Milićević
 
Fizika polu pr_01
Fizika polu pr_01Fizika polu pr_01
Fizika polu pr_01
 
Radioaktivnost
RadioaktivnostRadioaktivnost
Radioaktivnost
 
Električno polje
Električno poljeElektrično polje
Električno polje
 
G. Djordjevic - "Fizika cestica"
G. Djordjevic - "Fizika cestica"G. Djordjevic - "Fizika cestica"
G. Djordjevic - "Fizika cestica"
 
Tehn pred elektricitet i magnetizam
Tehn pred elektricitet i magnetizamTehn pred elektricitet i magnetizam
Tehn pred elektricitet i magnetizam
 
Spektar elektromagnetnih talasa - Ksenija Tomić - Vladimir Milićević
Spektar elektromagnetnih talasa - Ksenija Tomić - Vladimir MilićevićSpektar elektromagnetnih talasa - Ksenija Tomić - Vladimir Milićević
Spektar elektromagnetnih talasa - Ksenija Tomić - Vladimir Milićević
 

Similar to Cas 51.Superprovodljivost

Вештачка радиоактивност.pptx
Вештачка радиоактивност.pptxВештачка радиоактивност.pptx
Вештачка радиоактивност.pptxMirjana Stefanovic
 
TEORIJA VELIKOG PRASKA 222rrrrrgjgj.pptx
TEORIJA VELIKOG PRASKA 222rrrrrgjgj.pptxTEORIJA VELIKOG PRASKA 222rrrrrgjgj.pptx
TEORIJA VELIKOG PRASKA 222rrrrrgjgj.pptxBiboMova1
 
Petnica struktura atoma
Petnica struktura atoma Petnica struktura atoma
Petnica struktura atoma dusan_v
 
Hemijski izvori elektricne struje
Hemijski izvori elektricne strujeHemijski izvori elektricne struje
Hemijski izvori elektricne strujemaryk26
 
Zavarivanje
ZavarivanjeZavarivanje
Zavarivanjeigoriv
 
Odgovori Na Pitanja
Odgovori Na PitanjaOdgovori Na Pitanja
Odgovori Na Pitanjaguesta35912c
 
Fotohemijski procesi u Atmosferi
Fotohemijski procesi u AtmosferiFotohemijski procesi u Atmosferi
Fotohemijski procesi u Atmosferidragoljub vuksic
 
Sunce - zvezda iz Sunčevog sistema
Sunce - zvezda iz Sunčevog sistemaSunce - zvezda iz Sunčevog sistema
Sunce - zvezda iz Sunčevog sistemaMilan Milošević
 
Nikola Tesla prezentacija
Nikola Tesla prezentacijaNikola Tesla prezentacija
Nikola Tesla prezentacijaSiraKK2
 
Nastavna sredstva fizike elektrostatika-2012
Nastavna sredstva fizike elektrostatika-2012Nastavna sredstva fizike elektrostatika-2012
Nastavna sredstva fizike elektrostatika-2012Amra Rustemović
 
ЕЛЕКТРИЧНА СТРУЈА
ЕЛЕКТРИЧНА СТРУЈАЕЛЕКТРИЧНА СТРУЈА
ЕЛЕКТРИЧНА СТРУЈАAnja Rudić
 
Istorija gasnih praznjenja prezentacija
Istorija gasnih praznjenja prezentacijaIstorija gasnih praznjenja prezentacija
Istorija gasnih praznjenja prezentacijaSiniša Ćulafić
 
nikola-tesla-8-1-190417084911 (1) (1).pdf
nikola-tesla-8-1-190417084911 (1) (1).pdfnikola-tesla-8-1-190417084911 (1) (1).pdf
nikola-tesla-8-1-190417084911 (1) (1).pdfssuser64bf5c1
 

Similar to Cas 51.Superprovodljivost (20)

Вештачка радиоактивност.pptx
Вештачка радиоактивност.pptxВештачка радиоактивност.pptx
Вештачка радиоактивност.pptx
 
