SlideShare a Scribd company logo
1 of 58
Download to read offline
Integration
Area Under Curve
Integration
Area Under Curve
Integration
Area Under Curve
Integration
Area Under Curve
           Area  11  12 
                      3      3
Integration
Area Under Curve
           Area  11  12 
                      3      3


           Area  9
Integration
Area Under Curve
           Area  11  12 
                      3      3


           Area  9
Integration
Area Under Curve
       10   11  Area  11  12 
           3      3              3      3


                      Area  9
Integration
Area Under Curve
       10   11  Area  11  12 
           3      3              3      3


                  1  Area  9
Integration
Area Under Curve
       10   11  Area  11  12 
           3      3              3      3


                  1  Area  9


         Estimate Area  5 unit 2
Integration
Area Under Curve
       10   11  Area  11  12 
           3      3              3      3


                  1  Area  9


         Estimate Area  5 unit 2
           Exact Area  4 unit 2
Area  0.40.43  0.83  1.23  1.63  23 
Area  0.40.43  0.83  1.23  1.63  23 
Area  5.76
Area  0.40.43  0.83  1.23  1.63  23 
Area  5.76
0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23 
                                     Area  5.76
0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23 
                              2.56  Area  5.76
0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23 
                              2.56  Area  5.76
                         Estimate Area  4.16 unit 2
Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
  Area  4.84
Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
  Area  4.84
0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  
    Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
      Area  4.84
0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  
    Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
3.24  Area  4.84
0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  
    Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
3.24  Area  4.84
                          Estimate Area  4.04 unit 2
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
            y
                                                y = f(x)




                                                      x
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
            y
                                                y = f(x)




                                                      x
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
            y
                                                y = f(x)




                                    c                 x

                 A(c) is the area from 0 to c
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
            y
                                                y = f(x)




                                    c    x            x

                 A(c) is the area from 0 to c
                 A(x) is the area from 0 to x
A(x) – A(c) denotes the area from c to x, and can be estimated by
the rectangle;
A(x) – A(c) denotes the area from c to x, and can be estimated by
 the rectangle;



                                  f(x)



                          x-c
A(x) – A(c) denotes the area from c to x, and can be estimated by
 the rectangle;



                                        f(x)



                             x-c
                A x   Ac    x  c  f  x 
A(x) – A(c) denotes the area from c to x, and can be estimated by
 the rectangle;



                                        f(x)



                             x-c
                A x   Ac    x  c  f  x 
                                 A x   Ac 
                         f x 
                                     xc
A(x) – A(c) denotes the area from c to x, and can be estimated by
 the rectangle;



                                        f(x)



                             x-c
                A x   Ac    x  c  f  x 
                                 A x   Ac 
                         f x 
                                     xc
                                 Ac  h   Ac 
                                                    h = width of rectangle
                                         h
A(x) – A(c) denotes the area from c to x, and can be estimated by
 the rectangle;



                                        f(x)



                             x-c
                A x   Ac    x  c  f  x 
                               A x   Ac 
                       f x 
                                   xc
                               Ac  h   Ac 
                                                h = width of rectangle
                                       h
As the width of the rectangle decreases, the estimate becomes more
accurate.
i.e. as h  0, the Area becomes exact
i.e. as h  0, the Area becomes exact
                       Ac  h   Ac 
        f  x   lim
                  h 0        h
i.e. as h  0, the Area becomes exact
                        Ac  h   Ac 
        f  x   lim
                   h 0         h
                        A x  h   A x 
                 lim
                  h 0
                                             as h  0, c  x 
                                h
i.e. as h  0, the Area becomes exact
                        Ac  h   Ac 
        f  x   lim
                   h 0         h
                        A x  h   A x 
                 lim
                  h 0
                                             as h  0, c  x 
                                h
             A x 
i.e. as h  0, the Area becomes exact
                                  Ac  h   Ac 
                  f  x   lim
                             h 0         h
                                  A x  h   A x 
                           lim
                            h 0
                                                       as h  0, c  x 
                                          h
                       A x 
 the equation of the curve is the derivative of the Area function.
i.e. as h  0, the Area becomes exact
                                  Ac  h   Ac 
                  f  x   lim
                             h 0         h
                                  A x  h   A x 
                           lim
                            h 0
                                                       as h  0, c  x 
                                          h
                       A x 
 the equation of the curve is the derivative of the Area function.

