SlideShare a Scribd company logo
1 of 14
Download to read offline
196
GPS Satellite Signal Acquisition
and
GPS C/A(Gold) code generator
Jay Chang
197
為了tracking和解碼GPS信號, 首先要acquisition到GPS信號.
將acquisition到的GPS信號的參數立刻傳遞給tracking過程, 再通過tracking過程便可得到衛星的導航電文.
GPS衛星處於高速運動中, 因此, 其頻率會產生Doppler頻移. 載波頻率與C/A碼的Doppler頻移將在下面推導.
為覆蓋高速衛星預期中的所有Doppler頻率範圍, acquisition方法覆蓋的頻率範圍必須在±10 kHz之內.
一旦acquisition到GPS信號, 立刻去測量兩個重要參數: C/A碼的起始點和載波頻率(因為Doppler頻移而變化).
Receiver接收到的一系列資料往往包含多個衛星信號, 每個信號具有不同的C/A碼的不同起始點和不同的
Doppler頻率.
針對某個特定的衛星信號, acquisition過程就是要找到C/A碼的起始點, 並利用找到的起始點展開C/A碼頻譜,
一旦解調了C/A碼的頻譜, 輸出信號將變成連續波(Continuous Wave, CW), 於是便得到載波頻率.
Acquisition過程就是要獲得輸入信號的C/A碼的起始點和載波頻率, 然後傳遞給tracking過程.
Acquisition與tracking過程所用到的資料都是從原始的衛星信號經過下變頻器(即與中頻混頻)之後收集到的,
其中頻(IF)為21.25 MHz, 採樣頻率為5 MHz, 信號的中心頻率為1.25 MHz. 這組資料源來自於Receiver.
http://sna.csie.ndhu.edu.tw/~cnyang/sat/sld068.htm
198
C/A code generator block diagram
https://www.slideshare.net/FalakShah/kalman-filter-based-gps-receiver
199
C/A code generator block diagram
200https://gist.github.com/oklachumi/eb66214ccfa04d3211f924572be092d8
m sequence generator
201https://gist.github.com/oklachumi/787abb7d6d93ffc3fcf3f137c70583ff
GPS C/A(Gold) code generator
% G1 LFSR: x^10+x^3+1
s=[0 0 1 0 0 0 0 0 0 1];
n=length(s);
g1=ones(1,n); %initialization vector for G1
L=2^n-1;
% G2j LFSR: x^10+x^9+x^8+x^6+x^3+x^2+1
t=[0 1 1 0 0 1 0 1 1 1];
q=ones(1,n); %initialization vector for G2
% generate C/A Code sequences:
tap_sel=tap(sv,:);
for inc=1:L
g2(:,inc)=mod(sum(q(tap_sel),2),2);
g(:,inc)=mod(g1(n)+g2(:,inc),2);
g1=[mod(sum(g1.*s),2) g1(1:n-1)];
q=[mod(sum(q.*t),2) q(1:n-1)];
end
202
GPS衛星繞地球旋轉一周的時間是11hr 58min 2.05s
203
地球 GPS衛星旋轉軌道
Doppler effect引起的角速度分量
4
4
GPS /
2
1.458 10 rad/s
11 3600 58 60 2.05
26560 km 1.458 10 3874 m/s
s
s s
d dt v
d
dt
v r
ω θ
θ π
ω
ω
−
−
=
= = ≈ ×
× + × +
= = × × =
求 衛星的角速度 和運動速度
• 一個太陽日和一個恒星日之間相差3min 55.91s在這段時間裡衛星大約運行了914 km(3874m/s*235.91s).
• 對應地球表面與衛星的最高點相應的角度近似為0.045 rad(914/20192) or 2o.
• 如果衛星接近地平線相應的角度為0.035 rad or 2o.
• 因此我們可以看出對於地球表面的固定一點在每天的同一時間裡 衛星位置大約改變2o ~ 2.6o.
204
地球 GPS衛星旋轉軌道
Doppler effect引起的角速度分量
4
4
GPS /
2
1.458 10 rad/s
11 3600 58 60 2.05
26560 km 1.458 10 3874 m/s.
GPS , UE , UE Doppler , where : sin
, ,
Dop
d d d s
s
s s
d dt v
d
dt
v r
S A v v v v
ω θ
θ π
ω
ω
β
−
−
=
= = ≈ ×
× + ×
=
+
= = × × =
i
i
衛星在位置 處 在位置 處 相對 的衛星角速度 造成了 頻移 值為
根據
求 衛星的角速度 和
衛星軌道速度 取水平方
運
向最大值
得
動速度
max
6
max
8
3874 6368
pler 929 k
26560
Doppler ( UE ~ 3344 k )
1575.42 10 929
C/A code L1( 1575.42 MHz),
(
m/s 334
:
4 m/hr.
UE m/
4.881
U
kHz.
3 1
hr
) ,
0
E
s e
d
s
r d
dr
v r
v
r
f v
f f
c
×
= = ≈
× ×
= = = ≈
×
=
∴
i
角速度最大值
頻移通常都很小 除非 速度
對 調製過的頻率 最大
對一個固定的觀測
引起的
的頻移
者 來說
為
Doppler 5 kHz.≈ ±最大的 頻移
205
4
4
GPS /
2
1.458 10 rad/s
11 3600 58 60 2.05
26560 km 1.458 10 3874 m/s.
GPS , UE , UE Doppler , where : sin
, ,
Dop
d d d s
s
s s