TEORIJA VELIKOG PRASKA 222rrrrrgjgj.pptx
TEORIJA VELIKOG PRASKA 222rrrrrgjgj.pptxTEORIJA VELIKOG PRASKA 222rrrrrgjgj.pptx
TEORIJA VELIKOG PRASKA 222rrrrrgjgj.pptx
 
Petnica struktura atoma
Petnica struktura atoma Petnica struktura atoma
Petnica struktura atoma
 
Hemijski izvori elektricne struje
Hemijski izvori elektricne strujeHemijski izvori elektricne struje
Hemijski izvori elektricne struje
 
Zavarivanje
ZavarivanjeZavarivanje
Zavarivanje
 
Odgovori Na Pitanja
Odgovori Na PitanjaOdgovori Na Pitanja
Odgovori Na Pitanja
 
Fotohemijski procesi u Atmosferi
Fotohemijski procesi u AtmosferiFotohemijski procesi u Atmosferi
Fotohemijski procesi u Atmosferi
 
Sunce - zvezda iz Sunčevog sistema
Sunce - zvezda iz Sunčevog sistemaSunce - zvezda iz Sunčevog sistema
Sunce - zvezda iz Sunčevog sistema
 
Nikola Tesla prezentacija
Nikola Tesla prezentacijaNikola Tesla prezentacija
Nikola Tesla prezentacija
 
Nikola Tesla-
Nikola Tesla-Nikola Tesla-
Nikola Tesla-
 
Nikola tesla-
Nikola tesla-Nikola tesla-
Nikola tesla-
 
Nastavna sredstva fizike elektrostatika-2012
Nastavna sredstva fizike elektrostatika-2012Nastavna sredstva fizike elektrostatika-2012
Nastavna sredstva fizike elektrostatika-2012
 
ЕЛЕКТРИЧНА СТРУЈА
ЕЛЕКТРИЧНА СТРУЈАЕЛЕКТРИЧНА СТРУЈА
ЕЛЕКТРИЧНА СТРУЈА
 
Mrezna oprema skripta
Mrezna oprema skriptaMrezna oprema skripta
Mrezna oprema skripta
 
Osnovi elektronike
Osnovi elektronikeOsnovi elektronike
Osnovi elektronike
 
CERN
CERNCERN
CERN
 
Istorija gasnih praznjenja prezentacija
Istorija gasnih praznjenja prezentacijaIstorija gasnih praznjenja prezentacija
Istorija gasnih praznjenja prezentacija
 
nikola-tesla-8-1-190417084911 (1) (1).pdf
nikola-tesla-8-1-190417084911 (1) (1).pdfnikola-tesla-8-1-190417084911 (1) (1).pdf
nikola-tesla-8-1-190417084911 (1) (1).pdf
 
Hemijska veza
Hemijska vezaHemijska veza
Hemijska veza
 
D. Gajić - "Solarni neutrini"
D. Gajić - "Solarni neutrini"D. Gajić - "Solarni neutrini"
D. Gajić - "Solarni neutrini"
 

More from savo preradovic

Cas 68.Tamna materija i tamna energija
Cas 68.Tamna materija i tamna energijaCas 68.Tamna materija i tamna energija
Cas 68.Tamna materija i tamna energijasavo preradovic
 
Cas 67. Nastanak svemira
Cas 67. Nastanak svemiraCas 67. Nastanak svemira
Cas 67. Nastanak svemirasavo preradovic
 
Cas 64.Zivotni put zvijeza
Cas 64.Zivotni put zvijezaCas 64.Zivotni put zvijeza
Cas 64.Zivotni put zvijezasavo preradovic
 
час 61.Контролни рад и 62.Анализа контролног рада
час  61.Контролни рад и 62.Анализа контролног радачас  61.Контролни рад и 62.Анализа контролног рада
час 61.Контролни рад и 62.Анализа контролног радаsavo preradovic
 
Cas 60.Priprema za kontrolni rad iz fizike
Cas 60.Priprema za kontrolni rad iz fizikeCas 60.Priprema za kontrolni rad iz fizike
Cas 60.Priprema za kontrolni rad iz fizikesavo preradovic
 
Cas 56. Zakon radioaktivnog raspada
Cas 56. Zakon radioaktivnog raspadaCas 56. Zakon radioaktivnog raspada
Cas 56. Zakon radioaktivnog raspadasavo preradovic
 
