SlideShare a Scribd company logo
1 of 12
Download to read offline
Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162
ISSN 1405-7743 FI-UNAM
(artículo arbitrado)
Analysis of the Earthquake-Resistant Design Approach
for Buildings in Mexico
Análisis del enfoque de diseño sismorresistente
para edificios en México
Keywords:
Mexican codes
buildings
earthquake-resistant design
strength reduction
overstrength
ductility
displacement amplification
lateral displacement
Carrillo Julián
Faculty of Engineering
Universidad Militar Nueva Granada, UMNG, Bogotá, Colombia
E-mail: wjcarrillo@gmail.com
Hernández-Barrios Hugo
Faculty of Engineering
Universidad Michoacana de San Nicolás de Hidalgo, Morelia
E-mail: hugohbarrios@yahoo.com.mx
Rubiano-Fonseca Astrid
Faculty of Engineering
Universidad Militar Nueva Granada. Bogotá, Colombia
E-mail: astrid.rubiano@unimilitar.edu.co
Information on the article: received: November 2012, accepted: March 2013
Abstract
5æØ ŁØµØœ©¬ßØ­² ©Œ ­Ø¹ ª©ŁØ Œ© Ø̶ ²æ®³̶øØ Ø ı ²̶­² ² ³ª²³ Ø æ̶ ß̶ŁØ ¬©
ıÆœØ ²© º³̶ ̶­²ØØ ̶ ÆØmØ ¬Ø Œ© ß̶­ªØ ©Œ ƳıœŁı­º ¹æØ­ ²æؽ ̶ Ø ³ÆłØª²ØŁ ²©
Øı ßıª ̶ª²ı©­ 5æØ ØŒ© Ø ı² ı ª©­µØ­ıØ­² ²æ̶² ª³ Ø­² ª©ŁØ Œ© ŁØ ıº­ ©Œ ƳıœŁ
ı­º Æت©ßØ ª©­ªØ¬²³̶œœ½ ² ̶­ ¬̶ Ø­² ¹æØ­ ŁØR­ı­º ²æØ ² Ø­º²æ ß©ŁıRª̶²ı©­
Œ̶ª²© ̶­Ł ̶ Ø ı­º ß̶¼ıß³ß œ̶²Ø ̶œ Łı ¬œ̶ªØßØ­² © ²æ̶² ²æØ ŁØ ıº­ ¬ ©ªØ
ª̶­ ÆØ ªœØ̶ œ½ ³­ŁØ ²©©Ł ƽ ² ³ª²³ ̶œ Ø­ºı­ØØ 5æØ ̶ıß ©Œ ²æı ²³Ł½ ı ²©
̶­̶œ½¾Ø ²æØ ² ̶­ ¬̶ Ø­ª½ ©Œ Ø̶ ²æ®³̶øØ Ø ı ²̶­² ŁØ ıº­ ̶¬¬ ©̶ªæ Œ© ƳıœŁı­º
ı­ .ؼıª© ƽ ßØ̶­ ©Œ ̶ ª ı²ıª̶œ صıع ©Œ ²æØ Œ̶ª²© Œ© ² Ø­º²æ ß©ŁıRª̶²ı©­
̶­Ł Łı ¬œ̶ªØßØ­² ̶߬œıRª̶²ı©­ 5æØ ̶¬¬ ©̶ªæ ©Œ ƳıœŁı­º ŁØ ıº­ ª©ŁØ ı­ 64 ı
̶œ © ̶­̶œ½¾ØŁ *² ı ª©­ªœ³ŁØŁ ²æ̶² Ø̶ ²æ®³̶øØ Ø ı ²̶­² ŁØ ıº­ ı­ .ؼıª© æ̶µØ
ص©œµØŁ ı­ ØR­ØßØ­² ̶­Ł ª©ß¬œØ¼ı²½ *² ı ̶œ © ŁØß©­ ² ̶²ØŁ ²æ̶² ²æØ ¬ ©ªØŁ³ Ø
¬ Ø ª ıÆØŁ ƽ ³ªæ ŁØ ıº­ ª©ŁØ ̶œœ©¹ ²æØ ̶ Ø ßØ­² ©Œ ²æØ ŁØ ıº­ ² Ø­º²æ
̶­Ł Łı ¬œ̶ªØßØ­² ı­ ̶ ß© Ø ̶²ı©­̶œ ¹̶½ ı­ ̶ªª© Ł̶­ªØ ­©² ©­œ½ ¹ı²æ ²æØ ¬ Ø
Ø­² ²̶ºØ ©Œ ø­©¹œØŁºØ Ƴ² ̶œ © ¹ı²æ ²æØ ª©­²Ø߬© ̶ ½ ²Ø­ŁØ­ªıØ ı­ ƳıœŁı­º
ª©ŁØ *­ ª©­² ̶ ² ²æØ ¬ ©ªØŁ³ Ø ³ ØŁ ı­ 64 ª©ŁØ ß̶½ ­©² ¬ ©µıŁØ ̶ ªœØ̶ µıع
Œ© Øı ßıª Ø ¬©­ Ø ̶ Ø ßØ­² ©Œ ƳıœŁı­º
Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico
Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM
152
Introduction
Many areas of Latin America are widely known for
their high seismicity. Recognizing the seismic activity
in the region, earthquake-resistant design of structures
is a requirement in these countries. Therefore, each
country has developed their own seismic codes based
on their experience and laws (Chavez, 2012). The re-
examination of the fundamental precepts of seismic de-
ıº­ æ̶ ı­²Ø­ ıRØŁ ı­ تح² ½Ø̶ ¹ı²æ ̶ º Ø̶² ­³ßÆØ
©Œ ª©­Sıª²ı­º ̶¬¬ ©̶ªæØ ÆØı­º ̶Łµ©ª̶²ØŁ *­ ©ßØ
ª̶ Ø ²æØ ŁıTØ Ø­ªØ Æز¹ØØ­ ²æØ ̶¬¬ ©̶ªæØ ̶ Ø Œ³­-
Ł̶ßØ­²̶œ ¹æıœØ ı­ ©²æØ ²æØ ŁıTØ Ø­ªØ ̶ Ø ª©­ªØ¬²³-
̶œ 1 ıØ ²œØ½ イーーー *­ ºØ­Ø ̶œ Ø̶ ²æ®³̶øØ Ø ı ²̶­² ª©
ŁØ æ̶µØ Æت©ßØ ß© Ø ØR­ØŁ ̶­Ł ª©ß¬œØ¼ ı­ªœ³Łı­º
at each revision the current state-of-the-art knowledge.
However, code compliance and code misinterpretation
are prevalent, mainly because two reasons, users are
not familiar with the concepts and technologies in-
volved, or the parameters prescribed by codes are un-
clearly presented (Alcocer and Castaño, 2008).
Contemporary earthquake-resistant codes are de-
veloped with the intention of ensuring serviceability
requirements, life safety and collapse prevention dur-
ing frequent, moderate, and major earthquakes, respec-
²ıµØœ½ *­ ²æØ œ̶mØ ª̶ Ø Ø¼²Ø­ ıµØ Ł̶ß̶ºØ ²© ²æØ
structure may be acceptable as long as collapse is pre-
vented (Moroni ز ̶œ., 1996). Design criteria admit in-
elastic excursions when the structure is subjected to the
earthquake characterizing the life safety limit state.
This situation limits the force demands in the structural
elements, hence allowing the use of smaller design
strengths, at the cost of certain limited levels of struc-
tural damage due to yielding of some portions of the
structure (Ordaz and Meli, 2004).
