SlideShare a Scribd company logo
1 of 21
Download to read offline
Towards Predictable Transmembrane
Transport: QSAR Analysis of the Anion
Binding and Anion Transport Properties of
Thioureas
Philip A. Gale

N. Busschaert, S.J. Bradberry, M. Wenzel, C.J.E. Haynes, J.R. Hiscock, I.L. Kirby, L.E.
Karagiannidis, S.J. Moore, N.J. Wells, J. Herniman, G.J. Langley, P.N. Horton, M.E. Light,
V. Félix, J.G. Frey, P. A. Gale,
Chemical Science 2013, 4, 3036-3045 .
Tools from medicinal chemistry
•

Hansch analysis: used in medicinal chemistry to examine
quantitative structure-activity relationships across a series of
molecules. The log(1/IC50) value is correlated to a linear combination
of predictable molecular properties, usually logP (water:octanol
partition coefficient) and/ or Hammett constants using multiple
regression techniques:
log(1/IC50) = k1π + k2σ + k3

where IC50 = molar concentration required for a standard response
π is related to lipophilicity (logP)
σ = Hammett coefficient (related to binding strength)

C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165.
Transporter design
R

S
N
H

variation of hydrogen
bond donor strength
(σ) and lipophilicity

1 R = Br
2 R = CF3
3 R = Cl
4 R = CN
5 R = COCF3
6 R = COMe
7 R = COOMe
8R=F
9R=H
10 R = I
11 R = NO2

thiourea anion binding site

N
H

12
13
14
15
16
17
18
19
20
21
22

R
R
R
R
R
R
R
R
R
R
R

=
=
=
=
=
=
=
=
=
=
=

O(CO)Me
OCF3
OEt
OMe
SMe
SO2Me
CH3
CH2CH3
(CH2)2CH3
(CH2)3CH3
(CH2)4CH3
Anion transport at 2% loading

NO3-

Cl-

Chloride efflux promoted by a selection of compounds 1-22 (2 mol% thiourea to lipid) from unilamellar POPC vesicles loaded with
489 mM NaCl buffered to pH 7.2 with 5 mM sodium phosphate salts. The vesicles were dispersed in 489 mM NaNO3 buffered to pH
7.2 with 5 mM sodium phosphate salts. At the end of the experiment, detergent was added to lyse the vesicles and calibrate the ISE to
100 % chloride efflux. Each point represents the average of at least 9 trials. DMSO was used as control.
Anion transport trends
Br
Hill analysis
S
!
E = EmaxCn/(EC50n+Cn)
N
N
!
H
H
E is the magnitude of an observed effect
Emax is the maximum value of this effect (in this case Emax = 100 % chloride efflux)
C is the concentration of carrier
n is the Hill coefficient of sigmoidality
EC50 is the effective concentration of carrier required to mediate 50 % of the
maximum response

EC50 = 0.80 mol% w.r.t. lipid

A. V. Hill, Biochem. J., 1913, 7, 471.
Transporter design
R

S
N
H

variation of hydrogen
bond donor strength
(σ) and lipophilicity

1 R = Br
2 R = CF3
3 R = Cl
4 R = CN
5 R = COCF3
6 R = COMe
7 R = COOMe
8R=F
9R=H
10 R = I
11 R = NO2

thiourea anion binding site

N
H

12
13
14
15
16
17
18
19
20
21
22

R
R
R
R
R
R
R
R
R
R
R

=
=
=
=
=
=
=
=
=
=
=

O(CO)Me
OCF3
OEt
OMe
SMe
SO2Me
CH3
CH2CH3
(CH2)2CH3
(CH2)3CH3
(CH2)4CH3
Transporter design
R

S
N
H

variation of hydrogen
bond donor strength
(σ) and lipophilicity

2
3
4
5

R
R
R
R

=
=
=
=

CF3
Cl
CN
COCF3

7 R = COOMe
8R=F
9R=H
10 R = I
11 R = NO2

thiourea anion binding site

N
H

12 R = O(CO)Me
13 R = OCF3
15
16
17
18
19

R
R
R
R
R

=
=
=
=
=

OMe
SMe
SO2Me
CH3
CH2CH3

21 R = (CH2)3CH3
22 R = (CH2)4CH3
Hansch analysis
!

log(1/EC50) = k1A + k2B + k3C + k4

N. Busschaert, S.J. Bradberry, M. Wenzel, C.J.E. Haynes, J.R. Hiscock, I.L. Kirby, L.E. Karagiannidis, S.J. Moore, N.J.
Wells, J. Herniman, G.J. Langley, P.N. Horton, M.E. Light, V. Félix, J.G. Frey, P. A. Gale,
Chemical Science 2013, 4, 3036-3045 .
Mr (g/mol)

PSA

solvent acc surface area

volume

Surface Area Molecular Volume

Vsmax

Parachor

Index of refraction

Bp

TPSA

Vsmin

PI

Molar refractivity

Molecular volume

logD (pH1,7) logD (pH4,6) logD (pH6,5) logD (pH7,4) logD (pH8)
pKa (arom NH) pKa (alkyl NH) pKa2 (NH)

logS (pH1,7)

Vx

logPS

Vd

SCBO
SMTI

ARR
SMTIV

GMTIV

logS (pH6,5)

logS (pH7,4) logS (pH8)

polarizability MW

AMW

Sv

Se

RBN
GMTI

RBF

ZM2

ZM2V Qindex

Xu

SPI

W

WA

Har

Har2 QW

Whetv

Whete
PW2

Whetp
PW3

J

JhetZ

Jhetm

Jhetv Jhete Jhetp MAXDN

PW4

PW5

PJI2

CSI

ECC

AECC

DECC

GGI1 GGI2

GGI3

GGI4

GGI5

GGI6

GGI7

GGI8 GGI9 GGI10

JGI1

JGI2

JGI3

JGI4

JGI5

JGI6

JGI7

JGI8

W3D

J3D

H3D

AGDD

DDI

ADDD

G1

G2

RGyr

SPAM

SPH

ASP

FDI

DISPm

QXXm

QYYm

QZZm

DISPv

QZZv

DISPe

QXXe

QYYe

QZZe DISPp QXXp QYYp QZZp
G2u

QXXv

QYYv

logS (pH4,6)

