RULES OF BLOCK DIAGRAM ALGEBRA
 COMBINING BLOCKS IN CASCADE (SERIES)
 COMBINING BLOCKS IN CASCADE (PARALLEL)
G1 G2X1
X1 * G1 X1 * G1*G2
G1*G2X1
X1 * G1*G2
G1 + G2X1
X1 (G1 + G2)
X1 * G2
G1
G2
X1
X1 * G1 X1 (G1 - G2)
-
G1 - G2X1
X1 (G1 - G2)
G1
G2
X1
X1 * G1 X1 (G1 + G2)
+
X1 * G2
 MOVING SUMMING POINT AFTER A BLOCK
GX1
X1 + X2 G (X1 + X2)
+
X2
+
X2
X2 * G
GX1 X1 * G G (X1 + X2)
+
G
+
GX1
X1 - X2 G (X1 - X2)
-
X2
+
X2 * G
GX1 X1 * G G (X1 - X2)
-
G
+
X2
 MOVING SUMMING POINT BEFORE A BLOCK
G
X1 X1*G ( X1*G ) + X2
+
X2
+
X2
X2/G
GX1
X1 + (X2/G) (G*X1) + X2
+
1/G
+
G
X1 X1*G ( X1*G ) - X2
-
X2
+
X2
X2/G
GX1
X1 - (X2/G) (G*X1) - X2
-
1/G
+
 MOVING A TAKE OFF POINT AFTER A BLOCK
 MOVING A TAKE OFF POINT BEFORE A BLOCK
GX1
G * X1
X1
X2
GX1
X1 * G
1/G
X1 * G
GX1
G * X1
G*X1
X1
GX1 X1 * G
G
X1 * G
 SWAP WITH TWO NEIGHBOURING SUMMING POINT
 WHEN TWO OR MORE SIGNALS ENTERING A SUMMING POINT
-
X3
+X1 X1 – X2
-
X2
+
X1 – X2 - X3
A B
X1 X1 – X3
-
X2
+
X1 – X2 - X3
+
-
AB
X3
+
-
+X1
X2
X3
X1 – X2 + X3
 ELIMINATING A FEEDBACK LOOP
G+
+
H
R(s) C(s)
𝐺
1 − 𝐺𝐻
R(s)
C(s)
G-
+
H
R(s) C(s)
𝐺
1 + 𝐺𝐻
R(s)
C(s)
 SHIFTING TAKE OFF POINT AFTER SUMMING POINT
 SHIFTING TAKE OFF POINT AFTER SUMMING POINT
X1
+
-
X1
X2
X1 – X2
-
+
-
X1
X2
X1 – X2
+
X1
+
-
X1
X2
X1 – X2
X1 – X2
-
+
-
X1
X2
X1 – X2
+
X1 – X2
 Example
 Find the transfer function for the following block diagram.
2G 3G1G
4G
1H
2H
)(sY)(sR
 Step 1: Moving take off point “A” before the block
2G
A
2G 3G1G
4G
1H
2H
)(sY)(sR
2G 3G1G
4G
1H
2H
)(sY)(sR
2G
B
B
 Step 2: Combine series blocks and
2G1G
2G 3G1G
4G
1H
2H
)(sY)(sR
B
2G
G2 * G31G
4G
1H
2H
)(sY)(sR
B
2G
 Step 3: Eliminate the Loop 1 (parallel blocks)
( it’s a forward loop not feedback loop, so simply add the blocks according to summing point signs)
Loop 1
G2 * G31G
4G
1H
2H
)(sY)(sR
B
2G
G4+(G2 * G3)1G
1H
2H
)(sY)(sR
B
2G
 Step 4: Combine series blocks and1H 2G
G4+(G2 * G3)1G
1H
2H
)(sY)(sR
B
2G
G4+(G2 * G3)
H1 * G2
1G
2H
)(sY)(sR
B
 Step 5: Moving take off point “B” after block G4+(G2 * G3)
G4+(G2 * G3)
H1 * G2
1G
2H
)(sY)(sR
B
G4+(G2 * G3)
H1 * G2
1G
2H
)(sY)(sR
1/(G4+G2*G3)
 Step 6: Eliminate Loop 2 (feedback loop)
G4+(G2 * G3)
H1 * G2
1G
2H
)(sY)(sR
1/(G4+G2*G3)
Loop 2
H1 * G2
1G
)(sY)(sR
1/(G4+G2*G3)
)(1 3242
324
GGGH
GGG


 Step 7: Combine series blocks , and ,1G )(1 3242
324
GGGH
GGG


H1 * G2
1G
)(sY)(sR
1/(G4+G2*G3)
)(1 3242
324
GGGH
GGG


H1 * G2 1/(G4+G2*G3)
)(sY)(sR
)(1
)(*
3242
3241
GGGH
GGGG


324
12
GGG
HG

 Step 8: Eliminate Loop 3 (Feedback loop)
)(sY)(sR
)(1
)(*
3242
3241
GGGH
GGGG


324
12
GGG
HG

)(sY)(sR
)(1
)(
3242121
3241
GGGHHGG
GGGG


Loop 3
 Step 9: Eliminate Loop 4 (Unity feedback loop, i.e., the value of feedback loop is 1 because
there is no feedback block value)
)(sY
)(sR
)(1
)(
3242121
3241
GGGHHGG
GGGG


)(sY)(sR
)()(1
)(
32413242121
3241
GGGGGGGHHGG
GGGG


Loop 4
 The given block diagram:
 Transfer function for the given block diagram
(from previous slide)
2G 3G1G
4G
1H
2H
)(sY)(sR
)()(1
)(
)(
)(
)(
32413242121
3241
GGGGGGGHHGG
GGGG
sR
sY
sT