d dt v
d
dt
v r
S A v v v v
ω θ
θ π
ω
ω
β
−
−
=
= = ≈ ×
× + ×
=
+
= = × × =
i
i
衛星在位置 處 在位置 處 相對 的衛星角速度 造成了 頻移 值為
根據
求 衛星的角速度 和
衛星軌道速度 取水平方
運
向最大值
得
動速度
max
6
max
8
3874 6368
pler 929 3344 k
26560
Doppler ( UE ~ 3344 k )
1575.42 10 929
C/A code L1( 1575.42 MH
(U
m/s m/
z), : 4
h
.881 kHz.
3 10
r.
UE m
,
/
E
h
)
r
s e
d
s
r d
dr
v r
v
r
f v
f f
c
×
= = ≈
× ×
= = = ≈
×
=
∴
i
角速度最大值
頻移通常都很小 除非 速度
對 調製過的頻率 最大的頻
對一個固定的觀測者
移為
引起
來說
的
receiver , receiver UE, Doppler 5 kHz.
UE, Doppler 10 kHz.
acquisition . ? , paper ,
Doppler acqu
Doppler 5 kHz
isi
.≈ ±
±
±
i
i
在設計 時 如果 用在低速 則認定載波頻率的 頻移範圍在
如果用在高速 就要假定其 頻移的範圍在
這些值對於確定 過程的搜索頻率範圍是很重要的 因此 提到的為了覆蓋高速移動
預期中的所有 頻率範圍
最大的 頻移
tion 10 kHz , .
acquisition GPS , , C/A Doppler
receiver , C/A Doppler .
acquisit
(
ion C/A
)
±
i
i
方法覆蓋的頻率範圍必須在之 內 是這麼來的
一旦 到 信號 會立刻去測量兩個重要參數 碼的起始點和載波頻率因 頻移而變化的載波頻率
接收到的一系列數據包含多個衛星信號 每個信號具有不同 碼的不同起始點和不同的 頻率
針對某個特定的衛星信號 過程就是要找到 碼的起始 . C/A .
C/A ,
acquisition C
CWave,
/A tr
.
acking .
i
點 並利用找到的起始點展開 碼頻譜
一旦解調了 碼的頻譜 輸出信號將變成 於是便得到其載波頻率
也就是說 過程就是要獲得輸入信號的 碼的起始點位置和載波頻率然後傳遞給 過程
206
6
max
8
1.023 10 929
Doppler : 3.2 Hz.
3 10
if UE , 2 3.2 6.4 Hz.
, 5
C/A co
MHz , 200 ns .
track
de ,
ing , LO
C/A code
( ) ( )
c d
dc
dc
f v
f
c
f
× ×
= = ≈
×
= × =
i
i
i
頻移很小
也高速移動
在數字化衛星信號中 如果數據用 採樣 採樣頻率 則每個採樣之間相隔 採樣時間
在 過程中 我們期望 生成信號與輸入信號未
頻率很低 所以
對齊的長度
6 6 6
100 ns .
100 ns, tracking , tracking .
C/A 977.5 ns or 1/1.023 10 , Doppler C/A 1.023 10 1.023 10 6.4 Hz.
6.4 1/ 6.4 156.3 ms,
so 100
s
× × × +
= =
i
在半個採樣時間或近似 之內
若兩個信號之間相差超過這個 將失鎖 即失去 靈敏度
碼的基波碼寬為 頻移使 碼頻率由 變成
每秒內多變化了 個週期 多變化一個周期的時間為
移動 ns , 16 ms (100 156.3/ 977.5).
16 ms , LO .
, , LO , .
tracking , LO
488.75 ns (977.5/2)
s sf T
×
>
↑ ↓ ↓ ↓
< →
i
i
i
數據長度 近似花費
高速導航需 每 選擇一批數據 以保證輸入信號與 生成碼更好的匹配
半週期內匹配輸入信號與 生成碼時間 選擇一批數據時間
當輸入信號強度與 靈敏度不成問題時 輸入信號與 生成碼時間可拓寬,
但必須 選擇一批數據時間也可拓寬 78.15 ms (156.3/2).
BB DSP !!
<但必須
調參數用的到
207
QSPR Training and Troubleshooting: C/N0
Interpreting results
Check that the observed speed is reasonably close to the selected Doppler (900 m/s).
Sharp changes in velocity (i.e., large max acceleration) impact GPS performance more than a small constant
drift.
The drift in speed can be converted into an equivalent drift in frequency using the following conversion:
• 1 m/s/s = 5.25 Hz/s.
PASS PASS FAIL
208
Interpreting results
Check that the observed speed is reasonably close to the selected Doppler (900 m/s).
Drift rate more problematic than steady drift.
i.e. Sharp changes in velocity (i.e., large max acceleration) impact GPS performance more than a small constant
drift.
The drift in speed can be converted into an equivalent drift in frequency using the following conversion:
• 1 m/s/s = 5.25 Hz/s.
4881
5.25
929
1 m/s/s 5.25 Hz/s
drift in speed can be converted into an equivalent drift in frequency !!
≈
∴ =
⇒
∵
換算公式是降來的
C/N0
calibration test
pass/fail
criteria
209