ZM1 ZM1V

Sp

Ss

Mv

SNar

TI2

Me

HNar

Mp
GNar Xt

HyDp RHyDpw

MDDD

UNIP

ww

MAXDP
CENT VAR

BAC

Ms
Dz

Ram

Pol

Rww

D/D

Wap

WhetZ Whetm

DELS

TIE

S0K

S1K

Lop

ICR

LPRS

S2K

S3K

VDA

MSD

PHI

D/Dr06

JGI9 JGI10 JGT

PJI3

G3u

L/Bw SEig

E1u

HOMA RCI

AROM HOMT

E2u

E3u

L1m

L2m

L3m

L1p

L2p

L3p

L1u

L2u

L3u

P1u

P2u

G1u

E2m

E3m

L1v

L2v

L3v

P1v

P2v G1v

G2v

G3v

E1v

E2v

E3v

L1e

L2e

L3e

P1e

P2e

G1e G2e

G3e

E1e

E2e

E3e

G1p

G2p

G3p

E1p

E2p

E3p

L1s

L2s

L3s

P1s

P2s

G1s

G2s

G3s

E1s

E2s

E3s

Tu

Tm

Tv

Te

Tp

Ts

Au

Am

Av

Ae

Ap

As

Gu

Gm

Gs

Ku

Km

Kv

Ke

Kp

Ks

Du

Dm

Dv

De

Dp

Ds

Vu

Vm

Vv

Ve

BLTF96

BLTD48

BLTA96

P1m P2m

P1p

G1m G2m G3m E1m

P2p

Molecular
parameters
http://www.vcclab.org/lab/indexhlp/dragon_descr.html

Vp

Vs

BLI

nHAcc Ui

Hy

AMR

TPSA(NO)

TPSA(Tot)
QSAR analysis of anion binding
logKa(H2PO4-) = 0.85(±0.06)*σp + 2.38(±0.02)	


logKa(Cl-) = 0.55(±0.03)*σp + 1.17(±0.01)	

N = 18, R² = 0.96, R²adj = 0.96, RMSE = 0.04, F = 424	


	


logKa(HCO3-) = 0.88(±0.10)*σp + 2.40(±0.04)	


N = 17, R² = 0.92, R²adj = 0.91, RMSE = 0.09, F = 167

N = 16, R² = 0.84, R²adj = 0.83, RMSE = 0.13, F = 73

Graphical representation of the correlation between anion binding (logKa) and the Hammett constant σp for
compounds 1-22 (excluding 1, 6, 14 and 20). Linear fits are represented by a blue line. (a). interaction with Cl- vs.
Hammett constant; (b) interaction with H2PO4 vs. Hammett constant-; (c) interaction with HCO3- vs. Hammett
constant.

M. J. Hynes, J. Chem. Soc. Dalton Trans., 1993, 311;
Hammett constants for substituents in para-position taken from: A. Hansch et al., Chem. Rev., 1991,91, 165.
Lipophilicity
The logP of a compound can be correlated to the retention time in a reverse
phase HPLC experiment (elution with water:methanol gradient). The retention
times were correlated with calculated logP values to identify the best model.

R2 = 0.955

ClogP calculated using Daylight v4.73

R2 = 0.719

ClogP calculated using VCC labs website

C. Giaginis et al., J. Liq. Chromatogr. Relat. Technol., 2008, 31, 79; (b) R. Quesada and co-workers, Chem.
Commun., 2012, 48, 5274.
www.vcclabs.org; I. Moriguchi et al., Chem. Pharm. Bull., 1992, 40, 127.
QSAR analysis of anion binding
logKa(H2PO4-) = 0.85(±0.06)*σp + 2.38(±0.02)	


logKa(Cl-) = 0.55(±0.03)*σp + 1.17(±0.01)	

N = 18, R² = 0.96, R²adj = 0.96, RMSE = 0.04, F = 424	


	


logKa(HCO3-) = 0.88(±0.10)*σp + 2.40(±0.04)	


N = 17, R² = 0.92, R²adj = 0.91, RMSE = 0.09, F = 167

N = 16, R² = 0.84, R²adj = 0.83, RMSE = 0.13, F = 73

Graphical representation of the correlation between anion binding (logKa) and the Hammett constant σp for
compounds 1-22 (excluding 1, 6, 14 and 20). Linear fits are represented by a blue line. (a). interaction with Cl- vs.
Hammett constant; (b) interaction with H2PO4 vs. Hammett constant-; (c) interaction with HCO3- vs. Hammett
constant.