Cas 55. Prirodna radioaktivnost
Cas 55. Prirodna radioaktivnostCas 55. Prirodna radioaktivnost
Cas 55. Prirodna radioaktivnostsavo preradovic
 
Cas.52.Sistematizacija atomi i kvanti
Cas.52.Sistematizacija atomi i kvantiCas.52.Sistematizacija atomi i kvanti
Cas.52.Sistematizacija atomi i kvantisavo preradovic
 

More from savo preradovic (10)

Cas 68.Tamna materija i tamna energija
Cas 68.Tamna materija i tamna energijaCas 68.Tamna materija i tamna energija
Cas 68.Tamna materija i tamna energija
 
Cas 67. Nastanak svemira
Cas 67. Nastanak svemiraCas 67. Nastanak svemira
Cas 67. Nastanak svemira
 
Cas 65.Galaksije
Cas 65.Galaksije Cas 65.Galaksije
Cas 65.Galaksije
 
Cas 64.Zivotni put zvijeza
Cas 64.Zivotni put zvijezaCas 64.Zivotni put zvijeza
Cas 64.Zivotni put zvijeza
 
Cas 63.Suncev sistem
Cas 63.Suncev sistemCas 63.Suncev sistem
Cas 63.Suncev sistem
 
час 61.Контролни рад и 62.Анализа контролног рада
час  61.Контролни рад и 62.Анализа контролног радачас  61.Контролни рад и 62.Анализа контролног рада
час 61.Контролни рад и 62.Анализа контролног рада
 
Cas 60.Priprema za kontrolni rad iz fizike
Cas 60.Priprema za kontrolni rad iz fizikeCas 60.Priprema za kontrolni rad iz fizike
Cas 60.Priprema za kontrolni rad iz fizike
 
Cas 56. Zakon radioaktivnog raspada
Cas 56. Zakon radioaktivnog raspadaCas 56. Zakon radioaktivnog raspada
Cas 56. Zakon radioaktivnog raspada
 
Cas 55. Prirodna radioaktivnost
Cas 55. Prirodna radioaktivnostCas 55. Prirodna radioaktivnost
Cas 55. Prirodna radioaktivnost
 
Cas.52.Sistematizacija atomi i kvanti
Cas.52.Sistematizacija atomi i kvantiCas.52.Sistematizacija atomi i kvanti
Cas.52.Sistematizacija atomi i kvanti
 