More Related Content

What's hot

Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End ArchitectureSHIV DUTT
 
PA Output Notch Filter Consideration
PA Output Notch Filter ConsiderationPA Output Notch Filter Consideration
PA Output Notch Filter Considerationcriterion123
 
CDMA Zero-IF Receiver Consideration
CDMA  Zero-IF Receiver ConsiderationCDMA  Zero-IF Receiver Consideration
CDMA Zero-IF Receiver Considerationcriterion123
 
Fundamentals of RF Systems
Fundamentals of RF SystemsFundamentals of RF Systems
Fundamentals of RF SystemsYong Heui Cho
 
Relationships Among EVM, BER and SNR + WiFi minimum SNR consideration
Relationships Among EVM, BER and SNR + WiFi minimum SNR considerationRelationships Among EVM, BER and SNR + WiFi minimum SNR consideration
Relationships Among EVM, BER and SNR + WiFi minimum SNR considerationPei-Che Chang
 
Receiver Desense Common Issue
Receiver Desense Common IssueReceiver Desense Common Issue
Receiver Desense Common Issuecriterion123
 
OXX B66 Rx sensitivity and desense analysis issue debug
OXX B66 Rx sensitivity and desense analysis issue debugOXX B66 Rx sensitivity and desense analysis issue debug
OXX B66 Rx sensitivity and desense analysis issue debugPei-Che Chang
 