  The area under the curve y  f  x  between x  a and x  b is;
i.e. as h  0, the Area becomes exact
                                  Ac  h   Ac 
                  f  x   lim
                             h 0         h
                                  A x  h   A x 
                           lim
                            h 0
                                                       as h  0, c  x 
                                          h
                       A x 
 the equation of the curve is the derivative of the Area function.

  The area under the curve y  f  x  between x  a and x  b is;
                                  b
                           A   f  x dx
                                  a
i.e. as h  0, the Area becomes exact
                                  Ac  h   Ac 
                  f  x   lim
                             h 0         h
                                  A x  h   A x 
                           lim
                            h 0
                                                       as h  0, c  x 
                                          h
                       A x 
 the equation of the curve is the derivative of the Area function.

  The area under the curve y  f  x  between x  a and x  b is;
                                  b
                           A   f  x dx
                                  a
                              F b   F a 
i.e. as h  0, the Area becomes exact
                                  Ac  h   Ac 
                  f  x   lim
                             h 0         h
                                  A x  h   A x 
                           lim
                            h 0
                                                       as h  0, c  x 
                                          h
                       A x 
 the equation of the curve is the derivative of the Area function.

  The area under the curve y  f  x  between x  a and x  b is;
                                  b
                           A   f  x dx
                                  a
                              F b   F a 
           where F  x  is the primitive function of f  x 
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
         x= 2
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                        0
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                        0
                               2
                       1 x 4 
                      
                       4 0  
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                          0
                                2
                       1 x 4 
                      
                       4 0  

                           2  04 
                          1 4
                          4
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                          0
                                2
                       1 x 4 
                      
                       4 0  

                           2  04 
                          1 4
                          4
                        4 units 2
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                                0
                                      2
                             1 x 4 
                            
                             4 0  

                                 2  04 
                                1 4
                                4
                              4 units 2
          3
      ii   x 2  1dx
          2
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                             0
                                   2
                          1 x 4 
                         
                          4 0  

                              2  04 
                             1 4
                             4
                           4 units 2
          3                             3

      ii   x  1dx  
                2         1 x 3  x 
                                     
            2             3         2
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                            0
                                  2
                         1 x 4 
                        
                         4 0  

                             2  04 
                            1 4
                            4
                          4 units 2
          3                            3

      ii   x  1dx  
                2         1 x 3  x 
                                     
            2             3         2
                        1 33  3  1 2 3  2
                                                   
                           3            3         
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                            0
                                  2
                         1 x 4 
                        
                         4 0  

                             2  04 
                            1 4
                            4
                          4 units 2
          3                            3

      ii   x  1dx  
                2         1 x 3  x 
                                     
            2             3         2
                        1 33  3  1 2 3  2
                                                   
                           3            3         
                          22
                        
                           3
5
iii   x 3dx
     4
5                    5
                 1  2 
iii   x dx   x 
          3

       4         2 4
5                    5
                 1  2 
iii   x dx   x 
          3

       4         2 4
                11 1 
                2  2
                2 5 4 
                9
             
               800
5                    5
                 1  2 
iii   x dx   x 
          3

       4         2 4
                11 1 
                2  2
                2 5 4 
                9
             
               800




                         Exercise 11A; 1

        Exercise 11B; 1 aefhi, 2ab (i,ii), 3ace, 4b, 5a, 7*

More Related Content

What's hot

Application of the integral
Application of the integral Application of the integral
Application of the integral Abhishek Das
 
Volume: Using Disks and Washers
Volume: Using Disks and WashersVolume: Using Disks and Washers
Volume: Using Disks and WashersMatt Braddock
 
Application of integrals flashcards
Application of integrals flashcardsApplication of integrals flashcards
Application of integrals flashcardsyunyun2313
 
Graphing translations of trig functions
Graphing translations of trig functionsGraphing translations of trig functions
Graphing translations of trig functionsJessica Garcia
 
20 polar equations and graphs
20 polar equations and graphs20 polar equations and graphs
20 polar equations and graphsmath267
 
Calculus II - 15
Calculus II - 15Calculus II - 15
Calculus II - 15David Mao
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equationsmath266
 