Cas 51.Superprovodljivost

  • 1. 1 СУПЕРПОВОДЉИВОСТ Суперпроводљивост је појава која се јавља код неких материјала на ниским температурама, када долази до потпуног одсуства електричне отпорности. График зависности промене специфичне отпорности од температуре: Специфична отпорност свих проводника зависи од температуре. Код металних проводника отпорност расте са температуром, а код електролита и угља отпорност опада. При високим температурама отпорност металних проводника брже расте са температуром него при средњим вредностима температуре. Специфична отпорност смањивањем температуре равномерно опада, да би на апсолутној нули достигла неку минималну вредност. суперпроводник обичан проводник Tc - критична температура   T T  TTc0 K
  • 2. 2 Повећање отпорности са порастом температуре објашњава се осциловањем кристалне решетке. Због осциловања нарушава се симетрија решетке, појављују се локалне нехомогености на којима се расејава де Брољев талас слободних електрона Уочено је да постоје неки материјали код којих је електрична отпорност нагло пада (једнака је нули) у близини апсолутне нуле. Код живе, на пример, на температури од 4,1К електрична отпорност нагло пада нанулу. Материјали чијаје електричнаотпорност једнака нули називају се суперпроводници. Прелаз метала у стање суперпроводности дешава се нагло (у скоку). Температура на којој долази до ове нагле промене назива се критична температура. Уочено је да се неки други метали понашају на исти начин, али су критичне температуре различите, углавном око или испод 4К. Пример: Критичнетемпературе – олово 7,2К, жива4,12К, кадмијум0,54К, талијум2,38К, ниобијум 9,5К. Уочено је да на критичној темеператури скоковито мењају и друга својства материјала, што указује да се на тој температури дешавају структурне промене материјала. Суперпроводност се појављује код разних материјала, укључујући и једноставне елементе попут калаја и алуминијума, неке маталне легуре, и неке полупроводнике, као и извесна керамичка једињења. Суперпроводност се не појављује код племенитих метала попут злата и сребра, нити код феромагнетних метала попут гвожђа (мада гвожђе може да се претворити у суперпроводник ако се подвргне врло високим притисцима). Немачки физичар Мајснер (1933. године) је експериментално утврдио да суперпроводници не дозвољавају магнетном пољу да продре у њихову унутрашњост. Суперпорводници се понашају као идеални дијамагнетици. Ако се метална кугла унесе у магнетно поље, магнетно поље ће постојати и у унутрашњости кугле. Ако је метална кугла у суперпроводном стању, линије магнетног поља обилазе око кугле, не улазећи у њену унутрашњост.
  • 3. 3 Ова појава се објашњава индуковањем струја на површини суперпроводника. Магнетно поље тих струја поништава спољашње поље у унутрашњости метала. Ова појава је названа Мајснеров ефекат. Магнетно поље у коме се проводник налази може да уништи супрепроводност. При појачању спољашњег магнетног поља постоји одређена јачина када поље успе да продре у суперпроводник и да уништи његову суперпроводљивост. Вредност поља на којој се ово догађа назива се критична магнетна индукција Bc. На основу тога је извршенаподелана суперпроводникеIврсте(метали1)–мало критично магнетнопоље и суперпроводнике II врсте (неке легуре) – велико критично магнетно поље. Пошто струја коју пропуштамо кроз суперпроводник јесте извор магнетног поља, јасно је дамора дапостоји ограничењењене јачинеидаизнадте граничнејачинеструјенема суперпроводљивости. Суперпроводљивост је откривена 1911. (холандски физичар Камерлинг Онес2), али теоријска основа ове појаве није била позната све до 1957. године. Те године су амерички физичари Џон Бардин, Лион Купер и Роберт Шрифер објавили теорију суперпроводљивости (за конвенционалне,тада јединопознате, суперпроводнике), сада познату као БСЦ теорију, и за то добили Нобелову награду 1972. Значајан је допринос и руског научника Богољубова. 1 Интересантно је да најбољи проводници као што су сребро и бакар никад не постају суперпроводници. 2 1908.године произвео течни хелијум. Течни хелијум под нормалним условима кључа на 4,2К. Добијање течног хелијума омогућило је проучавање многобројних појава на ниским температурама – почела да се развија физика ниских температура.