*­ ²æØ ŁØµØœ©¬ßØ­² ©Œ Øı ßıª ŁØ ıº­ ¬ ©µı ı©­ Œ©
building structures, the most controversial part is the
ŁØµØœ©¬ßØ­² ©Œ Æ©²æ ²æØ ² Ø­º²æ ß©ŁıRª̶²ı©­ ̶­Ł ²æØ
Łı ¬œ̶ªØßØ­² ̶߬œıRª̶²ı©­ Œ̶ª²© *­ ²æØ R ² ª̶ Ø
¹æıœØ ² Ø­º²æ ß©ŁıRª̶²ı©­ Œ̶ª²© ¬ Ø ª ıÆØŁ ı­ Øı -
mic codes, they are intended to account for damping,
energy dissipation capacity, as well as for overstrength,
²æØ œØµØœ ©Œ ØŁ³ª²ı©­ ¬ØªıRØŁ ı­ Øı ßıª ª©ŁØ ı ¬ ı-
marily based on observation of the performance of dif-
ferent structural systems in previous strong earth-
®³̶øØ *­ ̶ŁŁı²ı©­ ²æØ Ø ı ̶ ¹ıŁØ ̶­ºØ ©Œ µ̶œ³Ø ı­
ŁıTØ Ø­² ª©ŁØ ̶ ²æØ ̶¬¬ ©¬ ı̶²Ø œØµØœ ©Œ Œ© ªØ ØŁ³ª-
tion factor, it seems that the absolute value of the
² Ø­º²æ ı ©Œ Øœ̶²ıµØœ½ ßı­© ı߬© ²̶­ªØ *­ ²æØ ª̶ Ø ©Œ
Łı ¬œ̶ªØßØ­² ̶߬œıRª̶²ı©­ Œ̶ª²© ²æØ ß© ² ª©ßß©­
assumption is the equal-displacement approximation,
which states that the displacement of the inelastic sys-
tem is the same as that of an equivalent system with the
̶ßØ Øœ̶ ²ıª ²ıT­Ø ̶­Ł ³­œıßı²ØŁ ² Ø­º²æ )©¹ØµØ
this approximation is known to be non-conservative for
short period structures (FEMA-451, 2006; Priestley ز
̶œ., 2007) or for structures whose period of vibration is
close to the site period (Ordaz and Pérez, 1998).
Resumen
El desarrollo de nuevos reglamentos de diseño de estructuras sismorresis-
tentes ha hecho posible que se garantice un mejor comportamiento de los
ØŁıRªı© ª³̶­Ł© Ô ²© ©­ ©ßزıŁ© ̶ ̶ªªı©­Ø ç ßıª̶ 1© ²̶­²© Ø ª©­-
µØ­ıØ­²Ø ®³Ø œ© غœ̶ßØ­²© ̶ª²³̶œØ ŁØ Łı Øü© ŁØ ØŁıRªı© Ø̶­ ª©­ªØ¬²³-
̶œßØ­²Ø ² ̶­ ¬̶ Ø­²Ø Ø­ ª³̶­²© ̶ œ̶ ŁØR­ıªıŸ­ ŁØ œ© Œ̶ª²© Ø ŁØ ß©Łı
Rª̶ªıŸ­ ŁØ Ø ı ²Ø­ªı̶ ½ Ø­ œ̶ Œ© ß̶ ŁØ ص̶œ³̶ œ© ßÀ¼ıß© ŁØ ¬œ̶¾̶ßıØ­-
tos laterales, de tal manera que los ingenieros estructurales puedan com-
¬ Ø­ŁØ ªœ̶ ̶ßØ­²Ø Øœ ¬ ©ªØ © ŁØ Łı Øü© &œ ¬ ©¬Ÿ ı²© ŁØ Ø ²Ø Ø ²³Łı© Ø
̶­̶œı¾̶ œ̶ ² ̶­ ¬̶ Ø­ªı̶ ŁØœ ª ı²Ø ı© ŁØ Łı Øü© ı ß© Ø ı ²Ø­²Ø ¬̶ ̶ ØŁıR-
ªı© Ø­ .Ô¼ıª© ̶ ¬̶ ²ı ŁØ ³­̶ صı ıŸ­ ª ç²ıª̶ ŁØ œ© Œ̶ª²© Ø ŁØ ß©ŁıR-
ª̶ªıŸ­ ŁØ Ø ı ²Ø­ªı̶ ½ ŁØ ̶߬œıRª̶ªıŸ­ ŁØ ŁØ ¬œ̶¾̶ßıØ­²© "ŁØßÀ Ø
̶­̶œı¾̶ Øœ Ø­Œ©®³Ø ŁØ œ© غœ̶ßØ­²© ŁØ Łı Øü© ŁØ ØŁıRªı© Ø­ & ²̶Ł© 6­ı-
dos. Se concluye que los reglamentos de diseño sismorresistente en México
æ̶­ ص©œ³ªı©­̶Ł© Ø­ ØR­̶ßıØ­²© ½ ª©ß¬œØłıŁ̶Ł "ŁØßÀ Ø ŁØß³Ø ² ̶ ®³Ø
Øœ ¬ ©ªØŁıßıØ­²© Ø ¬ØªıRª̶Ł© Ø­ Łıªæ© غœ̶ßØ­²© ¬Ø ßı²Ø ŁØ²Ø ßı­̶ œ̶
Ø ı ²Ø­ªı̶ ŁØ Łı Øü© ½ œ© ŁØ ¬œ̶¾̶ßıØ­²© Ø­ ³­̶ Œ© ß̶ ßÀ ̶ªı©­̶œ ª©­-
º ³Ø­²Ø ­© Ÿœ© ª©­ Øœ Ø ²̶Ł© ̶ª²³̶œ ŁØœ ª©­©ªıßıØ­²© ı­© ª©­ œ̶ ²Ø­ŁØ­-
ªı̶ ª©­²Ø߬© À­Ø̶ ŁØ œ© غœ̶ßØ­²© ŁØ ØŁıRªı© 1© ©² © œ̶Ł© œ©
¬ ©ªØŁıßıØ­²© ³²ıœı¾̶Ł© Ø­ œ© غœ̶ßØ­²© ŁØ &6 ¬©Ł ç̶­ ­© ¬ ©¬© ªı©-
­̶ ³­̶ µı ıŸ­ ªœ̶ ̶ ¬̶ ̶ œ̶ ص̶œ³̶ªıŸ­ ŁØ œ̶ Ø ¬³Ø ²̶ ç ßıª̶ ŁØ ØŁıRªı©
Descriptores:
reglamentos mexicanos
edificios
diseño sismorresistente
reducción de resistencia
sobrerresistencia
ductilidad
amplificación de
desplazamiento
desplazamiento lateral
153
Carrillo Julián, Hernández-Barrios Hugo, Rubiano-Fonseca Astrid
Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM
The seismic design codes in Mexico are more than
70 years old. At several moments of their history, Mexi-
can codes have contributed with new ideas and meth-
ods, some of which have later been adopted in codes
Øœ عæØ Ø 0 Ł̶¾ ̶­Ł .Øœı イーーエ .© ² ©Œ ²æØ ØT© ² ²©
develop the Mexican codes have been made in Mexico
City, the capital and largest city in the country; almost
40% of the population lives in the capital and its metro-
politan area. Agencies of the Federal Government have
ı ³ØŁ ²̶­Ł̶ Ł ̶­Ł ß̶­³̶œ *­ ²Ø ß ©Œ ª©­ ² ³ª²ı©­
practices in Mexico, observations have indicated that
lack of compliance with technical standards; adequate
design and construction practices are becoming prob-
œØß ı­ .ؼıª© $ı²½ 0­Ø ıº­ıRª̶­² Ø̶ ©­ Œ© ²æØ œ̶ªø
of compliance with construction codes is that, require-
ments are dissociated from current construction tech-
nology and practice, and are understood and correctly
applied by only a few designers and contractors. There
ı ̶ µ̶ ² ŁıTØ Ø­ªØ Æز¹ØØ­ ²æØ œØµØœ ©Œ ؼ¬Ø ²ı Ø ̶­Ł
quality of practice of a relatively small group of well-
informed specialist and academics, and that of most
professionals and construction workers (Alcocer and
Castaño, 2008). On the other hand, after some lessons
learned from earthquakes that occurred in Chile and
Mexico in 1985, Bertero (1986) proposed two solutions
Œ© ²æØ ı߬ ©µØßØ­² ©Œ 64 Ø̶ ²æ®³̶øØ Ø ı ²̶­² ŁØ ıº­
of building structures: an ideal (rational) method and a
compromise solution. Bertero (1986) emphasizes that
Ø̶ ²æ®³̶øØ Ø ı ²̶­ªØ ª̶­­©² ÆØ ıº­ıRª̶­²œ½ Ø­æ̶­ªØŁ
simply by increasing the seismic forces because the
forces developed during an earthquake shake depend
©­ ²æØ ̶ª²³̶œ ²ıT­Ø ² Ø­º²æ ̶­Ł æ½ ²Ø زıª ªæ̶ ̶ª-
teristic supplied to the constructed building.
The goals of this paper are: (ı) to provide an over-
view of development and most relevant changes of
earthquake-resistant design codes in Mexico, and (ıı) to
compare and analyze seismic-design approaches speci-
RØŁ ƽ 64 ̶­Ł .ؼıª̶­ ª©ŁØ 5æØ ²³Ł½ ı­ªœ³ŁØ ŁØ
discussion of the most important parameters for seis-
ßıª ŁØ ıº­ ³ªæ ̶ ² Ø­º²æ ß©ŁıRª̶²ı©­ Œ̶ª²© Łı -
¬œ̶ªØßØ­² ̶߬œıRª̶²ı©­ Œ̶ª²© ̶­Ł Ł ıŒ² œıßı² 5æØ
results are presented in a common format that allows a
straightforward comparison.