M. J. Hynes, J. Chem. Soc. Dalton Trans., 1993, 311;
Hammett constants for substituents in para position taken from: A. Hansch et al., Chem. Rev., 1991,91, 165.
Mr (g/mol)

PSA

solvent acc surface area

volume

Surface Area Molecular Volume

Vsmax

Parachor

Index of refraction

Bp

TPSA

Vsmin

PI

Molar refractivity

Molecular volume

logD (pH1,7) logD (pH4,6) logD (pH6,5) logD (pH7,4) logD (pH8)
pKa (arom NH) pKa (alkyl NH) pKa2 (NH)

logS (pH1,7)

Vx

logPS

Vd

SCBO
SMTI

ARR
SMTIV

GMTIV

logS (pH6,5)

logS (pH7,4) logS (pH8)

polarizability MW

AMW

Sv

Se

RBN
GMTI

RBF

ZM2

ZM2V Qindex

Xu

SPI

W

WA

Har

Har2 QW

Whetv

Whete
PW2

Whetp
PW3

J

JhetZ

Jhetm

Jhetv Jhete Jhetp MAXDN

PW4

PW5

PJI2

CSI

ECC

AECC

DECC

GGI1 GGI2

GGI3

GGI4

GGI5

GGI6

GGI7

GGI8 GGI9 GGI10

JGI1

JGI2

JGI3

JGI4

JGI5

JGI6

JGI7

JGI8

W3D

J3D

H3D

AGDD

DDI

ADDD

G1

G2

RGyr

SPAM

SPH

ASP

FDI

DISPm

QXXm

QYYm

QZZm

DISPv

QZZv

DISPe

QXXe

QYYe

QZZe DISPp QXXp QYYp QZZp
G2u

QXXv

QYYv

logS (pH4,6)

ZM1 ZM1V

Sp

Ss

Mv

SNar

TI2

Me

HNar

Mp
GNar Xt

HyDp RHyDpw

MDDD

UNIP

ww

MAXDP
CENT VAR

BAC

Ms
Dz

Ram

Pol

Rww

D/D

Wap

WhetZ Whetm

DELS

TIE

S0K

S1K

Lop

ICR

LPRS

S2K

S3K

VDA

MSD

PHI

D/Dr06

JGI9 JGI10 JGT

PJI3

G3u

L/Bw SEig

E1u

HOMA RCI

AROM HOMT

E2u

E3u

L1m

L2m

L3m

L1p

L2p

L3p

L1u

L2u

L3u

P1u

P2u

G1u

E2m

E3m

L1v

L2v

L3v

P1v

P2v G1v

G2v

G3v

E1v

E2v

E3v

L1e

L2e

L3e

P1e

P2e

G1e G2e

G3e

E1e

E2e

E3e

G1p

G2p

G3p

E1p

E2p

E3p

L1s

L2s

L3s

P1s

P2s

G1s

G2s

G3s

E1s

E2s

E3s

Tu

Tm

Tv

Te

Tp

Ts

Au

Am

Av

Ae

Ap

As

Gu

Gm

Gs

Ku

Km

Kv

Ke

Kp

Ks

Du

Dm

Dv

De

Dp

Ds

Vu

Vm

Vv

Ve

BLTF96

BLTD48

BLTA96

P1m P2m

P1p

G1m G2m G3m E1m

P2p

Molecular
parameters
http://www.vcclab.org/lab/indexhlp/dragon_descr.html

Vp

Vs

BLI

nHAcc Ui

Hy

AMR

TPSA(NO)

TPSA(Tot)
Final model: relative parameters
R

S
N
H

1 R = Br
2 R = CF3
3 R = Cl
4 R = CN
5 R = COCF3
6 R = COMe
7 R = COOMe
8R=F
9R=H
10 R = I
11 R = NO2

N
H
12 R = O(CO)Me
13 R = OCF3
14 R = OEt
15 R = OMe
16 R = SMe
17 R = SO2Me
18 R = CH3
19 R = CH2CH3
20 R = (CH2)2CH3
21 R = (CH2)3CH3
22 R = (CH2)4CH3

NO3-

Cl-

!
log(1/EC50) = 0.82(±0.08)*π + 0.66(±0.18)*σp – 0.26(±0.07)*ΔSPAN – 0.43
!
!
!
!
!
Calculated using JMP® 9.0.0
N = 18, R² = 0.89, R²adj = 0.87, RMSE = 0.21, F = 42
N. Busschaert, S.J. Bradberry, M. Wenzel, C.J.E. Haynes, J.R. Hiscock, I.L. Kirby, L.E. Karagiannidis, S.J. Moore, N.J.
Wells, J. Herniman, G.J. Langley, P.N. Horton, M.E. Light, V. Félix, J.G. Frey, P. A. Gale,
Chemical Science 2013, 4, 3036-3045 .
Linear combinations of parameters
Graphical depiction of the values of the
coefficients in the equation when the
descriptor values are scaled to have a
mean of zero and a range of two using
JMP 9.0.0. This shows that lipophilicity
(RT or logP) has the greatest effect on
anion transport.

!
log(1/EC50) = 0.82(±0.08)*π + 0.66(±0.18)*σp – 0.26(±0.07)*ΔSPAN – 0.43

!
!
N = 18, R² = 0.89, R²adj = 0.87, RMSE = 0.21, F = 42
Calculated using JMP® 9.0.0
N. Busschaert, S.J. Bradberry, M. Wenzel, C.J.E. Haynes, J.R. Hiscock, I.L. Kirby, L.E. Karagiannidis, S.J. Moore, N.J.
Wells, J. Herniman, G.J. Langley, P.N. Horton, M.E. Light, V. Félix, J.G. Frey, P. A. Gale,
Chemical Science 2013, 4, 3036-3045 .
Predictions

N. Busschaert, S.J. Bradberry, M. Wenzel, C.J.E. Haynes, J.R. Hiscock, I.L. Kirby, L.E. Karagiannidis, S.J. Moore, N.J.
Wells, J. Herniman, G.J. Langley, P.N. Horton, M.E. Light, V. Félix, J.G. Frey, P. A. Gale,
Chemical Science 2013, 4, 3036-3045 .
Conclusions
!
!
Hansch analysis of anion transport results may reveal the
molecular parameters that we should optimise in order to
design an efficient anion transporter. For the thioureas
studied these are logP, affinity and molecular size.
!
!
!
!
!