Introduction to modern receiver
Introduction to modern receiverIntroduction to modern receiver
Introduction to modern receivercriterion123
 
4g LTE and LTE-A for mobile broadband-note
4g LTE and LTE-A for mobile broadband-note4g LTE and LTE-A for mobile broadband-note
4g LTE and LTE-A for mobile broadband-notePei-Che Chang
 
The ABCs of ADCs Understanding How ADC Errors Affect System Performance
The ABCs of ADCs Understanding How ADC Errors Affect System PerformanceThe ABCs of ADCs Understanding How ADC Errors Affect System Performance
The ABCs of ADCs Understanding How ADC Errors Affect System Performancecriterion123
 
A Study On TX Leakage In 4G LTE Handset Terminals
A Study On TX Leakage In 4G LTE Handset TerminalsA Study On TX Leakage In 4G LTE Handset Terminals
A Study On TX Leakage In 4G LTE Handset Terminalscriterion123
 
RF Matching Guidelines for WIFI
RF Matching Guidelines for WIFIRF Matching Guidelines for WIFI
RF Matching Guidelines for WIFIcriterion123
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosSimen Li
 
Digital modulation technique
Digital modulation techniqueDigital modulation technique
Digital modulation techniqueNidhi Baranwal
 
Passive component z versus freq
Passive component z versus freqPassive component z versus freq
Passive component z versus freqPei-Che Chang
 
Sensitivity or selectivity - How does eLNA impact the receriver performance
Sensitivity or selectivity  - How does eLNA impact the receriver performanceSensitivity or selectivity  - How does eLNA impact the receriver performance
Sensitivity or selectivity - How does eLNA impact the receriver performancecriterion123
 
Link budget
Link budgetLink budget
Link budgetdrmbalu
 

What's hot (20)

Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End Architecture
 
PA Output Notch Filter Consideration
PA Output Notch Filter ConsiderationPA Output Notch Filter Consideration
PA Output Notch Filter Consideration
 
CDMA Zero-IF Receiver Consideration
CDMA  Zero-IF Receiver ConsiderationCDMA  Zero-IF Receiver Consideration
CDMA Zero-IF Receiver Consideration
 
Fundamentals of RF Systems
Fundamentals of RF SystemsFundamentals of RF Systems
Fundamentals of RF Systems
 
Relationships Among EVM, BER and SNR + WiFi minimum SNR consideration
Relationships Among EVM, BER and SNR + WiFi minimum SNR considerationRelationships Among EVM, BER and SNR + WiFi minimum SNR consideration
Relationships Among EVM, BER and SNR + WiFi minimum SNR consideration
 
Receiver design
Receiver designReceiver design
Receiver design
 
Receiver Desense Common Issue
Receiver Desense Common IssueReceiver Desense Common Issue
Receiver Desense Common Issue
 
OXX B66 Rx sensitivity and desense analysis issue debug
OXX B66 Rx sensitivity and desense analysis issue debugOXX B66 Rx sensitivity and desense analysis issue debug
OXX B66 Rx sensitivity and desense analysis issue debug
 
Introduction to modern receiver
Introduction to modern receiverIntroduction to modern receiver
Introduction to modern receiver
 
4g LTE and LTE-A for mobile broadband-note
4g LTE and LTE-A for mobile broadband-note4g LTE and LTE-A for mobile broadband-note
4g LTE and LTE-A for mobile broadband-note
 
The ABCs of ADCs Understanding How ADC Errors Affect System Performance
The ABCs of ADCs Understanding How ADC Errors Affect System PerformanceThe ABCs of ADCs Understanding How ADC Errors Affect System Performance
The ABCs of ADCs Understanding How ADC Errors Affect System Performance
 
A Study On TX Leakage In 4G LTE Handset Terminals
A Study On TX Leakage In 4G LTE Handset TerminalsA Study On TX Leakage In 4G LTE Handset Terminals
A Study On TX Leakage In 4G LTE Handset Terminals
 