Strength modification factors
As an understanding developed in the 1960s and 1970s
of the importance of inelastic structural response to
large earthquakes, the research community became in-
ª Ø̶ ı­ºœ½ ı­µ©œµØŁ ı­ ̶mØ߬² ²© ®³̶­²ıŒ½ ²æØ ı­Øœ̶ ²ıª
deformation capacity of structural components. The
seismic design philosophy of most current building
codes allows most structures to undergo inelastic de-
formations in the event of strong earthquake ground
motions. As a result, the designed lateral strength can
be lower than that required to maintain the structure in
the elastic range. The evolution of seismic codes and
¬ ̶ª²ıªØ ı­ 64 ̶­Ł .ؼıª© ̶ Ø Æ ıØS½ ŁØ ª ıÆØŁ ̶­Ł
ª ı²ıª̶œœ½ ̶­̶œ½¾ØŁ ı­ ²æØ Œ©œœ©¹ı­º ت²ı©­ *­ ©ßØ
ª̶ Ø ²æØ ­©²̶²ı©­ æ̶ ̶œ © ÆØØ­ ß©ŁıRØŁ Œ ©ß ²æØ
original codes) in order to make comparisons among
them.
Strength reduction factor due to nonlinear
hysteretic behavior
*­ ²æØ œı­Ø̶ œ½ Øœ̶ ²ıª ¬Ø ŒØª²œ½ ¬œ̶ ²ıª ª³ µØ ı­ 'ıº³ Ø
1, the displacement ductility ratio o ı ŁØR­ØŁ ̶ ²æØ
ratio of maximum relative displacement to its yield
displacement (o = Fß̶¼/F½). The displacement is com-
ß©­œ½ ؼ¬ Ø ØŁ ı­ ²Ø ß ©Œ ²© ½ Ł ıŒ² *­ ̶ŁŁı²ı©­ ı²
is customary to divide the story drift by the story
height and express it as a percentage of this height. An
adequate design is accomplished when a structure is
dimensioned and detailed in such a way that the local
(story and member) ductility demands are smaller
than their corresponding capacities. Thus, during the
preliminary design of a structure, there is a need to
estimate the lateral strength (lateral load capacity) of
the structure that is required in order to limit the glob-
al (structure) displacement ductility demand to a cer-
tain pre-determined value which results in the
adequate control of local ductility demands (Miranda
and Bertero, 1994).
Since a properly designed structure usually can pro-
vide a certain amount of ductility, the structure has ca-
Figure 1. Idealized structural response: equal displacement
approximation
Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico
Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM
154
pacity to dissipate hysteretic energy. Because of this
energy dissipation, the structure can be designed eco-
nomically and thus, the elastic design force Ve can be
reduced to a yield strength level V½, by the factor Ro (V½
= Ve / Ro) (Moroni ز ̶œ., 1996), and the corresponding
maximum deformation demand is Fß̶¼ 'ıº³ Ø ア *­ ̶
linearly elastic-perfectly plastic model (Figure 1), the
yield strength level refers to the structural collapse lev-
el (F = Fß̶¼ ­©² ²© ²æØ œØµØœ ©Œ R ² ıº­ıRª̶­² ½ıØœŁı­º
For a correct evaluation of the reduction factor Ro, it is
necessary to guarantee that the structure is able to ac-
commodate the maximum displacement demand Fß̶¼
in Figure 1, preventing collapse.
*­ ºØ­Ø ̶œ Œ© ² ³ª²³ Ø Ø ¬©­Łı­º ı­Øœ̶ ²ıª̶œœ½
during earthquake ground motions, inelastic deforma-
tions increase as the lateral yielding strength of the
structures decreases, or as the design reduction factor
increases. For design purposes, Ro corresponds to the
maximum reduction in strength that is consistent with
limiting the displacement ductility ratio demand to the
pre-determined target ductility oı , in a structure that
will have strength equal to the designed lateral strength
(Miranda and Bertero, 1994). A 5% equivalent viscous
damping ratio is usually considered in the computation
of the reduction factor Ro 6̶­º アケクケ
Several studies (i.e., Miranda and Bertero,1994; Or-
daz and Pérez, 1998; Avilés and Pérez, 2005) agree that
for a given ground motion, the reduction factor Ro is
¬ ıß̶ ıœ½ ı­S³Ø­ªØŁ ­©² ©­œ½ ƽ ²æØ œØµØœ ©Œ ı­Øœ̶ ²ıª
deformation, but also by the natural period of the struc-
ture T, the soil conditions at the site, and the soil-struc-
ture interaction. Since the strength reduction factor Ro
is a function of the ground motion for a given system
undergoing a ductility demand oı, the reduction will be
ŁıTØ Ø­² Œ© ŁıTØ Ø­² º ©³­Ł ß©²ı©­ 4©ıœ ª©­Łı²ı©­
̶² ı²Ø ª̶­ æ̶µØ ̶­ ı߬© ²̶­² ØTت² ©­ Ro, particularly
Œ© µØ ½ ©Œ² ©ıœ 0²æØ Œ̶ª²© ²æ̶² ß̶½ ̶Tت² ²æØ Ø-
duction factor Ro, but to a much lesser degree, are the
damping and the type of hysteretic behavior of the
² ³ª²³ Ø ³­ŁØ ²æØ ̶ ³ß¬²ı©­ ²æ̶² ²æØ Ø ı ­© ıº­ıR-
cant strength deterioration).
Strength amplification factor due to overstrength
Real structures are usually much stronger than re-
quired by design. This extra strength, when recognized,
can be used to reduce the ductility demands. For in-
stance, if the overstrength were so large that the re-
sponse was elastic, the ductility demand would be less
than 1.0 (FEMA-451, 2006). The role of overstrength is
صح ß© Ø ıº­ıRª̶­² Œ© ƳıœŁı­º ¹ı²æ æ© ² ¬Ø ı©Ł
Æت̶³ Ø Ł³ª²ıœı²½ ı ı­ØTت²ıµØ ı­ ØŁ³ªı­º ²æØ Ø®³ı ØŁ
Øœ̶ ²ıª ² Ø­º²æ ı­ ²æı ¬Ø ı©Ł ̶­ºØ *­ ̶ŁŁı²ı©­ ²æØ
seismic overstrength factor will also be higher if the
building is located in low seismic zones, because grav-
ity and wind loads are more likely to govern the design
6̶­º アケクケ /©²Ø ²æ̶² ©µØ ² Ø­º²æ ŁıŁ ­©² Ø­²Ø ı­²©
the previous discussion because the structural response
was considered an idealized system.
The additional strength reduction is due to the fact
that lateral strength of a structure is usually higher and,
in some cases, much higher that the nominal strength
capacity of the structure. We can divide this reduction
to take into account the additional strength from the
­©ßı­̶œ ² Ø­º²æ ²© ²æØ Œ© ß̶²ı©­ ©Œ ²æØ R ² ¬œ̶ ²ıª
hinge and the additional strength from this point to the
formation of a mechanism (Miranda, 1997). The sys-
²Øß ©µØ ² Ø­º²æ Œ̶ª²© ı ŁØR­ØŁ ̶ ²æØ ¬ ©Ł³ª² ©Œ
²æØ Œ©œœ©¹ı­º ı­ŁØ¬Ø­ŁØ­² ©µØ ² Ø­º²æ Œ̶ª²© 6̶­º
1989):
(ı) development of sequential plastic hinges in redun-
dant structures,
(ıı ß̶²Ø ı̶œ ² Ø­º²æ æıºæØ ²æ̶­ ²æ© Ø ¬ØªıRØŁ ı­ ²æØ
design,
(ııı) strength reduction factors,
(ıµ ¬ØªıRØŁ ت²ı©­ ̶­Ł Øı­Œ© ªØßØ­² ¬̶mØ ­ º Ø̶²-
er than those required in design,
(v) nonstructural elements, and
(vi) variation of lateral forces (Varela ز ̶œ., 2004).
*² ı ­©² ³­ª©ßß©­ Œ© ²æØ ² ³Ø ² Ø­º²æ ©Œ ̶ ² ³ª²³ Ø
to be two or three times the design strength (FEMA-
451, 2006).