Chemical Science
www.rsc.org/chemicalscience

Volume 4 | Number 8 | August 2013 | Pages 2979–3348

ISSN 2041-6520

EDGE ARTICLE
Philip A. Gale et al.
Towards predictable transmembrane transport: QSAR analysis of
anion binding and transport

“Anion transporters and
biological systems”
P.A. Gale, R. Pérez-Tomás
and R. Quesada, Acc. Chem.
Res. 2013, DOI: 10.1021/
ar400019p.

2041-6520(2013)4:8;1-N

“From anion receptors to
transporters”

“Small molecule lipid bilayer
anion transporters for biological
applications” N. Busschaert and
P.A. Gale,

P.A. Gale, Acc. Chem. Res.
2011, 44, 216-226.

Angew. Chem. Int. Ed., 2013,
52, 1374-1382.
Current group:

Former group members:

!

!

Dr Jenny Hiscock
Dr Wim van Rossom
Dr Nathalie Busschaert
!

Isabelle Kirby
Louise Karagiannides
Francesca Piana
Stuart Berry
Xin Wu
Michael Spooner

!
!
!
!

Dr Christine C. Tong
Dr Korakot Navakhun
Dr Joachim Garric
Dr Claudia Caltagirone
Dr Gareth W. Bates
Dr Marco Wenzel
Dr Stephen Moore
Sam Bradberry
Dr Cally Haynes

Research support and collaborations in Southampton:
!

Dr. Mark E. Light
Dr John Langley
Dr Neil Wells
Julie Herniman
Prof. Jonathan Essex
Prof. Jeremy Frey
Prof. Jeff Davis
Dr William Harrell Jr.
!

Prof Janez Plavec
Dr Damjan Makuc
Prof Kate Jolliffe
!

Prof Tony Davis
Dr Hennie Valkenier
!

Dr Roberto Quesada
!

Prof. Ricardo Pérez-Tomás
!

Prof. Vítor Félix
!
!
CM1005
Supramolecular
Chemistry in Water

More Related Content

What's hot

Hawari 1985 JAmChemSoc
Hawari 1985 JAmChemSocHawari 1985 JAmChemSoc
Hawari 1985 JAmChemSocJalal Hawari
 
Methanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyMethanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyPatrick Françoisse
 
Tds removal by taguchi method in iran
Tds removal by taguchi method in iranTds removal by taguchi method in iran
Tds removal by taguchi method in iranbipcc
 
Activity coefficients at infinite dilution for organic solutes dissolved in t...
Activity coefficients at infinite dilution for organic solutes dissolved in t...Activity coefficients at infinite dilution for organic solutes dissolved in t...
Activity coefficients at infinite dilution for organic solutes dissolved in t...Bihan Jiang
 
141 Novel Poster final
141 Novel Poster final141 Novel Poster final
141 Novel Poster finalRachelle Manel
 
Abraham model correlations for ionic liquid solvents computational methodolog...
Abraham model correlations for ionic liquid solvents computational methodolog...Abraham model correlations for ionic liquid solvents computational methodolog...
Abraham model correlations for ionic liquid solvents computational methodolog...Bihan Jiang
 
Analisis de agua merck (1)
Analisis de agua merck (1)Analisis de agua merck (1)
Analisis de agua merck (1)Yesenia Z.I.
 
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...eSAT Journals
 
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...eSAT Publishing House
 
Reaction rates (Examville.com)
Reaction rates (Examville.com)Reaction rates (Examville.com)
Reaction rates (Examville.com)JSlinkyNY
 
Kinetic Study of Esterification of Acetic Acid with n- butanol and isobutanol...
Kinetic Study of Esterification of Acetic Acid with n- butanol and isobutanol...Kinetic Study of Esterification of Acetic Acid with n- butanol and isobutanol...
Kinetic Study of Esterification of Acetic Acid with n- butanol and isobutanol...Hugo Balderrama
 
Drug discovery library design by biomimetic hplc
Drug discovery library design by biomimetic hplcDrug discovery library design by biomimetic hplc
Drug discovery library design by biomimetic hplcKlara Valko
 
Ph.D. Dissertation Defense final version
Ph.D. Dissertation Defense final versionPh.D. Dissertation Defense final version
Ph.D. Dissertation Defense final versionSara Duncan
 
1 s2.0-s016651621730188 x-main
1 s2.0-s016651621730188 x-main1 s2.0-s016651621730188 x-main
1 s2.0-s016651621730188 x-mainChemist Sayed
 
Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...
Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...
Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...Agriculture Journal IJOEAR
 
Sen, Z. (1974) Propiedades de muestras pequeñas de modelos estocásticos estac...
Sen, Z. (1974) Propiedades de muestras pequeñas de modelos estocásticos estac...Sen, Z. (1974) Propiedades de muestras pequeñas de modelos estocásticos estac...
Sen, Z. (1974) Propiedades de muestras pequeñas de modelos estocásticos estac...SandroSnchezZamora
 
An investigation of acid rock drainage (ard) occurrence
An investigation of acid rock drainage (ard) occurrenceAn investigation of acid rock drainage (ard) occurrence
An investigation of acid rock drainage (ard) occurrencejohnnyanibal2489
 
Characterization of mining tailings containing sulfides and carbonates applyi...
Characterization of mining tailings containing sulfides and carbonates applyi...Characterization of mining tailings containing sulfides and carbonates applyi...
Characterization of mining tailings containing sulfides and carbonates applyi...Judson Arantes
 

What's hot (20)

Hawari 1985 JAmChemSoc
Hawari 1985 JAmChemSocHawari 1985 JAmChemSoc
Hawari 1985 JAmChemSoc
 
Final Report
Final ReportFinal Report
Final Report
 
Methanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyMethanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic Study
 
Tds removal by taguchi method in iran
Tds removal by taguchi method in iranTds removal by taguchi method in iran
Tds removal by taguchi method in iran
 
Activity coefficients at infinite dilution for organic solutes dissolved in t...
Activity coefficients at infinite dilution for organic solutes dissolved in t...Activity coefficients at infinite dilution for organic solutes dissolved in t...
Activity coefficients at infinite dilution for organic solutes dissolved in t...
 
