SlideShare a Scribd company logo
1 of 97
S. Sandwich I
1975/76,
1980/81
Germany
Catch location
of Ps. georgianus Balleny
Russia
2004/05
Kerguelen
2003/04
Australia
Age and growth
of the Antarctic fish
Pseudochaenichthys georgianus
based on the otolith morphometry
Ryszard Traczyk
Shag Rock
S.Georgia I. S.Sandwich I.
S. Orkney I.
Elephan I.
K.GeorgeI.
Deception
Palmer A.
Balleny
Kerguelen I.
Pseudochaenichthys georgianus NORMAN, 1939 (Channichthyidae)
Problem: Age data of Antarctic fish, Ps. georgianus of
white blood South Georgia icefish.
This fish is spawning in February, March and April, then larvaes hatch in July. Postlarvaes were cought in January
spawning hatching catch
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
II III IV V VI VII VIII IX X XI XII I
Pseudochaenichthys georgianus NORMAN, 1939 (Channichthyidae)
Age data for the first 2 years is easy to set up from the
observations and the catch
This fish is spawning in February, March and April, then larvaes hatch in July. Postlarvaes were cought in January
spawning hatching catch
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
II III IV V VI VII VIII IX X XI XII I
Pseudochaenichthys georgianus NORMAN, 1939 (Channichthyidae)
Fish, spawning in February, March,
and April
spawning hatching catch
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
II III IV V VI VII VIII IX X XI XII I
Pseudochaenichthys georgianus NORMAN, 1939 (Channichthyidae)
Larvaes hatch in
July
spawning hatching catch
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
II III IV V VI VII VIII IX X XI XII I
Pseudochaenichthys georgianus NORMAN, 1939 (Channichthyidae)
Postlarvaes found in
January or in December
have half a year
spawning hatching catch
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
II III IV V VI VII VIII IX X XI XII I
7
spawning hatching catch spawning hatching catch
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I
1SP
R2
Age data from increases in hearing stones, otoliths and from the
observations and the catch
8
spawning hatching catch spawning hatching catch
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I
1SP
R2
15 mm TL
0.09 mm R1
Hatching larvae have otolith with 0.1 mm of radius and 15 mm of TL
9
spawning hatching catch spawning hatching catch
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I
1SP
R2
7.2 cm TL
1 mm R2
postlarvaes have 7 cm of TL, their otolith have 1 mm of radius
10
spawning hatching catch spawning hatching catch
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I
1SP
R2
21 cm TL
1.97 mm R3
XII XII
Next year we can find in December
11
spawning hatching catch spawning hatching catch
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I
1SP
R2
21 cm TL
1.97 mm R3
XII XII
fish with 21cm of TL, their age is 1.6 of year, their otolith
have radius of 1.97 mm.
12
spawning hatching catch spawning hatching catch
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I
1SP
R2
From the internal otolith morphology we can find:
Larval Nucleus
13
Larval Nucleus otolith of
hatching larvae of Ps. georgianus.
14
spawning hatching catch spawning hatching catch
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I
1SP
R2
It is otolith of hatching larvae with ~0.1 mm R1
15
spawning hatching catch spawning hatching catch
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I
1SP
R2
We can find Second Primordium
16
17
spawning hatching catch spawning hatching catch
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I
1SP
R2
This Second Primordium, growth during the year ~1 mm
18
1SP
R2
SP 1
ismarkofpostlarvae’sotolith
19
1SP
R2
~ 1 mm Second Primordium
in otolith Ps. georgianus
SEM
2nmplatinum+palladium
1 mm
21
spawning hatching catch spawning hatching catch
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I
1SP
R2
that fish have age a year more:
23
Larval Nucleus enveloped by hatching
mark in otolith of Ps. georgianus
25
Second Primordium increases by 1 mm
in otolith of Ps. georgianus (age 1.6 y)
SEM
2nmplatinum+palladium
1 mm
28
TL,cm
29
TL,cm
30
TL,cm
31
TL,cm
32
TL,cm
33
TL,cm
34
TL,cm
7.2 cm TL
35
TL,cm
21 cm TL
36
TL,cm
35 cm TL
37
TL,cm
46 cm TL
38
TL,cm
39
TL,cm
40
TL,cm
41
TL,cm
42
TL,cm
43
TL,cm
44
TL,cm
45
TL,cm
46
TL,cm
Causes of errors: otoliths
– hearing stones have
various kinds of
1 mm
Causes of errors: otoliths
– hearing stones have
various kinds of
rings increments
from which
1 mm
it is difficult to choose the annual increments to
1 mm
It is problem: age from the number of
annual rings. Ageing of Antarctic fish
are commonly know as a difficult.
Additionally there is lack of a clear
seasonality in the Antarctic (long days
in the summer and long nights in
winter).
51
Assumption: We can estimate the age by reading daily increments
show up in the otolith slices, as concentric rings.
„accurate for
fish up to 6 yr old”
BROTHERS, E. B., C. P. MATHEWS, R. LASKER, 1976: DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVALAND
ADULT FISHES. NY, FISHERY BULLETIN: VOL. 74, NO. 1.
52
medial
section
Cuttings
otolith in
slices 0.02
mm thick
otolith slices after polishing
the surfaces show up daily
increments as
concentric
rings.
53
Nocturnal fish: Jones, C.D., K.-H. Kock, E. Balguerias. Changes in biomass of eight species of finfish around the South
Orkney Islands (subarea 48.2) from three bottom trawl surveys. Hobart : CCAMLR Science, 2000. pp. 53-74. Vol. 7.
The rings are evenly alternating bright with dark
In 1984, microincrements were verified in 43 species of fish as daily increments
larvae partJustification: It was proof that the smallest in microincrements of
otoliths are daily increments…
Nocturnal fish: Jones, C.D., K.-H. Kock, E. Balguerias. CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE
SOUTH ORKNEY ISLANDS (SUBAREA 48.2) FROM THREE BOTTOM TRAWL SURVEYS. Hobart : CCAMLR Science, 2000. pp. 53-74.
Vol. 7.
The rings are evenly alternating bright with dark
In 1984, microincrements were verified in 43 species of fish as daily increments
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
SGI postlarvae smoothed Ye
mm
arising as a result of day and night metabolic cycle in the productions of otolith
matrix components.
Collagen deposite net at high concentrations ×10 at piks then
at opposites in the cycles: create dark piks
constx
T
Ay i
i
i
i
 
))
2
sin((
9
1


fitted line ; Tśr = 0.0021 mm; s = 0.00002
Collagen set up
cell net with
at high concentrations of
space matrix of the otolith
aragonite precipitates into gaps of colagen
matrix – so antiphasically.
CO3
-2
chelate
anion
plates
needles
0.001mm
tabletshairs
57
A part of cyclic changes in quantity productions, components
have special arrangement, and orientations in the space.
ice forming
For fish preying in the night this cycle result from locomotor activities:
large during the night and lower activity in the day
2nmplatinum+palladium
0.1 mm
60
61
In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate
0,01mm
with rings of aragonite needles
0,01mm
technical difficulties of the method.
Difficult and laborious execution of otolith slice with good visible of
daily increments.
Daily increments are easy determined from otolith of up to one
year old fish. This means counts only up to 365 increments
median section of sagittal (8 cm SL Ps. georgianus, 282 days).
66
such as 3600 for fish
10 years old, and it is not easy
Dorsal
margin on
transverse
plane
solution: use microdensitometer for measure optical densities
FC – photocell; ADC – Analog to Digital Converter (12 bits); SM – the step motor, tl – transmitted
light, y – an average of 10-th of d (digital value of U). Sample: polished sections of otolith median
sagittal plane (or film negatives or SEM projections of daily increments.
register by photocell (FC) and record
data on PC
to automatic registration of optical density of daily increments
and count their peaks
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Optical density of 57 daily increments in otolith slice from CP to LN
mm
CP LN
LN
Ps. georgianus
72
170
180
190
200
210
220
230
240
250
260
270
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
optical density along the radius of the nucleus. N = 1231 measurements
mm
60
80
100
120
140
0.003 0.004 0.005 0.006
m
73
140
150
160
170
180
190
200
210
220
230
240
250
260
270
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
optical density along the radius of the nucleus. N = 1231 measurements
fragment of 0,042 mm - of 713 measurements
mm
713 measurements = 0.042 mm
0
20
40
60
80
100
120
140
0.003 0.004 0.005 0.006
m
m
2
16
713
1
)( 