One important source of overstrength in many
structures is the design procedure itself. The structure
must be analyzed using forces reduced with a factor
that depends on the structure’s global ductility capacity
rather than the displacement itself. However, the global
behavior of the structure is not, in general, linearly elas-
tic-perfectly plastic; it would be so if all structural
members had linearly elastic-perfectly plastic behavior
and they yielded at the same time. This consideration
implies that, in many cases, the real strength is higher
than its nominal strength (Ordaz and Meli, 2004).
Consider, for example, the typical global structural
response in Figure 2. The design strength of a structure,
VŁ ı Ø®³̶œ ²© ²æØ Ø ı ²̶­ªØ ̶² R ² ıº­ıRª̶­² ½ıØœŁ
*Œ ²æØ æı­ºı­º غı©­ æ̶ ̶ŁØ®³̶²Ø Ł³ª²ıœı²½ ı² ª̶­ ³ -
tain increased plastic rotations without loss of strength.
5æØ R ² æı­ºØ ²© Œ© ß ı ª©­²ı­³ı­º ²© ©²̶²Ø ı­Øœ̶ ²ı-
cally but has not reached its rotational capacity. As ad-
ditional load is applied to the structure, the other
¬©²Ø­²ı̶œ æı­ºı­º غı©­ ©Œ ²æØ ² ³ª²³ Ø ¹ıœœ ̶m ̶ª²
additional moment until they begin to yield (FEMA-
155
Carrillo Julián, Hernández-Barrios Hugo, Rubiano-Fonseca Astrid
Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM
451, 2006). Even more load can be applied as additional
æı­ºØ Œ© ß )©¹ØµØ ²æØ R ² æı­ºØ ²© Œ© ß ̶ Ø ­Ø̶
their rotational capacity and may begin to loose strength.
)Ø­ªØ ²æØ Æ̶ªøÆ©­Ø ª³ µØ Æغı­ ²© S̶mØ­ "² ²æØ ³œ²ı-
ß̶²Ø ²̶ºØ ²æØ ² ³ª²³ Ø æ̶ R­̶œœ½ Ø̶ªæØŁ ı² ² Ø­º²æ
and deformation capacity. The additional strength be-
yond the design strength is called the overstrength and
the total strength of the system is referred to as the ac-
tual maximum strength, V½.
Figure 2 shows that the overstrength factor Y can be
ŁØR­ØŁ ̶ ²æØ ̶²ı© Æز¹ØØ­ V½ and VŁ (Y = V½/VŁ), the
œ̶mØ ÆØı­º ²æØ Ø®³ı ØŁ ² Ø­º²æ ¬ Ø ª ıÆØŁ ƽ ª©ŁØ
that use a strength design approach (Moroni ز ̶œ.,
1996). Existence of structural overstrength has been ex-
plicitly recognized in some building codes in the world.
"œ²æ©³ºæ ²æØ ØTت² ©Œ ©µØ ² Ø­º²æ 橳œŁ ÆØ ̶ªª©³­²-
ed for when evaluating member’s strength (increasing
the strength), because of the limitations when using ad-
vanced non-linear analysis techniques by practicing en-
ºı­ØØ ı² ı ­ØªØ ̶ ½ ²© ª©­²ı­³Ø ̶¬¬œ½ı­º ²æØ ØTت² ©Œ
overstrength as a reduction factor to the loads instead
©Œ ̶­ ̶߬œıRª̶²ı©­ Œ̶ª²© ²© ²æØ ² Ø­º²æ 0 Ł̶¾ ̶­Ł
Meli, 2004). However, the use of force demands lower
than those developed in the structure can be unsafe for
designing of the foundation.
Strength modification factors in US building codes
*­ 64 ƳıœŁı­º ª©ŁØ ̶­Ł ¬ ©µı ı©­ ³ªæ ̶ *#$ ーケ
/&)31 ーウ ̶­Ł "4$& キ アー ²æØ Œ̶ª²© ³ ØŁ ²© ª̶œª³œ̶²Ø
the reduced design base shear and design seismic forc-
Ø ©Œ ̶ ² ³ª²³ ̶œ ½ ²Øß ı ª̶œœØŁ Ø ¬©­ Ø ß©ŁıRª̶-
tion factor R. This factor R ı ŁØR­ØŁ ̶ ²æØ ̶²ı©
between the base shear developed in the structure if it
were to remain in the elastic range and the minimum
required base shear to resist the seismic action and to
accommodate nonlinear displacements without any
risk to its stability (Moroni ز ̶œ アケケカ ' ©ß 'ıº³ Ø ウ
²æØ ²©²̶œ ² Ø­º²æ ß©ŁıRª̶²ı©­ Œ̶ª²© 3 can be consid-
ered as the product of the ductility reduction factor Ro
and the structural overstrength factor Y (Varela ز ̶œ.,
2004).
Y
?
? o
R
V
V
R
d
e
(1)
Most of investigations reviewed by Miranda and Bertero
(1994) recommended the use of period-dependent
² Ø­º²æ ØŁ³ª²ı©­ Œ̶ª²© *­ ̶ŁŁı²ı©­ 6̶­º アケクケ æ̶
established basic formulas for evaluating 3 factor from
the global structure response characterized by the rela-
tionship between the base shear ratio and the story drift.
*² ı ­©²Ø¹© ²æ½ ²æ̶² ² Ø­º²æ ØŁ³ª²ı©­ Œ̶ª²© 3 pre-
ª ıÆØŁ ƽ ª³ Ø­² 64 ª©ŁØ ̶ Ø ı­ŁØ¬Ø­ŁØ­² ©Œ ¬Ø ı©Ł ©Œ
vibration, which is incorrect and thus, their use is not
recommended (Miranda, 2007; Tena ز ̶œ., 2009).
Even though the equations presented by Miranda
and Bertero (1994) seem reasonable and may be incor-
¬© ̶²ØŁ ı­ Œ³²³ Ø 64 Øı ßıª ª©ŁØ ²æØ Ø̶œı²½ ı ²æ̶²
today (2012) single values of the 3 factors are still pro-
¬© ØŁ ı­ ²æ© Ø Øı ßıª ª©ŁØ ²© ŁØ ıº­ ŁıTØ Ø­² ² ³ª-
tural systems (Varela ز ̶œ., 2004). For instance, current
Øı ßıª ŁØ ıº­ ¬ ©µı ı©­ ı­ 64 Ł© ­©² Ø®³ı Ø ŁØ ıº­-
ers to quantify R and Y factors. Table 12.2-1 of ASCE
Figure 2. General structural response Figure 3. Procedure in US building codes
Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico
Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM
156
7-10 provides R factors for a large number of structural
systems. Table 1 shows the factors for a few selected
concrete and steel systems.
8æØ­ ŁØ ıº­ı­º ²æØ ØœØßØ­² ²æØ "$* ウアク アア #³ıœŁ-
ing Code mainly relies on conventional force-based
limit states (i.e. ultimate limit state) and on a service-
ability limit state, but they do not include an explicit
relationship between displacement demand and capac-
ı²½ *­ ̶­ ̶mØ߬² ²© ß̶øØ 64 ƳıœŁı­º ª©ŁØ ª©­ªØ¬²³-
̶œœ½ ² ̶­ ¬̶ Ø­² ­Ø¹ ØŁı²ı©­ ©Œ ²æØ "$* ウアク アア ¬ØªıRØ
explicitly an overstrength factor Y0. This factor is relat-
ed to the seismic-force-resisting system used for the
structure, and is used for the design of certain fragile
elements that are incapable to dissipate energy in the
non linear range, such as certain wall piers, anchors
and collector elements, or where greater concerns about
shear failure remain. For designing such elements, the
design shear force need not exceed Y0 times the fac-
tored shear determined by analysis of the structure for
Ø̶ ²æ®³̶øØ ØTت² 5æØ ̶߬œıRª̶²ı©­ Œ̶ª²© Y0 ranges
Æز¹ØØ­ ア オ ̶­Ł ウ ー ŁØ¬Ø­Łı­º ©­ ²æØ ²½¬Ø ©Œ Øı ßıª
½ ²Øß *­ ²æı ̶¬¬ ©̶ªæ ²æØ ŁØ ıº­ æØ̶ Œ© ªØ ı ª©ß-
puted as Y0 times the shear induced under design dis-
placements.