141 Novel Poster final
141 Novel Poster final141 Novel Poster final
141 Novel Poster final
 
Abraham model correlations for ionic liquid solvents computational methodolog...
Abraham model correlations for ionic liquid solvents computational methodolog...Abraham model correlations for ionic liquid solvents computational methodolog...
Abraham model correlations for ionic liquid solvents computational methodolog...
 
Analisis de agua merck (1)
Analisis de agua merck (1)Analisis de agua merck (1)
Analisis de agua merck (1)
 
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
 
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
 
Reaction rates (Examville.com)
Reaction rates (Examville.com)Reaction rates (Examville.com)
Reaction rates (Examville.com)
 
Kinetic Study of Esterification of Acetic Acid with n- butanol and isobutanol...
Kinetic Study of Esterification of Acetic Acid with n- butanol and isobutanol...Kinetic Study of Esterification of Acetic Acid with n- butanol and isobutanol...
Kinetic Study of Esterification of Acetic Acid with n- butanol and isobutanol...
 
Drug discovery library design by biomimetic hplc
Drug discovery library design by biomimetic hplcDrug discovery library design by biomimetic hplc
Drug discovery library design by biomimetic hplc
 
Ph.D. Dissertation Defense final version
Ph.D. Dissertation Defense final versionPh.D. Dissertation Defense final version
Ph.D. Dissertation Defense final version
 
Snehesh-Presentation-PDF
Snehesh-Presentation-PDFSnehesh-Presentation-PDF
Snehesh-Presentation-PDF
 
1 s2.0-s016651621730188 x-main
1 s2.0-s016651621730188 x-main1 s2.0-s016651621730188 x-main
1 s2.0-s016651621730188 x-main
 
Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...
Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...
Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...
 
Sen, Z. (1974) Propiedades de muestras pequeñas de modelos estocásticos estac...
Sen, Z. (1974) Propiedades de muestras pequeñas de modelos estocásticos estac...Sen, Z. (1974) Propiedades de muestras pequeñas de modelos estocásticos estac...
Sen, Z. (1974) Propiedades de muestras pequeñas de modelos estocásticos estac...
 
An investigation of acid rock drainage (ard) occurrence
An investigation of acid rock drainage (ard) occurrenceAn investigation of acid rock drainage (ard) occurrence
An investigation of acid rock drainage (ard) occurrence
 
Characterization of mining tailings containing sulfides and carbonates applyi...
Characterization of mining tailings containing sulfides and carbonates applyi...Characterization of mining tailings containing sulfides and carbonates applyi...
Characterization of mining tailings containing sulfides and carbonates applyi...
 

Similar to Towards Predictable Transmembrane Transport: QSAR Analysis of the Anion Binding and Anion Transport Properties of Thioureas

Similar to Towards Predictable Transmembrane Transport: QSAR Analysis of the Anion Binding and Anion Transport Properties of Thioureas (20)

Catalytic Antibodies_JACS 1987 Powell et. al.
Catalytic Antibodies_JACS 1987 Powell et. al.Catalytic Antibodies_JACS 1987 Powell et. al.
Catalytic Antibodies_JACS 1987 Powell et. al.
 
PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52
 
Calixpyrrolepptx
CalixpyrrolepptxCalixpyrrolepptx
Calixpyrrolepptx
 
CPsarakis REU Final Paper
CPsarakis REU Final PaperCPsarakis REU Final Paper
CPsarakis REU Final Paper
 
Cromatografia líquida moderna
Cromatografia líquida modernaCromatografia líquida moderna
Cromatografia líquida moderna
 
Dsc peptide
Dsc peptideDsc peptide
Dsc peptide
 
Kawabata1997
Kawabata1997Kawabata1997
Kawabata1997
 
PNIPAM-b-PMAA Poster
PNIPAM-b-PMAA PosterPNIPAM-b-PMAA Poster
PNIPAM-b-PMAA Poster
 
Sec acs 2004
Sec acs 2004Sec acs 2004
Sec acs 2004
 
Qsar UMA
Qsar   UMAQsar   UMA
Qsar UMA
 
Sulfate transport
Sulfate transportSulfate transport
Sulfate transport
 
Research proposal.pptx
Research proposal.pptxResearch proposal.pptx
Research proposal.pptx
 
prakash_JMS_2015
prakash_JMS_2015prakash_JMS_2015
prakash_JMS_2015
 
QSAR
QSARQSAR
QSAR
 
Heteroleptic palladium
Heteroleptic palladiumHeteroleptic palladium
Heteroleptic palladium
 
REU summary paper
REU summary paperREU summary paper
REU summary paper
 
MCR
MCRMCR
MCR
 
My paper
My paperMy paper
My paper
 
Neil's Thesis
Neil's ThesisNeil's Thesis
Neil's Thesis
 
Mechanism of the Reaction of Plasma Albumin with Formaldehyde in Ethanol - Wa...
Mechanism of the Reaction of Plasma Albumin with Formaldehyde in Ethanol - Wa...Mechanism of the Reaction of Plasma Albumin with Formaldehyde in Ethanol - Wa...
Mechanism of the Reaction of Plasma Albumin with Formaldehyde in Ethanol - Wa...
 