Block reduction technique

  • 1.
    RULES OF BLOCKDIAGRAM ALGEBRA  COMBINING BLOCKS IN CASCADE (SERIES)  COMBINING BLOCKS IN CASCADE (PARALLEL) G1 G2X1 X1 * G1 X1 * G1*G2 G1*G2X1 X1 * G1*G2 G1 + G2X1 X1 (G1 + G2) X1 * G2 G1 G2 X1 X1 * G1 X1 (G1 - G2) - G1 - G2X1 X1 (G1 - G2) G1 G2 X1 X1 * G1 X1 (G1 + G2) + X1 * G2
  • 2.
     MOVING SUMMINGPOINT AFTER A BLOCK GX1 X1 + X2 G (X1 + X2) + X2 + X2 X2 * G GX1 X1 * G G (X1 + X2) + G + GX1 X1 - X2 G (X1 - X2) - X2 + X2 * G GX1 X1 * G G (X1 - X2) - G + X2
  • 3.
     MOVING SUMMINGPOINT BEFORE A BLOCK G X1 X1*G ( X1*G ) + X2 + X2 + X2 X2/G GX1 X1 + (X2/G) (G*X1) + X2 + 1/G + G X1 X1*G ( X1*G ) - X2 - X2 + X2 X2/G GX1 X1 - (X2/G) (G*X1) - X2 - 1/G +
  • 4.
     MOVING ATAKE OFF POINT AFTER A BLOCK  MOVING A TAKE OFF POINT BEFORE A BLOCK GX1 G * X1 X1 X2 GX1 X1 * G 1/G X1 * G GX1 G * X1 G*X1 X1 GX1 X1 * G G X1 * G
  • 5.
     SWAP WITHTWO NEIGHBOURING SUMMING POINT  WHEN TWO OR MORE SIGNALS ENTERING A SUMMING POINT - X3 +X1 X1 – X2 - X2 + X1 – X2 - X3 A B X1 X1 – X3 - X2 + X1 – X2 - X3 + - AB X3 + - +X1 X2 X3 X1 – X2 + X3
  • 6.
     ELIMINATING AFEEDBACK LOOP G+ + H R(s) C(s) 𝐺 1 − 𝐺𝐻 R(s) C(s) G- + H R(s) C(s) 𝐺 1 + 𝐺𝐻 R(s) C(s)
  • 7.
     SHIFTING TAKEOFF POINT AFTER SUMMING POINT  SHIFTING TAKE OFF POINT AFTER SUMMING POINT X1 + - X1 X2 X1 – X2 - + - X1 X2 X1 – X2 + X1 + - X1 X2 X1 – X2 X1 – X2 - + - X1 X2 X1 – X2 + X1 – X2
  • 8.
     Example  Findthe transfer function for the following block diagram. 2G 3G1G 4G 1H 2H )(sY)(sR
  • 9.
     Step 1:Moving take off point “A” before the block 2G A 2G 3G1G 4G 1H 2H )(sY)(sR 2G 3G1G 4G 1H 2H )(sY)(sR 2G B B
  • 10.
     Step 2:Combine series blocks and 2G1G 2G 3G1G 4G 1H 2H )(sY)(sR B 2G G2 * G31G 4G 1H 2H )(sY)(sR B 2G
  • 11.
     Step 3:Eliminate the Loop 1 (parallel blocks) ( it’s a forward loop not feedback loop, so simply add the blocks according to summing point signs) Loop 1 G2 * G31G 4G 1H 2H )(sY)(sR B 2G G4+(G2 * G3)1G 1H 2H )(sY)(sR B 2G
  • 12.
     Step 4:Combine series blocks and1H 2G G4+(G2 * G3)1G 1H 2H )(sY)(sR B 2G G4+(G2 * G3) H1 * G2 1G 2H )(sY)(sR B
  • 13.
     Step 5:Moving take off point “B” after block G4+(G2 * G3) G4+(G2 * G3) H1 * G2 1G 2H )(sY)(sR B G4+(G2 * G3) H1 * G2 1G 2H )(sY)(sR 1/(G4+G2*G3)
  • 14.
     Step 6:Eliminate Loop 2 (feedback loop) G4+(G2 * G3) H1 * G2 1G 2H )(sY)(sR 1/(G4+G2*G3) Loop 2 H1 * G2 1G )(sY)(sR 1/(G4+G2*G3) )(1 3242 324 GGGH GGG  
  • 15.
     Step 7:Combine series blocks , and ,1G )(1 3242 324 GGGH GGG   H1 * G2 1G )(sY)(sR 1/(G4+G2*G3) )(1 3242 324 GGGH GGG   H1 * G2 1/(G4+G2*G3) )(sY)(sR )(1 )(* 3242 3241 GGGH GGGG   324 12 GGG HG 
  • 16.
     Step 8:Eliminate Loop 3 (Feedback loop) )(sY)(sR )(1 )(* 3242 3241 GGGH GGGG   324 12 GGG HG  )(sY)(sR )(1 )( 3242121 3241 GGGHHGG GGGG   Loop 3
  • 17.
     Step 9:Eliminate Loop 4 (Unity feedback loop, i.e., the value of feedback loop is 1 because there is no feedback block value) )(sY )(sR )(1 )( 3242121 3241 GGGHHGG GGGG   )(sY)(sR )()(1 )( 32413242121 3241 GGGGGGGHHGG GGGG   Loop 4
  • 18.
     The givenblock diagram:  Transfer function for the given block diagram (from previous slide) 2G 3G1G 4G 1H 2H )(sY)(sR )()(1 )( )( )( )( 32413242121 3241 GGGGGGGHHGG GGGG sR sY sT   