 nn
n
xx
(- - - - - - - -)2
74
140
150
160
170
180
190
200
210
220
230
240
250
260
270
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
optical density along the radius of the nucleus. N = 1231 measurements
fragment of 0,042 mm - of 713 measurements
mm
713 measurements = 0.042 mm
0
20
40
60
80
100
120
140
0.003 0.004 0.005 0.006
m
m
2
16
713
1
)( 

 nn
n
xx
move the green line point by point
(- - - - - - - -)2
75
140
150
160
170
180
190
200
210
220
230
240
250
260
270
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 mm
(- - - - - - - -)2
0
20
40
60
80
100
120
140
0.003 0.004 0.005 0.006
m
2
16
713
1
)( 

 nn
n
xx
at move the green line by 0.000941 mm
2
16
713
1
min )( 

 nn
n
xx
relative displacement of cycles of otolith optical density by 16 measurements (by 0,000941
mm) gave the first minimum of sum of squared differences = 1 cycle
1 minima
76
170
180
190
200
210
220
230
240
250
260
270
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
optical density along the radius of the nucleus. N = 1231 measurements
mm
.))
2
sin((
9
1
constx
T
Ay i
i
i
i
 


fitted line
215
225
235
245
255
0 0.01 0.02 0.03 0.04
nucleusedge
mm
y2: Day & Night harmonic component = 1.235)091.0
00091.0
2
sin(39.32  xy

and calculation of the number of cycles:
0
0
0
0
0
0
0
0
0
0
0 0.01 0.02 0.03 0.04 mm
60
80
100
120
140
160
0 0.002 0.004 0.006 0.008 0.01
78
Nocturnal fish: Jones, C.D., K.-H. Kock, E. Balguerias. CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE
SOUTH ORKNEY ISLANDS (SUBAREA 48.2) FROM THREE BOTTOM TRAWL SURVEYS. Hobart : CCAMLR Science, 2000. pp. 53-74.
Vol. 7.
The rings are evenly alternating bright with dark
In 1984, microincrements were verified in 43 species of fish as daily increments
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0.01 0.02 0.03 0.04
SGI postlarvae smoothed Ye
mm
min│∑(yₑ-yₓ)²│=360578
that are equals to number of daily increments.
constx
T
Ay i
i
i
i
 
))
2
cos((
9
1


fitted line ; Tśr = 0.0021 mm; s = 0.00003
0.01 mm
postlarvae part
0 0.002 0.004 0.006 0.008 0.01
SGI larvae smoothed Ye
mm
min│∑(yₑ-yₓ)²│=75510
larvae part
constx
T
Ay i
i
i
i
 
))
2
cos((
9
1


fitted line ; Tśr = 0.0013 mm; s = 0.00014
80
Nocturnal fish: Jones, C.D., K.-H. Kock, E. Balguerias. CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE
SOUTH ORKNEY ISLANDS (SUBAREA 48.2) FROM THREE BOTTOM TRAWL SURVEYS. Hobart : CCAMLR Science, 2000. pp. 53-74.
Vol. 7.
The rings are evenly alternating bright with dark
In 1984, microincrements were verified in 43 species of fish as daily increments0
20
40
60
80
100
120
140
160
180
200
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.
SGI larvae smoothed Ye
mm
min│∑(yₑ-yₓ)²│=75510
constx
T
Ay i
i
i
i
 
))
2
cos((
9
1


fitted line ; Tśr = 0.0013 mm; s = 0.00014
larvae part
81
47 98
137
164 206
273
313
393
448
587
618619
y = -0.0004x + 0.0039
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.000
0.002
0.004
0.006
0.008
0.010
0.012
otolith radius R9 [mm]
Relativeopticaldensity
Otolithcenter
Otolithedge
Average width of daily increments in the 12 daily sequences
Profile of optical density of daily increments, along R9 for adults.
Number of daily increments in the sequences of ~12, 13 days from the center to otolith edge
Widthofdailyincrementsinsequences[mm]
(×10-3
)
0
2
4
6
8
114
112
CP - center
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36
N = 450, ā = 3.59×10-3
± 9.68×10-5
mm, s = 4.92×10-5
∑n=450dailyincrementstootolithedge
12
12
12
12
13
13
12
13
12
18
12
12
12
12
13
13
12
13
12
18
12
12
12
12
13
13
12
13
12
19
12
12
12
12
13
2
1
Larval
Nucleus
R9=0,048 mm
21 increments 24h,
Δ=0,0015 mm
check whether daily increment is unit among similar or not similar species
Hatching mark and similar width of daily increments: 0.0014 mm (larvaes), 0.0023 (postlarvaes)
21 days larval otolith in the otolith of juvenile ~6,5 cm C. gunnarii,
R9=0,048 mm, 21 days, Δ=0,0015 mm, postlarvae Δ=0,0024 mm
84
90)83.24
0024.0
2
sin(82.33  xy

.))
2
sin((
9
1
constx
T
Ay i
i
i
i
 


2
6
6
1
min )( 

 ii
i
xx
C. gunnari - similar daily increments and otolith shape
85
C. gunnari, empirical records of the optical density of otoliths
increments (blue line) and harmonic characteristics of the two
components of periodic growth of otolith: daily, by cycle of
0.0024 mm and weekly, by 0.026 mm.
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
mm
90)83.24
0024.0
2
sin(82.33  xy

85)37.0
026.0
2
sin(27.291  xy

fitting sinusoids to series of 503 measurements.))
2
sin((
9
1
constx
T
Ay i
i
i
i
 