36 area in polar coordinate
36 area in polar coordinate36 area in polar coordinate
36 area in polar coordinatemath266
 
Calculus II - 16
Calculus II - 16Calculus II - 16
Calculus II - 16David Mao
 
Application of integration
Application of integrationApplication of integration
Application of integrationrricky98
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinatesmath266
 
Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Muhammad Luthfan
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations xmath266
 
Reflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSES
Reflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSESReflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSES
Reflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSESANURAG TYAGI CLASSES (ATC)
 
Vector calculus
Vector calculusVector calculus
Vector calculusKumar
 
96893253 tabela-centroides-de-areas
96893253 tabela-centroides-de-areas96893253 tabela-centroides-de-areas
96893253 tabela-centroides-de-areasJoão Ferreira
 

What's hot (19)

Application of the integral
Application of the integral Application of the integral
Application of the integral
 
Volume: Using Disks and Washers
Volume: Using Disks and WashersVolume: Using Disks and Washers
Volume: Using Disks and Washers
 
Application of integrals flashcards
Application of integrals flashcardsApplication of integrals flashcards
Application of integrals flashcards
 
Graphing translations of trig functions
Graphing translations of trig functionsGraphing translations of trig functions
Graphing translations of trig functions
 
20 polar equations and graphs
20 polar equations and graphs20 polar equations and graphs
20 polar equations and graphs
 
Calculus II - 15
Calculus II - 15Calculus II - 15
Calculus II - 15
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equations
 
36 area in polar coordinate
36 area in polar coordinate36 area in polar coordinate
36 area in polar coordinate
 
Calculus II - 16
Calculus II - 16Calculus II - 16
Calculus II - 16
 
01 ray-optics-mm
01 ray-optics-mm01 ray-optics-mm
01 ray-optics-mm
 
Ch 7 c volumes
Ch 7 c  volumesCh 7 c  volumes
Ch 7 c volumes
 
Application of integration
Application of integrationApplication of integration
Application of integration
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates
 
Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations x
 
Reflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSES
Reflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSESReflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSES
Reflection Of Light (Assignment )by Atc,ANURAG TYAGI CLASSES
 
Circuferencia trigonométrica
Circuferencia trigonométricaCircuferencia trigonométrica
Circuferencia trigonométrica
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
96893253 tabela-centroides-de-areas
96893253 tabela-centroides-de-areas96893253 tabela-centroides-de-areas
96893253 tabela-centroides-de-areas
 

Similar to 11 x1 t16 01 area under curve (2012)

Similar to 11 x1 t16 01 area under curve (2012) (20)

11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
Areas and Definite Integrals.ppt
Areas and Definite Integrals.pptAreas and Definite Integrals.ppt
Areas and Definite Integrals.ppt
 
Lesson 11 plane areas area by integration
Lesson 11 plane areas area by integrationLesson 11 plane areas area by integration
Lesson 11 plane areas area by integration
 
Volume of revolution
Volume of revolutionVolume of revolution
Volume of revolution
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Calc05_2.ppt
Calc05_2.pptCalc05_2.ppt
Calc05_2.ppt
 
香港六合彩
香港六合彩香港六合彩
香港六合彩
 
4 ftc and signed areas x
4 ftc and signed areas x4 ftc and signed areas x
4 ftc and signed areas x
 
double integral.pptx
double integral.pptxdouble integral.pptx
double integral.pptx
 
The Calculus Crusaders Volume
The Calculus Crusaders VolumeThe Calculus Crusaders Volume
The Calculus Crusaders Volume
 
Application of integral calculus
Application of integral calculusApplication of integral calculus
Application of integral calculus
 
Chap6_Sec1.ppt
Chap6_Sec1.pptChap6_Sec1.ppt
Chap6_Sec1.ppt
 
Trapezoidal rule
Trapezoidal ruleTrapezoidal rule
Trapezoidal rule
 
The Bird's Poop
The Bird's PoopThe Bird's Poop
The Bird's Poop
 
1545 integration-define
1545 integration-define1545 integration-define
1545 integration-define
 
1544 integration-define
1544 integration-define1544 integration-define
1544 integration-define
 
Unit ii vector calculus
Unit ii vector calculusUnit ii vector calculus
Unit ii vector calculus
 