Strength modification factors in Mexican codes
The Mexico City Building Code for seismic design of
ƳıœŁı­º /5$ 4 ーエ æ̶ ÆØØ­ ̶ ß©ŁØœ ª©ŁØ ı­ .ؼıª©
for the drafting of most of the Mexican codes, which,
by law, is of the municipal competence (Ordaz and
Meli, 2004). Agencies of the Federal Government
have issued standards and manuals, such as the
Manual of Civil Structures MDOC-08. This manual is
̶ µØ ½ ª©ß¬ ØæØ­ ıµØ ª©ŁØ ²æ̶² ¬ØªıRª̶œœ½ ̶ŁŁ Ø -
es the design of several structural systems (buildings,
bridges, dams, power stations, industrial facilities,
etc.) to such hazards as earthquakes and winds. This
manual is another model design code in Mexico (Tena
ز ̶œ., 2009).
.ؼıª© $ı²½ ƳıœŁı­º ª©ŁØ /5$ 4 ーエ ı­ªœ³ŁØ
two procedures for seismic design of buildings: main
Æ©Ł½ ̶­Ł ̶¬¬Ø­Łı¼ " *­ ²æØ ß̶ı­ Æ©Ł½ ©Œ /5$ 4 ーエ
and in the previous version of MDOC, spectra are not
Øœ̶²ØŁ ²© Øœ̶ ²ıª Øı ßıª ŁØß̶­Ł *­ ²æØ Ø ª©ŁØ ²æØ
elastic design spectrum is obtained by dividing the
spectral ordinates by a somewhat obscure reductive
seismic force factor that accounted for everything
(ductility, redundancy, overstrength, etc.) (Tena ز ̶œ.,
2009). Hence, the overstrength parameter is implicitly
included in the spectrum, so that it is an invisible pa-
rameter for the engineer. Thus, their use is not recom-
ßØ­ŁØŁ *­ ²Ø̶Ł ¬Øª² ̶ ¬ØªıRØŁ ƽ ̶¬¬Ø­Łı¼ " ©Œ
/5$ 4 ーエ © ƽ .%0$ ーク 橳œŁ ÆØ ³ ØŁ .ı ̶­Ł̶
2007; Tena ز ̶œ., 2009).
For clarity in the design process, there is an impor-
tant conceptual adjustment in the reduction of elastic
Ø ¬©­ Ø ¬̶ ̶ßØ²Ø Œ© ŁØ ıº­ ı­ ̶¬¬Ø­Łı¼ " ©Œ /5$
4 ーエ ̶­Ł ı­ .%0$ ーク *­ ²æØ Ø ª©ŁØ ŁØ ıº­ ¬Øª² ̶
̶ Ø ı²Ø ¬ØªıRª ̶­Ł µ̶œ³Ø ©Œ ©µØ ² Ø­º²æ ¬̶ ̶ßزØ
̶ Ø Ø¼¬œıªı²œ½ ¬ØªıRØŁ Æت̶³ Ø ²æØ ŁØ-
sign spectra are not reduced by an over-
strength parameter Y (Alcocer and
$̶ ²̶ü© イーーク *­ Œ̶ª² ²æØ ¬ ©¬© ̶œ Œ©
the Y factor in MDOC-08 is an improved
version of the one presented in appen-
Łı¼ " ©Œ /5$ 4 ーエ *­ ̶¬¬Ø­Łı¼ " ©Œ
/5$ 4 ーエ Y is independent of the
structural system. This conceptual
æ© ²ª©ßı­º ı R¼ØŁ ı­ .%0$ ーク
where it is also recognized that the over-
strength that a structure can develop
under earthquake loading strongly de-
pends on the structural system, as it is
done in other modern seismic codes,
³ªæ ̶ "4$& キ アー ̶­Ł *#$ ーケ 5Ø­̶ ز
̶œ., 2009). The general procedure of seis-
mic design prescribed by MDOC-08 and
by appendix A is shown in Figure 4,
where Q’ is a seismic reduction force
factor that accounts primarily for ductil-
ity (deformation) capacity, Y is an over-
Table 1. Design factors specified by ASCE 7-10 for building structures
Structural system R Y0 Rm=R/Y0 Cd
Reinforced
concrete
structures
Special moment frame 8.0 3.0 2.7 5.5
Intermediate moment frame 5.0 3.0 1.7 4.5
Ordinary moment frame 3.0 3.0 1.0 2.5
Special reinforced shear wall 5.0 2.5 2.0 5.0
Ordinary reinforced shear wall 4.0 2.5 1.6 4.0
Detailed plain concrete wall 2.0 2.5 0.8 2.0
Ordinary plain concrete wall 1.5 2.5 0.6 1.5
Steel
structures
Special moment frame 8.0 3.0 2.7 5.5
Intermediate moment frame 4.5 3.0 1.5 4.0
Ordinary moment frame 3.5 3.0 1.2 3.0
Eccentric braced frame 8.0 2.0 4.0 4.0
Eccentric braced frame (pinned) 7.0 2.0 3.5 4.0
Special concentrically braced frame 6.0 2.0 3.0 5.0
Ordinary concentric braced frame 3.3 2.0 1.6 3.3
Not detailed 3.0 3.0 1.0 3.0
157
Carrillo Julián, Hernández-Barrios Hugo, Rubiano-Fonseca Astrid
Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM
strength factor that depends on the structural period
and/or the structural system.
*­ ²æØ .%0$ ーク ª©ŁØ ̶­Ł ı­ ̶¬¬Ø­Łı¼ " ©Œ /5$
S-04, the seismic force reduction factor Q’ stands only
for the approximate ductility deformation capacity of
the selected structural system, given in terms of the
Øı ßıª Ø ¬©­ Ø ß©ŁıRª̶²ı©­ Œ̶ª²© Q. The proposed
Q’ factor is not constant and depends on the structural
period T ̶­Ł ²æØ ı²Ø ¬Ø ı©Ł *­ Œ̶ª² Q’ is the ratio be-
tween the minimum strength required to limit a struc-
tural system to an elastic response and the strength
required for a structural system to limit its ductility ca-
pacity to a given Q value (Tena, 2009). The seismic re-
¬©­ Ø ß©ŁıRª̶²ı©­ Œ̶ª²© Q of Mexican codes account
primarily for the deformation capacity of the structural
system. Therefore, it is valid to compare the Q factors
used in the design of the building with respect to the
global ductility demand. The values of Q established by
̶œœ ß©ŁØ ­ .ؼıª̶­ ª©ŁØ ̶ Ø ア ア オ イ ウ ̶­Ł エ ̶­Ł ²æؽ
depend on the selected structural system (Tena ز ̶œ.,
2009). Hence, parameters Q’ and Q prescribed by
.%0$ ーク ª©ŁØ ̶­Ł ƽ ̶¬¬Ø­Łı¼ " ©Œ /5$ 4 ーエ ̶ Ø Ø-
lated to Ro and o, respectively.
5æØ アケキカ .ؼıª© $ı²½ #³ıœŁı­º $©ŁØ ¹̶ ²æØ R ²
earthquake-resistant code to prescribe explicitly peri-
od-dependent strength reduction factors, which ac-
count for smaller reductions in the short period range
(Rosenblueth, 1979). That code included a bilinear Ro
¬Øª² ³ß ̶ ̶ Œ³­ª²ı©­ ©Œ ²æØ ©ıœ ª©­Łı²ı©­ ̶ ØSت²ØŁ
ı­ ²æØ ßıª © ¾©­̶²ı©­ ©Œ ²æØ ªı²½ *­ ØTت² Œ̶ª²© Ro was
linearly interpolated between 1.0 and the displacement
ductility ratio o (termed as Q ı­ ²æ̶² ª©ŁØ Œ© ²ıT ² ³ª-
tures falling in the linear ascending branch of the de-
sign spectrum. For all other periods, the force reduction
factor was o (Alcocer and Castaño, 2008). The bilinear
Ro spectrum, similar to that used in the Mexico City
Code, has also been recommended in the Argentine
Building Code (Sonzogni ز ̶œ., 1984). Then, bilinear ex-
pressions for Ro ¹Ø Ø ³ººØ ²ØŁ 5 © ̶­Ł /̶³ß© øı
1991) to improve the period-independent reduction fac-
²© ©Œ ²æØ アケケー ØŁı²ı©­ ©Œ ²æØ /̶²ı©­̶œ #³ıœŁı­º $©ŁØ ©Œ
Canada. Period-dependent Ro factors have been pro-
¬© ØŁ 6̶­º アケクケ Œ© ­Ø¹ µØ ı©­ ©Œ ²æØ $æıœØ̶­ Øı -
mic code.
Parameters t, AªŁ and c are included in MDOC-08
only. The introduction of a redundancy factor t in
MDOC-08 is a new concept for Mexican seismic codes.