86
species
CP Larval Nucleus LN [mm] Juvenile [mm] Adults, Age group [mm] Age group [x/1000 mm]
R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments
[mm] Aver. Min Max Aver. Min Max Aver. Min Max I II III IV V VI
georgianus R9 0,016 0,098 0,00186 0,000941 0,004 0,88 0,00284 0,002 0,006 2,12 0,00345 0,001 0,0055 3,83 2,79 1,36 0,45 0,53 0,81
C. gunnarii R9 0,013 0,048 0,0015 0,001 0,002 0,427 0,0024 0,001 0,005
C. aceratus R9 0,008 0,034 0,001 0,0006 0,002 0,32 0,0016 0,001 0,002 0,83 0,0015 0,0012 0,0028 1,5 2,4 1,7 1,4 1,4 1,5
S.japonicus R9 0,1 0,19 0,00051 0,36 0,00047 0,47 0,23 0,28 0,25 0,15 0,16
S.japonic. R11 0,1 0,4 0,00105 0,98 0,00165 1,6 0,7 0,3 0,72 0,6 0,8
M.carinatusR9 0,002 0,057 0,00114 0,367 0,00172 0,765 0,00109 1,09 0,86 0,87 0,88 0,77 0,61
M.carinatusR10 0,002 0,039 0,00078 0,123 0,00047 0,241 0,00032 0,32 0,24 0,32 0,32 0,33 0,27
M.carinatusR3 0,002 0,114 0,00228 0,734 0,00344 1,53 0,00218 2,18 1,73 1,73 1,75 1,54 1,22
Squid ,juv 0,002 0,022 0,002 0,002 0,002 0,34 0,005 0,004 0,006
Average R9 0,0082 0,0598 0,0015 0,00113 0,0025 0,4207 0,00235 0,002 0,0047 1,0188 0,00163 0,0011 0,00415 1,723 1,571 1,051 0,744 0,712 0,770
S errorSR9 0,00634 0,0326 0,000435 0,000602 0,001 0,238 0,00152 0,0014 0,0019 0,763 0,00129 0,00014 0,00192 1,467 1,221 0,618 0,509 0,525 0,558
0
0.0004
0.0008
0.0012
0.0016
0.002
0.0024
0.0028
0.0032
0.0036
larwy juvenes I II III IV V VI
S. japonicus R9
mm SGI – C. aceratus width of increment, first > next < on R9
SGI – C. gunnarii width of increment, larv. and juv. similar on R9
SGI – M. carinatus width increm. first > then < on R9, 3 but > for R10
SGI – S. japonicus, width all time > on R9 but < for R11
SGI – squid width all time < on R9
Compensation narrow in height R9
with width on length R3
Age
Group
0,005 mm
Theothericefishlarvaeshaveverysimilardailyincrementsandotolithshape
87
Larval Nucleus on transverse plane in otolith of juvenile of Ch. aceratus
R9=0.048 mm, 31 days, Δ=0.0015 mm
24 days larval otolith in the otolith of juvenile ~7.6 cm C. aceratus,
R9=0.048 mm, 31 days, Δ=0.0015 mm
89
larval otolith r = 0.024 mm in the otolith of juvenile
Trematomas newnesi (after R. Radke)
In the otolith microstructure daily microincrements show that in one
directions are very narrow and in the other directions are very wide.
Greaterpressurenetcompressed,smaller-alooseone
when in one directions their width are increase in the other
directions are decrease.
92
M. carinatus has longer OL than C.
aceratus, but it is not fast - it swim deeper
C. aceratus
M. carinatus
of pairs of
radii: dorsal –
ventral and
frontal- back
inversed proportions
This sugest that mass of otolith should be
constant parameter for growth of otolith
93
Ps. georgianus from South Georgia
and South Shetland I.
Age from otolith mass.
The otolith weight frequency indicated that there were
modes with normal distributions associated with the age
groups.
0.0644707
Ps. georgianus, Georgia Pd., 1991; N=293
the frequency of otolith weight; 52 class; MO, [g]Age group II
Age group III
Age group IV Age
group
VI
width class = 0.001896 g
40
10
20
15
25
5
0
45
50
555 25 4515 35
TL, cm
0.0606783
0.0587822
0.0265468
0.0284430
0.0739517
0.0170658
0.0094810
0.0758479
0.0777441
0.0037924
0.0075848
0.0113772
0.0151696
0.0189620
0.0227544
0[gram]
0.0303392
0.0341316
0.0379240
0.0417164
0.0455088
0.0493012
0.0568860
0.0682631
0.0720555
0.0530936
0.0056886
0.0132734
0.0208582
0.0246506
0.0018962
0.0322354
0.0360278
0.0398202
0.0436126
0.0474050
0.0511974
0.0625745
0.0663669
0.0701593
0.0549898
0.0796403
Age group 0
Otolith weight class containing a high
intergroup breaks
Age groups divide large intergroup breaks ~ 10 × larger than the intra.
Age group V
Age group I
94
0.00002546
0.00000273
0.00004818
0.00009364
0.00007091
60
20
40
30
50
10
0
70
0.0001087
0.00000435
0.00005652
0.00016087
0.00021304
0.00026522
100
120
20
40
0
0.07
0.04
0.02
[g]
0.01
0.03
0.05
0.06
0.08
male
female
Adults Ps. georgianus from S. Georgia I. -1990
0
0.0571
0.0698
0.0710
0.0638
0.0626
0.0650
0.0674
0.0614
0.0662
0.0686
=0,00204±
±0,0000557 g
N = 132
DN=0.0643
α= 0.99
χ2= 12.89,
7 st. swob.
P. ufn. = 0.0749
=0,0173±
±0,00147 gN = 172
DN=0.042
α=1
χ2= 7.41,
7 st. sw.
Pα=0.595
N = 64
DN=0.162
α=0,069
χ2= 14,14,
3 st. sw.
Pα=0.0027
=0,0444±
±0,00717 g
N = 72
DN=0.107
α=0,39
χ2= 18,1,
8 st. sw.
Pα=0.021
30
10
20
15
25
5
0
V
0.0263
0.0284
0.0305
0.0326
0.0347
0.0242
II III
0.03653
0.04747
0.04579
0.04663
0.04158
0.03821
0.03737
0.03905
0.04074
0.04242
0.04411
0.03989
0.04326
0.04495
0.04831
0.0535
0.0547
0.0487
0.0511
0.0559
0.0499
0.0523
0.0582
0.0594
0.0606
IV
0.0221
0.0177
0.0136
0.0125
0.0146
0.0167
0.0188
0.0209
0.0156
0.0198
0.0219
0.012
0.01
0.011
0.005
0.001
0
0.002
0.004
0.006
0.008
0.003
0.007
0.009
0
d = 0,000182 g;
I
difference=~0,0085g
difference=~0,0042g
d = 0,00052 g;
difference=~0,0079g
d = 0,00211 g;
difference=~0,0049g
d = 0,00084 g;
=0,0548±
±0,00415 g
N = 114
difference=~0,0045g
d = 0,00119 g;
=0,0635±
±0,00335 g
N = 31
DN=0.107
α=0,39
χ2= 18,1,
8 st. sw.
Pα=0.021
d = 0,001194 g;
=0,0314±
±0,00367 g
0.0003286
0
0.0001143
0.0005429
10
0
5
=0,000343
s=0,000333 g
0.00007143
0.00001429
0.00012857
0.00018571
0.00024286
0.00030000
0.00035714
0
30
10
20
15
25
5
0
35
40
45
50
=0,000113
s=0,000544 g
0.00010789
0
0.00005526
0.00016053
0.00021316
0.00026579
0.00031842
0.00037106
20
10
0
=0,000148
s=0,000148 g
25
30
10
20
15
5
35
40
45
50
0
0.00053333
0
0.00025556
0.00081111
0.00108888
=0,000198
s=0,000544 g
=0,0000508
s=0,0000047 g
=0,0000205
s=0,000045 g
S.G. 1989/90
Age groups are separated by large distances
between groups in frequency
of otolith mass.
95
·10-3g
0 1 2 3 4 5 6
Age groups (0-6): in length class ( - TL, cm) and in otolith mass class ( - MO, gram), * - homogeneous groups - test
otolithmass,MO,[g]/lengthTL,[cm]
1987/88 (15 XII-04 I)
0 1 2 3 4 5 6
1988/89 (1-10 II)
1989/90 (02-29 I)
N=800/3001 N=486/884
N=1008/605 N=588/2097
F=999.99
F=999.99
F=761/999
L∞=63.39±1,22; k=0,33±0,031;
t0=-0,007±0,00054
R2=0,98; error=10,32
L0=0,15; ϕ=3,12
a=2.457·10-3 ±5.991·10-4
b=0.0135 ±2.1265·10-4
corr. coef. = 0.963
s=3.957·10-3
L∞=68.06 ±0.653
k=0.29 ±0.0135
t0=-0.008 ±0.00012
R2=0.98; error=7.32
s=2.702
a=3.067·10-3 ±4.35·10-4
b=0.0131 ±1.594·10-4
corr. coeff.=0.983
R2 =96.55%
s=3.25·10-3
F=33.81
L∞=61.53 ±0.66
k=0.35 ±0.0071
t0=0.007 ±0.00011; L0=0,15
R2 =0.99; error=4.31
s=2.074; ϕ=3.12
a=3.524·10-3 ±2.065·10-4
b=0.01284 ±2.229·10-5
corr.coef. .=0.988
s=3.191·10-3
R =97.66%
F=51.437 L∞=61.03 ± 0.396
k=0.35 ±0.0063
t0=0.007 ±0.00011
R2 =1; error=5.623
s=2.37021
a=4.34·10-3 ±3.26·10-4
b=0.0127 ±1.265·10-4
corr..coef .=0.986
R =97.19%
s=3.128·10-3
F=18.292
t [years]:
[cm]
1986/87 (10-12 XII)
N=239/2812
a=3.168·10-3 ± 5.195·10-4
b=0.01282 ± 1,756·10-4
corr. coef. = 0.979
R2=95.81%
s=3.062·10-3
F=4.827
* * *
0-4
16
36
56
20
40
60
8076
0-4
16
36
56
20
40
60
8076
R2 =92.82%
* **
* *
0-4
16
36
56
20
40
60
8076
1990/91 (05-30 I)
L∞=65.45±1,74;
k=0,28±0,03;
t0=-0,008±0,0047
R2=0,98; s=2,03; F=999,99
L0=0,15; ϕ=3,08
L0=0,15; ϕ=3,13
L0=0,15; ϕ=3,12
L∞=63.47; k=0,32; t0=-0,0074
R2=0,99; L0=0,15; ϕ=3,11
-
a=1,852·10-4
b=0.0122
R2=99.7%
86/87 87/8885/86 88/89 89/90 90/91 91/92
After confirmation that groups
in otolith mass frequency
differ by annual
increment
96
TL=21,3cm; s=2,5 cm; N=41
=0,0171g; s=0,0022 g
range: (0,0124g-0,0257g
I=6
34,6; 2,4 cm; N=54
0,0312; 0,0025 g
(0,0257-0,037
I=5.3
Subantarctic S. Georgia
10 I 79 - 29 III 79
45,6; 1,8 cm; N=12
0,0442; 0,0025
(0,037-0,049
I=4.8
50,5; 1,3 cm; N=34
0,056; 0,0025 g
(0,049-0,063
I=2.6
51,3; 1,7 cm; N=28
0,0633; 0,0031
(0,063-0,071)
I=3.1
53cm;0,0716g;
>0,071
A=81,98*OW-0,483
R2=0,97; N=170
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
agegroup
No
47,6; 1,86 cm; N=229
0,043; 0,0028 g
I=3.5
30,5; 1,63 cm; N=11
0,0235; 0,0014 g
I=6.2 49,9; 2,1 cm; N=52
0,0532; 0,003 g
I=5
51,1; 1,81; N=8
0,0664; 0,0022 g
Antarctic Zone
30 XII 78 - 25 III 79 42,1; 2,24 cm; N=94
0,0334; 0,0018 g
I=4.2
A = 88.048∙OW+0.5222
R² = 0.89
0
1
2
3
4
5
6
7
0
2
4
6
8
10
12
14
0.0100
0.0120
0.0140
0.0160
0.0180
0.0200
0.0220
0.0240
0.0260
0.0280
0.0300
0.0320
0.0340
0.0360
0.0380
0.0400
0.0420
0.0440
0.0460
0.0480
0.0500
0.0520
0.0540
0.0560
0.0580
0.0600
0.0620
0.0640
0.0660
0.0680
0.0700
0.0720
0.0740
agegroup
N
OW [g]
Ps. georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic, but
increases their masses are similar.
Separating indexes neighbouring peaks in the otolith frequency: I>2, and shows significant distances between age groups
the age of the fish shall be determined by weighing of otolith.
97
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0
5
10
15
20
25
30
35
40
45
50
55
60
0 1 2 3 4 5 6 7
OW=(t +0.5222)/88.0481; [g]TL, cm
Age Group, t [years]
circles - Subantarctic South Georgia I., 10.I.1979-29.III.1979:
Lt=66.1(1-e-0.28(t+0.008)); L0=0.15cm; N=172;
R2=0.98; '=3.09.
squares - Antarctic Zone, 30.XII.78-25.III.79:
Lt=66.32(1-e-0.26(t +0.0087)); L0=0.15 cm;
N=394; R2=0.99; '=3.06;
t=88.048*OW-0.5222; R2=0.89
Compare growth curves of Von Bertalanffy for Ps. georgianus, from Antarctic and Subantarctic
Zones. Small marks are the estimated age, and large marks are their averages.
Otolith are species-specific and within species should be characterized by similar features.
Growth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be
expected are similar. The earlier development of the species in warmer South Georgia giving
larger body and a few months older age.