RF Matching Guidelines for WIFI
RF Matching Guidelines for WIFIRF Matching Guidelines for WIFI
RF Matching Guidelines for WIFI
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 
Digital modulation technique
Digital modulation techniqueDigital modulation technique
Digital modulation technique
 
Passive component z versus freq
Passive component z versus freqPassive component z versus freq
Passive component z versus freq
 
RF Transceivers
RF TransceiversRF Transceivers
RF Transceivers
 
Sensitivity or selectivity - How does eLNA impact the receriver performance
Sensitivity or selectivity  - How does eLNA impact the receriver performanceSensitivity or selectivity  - How does eLNA impact the receriver performance
Sensitivity or selectivity - How does eLNA impact the receriver performance
 
Link budget
Link budgetLink budget
Link budget
 
Basics of RF
Basics of RFBasics of RF
Basics of RF
 

Similar to GPS satellite signal acquisition and GPS CA(Gold) code generator

Similar to GPS satellite signal acquisition and GPS CA(Gold) code generator (8)

GPS技术问题.pptx
GPS技术问题.pptxGPS技术问题.pptx
GPS技术问题.pptx
 
Csb
CsbCsb
Csb
 
Horizon
HorizonHorizon
Horizon
 
4、第五课 在线监测系统
4、第五课 在线监测系统4、第五课 在线监测系统
4、第五课 在线监测系统
 
Feature
FeatureFeature
Feature
 
Gps concepts
Gps conceptsGps concepts
Gps concepts
 
Spaun
SpaunSpaun
Spaun
 
Channel
ChannelChannel
Channel
 

More from Pei-Che Chang

Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1Pei-Che Chang
 
NTHU Comm Presentation
NTHU Comm PresentationNTHU Comm Presentation
NTHU Comm PresentationPei-Che Chang
 
Introduction to Compressive Sensing in Wireless Communication
Introduction to Compressive Sensing in Wireless CommunicationIntroduction to Compressive Sensing in Wireless Communication
Introduction to Compressive Sensing in Wireless CommunicationPei-Che Chang
 
Distributed Architecture of Subspace Clustering and Related
Distributed Architecture of Subspace Clustering and RelatedDistributed Architecture of Subspace Clustering and Related
Distributed Architecture of Subspace Clustering and RelatedPei-Che Chang
 
Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)Pei-Che Chang
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDMPei-Che Chang
 
The Wireless Channel Propagation
The Wireless Channel PropagationThe Wireless Channel Propagation
The Wireless Channel PropagationPei-Che Chang
 
MIMO Channel Capacity
MIMO Channel CapacityMIMO Channel Capacity
MIMO Channel CapacityPei-Che Chang
 
Digital Passband Communication
Digital Passband CommunicationDigital Passband Communication
Digital Passband CommunicationPei-Che Chang
 
Digital Baseband Communication
Digital Baseband CommunicationDigital Baseband Communication
Digital Baseband CommunicationPei-Che Chang
 
The relationship between bandwidth and rise time
The relationship between bandwidth and rise timeThe relationship between bandwidth and rise time
The relationship between bandwidth and rise timePei-Che Chang
 
Millimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesMillimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesPei-Che Chang
 
Filtering Requirements for FDD + TDD CA Scenarios
Filtering Requirements for FDD + TDD CA ScenariosFiltering Requirements for FDD + TDD CA Scenarios
Filtering Requirements for FDD + TDD CA ScenariosPei-Che Chang
 
Intermodulation distortion derivation
Intermodulation distortion derivationIntermodulation distortion derivation
Intermodulation distortion derivationPei-Che Chang
 

More from Pei-Che Chang (20)

PLL Note
PLL NotePLL Note
PLL Note
 
Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1
 
NTHU Comm Presentation
NTHU Comm PresentationNTHU Comm Presentation
NTHU Comm Presentation
 