Recently uploaded

Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 

Recently uploaded (20)

Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 

Towards Predictable Transmembrane Transport: QSAR Analysis of the Anion Binding and Anion Transport Properties of Thioureas

  • 1. Towards Predictable Transmembrane Transport: QSAR Analysis of the Anion Binding and Anion Transport Properties of Thioureas Philip A. Gale N. Busschaert, S.J. Bradberry, M. Wenzel, C.J.E. Haynes, J.R. Hiscock, I.L. Kirby, L.E. Karagiannidis, S.J. Moore, N.J. Wells, J. Herniman, G.J. Langley, P.N. Horton, M.E. Light, V. Félix, J.G. Frey, P. A. Gale, Chemical Science 2013, 4, 3036-3045 .
  • 2.
  • 3. Tools from medicinal chemistry • Hansch analysis: used in medicinal chemistry to examine quantitative structure-activity relationships across a series of molecules. The log(1/IC50) value is correlated to a linear combination of predictable molecular properties, usually logP (water:octanol partition coefficient) and/ or Hammett constants using multiple regression techniques: log(1/IC50) = k1π + k2σ + k3 where IC50 = molar concentration required for a standard response π is related to lipophilicity (logP) σ = Hammett coefficient (related to binding strength) C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165.
  • 4. Transporter design R S N H variation of hydrogen bond donor strength (σ) and lipophilicity 1 R = Br 2 R = CF3 3 R = Cl 4 R = CN 5 R = COCF3 6 R = COMe 7 R = COOMe 8R=F 9R=H 10 R = I 11 R = NO2 thiourea anion binding site N H 12 13 14 15 16 17 18 19 20 21 22 R R R R R R R R R R R = = = = = = = = = = = O(CO)Me OCF3 OEt OMe SMe SO2Me CH3 CH2CH3 (CH2)2CH3 (CH2)3CH3 (CH2)4CH3
  • 5. Anion transport at 2% loading NO3- Cl- Chloride efflux promoted by a selection of compounds 1-22 (2 mol% thiourea to lipid) from unilamellar POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with 5 mM sodium phosphate salts. The vesicles were dispersed in 489 mM NaNO3 buffered to pH 7.2 with 5 mM sodium phosphate salts. At the end of the experiment, detergent was added to lyse the vesicles and calibrate the ISE to 100 % chloride efflux. Each point represents the average of at least 9 trials. DMSO was used as control.
  • 6. Anion transport trends Br Hill analysis S ! E = EmaxCn/(EC50n+Cn) N N ! H H E is the magnitude of an observed effect Emax is the maximum value of this effect (in this case Emax = 100 % chloride efflux) C is the concentration of carrier n is the Hill coefficient of sigmoidality EC50 is the effective concentration of carrier required to mediate 50 % of the maximum response EC50 = 0.80 mol% w.r.t. lipid A. V. Hill, Biochem. J., 1913, 7, 471.
  • 7. Transporter design R S N H variation of hydrogen bond donor strength (σ) and lipophilicity 1 R = Br 2 R = CF3 3 R = Cl 4 R = CN 5 R = COCF3 6 R = COMe 7 R = COOMe 8R=F 9R=H 10 R = I 11 R = NO2 thiourea anion binding site N H 12 13 14 15 16 17 18 19 20 21 22 R R R R R R R R R R R = = = = = = = = = = = O(CO)Me OCF3 OEt OMe SMe SO2Me CH3 CH2CH3 (CH2)2CH3 (CH2)3CH3 (CH2)4CH3
  • 8. Transporter design R S N H variation of hydrogen bond donor strength (σ) and lipophilicity 2 3 4 5 R R R R = = = = CF3 Cl CN COCF3 7 R = COOMe 8R=F 9R=H 10 R = I 11 R = NO2 thiourea anion binding site N H 12 R = O(CO)Me 13 R = OCF3 15 16 17 18 19 R R R R R = = = = = OMe SMe SO2Me CH3 CH2CH3 21 R = (CH2)3CH3 22 R = (CH2)4CH3
  • 9. Hansch analysis ! log(1/EC50) = k1A + k2B + k3C + k4 N. Busschaert, S.J. Bradberry, M. Wenzel, C.J.E. Haynes, J.R. Hiscock, I.L. Kirby, L.E. Karagiannidis, S.J. Moore, N.J. Wells, J. Herniman, G.J. Langley, P.N. Horton, M.E. Light, V. Félix, J.G. Frey, P. A. Gale, Chemical Science 2013, 4, 3036-3045 .