More Related Content

Similar to Hatch fitting short_new_1

Investigation of otolith in Priacanthus tayenusin persian gulf and Oman Sea
Investigation of otolith in Priacanthus tayenusin persian gulf and Oman SeaInvestigation of otolith in Priacanthus tayenusin persian gulf and Oman Sea
Investigation of otolith in Priacanthus tayenusin persian gulf and Oman SeaInnspub Net
 
Pearce and Mann 2006
Pearce and Mann 2006Pearce and Mann 2006
Pearce and Mann 2006Vicky Mann
 
All Seasons Shellfish
All Seasons ShellfishAll Seasons Shellfish
All Seasons ShellfishStockysmith
 
Ndour et al., 2013. Reproduction of Mugil cephalus
Ndour et al., 2013. Reproduction of Mugil cephalusNdour et al., 2013. Reproduction of Mugil cephalus
Ndour et al., 2013. Reproduction of Mugil cephalusIsmaila Ndour
 
OMSI Science Pub - Gray Whales
OMSI Science Pub - Gray WhalesOMSI Science Pub - Gray Whales
OMSI Science Pub - Gray WhalesOMSI Science Pub
 
RS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_Lindsay
RS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_LindsayRS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_Lindsay
RS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_LindsayKurtis Lindsay
 
The foraminiferid Osangularia schloenbachi (Reuss) the erection of a neotype....
The foraminiferid Osangularia schloenbachi (Reuss) the erection of a neotype....The foraminiferid Osangularia schloenbachi (Reuss) the erection of a neotype....
The foraminiferid Osangularia schloenbachi (Reuss) the erection of a neotype....Stephen Crittenden
 
Studies on development of Lymnaea acuminata with respect to age length relati...
Studies on development of Lymnaea acuminata with respect to age length relati...Studies on development of Lymnaea acuminata with respect to age length relati...
Studies on development of Lymnaea acuminata with respect to age length relati...researchanimalsciences
 
Studies on development of Lymnaea acuminata with respect to age - length r...
Studies on development of  Lymnaea acuminata  with respect to age - length  r...Studies on development of  Lymnaea acuminata  with respect to age - length  r...
Studies on development of Lymnaea acuminata with respect to age - length r...researchanimalsciences
 
2003 -- Alderslade - Lowhowia koosi
2003 -- Alderslade - Lowhowia koosi2003 -- Alderslade - Lowhowia koosi
2003 -- Alderslade - Lowhowia koosiPhil Alderslade
 
22 Dec 1888 - ANCIENT AUSTRALIA_.pdf
22 Dec 1888 - ANCIENT AUSTRALIA_.pdf22 Dec 1888 - ANCIENT AUSTRALIA_.pdf
22 Dec 1888 - ANCIENT AUSTRALIA_.pdfBraydenStoch2
 
LEVANTAMENTO TAXONOMICO PRELIMINAR DA ICTIOFAUNA DA LAGUNA DA TIJUCA, RIO DE...
LEVANTAMENTO TAXONOMICO PRELIMINAR DA ICTIOFAUNA  DA LAGUNA DA TIJUCA, RIO DE...LEVANTAMENTO TAXONOMICO PRELIMINAR DA ICTIOFAUNA  DA LAGUNA DA TIJUCA, RIO DE...
LEVANTAMENTO TAXONOMICO PRELIMINAR DA ICTIOFAUNA DA LAGUNA DA TIJUCA, RIO DE...volcker
 

Similar to Hatch fitting short_new_1 (20)

Investigation of otolith in Priacanthus tayenusin persian gulf and Oman Sea
Investigation of otolith in Priacanthus tayenusin persian gulf and Oman SeaInvestigation of otolith in Priacanthus tayenusin persian gulf and Oman Sea
Investigation of otolith in Priacanthus tayenusin persian gulf and Oman Sea
 
Ronald Campbell - Deconstructing Tweed sea trout with scale reading
Ronald Campbell -  Deconstructing Tweed sea trout with scale readingRonald Campbell -  Deconstructing Tweed sea trout with scale reading
Ronald Campbell - Deconstructing Tweed sea trout with scale reading
 
SFCC Introduction to Fish Scale Reading
SFCC Introduction to Fish Scale ReadingSFCC Introduction to Fish Scale Reading
SFCC Introduction to Fish Scale Reading
 
Pearce and Mann 2006
Pearce and Mann 2006Pearce and Mann 2006
Pearce and Mann 2006
 
SFCC Introduction to Scale Reading - 2017
SFCC Introduction to Scale Reading - 2017SFCC Introduction to Scale Reading - 2017
SFCC Introduction to Scale Reading - 2017
 
All Seasons Shellfish
All Seasons ShellfishAll Seasons Shellfish
All Seasons Shellfish
 
Ndour et al., 2013. Reproduction of Mugil cephalus
Ndour et al., 2013. Reproduction of Mugil cephalusNdour et al., 2013. Reproduction of Mugil cephalus
Ndour et al., 2013. Reproduction of Mugil cephalus
 
OMSI Science Pub - Gray Whales
OMSI Science Pub - Gray WhalesOMSI Science Pub - Gray Whales
OMSI Science Pub - Gray Whales
 
RS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_Lindsay
RS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_LindsayRS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_Lindsay
RS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_Lindsay
 
AG_1005_Tigersharks
AG_1005_TigersharksAG_1005_Tigersharks
AG_1005_Tigersharks
 
ZoopsWestport
ZoopsWestportZoopsWestport
ZoopsWestport
 
The foraminiferid Osangularia schloenbachi (Reuss) the erection of a neotype....
The foraminiferid Osangularia schloenbachi (Reuss) the erection of a neotype....The foraminiferid Osangularia schloenbachi (Reuss) the erection of a neotype....
The foraminiferid Osangularia schloenbachi (Reuss) the erection of a neotype....
 
Ace cal c
Ace cal cAce cal c
Ace cal c
 
Studies on development of Lymnaea acuminata with respect to age length relati...
Studies on development of Lymnaea acuminata with respect to age length relati...Studies on development of Lymnaea acuminata with respect to age length relati...
Studies on development of Lymnaea acuminata with respect to age length relati...
 
Studies on development of Lymnaea acuminata with respect to age - length r...
Studies on development of  Lymnaea acuminata  with respect to age - length  r...Studies on development of  Lymnaea acuminata  with respect to age - length  r...
Studies on development of Lymnaea acuminata with respect to age - length r...
 