Introduction to Compressive Sensing in Wireless Communication
Introduction to Compressive Sensing in Wireless CommunicationIntroduction to Compressive Sensing in Wireless Communication
Introduction to Compressive Sensing in Wireless Communication
 
Distributed Architecture of Subspace Clustering and Related
Distributed Architecture of Subspace Clustering and RelatedDistributed Architecture of Subspace Clustering and Related
Distributed Architecture of Subspace Clustering and Related
 
PMF BPMF and BPTF
PMF BPMF and BPTFPMF BPMF and BPTF
PMF BPMF and BPTF
 
Distributed ADMM
Distributed ADMMDistributed ADMM
Distributed ADMM
 
Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)
 
Patch antenna
Patch antennaPatch antenna
Patch antenna
 
Antenna basic
Antenna basicAntenna basic
Antenna basic
 
Channel Estimation
Channel EstimationChannel Estimation
Channel Estimation
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDM
 
The Wireless Channel Propagation
The Wireless Channel PropagationThe Wireless Channel Propagation
The Wireless Channel Propagation
 
MIMO Channel Capacity
MIMO Channel CapacityMIMO Channel Capacity
MIMO Channel Capacity
 
Digital Passband Communication
Digital Passband CommunicationDigital Passband Communication
Digital Passband Communication
 
Digital Baseband Communication
Digital Baseband CommunicationDigital Baseband Communication
Digital Baseband Communication
 
The relationship between bandwidth and rise time
The relationship between bandwidth and rise timeThe relationship between bandwidth and rise time
The relationship between bandwidth and rise time
 
Millimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesMillimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphones
 
Filtering Requirements for FDD + TDD CA Scenarios
Filtering Requirements for FDD + TDD CA ScenariosFiltering Requirements for FDD + TDD CA Scenarios
Filtering Requirements for FDD + TDD CA Scenarios
 
Intermodulation distortion derivation
Intermodulation distortion derivationIntermodulation distortion derivation
Intermodulation distortion derivation
 