  • 10. Mr (g/mol) PSA solvent acc surface area volume Surface Area Molecular Volume Vsmax Parachor Index of refraction Bp TPSA Vsmin PI Molar refractivity Molecular volume logD (pH1,7) logD (pH4,6) logD (pH6,5) logD (pH7,4) logD (pH8) pKa (arom NH) pKa (alkyl NH) pKa2 (NH) logS (pH1,7) Vx logPS Vd SCBO SMTI ARR SMTIV GMTIV logS (pH6,5) logS (pH7,4) logS (pH8) polarizability MW AMW Sv Se RBN GMTI RBF ZM2 ZM2V Qindex Xu SPI W WA Har Har2 QW Whetv Whete PW2 Whetp PW3 J JhetZ Jhetm Jhetv Jhete Jhetp MAXDN PW4 PW5 PJI2 CSI ECC AECC DECC GGI1 GGI2 GGI3 GGI4 GGI5 GGI6 GGI7 GGI8 GGI9 GGI10 JGI1 JGI2 JGI3 JGI4 JGI5 JGI6 JGI7 JGI8 W3D J3D H3D AGDD DDI ADDD G1 G2 RGyr SPAM SPH ASP FDI DISPm QXXm QYYm QZZm DISPv QZZv DISPe QXXe QYYe QZZe DISPp QXXp QYYp QZZp G2u QXXv QYYv logS (pH4,6) ZM1 ZM1V Sp Ss Mv SNar TI2 Me HNar Mp GNar Xt HyDp RHyDpw MDDD UNIP ww MAXDP CENT VAR BAC Ms Dz Ram Pol Rww D/D Wap WhetZ Whetm DELS TIE S0K S1K Lop ICR LPRS S2K S3K VDA MSD PHI D/Dr06 JGI9 JGI10 JGT PJI3 G3u L/Bw SEig E1u HOMA RCI AROM HOMT E2u E3u L1m L2m L3m L1p L2p L3p L1u L2u L3u P1u P2u G1u E2m E3m L1v L2v L3v P1v P2v G1v G2v G3v E1v E2v E3v L1e L2e L3e P1e P2e G1e G2e G3e E1e E2e E3e G1p G2p G3p E1p E2p E3p L1s L2s L3s P1s P2s G1s G2s G3s E1s E2s E3s Tu Tm Tv Te Tp Ts Au Am Av Ae Ap As Gu Gm Gs Ku Km Kv Ke Kp Ks Du Dm Dv De Dp Ds Vu Vm Vv Ve BLTF96 BLTD48 BLTA96 P1m P2m P1p G1m G2m G3m E1m P2p Molecular parameters http://www.vcclab.org/lab/indexhlp/dragon_descr.html Vp Vs BLI nHAcc Ui Hy AMR TPSA(NO) TPSA(Tot)
  • 11. QSAR analysis of anion binding logKa(H2PO4-) = 0.85(±0.06)*σp + 2.38(±0.02) logKa(Cl-) = 0.55(±0.03)*σp + 1.17(±0.01) N = 18, R² = 0.96, R²adj = 0.96, RMSE = 0.04, F = 424 logKa(HCO3-) = 0.88(±0.10)*σp + 2.40(±0.04) N = 17, R² = 0.92, R²adj = 0.91, RMSE = 0.09, F = 167 N = 16, R² = 0.84, R²adj = 0.83, RMSE = 0.13, F = 73 Graphical representation of the correlation between anion binding (logKa) and the Hammett constant σp for compounds 1-22 (excluding 1, 6, 14 and 20). Linear fits are represented by a blue line. (a). interaction with Cl- vs. Hammett constant; (b) interaction with H2PO4 vs. Hammett constant-; (c) interaction with HCO3- vs. Hammett constant. M. J. Hynes, J. Chem. Soc. Dalton Trans., 1993, 311; Hammett constants for substituents in para-position taken from: A. Hansch et al., Chem. Rev., 1991,91, 165.
  • 12. Lipophilicity The logP of a compound can be correlated to the retention time in a reverse phase HPLC experiment (elution with water:methanol gradient). The retention times were correlated with calculated logP values to identify the best model. R2 = 0.955 ClogP calculated using Daylight v4.73 R2 = 0.719 ClogP calculated using VCC labs website C. Giaginis et al., J. Liq. Chromatogr. Relat. Technol., 2008, 31, 79; (b) R. Quesada and co-workers, Chem. Commun., 2012, 48, 5274. www.vcclabs.org; I. Moriguchi et al., Chem. Pharm. Bull., 1992, 40, 127.
  • 13. QSAR analysis of anion binding logKa(H2PO4-) = 0.85(±0.06)*σp + 2.38(±0.02) logKa(Cl-) = 0.55(±0.03)*σp + 1.17(±0.01) N = 18, R² = 0.96, R²adj = 0.96, RMSE = 0.04, F = 424 logKa(HCO3-) = 0.88(±0.10)*σp + 2.40(±0.04) N = 17, R² = 0.92, R²adj = 0.91, RMSE = 0.09, F = 167 N = 16, R² = 0.84, R²adj = 0.83, RMSE = 0.13, F = 73 Graphical representation of the correlation between anion binding (logKa) and the Hammett constant σp for compounds 1-22 (excluding 1, 6, 14 and 20). Linear fits are represented by a blue line. (a). interaction with Cl- vs. Hammett constant; (b) interaction with H2PO4 vs. Hammett constant-; (c) interaction with HCO3- vs. Hammett constant. M. J. Hynes, J. Chem. Soc. Dalton Trans., 1993, 311; Hammett constants for substituents in para position taken from: A. Hansch et al., Chem. Rev., 1991,91, 165.
  • 14. Mr (g/mol) PSA solvent acc surface area volume Surface Area Molecular Volume Vsmax Parachor Index of refraction Bp TPSA Vsmin PI Molar refractivity Molecular volume logD (pH1,7) logD (pH4,6) logD (pH6,5) logD (pH7,4) logD (pH8) pKa (arom NH) pKa (alkyl NH) pKa2 (NH) logS (pH1,7) Vx logPS Vd SCBO SMTI ARR SMTIV GMTIV logS (pH6,5) logS (pH7,4) logS (pH8) polarizability MW AMW Sv Se RBN GMTI RBF ZM2 ZM2V Qindex Xu SPI W WA Har Har2 QW Whetv Whete PW2 Whetp PW3 J JhetZ Jhetm Jhetv Jhete Jhetp MAXDN PW4 PW5 PJI2 CSI ECC AECC DECC GGI1 GGI2 GGI3 GGI4 GGI5 GGI6 GGI7 GGI8 GGI9 GGI10 JGI1 JGI2 JGI3 JGI4 JGI5 JGI6 JGI7 JGI8 W3D J3D H3D AGDD DDI ADDD G1 G2 RGyr SPAM SPH ASP FDI DISPm QXXm QYYm QZZm DISPv QZZv DISPe QXXe QYYe QZZe DISPp QXXp