2003 -- Alderslade - Lowhowia koosi
2003 -- Alderslade - Lowhowia koosi2003 -- Alderslade - Lowhowia koosi
2003 -- Alderslade - Lowhowia koosi
 
CSIP_leaflet
CSIP_leafletCSIP_leaflet
CSIP_leaflet
 
22 Dec 1888 - ANCIENT AUSTRALIA_.pdf
22 Dec 1888 - ANCIENT AUSTRALIA_.pdf22 Dec 1888 - ANCIENT AUSTRALIA_.pdf
22 Dec 1888 - ANCIENT AUSTRALIA_.pdf
 
Otolith2
Otolith2Otolith2
Otolith2
 
LEVANTAMENTO TAXONOMICO PRELIMINAR DA ICTIOFAUNA DA LAGUNA DA TIJUCA, RIO DE...
LEVANTAMENTO TAXONOMICO PRELIMINAR DA ICTIOFAUNA  DA LAGUNA DA TIJUCA, RIO DE...LEVANTAMENTO TAXONOMICO PRELIMINAR DA ICTIOFAUNA  DA LAGUNA DA TIJUCA, RIO DE...
LEVANTAMENTO TAXONOMICO PRELIMINAR DA ICTIOFAUNA DA LAGUNA DA TIJUCA, RIO DE...
 

More from ryszardtraczyk

Analysis of the_optical_density_profile_of_otolith_of_icefish
Analysis of the_optical_density_profile_of_otolith_of_icefishAnalysis of the_optical_density_profile_of_otolith_of_icefish
Analysis of the_optical_density_profile_of_otolith_of_icefishryszardtraczyk
 
Zagadki ryb antarktycznych
Zagadki ryb antarktycznychZagadki ryb antarktycznych
Zagadki ryb antarktycznychryszardtraczyk
 
Dioksyny szkodliwość
Dioksyny szkodliwośćDioksyny szkodliwość
Dioksyny szkodliwośćryszardtraczyk
 
Migration ps.georgianus
Migration ps.georgianusMigration ps.georgianus
Migration ps.georgianusryszardtraczyk
 
Antarctica fish mercury
Antarctica fish mercuryAntarctica fish mercury
Antarctica fish mercuryryszardtraczyk
 
Z rzeki do oceanu esej
Z rzeki do oceanu esejZ rzeki do oceanu esej
Z rzeki do oceanu esejryszardtraczyk
 
Anarchia dryf kontyn_ryby_antarkty_notatki
Anarchia dryf kontyn_ryby_antarkty_notatkiAnarchia dryf kontyn_ryby_antarkty_notatki
Anarchia dryf kontyn_ryby_antarkty_notatkiryszardtraczyk
 
Bractwo żeglarskie historia
Bractwo żeglarskie historiaBractwo żeglarskie historia
Bractwo żeglarskie historiaryszardtraczyk
 
Statki druk 05-06-2014
Statki druk 05-06-2014Statki druk 05-06-2014
Statki druk 05-06-2014ryszardtraczyk
 

More from ryszardtraczyk (14)

Otolith shape icefish
Otolith shape icefishOtolith shape icefish
Otolith shape icefish
 
Materiały wyniki
Materiały wyniki Materiały wyniki
Materiały wyniki
 
Analysis of the_optical_density_profile_of_otolith_of_icefish
Analysis of the_optical_density_profile_of_otolith_of_icefishAnalysis of the_optical_density_profile_of_otolith_of_icefish
Analysis of the_optical_density_profile_of_otolith_of_icefish
 
Ps.georgianus druk
Ps.georgianus drukPs.georgianus druk
Ps.georgianus druk
 
Otolith shape
Otolith shapeOtolith shape
Otolith shape
 
Zagadki ryb antarktycznych
Zagadki ryb antarktycznychZagadki ryb antarktycznych
Zagadki ryb antarktycznych
 
Implementacja gcos pl
Implementacja gcos plImplementacja gcos pl
Implementacja gcos pl
 
Dioksyny szkodliwość
Dioksyny szkodliwośćDioksyny szkodliwość
Dioksyny szkodliwość
 
Migration ps.georgianus
Migration ps.georgianusMigration ps.georgianus
Migration ps.georgianus
 
Antarctica fish mercury
Antarctica fish mercuryAntarctica fish mercury
Antarctica fish mercury
 
Z rzeki do oceanu esej
Z rzeki do oceanu esejZ rzeki do oceanu esej
Z rzeki do oceanu esej
 
Anarchia dryf kontyn_ryby_antarkty_notatki
Anarchia dryf kontyn_ryby_antarkty_notatkiAnarchia dryf kontyn_ryby_antarkty_notatki
Anarchia dryf kontyn_ryby_antarkty_notatki
 
Bractwo żeglarskie historia
Bractwo żeglarskie historiaBractwo żeglarskie historia
Bractwo żeglarskie historia
 
Statki druk 05-06-2014
Statki druk 05-06-2014Statki druk 05-06-2014
Statki druk 05-06-2014
 

Recently uploaded

VIP Kolkata Call Girl Kalighat 👉 8250192130 Available With Room
VIP Kolkata Call Girl Kalighat 👉 8250192130  Available With RoomVIP Kolkata Call Girl Kalighat 👉 8250192130  Available With Room
VIP Kolkata Call Girl Kalighat 👉 8250192130 Available With Roomdivyansh0kumar0
 
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...Cluster TWEED
 
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service Gorakhpur
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service GorakhpurVIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service Gorakhpur
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service GorakhpurSuhani Kapoor
 
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full NightCall Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Nightssuser7cb4ff
 
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...ranjana rawat
 
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...Suhani Kapoor
 
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012sapnasaifi408
 
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 

Recently uploaded (20)

VIP Kolkata Call Girl Kalighat 👉 8250192130 Available With Room
VIP Kolkata Call Girl Kalighat 👉 8250192130  Available With RoomVIP Kolkata Call Girl Kalighat 👉 8250192130  Available With Room
VIP Kolkata Call Girl Kalighat 👉 8250192130 Available With Room
 
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...
 
Call Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
Call Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCeCall Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
Call Girls In Dhaula Kuan꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
 
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service
 
Green Banking
Green Banking Green Banking
Green Banking
 
E Waste Management
E Waste ManagementE Waste Management
E Waste Management
 
Sustainable Packaging
Sustainable PackagingSustainable Packaging
Sustainable Packaging
 
FULL ENJOY Call Girls In kashmiri gate (Delhi) Call Us 9953056974
FULL ENJOY Call Girls In  kashmiri gate (Delhi) Call Us 9953056974FULL ENJOY Call Girls In  kashmiri gate (Delhi) Call Us 9953056974
FULL ENJOY Call Girls In kashmiri gate (Delhi) Call Us 9953056974
 
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service Gorakhpur
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service GorakhpurVIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service Gorakhpur
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service Gorakhpur
 
Call Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi Ncr
Call Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi NcrCall Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi Ncr
Call Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi Ncr
 
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full NightCall Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
 
Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...
Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...
Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...
 
Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...
Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...
Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...
 
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
 
Gandhi Nagar (Delhi) 9953330565 Escorts, Call Girls Services
Gandhi Nagar (Delhi) 9953330565 Escorts, Call Girls ServicesGandhi Nagar (Delhi) 9953330565 Escorts, Call Girls Services
Gandhi Nagar (Delhi) 9953330565 Escorts, Call Girls Services
 
Hot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort ServiceHot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort Service
 
Escort Service Call Girls In Shakti Nagar, 99530°56974 Delhi NCR
Escort Service Call Girls In Shakti Nagar, 99530°56974 Delhi NCREscort Service Call Girls In Shakti Nagar, 99530°56974 Delhi NCR
Escort Service Call Girls In Shakti Nagar, 99530°56974 Delhi NCR
 
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...
 