GPS satellite signal acquisition and GPS CA(Gold) code generator

  • 1. 196 GPS Satellite Signal Acquisition and GPS C/A(Gold) code generator Jay Chang
  • 2. 197 為了tracking和解碼GPS信號, 首先要acquisition到GPS信號. 將acquisition到的GPS信號的參數立刻傳遞給tracking過程, 再通過tracking過程便可得到衛星的導航電文. GPS衛星處於高速運動中, 因此, 其頻率會產生Doppler頻移. 載波頻率與C/A碼的Doppler頻移將在下面推導. 為覆蓋高速衛星預期中的所有Doppler頻率範圍, acquisition方法覆蓋的頻率範圍必須在±10 kHz之內. 一旦acquisition到GPS信號, 立刻去測量兩個重要參數: C/A碼的起始點和載波頻率(因為Doppler頻移而變化). Receiver接收到的一系列資料往往包含多個衛星信號, 每個信號具有不同的C/A碼的不同起始點和不同的 Doppler頻率. 針對某個特定的衛星信號, acquisition過程就是要找到C/A碼的起始點, 並利用找到的起始點展開C/A碼頻譜, 一旦解調了C/A碼的頻譜, 輸出信號將變成連續波(Continuous Wave, CW), 於是便得到載波頻率. Acquisition過程就是要獲得輸入信號的C/A碼的起始點和載波頻率, 然後傳遞給tracking過程. Acquisition與tracking過程所用到的資料都是從原始的衛星信號經過下變頻器(即與中頻混頻)之後收集到的, 其中頻(IF)為21.25 MHz, 採樣頻率為5 MHz, 信號的中心頻率為1.25 MHz. 這組資料源來自於Receiver. http://sna.csie.ndhu.edu.tw/~cnyang/sat/sld068.htm
  • 3. 198 C/A code generator block diagram https://www.slideshare.net/FalakShah/kalman-filter-based-gps-receiver
  • 4. 199 C/A code generator block diagram
  • 6. 201https://gist.github.com/oklachumi/787abb7d6d93ffc3fcf3f137c70583ff GPS C/A(Gold) code generator % G1 LFSR: x^10+x^3+1 s=[0 0 1 0 0 0 0 0 0 1]; n=length(s); g1=ones(1,n); %initialization vector for G1 L=2^n-1; % G2j LFSR: x^10+x^9+x^8+x^6+x^3+x^2+1 t=[0 1 1 0 0 1 0 1 1 1]; q=ones(1,n); %initialization vector for G2 % generate C/A Code sequences: tap_sel=tap(sv,:); for inc=1:L g2(:,inc)=mod(sum(q(tap_sel),2),2); g(:,inc)=mod(g1(n)+g2(:,inc),2); g1=[mod(sum(g1.*s),2) g1(1:n-1)]; q=[mod(sum(q.*t),2) q(1:n-1)]; end
  • 8. 203 地球 GPS衛星旋轉軌道 Doppler effect引起的角速度分量 4 4 GPS / 2 1.458 10 rad/s 11 3600 58 60 2.05 26560 km 1.458 10 3874 m/s s s s d dt v d dt v r ω θ θ π ω ω − − = = = ≈ × × + × + = = × × = 求 衛星的角速度 和運動速度 • 一個太陽日和一個恒星日之間相差3min 55.91s在這段時間裡衛星大約運行了914 km(3874m/s*235.91s). • 對應地球表面與衛星的最高點相應的角度近似為0.045 rad(914/20192) or 2o. • 如果衛星接近地平線相應的角度為0.035 rad or 2o. • 因此我們可以看出對於地球表面的固定一點在每天的同一時間裡 衛星位置大約改變2o ~ 2.6o.
  • 9. 204 地球 GPS衛星旋轉軌道 Doppler effect引起的角速度分量 4 4 GPS / 2 1.458 10 rad/s 11 3600 58 60 2.05 26560 km 1.458 10 3874 m/s. GPS , UE , UE Doppler , where : sin , , Dop d d d s s s s d dt v d dt v r S A v v v v ω θ θ π ω ω β − − = = = ≈ × × + × = + = = × × = i i 衛星在位置 處 在位置 處 相對 的衛星角速度 造成了 頻移 值為 根據 求 衛星的角速度 和 衛星軌道速度 取水平方 運 向最大值 得 動速度 max 6 max 8 3874 6368 pler 929 k 26560 Doppler ( UE ~ 3344 k ) 1575.42 10 929 C/A code L1( 1575.42 MHz), ( m/s 334 : 4 m/hr. UE m/ 4.881 U kHz. 3 1 hr ) , 0 E s e d s r d dr v r v r f v f f c × = = ≈ × × = = = ≈ × = ∴ i 角速度最大值 頻移通常都很小 除非 速度 對 調製過的頻率 最大 對一個固定的觀測 引起的 的頻移 者 來說 為 Doppler 5 kHz.≈ ±最大的 頻移