Factor t basically corrects the previous assessment of
the overstrength factor Y, as most of the available stud-
ies where Y has been computed using 2-D models with
ŁıTØ Ø­² ŁØº ØØ ©Œ ØŁ³­Ł̶­ª½ 5æı Œ̶ª²© ت©º­ı¾Ø
directly that structural systems are able to develop
more strength and increase their deformation capacity
̶ ²æؽ Æت©ßØ ß© Ø ØŁ³­Ł̶­² *­ ̶ŁŁı²ı©­ ²æı Œ̶ª²©
takes into account unfavorable performances of weak-
ly-redundant structures in strong earthquakes occurred
¹© œŁ¹ıŁØ ı­ ²æØ œ̶ ² ウオ ½Ø̶ 5æı Œ̶ª² ı ¹Øœœ ø­©¹­
by the structural engineering community worldwide.
However, it seems some seismic codes have come up
short before, by not recognizing that a more redundant
structural system under lateral loading should be al-
lowed to be designed with higher reductions and that
weakly-redundant systems should be penalized and be
ŁØ ıº­ØŁ ¹ı²æ ß̶œœØ ØŁ³ª²ı©­ *² ı ̶œ © ¹© ²æ ­©²-
ing that the value of t may vary in each main orthogo-
nal direction (Tena-Colunga, 2009).
Factor t varies between 0.8 and 1.25. The value de-
pends on number of bays and lines of defense in the
direction of analysis. One-bay framed buildings are
now penalized with t = 0.8, because they are weakly-
redundant, and their observed performance during
² ©­º Ø̶ ²æ®³̶øØ æ̶µØ ÆØØ­ ¬©© *² ı æ©¬ØŁ ²æ̶² ²æı
approach would help structural engineers to promote
the use of more redundant structural systems in zones
of high earthquake hazard and to limit or avoid the use
of weakly-redundant structures (Tena ز ̶œ., 2009).
The introduction of a correction factor AªŁ to account
Œ© ²ıT­Ø ̶­Ł © ² Ø­º²æ ŁØº ̶Ł̶²ı©­ ³­ŁØ ª½ªœıª
loading of reinforced concrete (RC) structural systems
located in soft soils, is also a new concept for the seis-
ßıª ª©ŁØ ı­ .ؼıª© *² æ̶ ÆØØ­ 橹­ ²æ̶² œ©¹ ª½ªœØ
fatigue is very important in the seismic behavior of
²ıT­Ø ̶­Ł ² Ø­º²æ ŁØº ̶Łı­º ½ ²Øß ³ªæ ̶ ß̶-
©­ ½ ̶­Ł 3$ ² ³ª²³ Ø $̶ ıœœ© ̶­Ł "œª©ªØ イーアウ
located in soft soils where large durations of the earth-
Figure 4. Procedure in modern Mexican codes
Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico
Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM
158
quake motions are observed, such as in the lake bed
zone of Mexico City (Tena ز ̶œ., 2009).
" ı­ ¬ صı©³ µØ ı©­ .%$0 ーク ŁØR­Ø アア ª©­-
ditions of regularity for elevation and plan analysis
that buildings must satisfy to directly use the reduc-
tive seismic force factor Q *Œ ̶ ƳıœŁı­º ² ³ª²³ Ø ̶²-
ı RØ ̶œœ アア ª©­Łı²ı©­ ©Œ ² ³ª²³ ̶œ غ³œ̶ ı²½ ı² ı
ŁØR­ØŁ ̶ ̶ غ³œ̶ ² ³ª²³ Ø © Q’ remains un-
changed. However, if at least one conditions of struc-
²³ ̶œ غ³œ̶ ı²½ ı ­©² ̶²ı RØŁ ²æØ Æ³ıœŁı­º ı ŁØR­ØŁ
as irregular structure, and then Q’ is reduced for de-
sign purposes using the corrective reduction factor c
that varies between 1.0 (regular structure) and 0.7, and
depends on the degree of irregularity according to
MDOC-08. For design purposes, irregular buildings
must be designed for higher forces but required to
ª©ß¬œ½ ¹ı²æ ²æØ œ̶²Ø ̶œ ²© ½ Ł ıŒ² ª ı²Ø ı̶ ¬ØªıRØŁ Œ©
regular buildings (Tena ز ̶œ., 2009).
Deflection amplification factor
5æØ Ø®³ı ØßØ­² ©Œ ̶ ² Ø­º²æ œØµØœ ı ı­ ³UªıØ­² ̶ ²æØ
only parameter for seismic design. Therefore, it is nec-
essary to combine it with an adequate criterion to esti-
mate the maximum displacements that a structure will
have to accommodate during the action of a severe
earthquake. The most common assumption is the
equal-displacement approximation. This approxima-
tion implies that “the displacement of an inelastic sys-
²Øß ¹ı²æ ²ıT­Ø K and strength V½, subjected to a
particular ground motion, is approximately equal to
the displacement of the same system responding elasti-
ª̶œœ½ '&." エオア イーーカ 'ıº³ Ø ア 橹 ²æ̶² ²æØ Ø®³̶œ
displacement approximation of seismic response im-
plies that o = Ro (Priestley, 2000). The equal-displace-
ment approximation implies that peak displacements
may be related to peak accelerations assuming sinusoi-
dal response equations, which is reasonable approxi-
mation for medium period structures (Priestley ز ̶œ.,
2007) of or for structures whose period of vibration is
distant from the site period (Ordaz and Pérez, 1998). An
apparently conservative assumption (with regard to
displacements) is shown in Figure 1. The basis assump-
tion is that the displacement demand is relatively in-
sensitive to system yield strength V½, because the value
of Fß̶¼ will be the same for any value of V½ (FEMA-451,
2006).
For design purposes, it may be assumed that inelas-
tic displacements are equal to the displacement that
would occur during an elastic response. The required
force levels under inelastic response are much less than
the force levels required for elastic response. The equal
displacement concept allows structural engineers to
use elastic analysis to predict inelastic displacements,
that is, the displacements from the reduced-force elastic
analysis must be multiplied by the ductility ratio to
¬ ©Ł³ªØ ²æØ ² ³Ø ı­Øœ̶ ²ıª Łı ¬œ̶ªØßØ­²
*² æ̶ ÆØØ­ 橹­ ²æ̶² ²æØ Ø®³̶œ Łı ¬œ̶ªØßØ­² ̶¬-
proximation is non-conservative for short period
structures and therefore, the equal energy approxima-
tion should be applied for these structures. Thus, in
²æØ R ² غı©­ ©Œ ²æØ ¬Øª² ³ß Ro increases linearly
with increasing period from Ro = 1 to a value which is
near to the value of the ductility ratio o (FEMA-451,
イーーカ "4$& キ アー ØTت²ıµØœ½ ØŁ³ªØ ²æØ ̶ªªØœØ ̶²ı©­
spectrum by a strength reduction factor at all period
ranges. However, the ASCE 7-10 provisions allows no
reduction to the peak ground acceleration in the very
short period region (acceleration spectrum with a con-
stant plateau that extends from T = 0 s) so this partially
ª©ß¬Ø­ ̶²Ø Œ© Ø © ı­ Ø®³̶œ Łı ¬œ̶ªØßØ­² ̶ -
³ß¬²ı©­ ̶² æ© ² ¬Ø ı©Ł µ̶œ³Ø '&." エオア イーーカ *­
the medium region of the spectrum, the reduction fac-
tor Ro is only slightly dependent on the period of vi-
bration T. For very long periods, the Ro factor maintains
a constant value equal to the prescribed ductility o,
and thus, the equal displacement approximation can
be applied (Ro = o '&." エオア イーーカ 4ı߬œıRØŁ ؼ-
pressions to obtain analytical estimates of the strength
reduction factors have been proposed. According to
/عß̶ ø ̶­Ł )̶œœ アケクイ Œ© ² ³ª²³ Ø ¹ı²æ œ©­º
medium and short periods, Ro = o, Ro = (2o – 1)0.5
, and
Ro = 1, respectively. These expressions indicate that
Ro/o is not greater than 1. Moreover, this ratio is sig-
­ıRª̶­²œ½ œØ ²æ̶­ ア Œ© ² ³ª²³ Ø ¹ı²æ ßØŁı³ß ̶­Ł
short periods.