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
 
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 

Hatch fitting short_new_1

  • 1. S. Sandwich I 1975/76, 1980/81 Germany Catch location of Ps. georgianus Balleny Russia 2004/05 Kerguelen 2003/04 Australia Age and growth of the Antarctic fish Pseudochaenichthys georgianus based on the otolith morphometry Ryszard Traczyk Shag Rock S.Georgia I. S.Sandwich I. S. Orkney I. Elephan I. K.GeorgeI. Deception Palmer A. Balleny Kerguelen I.
  • 2. Pseudochaenichthys georgianus NORMAN, 1939 (Channichthyidae) Problem: Age data of Antarctic fish, Ps. georgianus of white blood South Georgia icefish. This fish is spawning in February, March and April, then larvaes hatch in July. Postlarvaes were cought in January spawning hatching catch Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan II III IV V VI VII VIII IX X XI XII I
  • 3. Pseudochaenichthys georgianus NORMAN, 1939 (Channichthyidae) Age data for the first 2 years is easy to set up from the observations and the catch This fish is spawning in February, March and April, then larvaes hatch in July. Postlarvaes were cought in January spawning hatching catch Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan II III IV V VI VII VIII IX X XI XII I
  • 4. Pseudochaenichthys georgianus NORMAN, 1939 (Channichthyidae) Fish, spawning in February, March, and April spawning hatching catch Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan II III IV V VI VII VIII IX X XI XII I
  • 5. Pseudochaenichthys georgianus NORMAN, 1939 (Channichthyidae) Larvaes hatch in July spawning hatching catch Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan II III IV V VI VII VIII IX X XI XII I
  • 6. Pseudochaenichthys georgianus NORMAN, 1939 (Channichthyidae) Postlarvaes found in January or in December have half a year spawning hatching catch Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan II III IV V VI VII VIII IX X XI XII I
  • 7. 7 spawning hatching catch spawning hatching catch Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I 1SP R2 Age data from increases in hearing stones, otoliths and from the observations and the catch
  • 8. 8 spawning hatching catch spawning hatching catch Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I 1SP R2 15 mm TL 0.09 mm R1 Hatching larvae have otolith with 0.1 mm of radius and 15 mm of TL
  • 9. 9 spawning hatching catch spawning hatching catch Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I 1SP R2 7.2 cm TL 1 mm R2 postlarvaes have 7 cm of TL, their otolith have 1 mm of radius
  • 10. 10 spawning hatching catch spawning hatching catch Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I 1SP R2 21 cm TL 1.97 mm R3 XII XII Next year we can find in December
  • 11. 11 spawning hatching catch spawning hatching catch Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I 1SP R2 21 cm TL 1.97 mm R3 XII XII fish with 21cm of TL, their age is 1.6 of year, their otolith have radius of 1.97 mm.
  • 12. 12 spawning hatching catch spawning hatching catch Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I 1SP R2 From the internal otolith morphology we can find: Larval Nucleus
  • 13. 13 Larval Nucleus otolith of hatching larvae of Ps. georgianus.
  • 14. 14 spawning hatching catch spawning hatching catch Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I 1SP R2 It is otolith of hatching larvae with ~0.1 mm R1
  • 15. 15 spawning hatching catch spawning hatching catch Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I 1SP R2 We can find Second Primordium
  • 16. 16
  • 17. 17 spawning hatching catch spawning hatching catch Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I 1SP R2 This Second Primordium, growth during the year ~1 mm
  • 20. ~ 1 mm Second Primordium in otolith Ps. georgianus SEM 2nmplatinum+palladium 1 mm
  • 21. 21 spawning hatching catch spawning hatching catch Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I 1SP R2 that fish have age a year more:
  • 22.
  • 23. 23 Larval Nucleus enveloped by hatching mark in otolith of Ps. georgianus
  • 24.
  • 25. 25
  • 26.
  • 27. Second Primordium increases by 1 mm in otolith of Ps. georgianus (age 1.6 y) SEM 2nmplatinum+palladium 1 mm
  • 47. Causes of errors: otoliths – hearing stones have various kinds of 1 mm
  • 48. Causes of errors: otoliths – hearing stones have various kinds of rings increments from which 1 mm
  • 49. it is difficult to choose the annual increments to
  • 50. 1 mm It is problem: age from the number of annual rings. Ageing of Antarctic fish are commonly know as a difficult. Additionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter).
  • 51. 51 Assumption: We can estimate the age by reading daily increments show up in the otolith slices, as concentric rings. „accurate for fish up to 6 yr old” BROTHERS, E. B., C. P. MATHEWS, R. LASKER, 1976: DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVALAND ADULT FISHES. NY, FISHERY BULLETIN: VOL. 74, NO. 1.
  • 52. 52 medial section Cuttings otolith in slices 0.02 mm thick otolith slices after polishing the surfaces show up daily increments as concentric rings.
  • 53. 53 Nocturnal fish: Jones, C.D., K.-H. Kock, E. Balguerias. Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 48.2) from three bottom trawl surveys. Hobart : CCAMLR Science, 2000. pp. 53-74. Vol. 7. The rings are evenly alternating bright with dark In 1984, microincrements were verified in 43 species of fish as daily increments larvae partJustification: It was proof that the smallest in microincrements of otoliths are daily increments…
  • 54. Nocturnal fish: Jones, C.D., K.-H. Kock, E. Balguerias. CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 48.2) FROM THREE BOTTOM TRAWL SURVEYS. Hobart : CCAMLR Science, 2000. pp. 53-74. Vol. 7. The rings are evenly alternating bright with dark In 1984, microincrements were verified in 43 species of fish as daily increments 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 SGI postlarvae smoothed Ye mm arising as a result of day and night metabolic cycle in the productions of otolith matrix components. Collagen deposite net at high concentrations ×10 at piks then at opposites in the cycles: create dark piks constx T Ay i i i i   )) 2 sin(( 9 1   fitted line ; Tśr = 0.0021 mm; s = 0.00002
  • 55. Collagen set up cell net with at high concentrations of space matrix of the otolith
  • 56. aragonite precipitates into gaps of colagen matrix – so antiphasically. CO3 -2 chelate anion plates needles 0.001mm tabletshairs
  • 57. 57 A part of cyclic changes in quantity productions, components have special arrangement, and orientations in the space.
  • 58. ice forming For fish preying in the night this cycle result from locomotor activities: large during the night and lower activity in the day
  • 60. 60
  • 61. 61
  • 62. In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate 0,01mm
  • 63. with rings of aragonite needles 0,01mm
  • 64. technical difficulties of the method. Difficult and laborious execution of otolith slice with good visible of daily increments.
  • 65. Daily increments are easy determined from otolith of up to one year old fish. This means counts only up to 365 increments median section of sagittal (8 cm SL Ps. georgianus, 282 days).
  • 66. 66
  • 67. such as 3600 for fish 10 years old, and it is not easy Dorsal margin on transverse plane