  • 4. 4 Основни део БСЦ теорије је грађење парова проводних електрона, познатих као Куперови парови електрона, као последица интеракције са позитивним јонима кристала. Њихова идеја је да електрон – фонон интеракција ствара услове да се два електрона споје у електронски пар (Куперови парови). Ако је температура материјала већа од Tc онда фонони имају довољно енергије да ове парове и разоре. Међутим ако је температура материјала мања од Tc тада фонони немају довољно енергије да разарају Куперове парове, али и даље имају довољно енергије да их стварају. Куперов пар електрона чине електрони супротног спина тако да је спин пара једнак нули, па се понаша као бозон. Куперов пар се као Де Брољев талас простире кроз кристалну решетку без расејања – тада фонони не само да немају довољно енергије да разоре Куперов пар, негонемајунидовољно енергиједаизазовуњихово расејање.Зато је отпорност тада једнака нули. Постоји и класа материјала,позната као неконвенционални суперпроводници,код којих се јавља суперпроводност. Такве материјале су 1986. године открили Георг Беднорц и Карл Милер међу електропроводним керамичким материјалима3. Ови материјали показују особину суперпроводљивости на температурама далеко вишим него што би то било могуће по конвенционалној теорији. Још увек нису објашњени механизми функционисања ових суперпроводника. Једна од могућих користи суперпроводника је та што би помоћу њих било могуће да се електрична енергија чува дуго времена, практично без утрошака. Ипак да би се суперпроводници користили у пракси, потребно је да„функционишу“ натемпературама приближним собним (иначе би их утрошак енергије за хлађење учинио непрактичним). 3 Технологија је достигла да се производе суперпроводници ове врсте са критичним температурама које су у областитемепература које се добијају у замрзивачима у домаћинству. Проблем са овим материјалима јешто не могу да се формирају у облике који су погодни за широку употребу и што су веома крти.
  • 5. 5 Зато већ дуги низ година научници раде на стварању суперпроводника који раде на све вишим температурама. У тим трагањима добијене су легуре ниобијума и германијума (1973) са критичном температуром 23,2К. Керамички материјал, добијен 1986. године има критичну темепаратуру 35К. У новије време, добијени су керамички материјали са критичном температуром око 100К. Већ на овим температурама (100К) пружају се велике могућности примене, јер за хлађење тела до ове температуре може да се користи течни азот4. Провођење електричне струје безикакве отпорности пружа велике могућности. Неке од могућности примене: - пренос и складиштење електричне енергије без губитака; - рачунари са суперпроводљивим елементима могли би да буду знатно мањи, бржи и ефикасинији; - лебдећи изнад суперпроводљиве пруге, односно пута возови и аутомобили би се кретали знатно већим брзинама; - суперпроводљиви мерни уређаји користили би се за мерење веома слабих електричних и магнетних поља као што су магнетна поља мозга, срца, за мерење протока јона кроз ћелијске мембране; - суперпороводни магнетни у медицинским уређајима за нуклеарну магнетну резонанцију и у акцелераторима елементарних честица (детаљније у Додатку). Пример: Левитацијски воз Ако је температура подлоге вишаод критичне температуре магнетлежи наподлози (воз на шинама). Када се температура снизи испод критичне, подлога (железничке шине) постаје суперпроводљива, па из своје унутрашњости потискује магнетно поље сталног магнета. Јавља се одбојна сила, која се смањује са удаљавањем магнета (железниче композиције) од површине подлоге. На одређеној висиниизнадподлоге,изједначавају се одбојна магнетна сила и сила Земљине теже. Тело лебди као да је на магнетном јастуку. 4 Течни азот кључа на температури 77К. Течи азот је јефтинији и лакши за рад од течног хелијума.
  • 6. 6 ДОДАТАК Велики хадронски сударач (LHC – Large Hadron Collider) у у ЦЕРН-у чини прстен од две акцелераторске цеви у којима се убрзавају снопови протона у супротним смеровима. Оба снопа протона убрзавају се независно до енергија 7 TeV, а затим се сударају при укупној енергији у систему центра масе од 14 TeV. Једна од основних компоненти овог синхротронског прстена је суперпроводни диполни магнет у чијем средишту су две акцелераторске цеви. Диполни магнети омогућавају да се протони, подвргнути магнетном пољу индукције 8,4Т, крећу по кружним путањама кроз акцелераторске цеви. Електромагнетни намотаји су од суперпроводног материјала (легуре ниобијума и татанијума NbTi), који се хладе течним хелијумом до 1,9K. Температура од 1,9К се постиже пумпањем суперфлуидног хелијума у систем магнета. Радна температура значајно утиче на суперпроводна својства ниобијум-титанијума. Диполи у Великом хадронском сударачу садрже каблове од ниобијум-титанијума, који постају суперпроводни на температури око 10К. Пошто је радна температура 1,9К то утиче на подизање вредноси критичног магнетног поља на више од 9Т. Радна вредност магнетног поља је око 8,4Т, коју реализује електрична струја јачине 11850А. На пример: Када би магнети били на температури од 4,5К, вредност јачине електричне струје би била око 8500А, који би произвела магнетно поље индукције око 6Т. Сваки дипол је дугачак 15 метара, а маса је око 35 тона. Калемови магнета се састоје од 36 уплетених суперпроводних жица. Свака од ових танких жица састоји се од 6000-9000 појединачних влакана пречника 6-7 m (око десет пута тање од длаке косе човека).
  • 7. 7 На нормалном притиску хелијум прелази у течну фазу на 4,2К. Али даљим хлађењем, на температури око 2,17К прелази у нову фазусуперфлуидно стање(хелијум течекроз цеви без икаквог отпора).