Displacement amplification
Most codes recognize that a structure’s actual deforma-
tion may be several times the elastics displacements es-
timated from the action on the prescribed seismic
design forces (Moroni ز ̶œ アケケカ *­ © ŁØ ²© Ø ²ıß̶²Ø
maximum expected displacements of structure includ-
ı­º ØTت² ©Œ ı­Øœ̶ ²ıª ŁØŒ© ß̶²ı©­ Fß̶¼, displacements
from elastic analysis, with reduced forces FŁ, are ampli-
RØŁ ƽ ²æØ Łı ¬œ̶ªØßØ­² ̶߬œıRª̶²ı©­ Œ̶ª²© CŁ. This
factor can also be derived from Figure 2 as follows
6̶­º アケクケ
Y
?
F
F
F
F
?
F
F
? o
d
y
y
d
d
C max
max
(2)
159
Carrillo Julián, Hernández-Barrios Hugo, Rubiano-Fonseca Astrid
Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM
From these derivations, it is observed that CŁ factors a
function of the structural overstrength factor, the struc-
²³ ̶œ Ł³ª²ıœı²½ ̶²ı© ̶­Ł ²æØ Ł̶߬ı­º ̶²ı© ²æØ ØTت² ©Œ
the damping ratio is generally included in the ductility
reduction factor Ro.
Displacement amplification factor in US
building codes
*­ 64 ƳıœŁı­º ª©ŁØ ²æØ Łı ¬œ̶ªØßØ­² ß©ŁıRª̶²ı©­
factor CŁ is used to compute the expected maximum in-
elastic displacement from the elastic displacement in-
duced by the seismic design forces. Based on the equal
displacement approximation, the inelastic displace-
ment demand is the same as the elastic displacement
ŁØß̶­Ł 5æØ ̶¬¬ ©̶ªæ ©Œ 64 Øı ßıª ª©ŁØ Œ© Łı -
placements is to determine design forces generated by
VŁ. Then, the reduced design strength is distributed
vertically and horizontally through the structure in or-
der to determine members’ forces, and compute dis-
placements using linear elastic analysis. The analysis
domain represents the response of the linear elastic sys-
tem as analyzed with the reduced forces.
$œØ̶ œ½ ı­ 'ıº³ Ø ウ ²æØ Łı ¬œ̶ªØßØ­² FŁ predicted
ƽ ²æı ̶­̶œ½ ı ¹©³œŁ ÆØ ²©© œ©¹ 64 Øı ßıª ŁØ ıº­
codes compensate through the use of the CŁ factor. To
correct for the too-low displacement predicted by the
reduced force elastic analysis, the “computed design
Łı ¬œ̶ªØßØ­² FŁ should be multiplied by the factor CŁ
to obtain estimate of true maximum inelastic response.
This factor is always less than the R factor because R
contains ingredients other than pure ductility (FEMA-
451, 2006). Both factors R and CŁ ¬ Ø ª ıÆØŁ ı­ 64 Øı -
mic codes are primarily based on the observation of the
¬Ø Œ© ß̶­ªØ ©Œ ŁıTØ Ø­² ² ³ª²³ ̶œ ½ ²Øß ı­ ²æØ ¬̶ ²
strong earthquakes, on consensus of engineering judg-
ßØ­² ©­ ²Øªæ­ıª̶œ ł³ ²ıRª̶²ı©­ ̶­Ł ©­ ² ̶Łı²ı©­ /&-
)31 ーウ 4ıßıœ̶ œ½ ²© R and Y factors, Table 1 of ASCE
7-10 provides the CŁ factor (see Table 1). Table 1 of ASCE
7-10 also provides the allowable story drift to be com-
pared with true maximum inelastic drift. Table 2 shows
that allowable drift ratio depends on risk category (im-
portance) of the building.
Displacement amplification factor in Mexican codes
*­ ²æØ ß̶ı­ Æ©Ł½ ©Œ /5$ 4 ーエ ̶­Ł ı­ ²æØ ¬ صı©³ µØ -
sion of MDOC, inelastic displacement demands gener-
ally did not lead to suitable estimates because the
values of the ratio Q/Q’ (Figure 4) are not adequate (Mi-
randa, 2007; Tena ز ̶œ., 2009). One more drawback of
some building codes for seismic design is that lateral
Łı ¬œ̶ªØßØ­² ©Œ ƳıœŁı­º ̶ Ø Øµ̶œ³̶²ØŁ ı­ ̶ ŁØRªıØ­²
way. For instance, allowable story drift ratios pre-
ª ıÆØŁ ı­ ²æØ ß̶ı­ Æ©Ł½ ©Œ ²æØ /5$ 4 ーエ ̶ Ø Ø®³̶œ ²©
0.6% if non-structural elements are not separated from
the structure, and 1.2% if non-structural elements are
isolated. Actually, these values are not related to the
displacements under the design earthquake, because
²æØ Ø¼¬Øª²ØŁ Ł ıŒ² µ̶œ³Ø ¹ıœœ ÆØ ıº­ıRª̶­²œ½ æıºæØ
This fact results from using a design spectrum that is
not adequate for calculating displacements under the
ultimate level (Ordaz and Meli, 2004).
Table 2. Story drift limits specified by ASCE 7-10
Structural system
Drift limit
Risk category
I or II III IV
Structures, other than masonry wall
structures, 4 stories or less above the base
with partitions that have been designed to
accommodate the story drifts
2.5 % 2.0 % 1.5 %
Masonry cantilever shear wall structures 1.0 % 1.0 % 1.0 %
Other masonry shear wall structures 0.7 % 0.7 % 0.7 %
All other structures 2.0 % 1.5 % 1.0 %
Table 3. Story drift limits for collapse prevention specified
by MDOC-08 for RC structures
Structural system
Drift
limit
Reinforced
concrete
structures
Special ductile frame (m = 3 or 4) 3.0 %
Ordinary or intermediate frame (m = 1 or 2) 1.5 %
Concentric braced frame 1.5 %
Dual system: walls with ductile frames (m = 3) 1.5 %
Dual system: walls with ordinary or intermediate
moments-resisting frame (m = 1 or 2)
1.0 %
Steel
structures
Special ductile frame (m = 3 or 4) 3.0 %
Ordinary or intermediate frame (m = 1 or 2) 1.5 %
Eccentric braced frame 2.0 %
Concentric braced frame 1.5 %
Masonry
structures
Infill panels 0.60 %
Confined wall system made with solid units
and with horizontal steel reinforcement (joint
reinforcement or wire mesh)
0.40 %
Confined wall system: walls made with (i) solid
units, and (ii) hollow units and horizontal steel
reinforcement (joint reinforcement or wire mesh)
0.30 %
Combined and confined wall system 0.30 %
Confined wall system made with hollow units
and without horizontal steel reinforcement (joint
reinforcement or wire mesh)
0.20 %
Unreinforced and unconfined wall system 0.15 %
Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico
Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM
160
*­ ²æØ ̶¬¬Ø­Łı¼ " ©Œ /5$ 4 ーエ ̶­Ł ı­ .%0$ ーク
actual lateral displacements are computed multiply-
ing those obtained under reduced loads by certain fac-
tors (Figure 4). The criterion for controlling the lateral
displacements is improved, because these codes pro-
pose revision of displacements for two limit states:
serviceability and collapse prevention under maxi-
mum credible earthquake. The review of drift limits
Œ© ²æØ Ø µıªØ Ø̶ ²æ®³̶øØ ı ̶ ­©µØœ²½ ı­ .%0$ ーク *²
¹̶ ¬ ©¬© ØŁ ²© æ̶µØ ̶ ªœØ̶ œ½ ¬ØªıRØŁ Ø µıªØ œıßı²
state, to limit displacements for earthquakes that oc-
cur much more frequently than the collapse event.
Damage to non-structural members should not be tol-
erated for an earthquake like this one. For the service
limit state, buildings should remain elastic, so the
damage control of non-structural members is achieved
by comparing the calculated elastic displacements
with allowable drift ratios equal to 0.2% if non-struc-
tural elements are connected to the structural system,
or 0.4% if non-structural elements are properly sepa-
rated from the structural system (Ordaz and Meli,
2004).