  • 68. solution: use microdensitometer for measure optical densities FC – photocell; ADC – Analog to Digital Converter (12 bits); SM – the step motor, tl – transmitted light, y – an average of 10-th of d (digital value of U). Sample: polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments.
  • 69. register by photocell (FC) and record data on PC to automatic registration of optical density of daily increments
  • 71. 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Optical density of 57 daily increments in otolith slice from CP to LN mm CP LN LN Ps. georgianus
  • 72. 72 170 180 190 200 210 220 230 240 250 260 270 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 optical density along the radius of the nucleus. N = 1231 measurements mm 60 80 100 120 140 0.003 0.004 0.005 0.006 m
  • 73. 73 140 150 160 170 180 190 200 210 220 230 240 250 260 270 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 optical density along the radius of the nucleus. N = 1231 measurements fragment of 0,042 mm - of 713 measurements mm 713 measurements = 0.042 mm 0 20 40 60 80 100 120 140 0.003 0.004 0.005 0.006 m m 2 16 713 1 )(    nn n xx (- - - - - - - -)2
  • 74. 74 140 150 160 170 180 190 200 210 220 230 240 250 260 270 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 optical density along the radius of the nucleus. N = 1231 measurements fragment of 0,042 mm - of 713 measurements mm 713 measurements = 0.042 mm 0 20 40 60 80 100 120 140 0.003 0.004 0.005 0.006 m m 2 16 713 1 )(    nn n xx move the green line point by point (- - - - - - - -)2
  • 75. 75 140 150 160 170 180 190 200 210 220 230 240 250 260 270 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 mm (- - - - - - - -)2 0 20 40 60 80 100 120 140 0.003 0.004 0.005 0.006 m 2 16 713 1 )(    nn n xx at move the green line by 0.000941 mm 2 16 713 1 min )(    nn n xx relative displacement of cycles of otolith optical density by 16 measurements (by 0,000941 mm) gave the first minimum of sum of squared differences = 1 cycle 1 minima
  • 76. 76 170 180 190 200 210 220 230 240 250 260 270 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 optical density along the radius of the nucleus. N = 1231 measurements mm .)) 2 sin(( 9 1 constx T Ay i i i i     fitted line 215 225 235 245 255 0 0.01 0.02 0.03 0.04 nucleusedge mm y2: Day & Night harmonic component = 1.235)091.0 00091.0 2 sin(39.32  xy 
  • 77. and calculation of the number of cycles: 0 0 0 0 0 0 0 0 0 0 0 0.01 0.02 0.03 0.04 mm 60 80 100 120 140 160 0 0.002 0.004 0.006 0.008 0.01
  • 78. 78 Nocturnal fish: Jones, C.D., K.-H. Kock, E. Balguerias. CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 48.2) FROM THREE BOTTOM TRAWL SURVEYS. Hobart : CCAMLR Science, 2000. pp. 53-74. Vol. 7. The rings are evenly alternating bright with dark In 1984, microincrements were verified in 43 species of fish as daily increments 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0.02 0.03 0.04 SGI postlarvae smoothed Ye mm min│∑(yₑ-yₓ)²│=360578 that are equals to number of daily increments. constx T Ay i i i i   )) 2 cos(( 9 1   fitted line ; Tśr = 0.0021 mm; s = 0.00003 0.01 mm postlarvae part
  • 79. 0 0.002 0.004 0.006 0.008 0.01 SGI larvae smoothed Ye mm min│∑(yₑ-yₓ)²│=75510 larvae part constx T Ay i i i i   )) 2 cos(( 9 1   fitted line ; Tśr = 0.0013 mm; s = 0.00014
  • 80. 80 Nocturnal fish: Jones, C.D., K.-H. Kock, E. Balguerias. CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 48.2) FROM THREE BOTTOM TRAWL SURVEYS. Hobart : CCAMLR Science, 2000. pp. 53-74. Vol. 7. The rings are evenly alternating bright with dark In 1984, microincrements were verified in 43 species of fish as daily increments0 20 40 60 80 100 120 140 160 180 200 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0. SGI larvae smoothed Ye mm min│∑(yₑ-yₓ)²│=75510 constx T Ay i i i i   )) 2 cos(( 9 1   fitted line ; Tśr = 0.0013 mm; s = 0.00014 larvae part
  • 81. 81 47 98 137 164 206 273 313 393 448 587 618619 y = -0.0004x + 0.0039 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 0.000 0.002 0.004 0.006 0.008 0.010 0.012 otolith radius R9 [mm] Relativeopticaldensity Otolithcenter Otolithedge Average width of daily increments in the 12 daily sequences Profile of optical density of daily increments, along R9 for adults. Number of daily increments in the sequences of ~12, 13 days from the center to otolith edge Widthofdailyincrementsinsequences[mm] (×10-3 ) 0 2 4 6 8 114 112 CP - center 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36 N = 450, ā = 3.59×10-3 ± 9.68×10-5 mm, s = 4.92×10-5 ∑n=450dailyincrementstootolithedge 12 12 12 12 13 13 12 13 12 18 12 12 12 12 13 13 12 13 12 18 12 12 12 12 13 13 12 13 12 19 12 12 12 12 13 2 1
  • 82. Larval Nucleus R9=0,048 mm 21 increments 24h, Δ=0,0015 mm check whether daily increment is unit among similar or not similar species Hatching mark and similar width of daily increments: 0.0014 mm (larvaes), 0.0023 (postlarvaes)
  • 83. 21 days larval otolith in the otolith of juvenile ~6,5 cm C. gunnarii, R9=0,048 mm, 21 days, Δ=0,0015 mm, postlarvae Δ=0,0024 mm
  • 84. 84 90)83.24 0024.0 2 sin(82.33  xy  .)) 2 sin(( 9 1 constx T Ay i i i i     2 6 6 1 min )(    ii i xx C. gunnari - similar daily increments and otolith shape
  • 85. 85 C. gunnari, empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith: daily, by cycle of 0.0024 mm and weekly, by 0.026 mm. 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 mm 90)83.24 0024.0 2 sin(82.33  xy  85)37.0 026.0 2 sin(27.291  xy  fitting sinusoids to series of 503 measurements.)) 2 sin(( 9 1 constx T Ay i i i i    
  • 86. 86 species CP Larval Nucleus LN [mm] Juvenile [mm] Adults, Age group [mm] Age group [x/1000 mm] R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments [mm] Aver. Min Max Aver. Min Max Aver. Min Max I II III IV V VI georgianus R9 0,016 0,098 0,00186 0,000941 0,004 0,88 0,00284 0,002 0,006 2,12 0,00345 0,001 0,0055 3,83 2,79 1,36 0,45 0,53 0,81 C. gunnarii R9 0,013 0,048 0,0015 0,001 0,002 0,427 0,0024 0,001 0,005 C. aceratus R9 0,008 0,034 0,001 0,0006 0,002 0,32 0,0016 0,001 0,002 0,83 0,0015 0,0012 0,0028 1,5 2,4 1,7 1,4 1,4 1,5 S.japonicus R9 0,1 0,19 0,00051 0,36 0,00047 0,47 0,23 0,28 0,25 0,15 0,16 S.japonic. R11 0,1 0,4 0,00105 0,98 0,00165 1,6 0,7 0,3 0,72 0,6 0,8 M.carinatusR9 0,002 0,057 0,00114 0,367 0,00172 0,765 0,00109 1,09 0,86 0,87 0,88 0,77 0,61 M.carinatusR10 0,002 0,039 0,00078 0,123 0,00047 0,241 0,00032 0,32 0,24 0,32 0,32 0,33 0,27 M.carinatusR3 0,002 0,114 0,00228 0,734 0,00344 1,53 0,00218 2,18 1,73 1,73 1,75 1,54 1,22 Squid ,juv 0,002 0,022 0,002 0,002 0,002 0,34 0,005 0,004 0,006 Average R9 0,0082 0,0598 0,0015 0,00113 0,0025 0,4207 0,00235 0,002 0,0047 1,0188 0,00163 0,0011 0,00415 1,723 1,571 1,051 0,744 0,712 0,770 S errorSR9 0,00634 0,0326 0,000435 0,000602 0,001 0,238 0,00152 0,0014 0,0019 0,763 0,00129 0,00014 0,00192 1,467 1,221 0,618 0,509 0,525 0,558 0 0.0004 0.0008 0.0012 0.0016 0.002 0.0024 0.0028 0.0032 0.0036 larwy juvenes I II III IV V VI S. japonicus R9 mm SGI – C. aceratus width of increment, first > next < on R9 SGI – C. gunnarii width of increment, larv. and juv. similar on R9 SGI – M. carinatus width increm. first > then < on R9, 3 but > for R10 SGI – S. japonicus, width all time > on R9 but < for R11 SGI – squid width all time < on R9 Compensation narrow in height R9 with width on length R3 Age Group 0,005 mm Theothericefishlarvaeshaveverysimilardailyincrementsandotolithshape
  • 87. 87 Larval Nucleus on transverse plane in otolith of juvenile of Ch. aceratus R9=0.048 mm, 31 days, Δ=0.0015 mm