  • 10. 205 4 4 GPS / 2 1.458 10 rad/s 11 3600 58 60 2.05 26560 km 1.458 10 3874 m/s. GPS , UE , UE Doppler , where : sin , , Dop d d d s s s s d dt v d dt v r S A v v v v ω θ θ π ω ω β − − = = = ≈ × × + × = + = = × × = i i 衛星在位置 處 在位置 處 相對 的衛星角速度 造成了 頻移 值為 根據 求 衛星的角速度 和 衛星軌道速度 取水平方 運 向最大值 得 動速度 max 6 max 8 3874 6368 pler 929 3344 k 26560 Doppler ( UE ~ 3344 k ) 1575.42 10 929 C/A code L1( 1575.42 MH (U m/s m/ z), : 4 h .881 kHz. 3 10 r. UE m , / E h ) r s e d s r d dr v r v r f v f f c × = = ≈ × × = = = ≈ × = ∴ i 角速度最大值 頻移通常都很小 除非 速度 對 調製過的頻率 最大的頻 對一個固定的觀測者 移為 引起 來說 的 receiver , receiver UE, Doppler 5 kHz. UE, Doppler 10 kHz. acquisition . ? , paper , Doppler acqu Doppler 5 kHz isi .≈ ± ± ± i i 在設計 時 如果 用在低速 則認定載波頻率的 頻移範圍在 如果用在高速 就要假定其 頻移的範圍在 這些值對於確定 過程的搜索頻率範圍是很重要的 因此 提到的為了覆蓋高速移動 預期中的所有 頻率範圍 最大的 頻移 tion 10 kHz , . acquisition GPS , , C/A Doppler receiver , C/A Doppler . acquisit ( ion C/A ) ± i i 方法覆蓋的頻率範圍必須在之 內 是這麼來的 一旦 到 信號 會立刻去測量兩個重要參數 碼的起始點和載波頻率因 頻移而變化的載波頻率 接收到的一系列數據包含多個衛星信號 每個信號具有不同 碼的不同起始點和不同的 頻率 針對某個特定的衛星信號 過程就是要找到 碼的起始 . C/A . C/A , acquisition C CWave, /A tr . acking . i 點 並利用找到的起始點展開 碼頻譜 一旦解調了 碼的頻譜 輸出信號將變成 於是便得到其載波頻率 也就是說 過程就是要獲得輸入信號的 碼的起始點位置和載波頻率然後傳遞給 過程
  • 11. 206 6 max 8 1.023 10 929 Doppler : 3.2 Hz. 3 10 if UE , 2 3.2 6.4 Hz. , 5 C/A co MHz , 200 ns . track de , ing , LO C/A code ( ) ( ) c d dc dc f v f c f × × = = ≈ × = × = i i i 頻移很小 也高速移動 在數字化衛星信號中 如果數據用 採樣 採樣頻率 則每個採樣之間相隔 採樣時間 在 過程中 我們期望 生成信號與輸入信號未 頻率很低 所以 對齊的長度 6 6 6 100 ns . 100 ns, tracking , tracking . C/A 977.5 ns or 1/1.023 10 , Doppler C/A 1.023 10 1.023 10 6.4 Hz. 6.4 1/ 6.4 156.3 ms, so 100 s × × × + = = i 在半個採樣時間或近似 之內 若兩個信號之間相差超過這個 將失鎖 即失去 靈敏度 碼的基波碼寬為 頻移使 碼頻率由 變成 每秒內多變化了 個週期 多變化一個周期的時間為 移動 ns , 16 ms (100 156.3/ 977.5). 16 ms , LO . , , LO , . tracking , LO 488.75 ns (977.5/2) s sf T × > ↑ ↓ ↓ ↓ < → i i i 數據長度 近似花費 高速導航需 每 選擇一批數據 以保證輸入信號與 生成碼更好的匹配 半週期內匹配輸入信號與 生成碼時間 選擇一批數據時間 當輸入信號強度與 靈敏度不成問題時 輸入信號與 生成碼時間可拓寬, 但必須 選擇一批數據時間也可拓寬 78.15 ms (156.3/2). BB DSP !! <但必須 調參數用的到
  • 12. 207 QSPR Training and Troubleshooting: C/N0 Interpreting results Check that the observed speed is reasonably close to the selected Doppler (900 m/s). Sharp changes in velocity (i.e., large max acceleration) impact GPS performance more than a small constant drift. The drift in speed can be converted into an equivalent drift in frequency using the following conversion: • 1 m/s/s = 5.25 Hz/s. PASS PASS FAIL
  • 13. 208 Interpreting results Check that the observed speed is reasonably close to the selected Doppler (900 m/s). Drift rate more problematic than steady drift. i.e. Sharp changes in velocity (i.e., large max acceleration) impact GPS performance more than a small constant drift. The drift in speed can be converted into an equivalent drift in frequency using the following conversion: • 1 m/s/s = 5.25 Hz/s. 4881 5.25 929 1 m/s/s 5.25 Hz/s drift in speed can be converted into an equivalent drift in frequency !! ≈ ∴ = ⇒ ∵ 換算公式是降來的