Integration
IntegrationIntegration
Integration
 
5.5 volumes
5.5 volumes5.5 volumes
5.5 volumes
 
Ap integrales
Ap  integralesAp  integrales
Ap integrales
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 

Recently uploaded (20)

Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 

11 x1 t16 01 area under curve (2012)

  • 4. Integration Area Under Curve Area  11  12  3 3
  • 5. Integration Area Under Curve Area  11  12  3 3 Area  9
  • 6. Integration Area Under Curve Area  11  12  3 3 Area  9
  • 7. Integration Area Under Curve 10   11  Area  11  12  3 3 3 3 Area  9
  • 8. Integration Area Under Curve 10   11  Area  11  12  3 3 3 3 1  Area  9
  • 9. Integration Area Under Curve 10   11  Area  11  12  3 3 3 3 1  Area  9 Estimate Area  5 unit 2
  • 10. Integration Area Under Curve 10   11  Area  11  12  3 3 3 3 1  Area  9 Estimate Area  5 unit 2 Exact Area  4 unit 2
  • 11.
  • 12.
  • 13. Area  0.40.43  0.83  1.23  1.63  23 
  • 14. Area  0.40.43  0.83  1.23  1.63  23  Area  5.76
  • 15. Area  0.40.43  0.83  1.23  1.63  23  Area  5.76
  • 16. 0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23  Area  5.76
  • 17. 0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23  2.56  Area  5.76
  • 18. 0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23  2.56  Area  5.76 Estimate Area  4.16 unit 2
  • 19.
  • 20.
  • 21. Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
  • 22. Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  Area  4.84
  • 23. Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  Area  4.84
  • 24. 0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83   Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  Area  4.84
  • 25. 0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83   Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  3.24  Area  4.84
  • 26. 0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83   Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  3.24  Area  4.84 Estimate Area  4.04 unit 2
  • 27. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) x
  • 28. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) x
  • 29. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) c x A(c) is the area from 0 to c
  • 30. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) c x x A(c) is the area from 0 to c A(x) is the area from 0 to x
  • 31. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle;
  • 32. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c
  • 33. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x 
  • 34. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x  A x   Ac  f x  xc
  • 35. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x  A x   Ac  f x  xc Ac  h   Ac   h = width of rectangle h
  • 36. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x  A x   Ac  f x  xc Ac  h   Ac   h = width of rectangle h As the width of the rectangle decreases, the estimate becomes more accurate.
  • 37. i.e. as h  0, the Area becomes exact
  • 38. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h
  • 39. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h
  • 40. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x 
  • 41. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x   the equation of the curve is the derivative of the Area function.
  • 42. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is;
  • 43. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is; b A   f  x dx a
  • 44. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is; b A   f  x dx a  F b   F a 
  • 45. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is; b A   f  x dx a  F b   F a  where F  x  is the primitive function of f  x 
  • 46. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and x= 2
  • 47. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0
  • 48. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2 1 x 4   4 0 
  • 49. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2 1 x 4   4 0   2  04  1 4 4
  • 50. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2 1 x 4   4 0   2  04  1 4 4  4 units 2
  • 51. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2 1 x 4   4 0   2  04  1 4 4  4 units 2 3 ii   x 2  1dx 2
  • 52. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2 1 x 4   4 0   2  04  1 4 4  4 units 2 3 3 ii   x  1dx   2 1 x 3  x   2 3 2
  • 53. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2 1 x 4   4 0   2  04  1 4 4  4 units 2 3 3 ii   x  1dx   2 1 x 3  x   2 3 2 1 33  3  1 2 3  2     3   3 
  • 54. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2 1 x 4   4 0   2  04  1 4 4  4 units 2 3 3 ii   x  1dx   2 1 x 3  x   2 3 2 1 33  3  1 2 3  2     3   3  22  3
  • 55. 5 iii   x 3dx 4
  • 56. 5 5  1  2  iii   x dx   x  3 4  2 4
  • 57. 5 5  1  2  iii   x dx   x  3 4  2 4 11 1     2  2 2 5 4  9  800
  • 58. 5 5  1  2  iii   x dx   x  3 4  2 4 11 1     2  2 2 5 4  9  800 Exercise 11A; 1 Exercise 11B; 1 aefhi, 2ab (i,ii), 3ace, 4b, 5a, 7*