QYYp QZZp G2u QXXv QYYv logS (pH4,6) ZM1 ZM1V Sp Ss Mv SNar TI2 Me HNar Mp GNar Xt HyDp RHyDpw MDDD UNIP ww MAXDP CENT VAR BAC Ms Dz Ram Pol Rww D/D Wap WhetZ Whetm DELS TIE S0K S1K Lop ICR LPRS S2K S3K VDA MSD PHI D/Dr06 JGI9 JGI10 JGT PJI3 G3u L/Bw SEig E1u HOMA RCI AROM HOMT E2u E3u L1m L2m L3m L1p L2p L3p L1u L2u L3u P1u P2u G1u E2m E3m L1v L2v L3v P1v P2v G1v G2v G3v E1v E2v E3v L1e L2e L3e P1e P2e G1e G2e G3e E1e E2e E3e G1p G2p G3p E1p E2p E3p L1s L2s L3s P1s P2s G1s G2s G3s E1s E2s E3s Tu Tm Tv Te Tp Ts Au Am Av Ae Ap As Gu Gm Gs Ku Km Kv Ke Kp Ks Du Dm Dv De Dp Ds Vu Vm Vv Ve BLTF96 BLTD48 BLTA96 P1m P2m P1p G1m G2m G3m E1m P2p Molecular parameters http://www.vcclab.org/lab/indexhlp/dragon_descr.html Vp Vs BLI nHAcc Ui Hy AMR TPSA(NO) TPSA(Tot)
  • 15. Final model: relative parameters R S N H 1 R = Br 2 R = CF3 3 R = Cl 4 R = CN 5 R = COCF3 6 R = COMe 7 R = COOMe 8R=F 9R=H 10 R = I 11 R = NO2 N H 12 R = O(CO)Me 13 R = OCF3 14 R = OEt 15 R = OMe 16 R = SMe 17 R = SO2Me 18 R = CH3 19 R = CH2CH3 20 R = (CH2)2CH3 21 R = (CH2)3CH3 22 R = (CH2)4CH3 NO3- Cl- ! log(1/EC50) = 0.82(±0.08)*π + 0.66(±0.18)*σp – 0.26(±0.07)*ΔSPAN – 0.43 ! ! ! ! ! Calculated using JMP® 9.0.0 N = 18, R² = 0.89, R²adj = 0.87, RMSE = 0.21, F = 42 N. Busschaert, S.J. Bradberry, M. Wenzel, C.J.E. Haynes, J.R. Hiscock, I.L. Kirby, L.E. Karagiannidis, S.J. Moore, N.J. Wells, J. Herniman, G.J. Langley, P.N. Horton, M.E. Light, V. Félix, J.G. Frey, P. A. Gale, Chemical Science 2013, 4, 3036-3045 .
  • 16. Linear combinations of parameters Graphical depiction of the values of the coefficients in the equation when the descriptor values are scaled to have a mean of zero and a range of two using JMP 9.0.0. This shows that lipophilicity (RT or logP) has the greatest effect on anion transport. ! log(1/EC50) = 0.82(±0.08)*π + 0.66(±0.18)*σp – 0.26(±0.07)*ΔSPAN – 0.43 ! ! N = 18, R² = 0.89, R²adj = 0.87, RMSE = 0.21, F = 42 Calculated using JMP® 9.0.0 N. Busschaert, S.J. Bradberry, M. Wenzel, C.J.E. Haynes, J.R. Hiscock, I.L. Kirby, L.E. Karagiannidis, S.J. Moore, N.J. Wells, J. Herniman, G.J. Langley, P.N. Horton, M.E. Light, V. Félix, J.G. Frey, P. A. Gale, Chemical Science 2013, 4, 3036-3045 .
  • 17. Predictions N. Busschaert, S.J. Bradberry, M. Wenzel, C.J.E. Haynes, J.R. Hiscock, I.L. Kirby, L.E. Karagiannidis, S.J. Moore, N.J. Wells, J. Herniman, G.J. Langley, P.N. Horton, M.E. Light, V. Félix, J.G. Frey, P. A. Gale, Chemical Science 2013, 4, 3036-3045 .
  • 18. Conclusions ! ! Hansch analysis of anion transport results may reveal the molecular parameters that we should optimise in order to design an efficient anion transporter. For the thioureas studied these are logP, affinity and molecular size. ! ! ! ! ! Chemical Science www.rsc.org/chemicalscience Volume 4 | Number 8 | August 2013 | Pages 2979–3348 ISSN 2041-6520 EDGE ARTICLE Philip A. Gale et al. Towards predictable transmembrane transport: QSAR analysis of anion binding and transport “Anion transporters and biological systems” P.A. Gale, R. Pérez-Tomás and R. Quesada, Acc. Chem. Res. 2013, DOI: 10.1021/ ar400019p. 2041-6520(2013)4:8;1-N “From anion receptors to transporters” “Small molecule lipid bilayer anion transporters for biological applications” N. Busschaert and P.A. Gale, P.A. Gale, Acc. Chem. Res. 2011, 44, 216-226. Angew. Chem. Int. Ed., 2013, 52, 1374-1382.
  • 19. Current group: Former group members: ! ! Dr Jenny Hiscock Dr Wim van Rossom Dr Nathalie Busschaert ! Isabelle Kirby Louise Karagiannides Francesca Piana Stuart Berry Xin Wu Michael Spooner ! ! ! ! Dr Christine C. Tong Dr Korakot Navakhun Dr Joachim Garric Dr Claudia Caltagirone Dr Gareth W. Bates Dr Marco Wenzel Dr Stephen Moore Sam Bradberry Dr Cally Haynes Research support and collaborations in Southampton: ! Dr. Mark E. Light Dr John Langley Dr Neil Wells Julie Herniman Prof. Jonathan Essex Prof. Jeremy Frey
  • 20. Prof. Jeff Davis Dr William Harrell Jr. ! Prof Janez Plavec Dr Damjan Makuc Prof Kate Jolliffe ! Prof Tony Davis Dr Hennie Valkenier ! Dr Roberto Quesada ! Prof. Ricardo Pérez-Tomás ! Prof. Vítor Félix ! !