  • 88. 24 days larval otolith in the otolith of juvenile ~7.6 cm C. aceratus, R9=0.048 mm, 31 days, Δ=0.0015 mm
  • 89. 89 larval otolith r = 0.024 mm in the otolith of juvenile Trematomas newnesi (after R. Radke)
  • 90. In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide.
  • 91. Greaterpressurenetcompressed,smaller-alooseone when in one directions their width are increase in the other directions are decrease.
  • 92. 92 M. carinatus has longer OL than C. aceratus, but it is not fast - it swim deeper C. aceratus M. carinatus of pairs of radii: dorsal – ventral and frontal- back inversed proportions This sugest that mass of otolith should be constant parameter for growth of otolith
  • 93. 93 Ps. georgianus from South Georgia and South Shetland I. Age from otolith mass. The otolith weight frequency indicated that there were modes with normal distributions associated with the age groups. 0.0644707 Ps. georgianus, Georgia Pd., 1991; N=293 the frequency of otolith weight; 52 class; MO, [g]Age group II Age group III Age group IV Age group VI width class = 0.001896 g 40 10 20 15 25 5 0 45 50 555 25 4515 35 TL, cm 0.0606783 0.0587822 0.0265468 0.0284430 0.0739517 0.0170658 0.0094810 0.0758479 0.0777441 0.0037924 0.0075848 0.0113772 0.0151696 0.0189620 0.0227544 0[gram] 0.0303392 0.0341316 0.0379240 0.0417164 0.0455088 0.0493012 0.0568860 0.0682631 0.0720555 0.0530936 0.0056886 0.0132734 0.0208582 0.0246506 0.0018962 0.0322354 0.0360278 0.0398202 0.0436126 0.0474050 0.0511974 0.0625745 0.0663669 0.0701593 0.0549898 0.0796403 Age group 0 Otolith weight class containing a high intergroup breaks Age groups divide large intergroup breaks ~ 10 × larger than the intra. Age group V Age group I
  • 94. 94 0.00002546 0.00000273 0.00004818 0.00009364 0.00007091 60 20 40 30 50 10 0 70 0.0001087 0.00000435 0.00005652 0.00016087 0.00021304 0.00026522 100 120 20 40 0 0.07 0.04 0.02 [g] 0.01 0.03 0.05 0.06 0.08 male female Adults Ps. georgianus from S. Georgia I. -1990 0 0.0571 0.0698 0.0710 0.0638 0.0626 0.0650 0.0674 0.0614 0.0662 0.0686 =0,00204± ±0,0000557 g N = 132 DN=0.0643 α= 0.99 χ2= 12.89, 7 st. swob. P. ufn. = 0.0749 =0,0173± ±0,00147 gN = 172 DN=0.042 α=1 χ2= 7.41, 7 st. sw. Pα=0.595 N = 64 DN=0.162 α=0,069 χ2= 14,14, 3 st. sw. Pα=0.0027 =0,0444± ±0,00717 g N = 72 DN=0.107 α=0,39 χ2= 18,1, 8 st. sw. Pα=0.021 30 10 20 15 25 5 0 V 0.0263 0.0284 0.0305 0.0326 0.0347 0.0242 II III 0.03653 0.04747 0.04579 0.04663 0.04158 0.03821 0.03737 0.03905 0.04074 0.04242 0.04411 0.03989 0.04326 0.04495 0.04831 0.0535 0.0547 0.0487 0.0511 0.0559 0.0499 0.0523 0.0582 0.0594 0.0606 IV 0.0221 0.0177 0.0136 0.0125 0.0146 0.0167 0.0188 0.0209 0.0156 0.0198 0.0219 0.012 0.01 0.011 0.005 0.001 0 0.002 0.004 0.006 0.008 0.003 0.007 0.009 0 d = 0,000182 g; I difference=~0,0085g difference=~0,0042g d = 0,00052 g; difference=~0,0079g d = 0,00211 g; difference=~0,0049g d = 0,00084 g; =0,0548± ±0,00415 g N = 114 difference=~0,0045g d = 0,00119 g; =0,0635± ±0,00335 g N = 31 DN=0.107 α=0,39 χ2= 18,1, 8 st. sw. Pα=0.021 d = 0,001194 g; =0,0314± ±0,00367 g 0.0003286 0 0.0001143 0.0005429 10 0 5 =0,000343 s=0,000333 g 0.00007143 0.00001429 0.00012857 0.00018571 0.00024286 0.00030000 0.00035714 0 30 10 20 15 25 5 0 35 40 45 50 =0,000113 s=0,000544 g 0.00010789 0 0.00005526 0.00016053 0.00021316 0.00026579 0.00031842 0.00037106 20 10 0 =0,000148 s=0,000148 g 25 30 10 20 15 5 35 40 45 50 0 0.00053333 0 0.00025556 0.00081111 0.00108888 =0,000198 s=0,000544 g =0,0000508 s=0,0000047 g =0,0000205 s=0,000045 g S.G. 1989/90 Age groups are separated by large distances between groups in frequency of otolith mass.
  • 95. 95 ·10-3g 0 1 2 3 4 5 6 Age groups (0-6): in length class ( - TL, cm) and in otolith mass class ( - MO, gram), * - homogeneous groups - test otolithmass,MO,[g]/lengthTL,[cm] 1987/88 (15 XII-04 I) 0 1 2 3 4 5 6 1988/89 (1-10 II) 1989/90 (02-29 I) N=800/3001 N=486/884 N=1008/605 N=588/2097 F=999.99 F=999.99 F=761/999 L∞=63.39±1,22; k=0,33±0,031; t0=-0,007±0,00054 R2=0,98; error=10,32 L0=0,15; ϕ=3,12 a=2.457·10-3 ±5.991·10-4 b=0.0135 ±2.1265·10-4 corr. coef. = 0.963 s=3.957·10-3 L∞=68.06 ±0.653 k=0.29 ±0.0135 t0=-0.008 ±0.00012 R2=0.98; error=7.32 s=2.702 a=3.067·10-3 ±4.35·10-4 b=0.0131 ±1.594·10-4 corr. coeff.=0.983 R2 =96.55% s=3.25·10-3 F=33.81 L∞=61.53 ±0.66 k=0.35 ±0.0071 t0=0.007 ±0.00011; L0=0,15 R2 =0.99; error=4.31 s=2.074; ϕ=3.12 a=3.524·10-3 ±2.065·10-4 b=0.01284 ±2.229·10-5 corr.coef. .=0.988 s=3.191·10-3 R =97.66% F=51.437 L∞=61.03 ± 0.396 k=0.35 ±0.0063 t0=0.007 ±0.00011 R2 =1; error=5.623 s=2.37021 a=4.34·10-3 ±3.26·10-4 b=0.0127 ±1.265·10-4 corr..coef .=0.986 R =97.19% s=3.128·10-3 F=18.292 t [years]: [cm] 1986/87 (10-12 XII) N=239/2812 a=3.168·10-3 ± 5.195·10-4 b=0.01282 ± 1,756·10-4 corr. coef. = 0.979 R2=95.81% s=3.062·10-3 F=4.827 * * * 0-4 16 36 56 20 40 60 8076 0-4 16 36 56 20 40 60 8076 R2 =92.82% * ** * * 0-4 16 36 56 20 40 60 8076 1990/91 (05-30 I) L∞=65.45±1,74; k=0,28±0,03; t0=-0,008±0,0047 R2=0,98; s=2,03; F=999,99 L0=0,15; ϕ=3,08 L0=0,15; ϕ=3,13 L0=0,15; ϕ=3,12 L∞=63.47; k=0,32; t0=-0,0074 R2=0,99; L0=0,15; ϕ=3,11 - a=1,852·10-4 b=0.0122 R2=99.7% 86/87 87/8885/86 88/89 89/90 90/91 91/92 After confirmation that groups in otolith mass frequency differ by annual increment
  • 96. 96 TL=21,3cm; s=2,5 cm; N=41 =0,0171g; s=0,0022 g range: (0,0124g-0,0257g I=6 34,6; 2,4 cm; N=54 0,0312; 0,0025 g (0,0257-0,037 I=5.3 Subantarctic S. Georgia 10 I 79 - 29 III 79 45,6; 1,8 cm; N=12 0,0442; 0,0025 (0,037-0,049 I=4.8 50,5; 1,3 cm; N=34 0,056; 0,0025 g (0,049-0,063 I=2.6 51,3; 1,7 cm; N=28 0,0633; 0,0031 (0,063-0,071) I=3.1 53cm;0,0716g; >0,071 A=81,98*OW-0,483 R2=0,97; N=170 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 agegroup No 47,6; 1,86 cm; N=229 0,043; 0,0028 g I=3.5 30,5; 1,63 cm; N=11 0,0235; 0,0014 g I=6.2 49,9; 2,1 cm; N=52 0,0532; 0,003 g I=5 51,1; 1,81; N=8 0,0664; 0,0022 g Antarctic Zone 30 XII 78 - 25 III 79 42,1; 2,24 cm; N=94 0,0334; 0,0018 g I=4.2 A = 88.048∙OW+0.5222 R² = 0.89 0 1 2 3 4 5 6 7 0 2 4 6 8 10 12 14 0.0100 0.0120 0.0140 0.0160 0.0180 0.0200 0.0220 0.0240 0.0260 0.0280 0.0300 0.0320 0.0340 0.0360 0.0380 0.0400 0.0420 0.0440 0.0460 0.0480 0.0500 0.0520 0.0540 0.0560 0.0580 0.0600 0.0620 0.0640 0.0660 0.0680 0.0700 0.0720 0.0740 agegroup N OW [g] Ps. georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic, but increases their masses are similar. Separating indexes neighbouring peaks in the otolith frequency: I>2, and shows significant distances between age groups the age of the fish shall be determined by weighing of otolith.
  • 97. 97 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0 5 10 15 20 25 30 35 40 45 50 55 60 0 1 2 3 4 5 6 7 OW=(t +0.5222)/88.0481; [g]TL, cm Age Group, t [years] circles - Subantarctic South Georgia I., 10.I.1979-29.III.1979: Lt=66.1(1-e-0.28(t+0.008)); L0=0.15cm; N=172; R2=0.98; '=3.09. squares - Antarctic Zone, 30.XII.78-25.III.79: Lt=66.32(1-e-0.26(t +0.0087)); L0=0.15 cm; N=394; R2=0.99; '=3.06; t=88.048*OW-0.5222; R2=0.89 Compare growth curves of Von Bertalanffy for Ps. georgianus, from Antarctic and Subantarctic Zones. Small marks are the estimated age, and large marks are their averages. Otolith are species-specific and within species should be characterized by similar features. Growth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar. The earlier development of the species in warmer South Georgia giving larger body and a few months older age.