For the collapse prevention limit state, story drifts
are commonly computed by multiplying the reduced
displacements from linear analysis for the reduced
spectrum FŁ by QYt *­ ª©­² ̶ ² ¹ı²æ ²æØ ¬ صı©³ µØ -
ı©­ ©Œ .%0$ © ı­ ²æØ ß̶ı­ Æ©Ł½ ©Œ /5$ 4 ーエ ¹æØ Ø
²æØ ²© ½ Ł ıŒ² œıßı² ̶ Ø ­©² ŁØR­ØŁ ı­ ²Ø ß ©Œ ²æØ
² ³ª²³ ̶œ ½ ²Øß ²æØ ²© ½ Ł ıŒ² œıßı² ŁØR­ØŁ ı­
MDOC-08 for collapse prevention are function of the
structural system. The calculated displacements must
be compared with allowable values (drift limits) given
ı­ 5̶ÆœØ ウ Œ© ŁıµØ Ø ² ³ª²³ ̶œ ½ ²Øß 5̶ÆœØ ウ 橹
²æ̶² ²æØ Ø µ̶œ³Ø ̶ Ø ıº­ıRª̶­²œ½ æıºæØ ²æ̶­ ²æ© Ø
¬ØªıRØŁ ı­ ²æØ ß̶ı­ Æ©Ł½ ©Œ /5$ 4 ーエ Æت̶³ Ø ²æØ ŁØ-
ıº­ ¬Øª² ³ß ı ¬ØªıRØŁ ı­ ̶ ̶²ı©­̶œ ¹̶½ 0 Ł̶¾ ̶­Ł
.Øœı イーーエ *­ ̶ŁŁı²ı©­ ­©²Ø ²æ̶² ¬ ©¬© ØŁ Ł ıŒ² œıßı²
ß© ²œ½ ª©ı­ªıŁØ ¹ı²æ ¹æ© Ø Øª©ßßØ­ŁØŁ ı­ 64 ª©ŁØ
"4$& キ アー *#$ ーケ ØØ 5̶ÆœØ イ
Final remarks
Modern design procedures give more emphasis to the
deformation capacity of the system. For example, per-
formance-based seismic design requires the explicit
consideration of lateral displacement as a performance
indicator, besides verifying the structural design
through an essentially force-based procedure (Priest-
ley, 2000). There is currently an intensive re-examina-
tion of the approaches for seismic design of structures.
This paper has summarized and discussed the ap-
proach in the seismic design provisions for buildings in
64 ̶­Ł .ؼıª© 5æØ Œ©œœ©¹ı­º ª©­ªœ³ ı©­ ª̶­ ÆØ
drawn from this study:
/"*­ ²æØ ß̶ı­ Æ©Ł½ ©Œ /5$ 4 ーエ ̶­Ł ı­ ²æØ ¬ صı©³ µØ -
sion of MDOC, the overstrength factor is implicitly in-
cludedinthespectrum,sothatitisaninvisibleparameter
Œ© ²æØ Ø­ºı­ØØ *­ ̶ŁŁı²ı©­ ı­Øœ̶ ²ıª Łı ¬œ̶ªØßØ­² ŁØ-
mands generally did not lead to suitable estimates be-
cause the ratio Q/Q’ (Figure 4) is not adequate. Thus,
²æØı ³ Ø ı ­©² ت©ßßØ­ŁØŁ *­ ²Ø̶Ł ¬Øª² ̶ ¬ØªıRØŁ
ƽ ̶¬¬Ø­Łı¼ " ©Œ /5$ 4 ーエ © ƽ .%0$ ーク 橳œŁ ÆØ
used (Miranda, 2007; Tena ز ̶œ., 2009).
/"4² Ø­º²æ ß©ŁıRª̶²ı©­ ̶­Ł Łı ¬œ̶ªØßØ­² ̶߬œıRª̶-
tion factors, which to date are empirical in nature, are
based on general consensus of engineering judgment,
observed structural performance in the past earth-
®³̶øØ ̶­Ł © ©­ /)31 ーウ 5æØ ©­œ½ ¹̶½ ²© ̶²ı©-
nalize these factors is to quantify the overstrength
and structural ductility ratios by analytical studies
̶­Ł ؼ¬Ø ıßØ­²̶œ ²Ø ²ı­º 6̶­º アケクケ 3̶²ı©­̶œ
² Ø­º²æ ß©ŁıRª̶²ı©­ ̶­Ł Łı ¬œ̶ªØßØ­² ̶߬œıRª̶-
tion factors based on ductility, period and soil condi-
tions, together with estimates of the overstrength of
the structure and the relationship between global and
local ductility demands (Varela ز ̶œ., 2004), are now
used to establish more rational and transparent seis-
mic design approaches in Mexico. For instance, Mex-
ican seismic codes are moving towards design
procedures where the overstrength is directly taken
on account to reduce the elastic design spectra. This
is the philosophy in the procedure outlined in appen-
Łı¼ " ©Œ /5$ 4 ーエ ̶­Ł ı­ ²æØ ­Ø¹ º³ıŁØœı­Ø .%0$
08 (Tena ز ̶œ., 2009).
/"*² ı ̶œ © ̶¬¬̶ Ø­² ²æ̶² ²æØ ŁØ ıº­ ª©ŁØ ̶ Ø ©Œ²Ø­ ı­-
correctly understood or misinterpreted, and are often
not complied with by lay practitioners. The lack of
building code compliance shall not be regarded
merely as a legal issue to be addressed only through
Ø­Œ© ªØßØ­² ̶ª²ı©­ 5© ̶m̶ı­ ̶ Ø̶ ©­̶ÆœØ ̶ŒØ²½
level, it is essential to have consistency between the
regulations, the level of expertise of most design and
construction professionals, and local materials and
construction systems (Alcocer and Castaño, 2008).
/"Given that the level of expertise and quality of prac-
tice of design and construction professionals in Mex-
ico is quite diverse, one way to reach this goal is to
implements codes with procedure and requirements
©Œ ŁıTØ Ø­² œØµØœ ©Œ ª©ß¬œØ¼ı²½ 5æØ ß© ² ª©ß¬œØ¼
and comprehensive rules should be aimed at large,
important structures; simple yet conservative ap-
proaches would be followed for most common struc-
tures limited to certain size, geometry and complexity
161
Carrillo Julián, Hernández-Barrios Hugo, Rubiano-Fonseca Astrid
Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM
(Ordaz and Meli, 2004). This is the case of the recently
ØœØ̶ ØŁ "$* ウアエ アア (³ıŁØ²© ı߬œıRØŁ ŁØ ıº­ Œ© Ø-
inforced concrete buildings of limited size and height
could be also included. Finally, for non-engineered
construction guidelines, other educational sources
are needed in lieu of merely enforcing codes.
References
"$* $©ßßımØØ ウアエ (³ıŁØ ²© 4ı߬œıRØŁ %Ø ıº­ Œ© 3Øı­Œ© ªØŁ $©­-
ª Ø²Ø #³ıœŁı­º "$* ウアエ3 アア '̶ ßı­º²©­ )ıœœ .ıªæıº̶­ イーアア
"$* $©ßßımØØ ウアク #³ıœŁı­º $©ŁØ 3Ø®³ı ØßØ­² Œ© 4² ³ª²³ ̶œ
$©­ª Ø²Ø "$* ウアク ̶­Ł ª©ßßØ­²̶ ½ "$* ウアク3 "ßØ ıª̶­
$©­ª Ø²Ø *­ ²ı²³²Ø '̶ ßı­º²©­ )ıœœ .* イーアア
Alcocer S. and Castaño V. Evolution of Codes for Structural De-
sign in Mexico. +©³ ­̶œ ©Œ 4² ³ª²³ ̶œ 4³ µØ½, volume 26 (issue
1), 2008: 17-28.
ASCE 7-10. Minimum Design Loads for Building and Other Struc-
tures, American Society of Civil Engineers, ASCE, Reston, Vir-
ºı­ı̶ 64" イーアー
"µıœÔ + ̶­Ł 1Ô Ø¾ 3©ªæ̶ - *­S³Ø­ªØ ©Œ '©³­Ł̶²ı©­ 'œØ¼ıÆıœı²½
on Rm and Cm Factors. +©³ ­̶œ ©Œ 4² ³ª²³ ̶œ &­ºı­ØØ ı­º "4$&,
µ©œ³ßØ アウア ı ³Ø イ イーーオ イイア イウー
#Ø ²Ø © 7 *߬œıª̶²ı©­ ©Œ 3تح² &̶ ²æ®³̶øØ ̶­Ł 3Ø Ø̶ ªæ ©­
Earthquake-Resistant Design and Construction of Buildings,
3ج© ² /© 6$# &&3$ クカ ーウ 6­ıµØ ı²½ ©Œ $̶œıŒ© ­ı̶ #Ø øØ-
ley, March, 1986.
$̶ ıœœ© + ̶­Ł "œª©ªØ 4 &¼¬Ø ıßØ­²̶œ *­µØ ²ıº̶²ı©­ ©­ %½­̶ßıª
and Quasi-Static Behavior of Low-Rise Reinforced Concrete
Walls. +©³ ­̶œ ©Œ &̶ ²æ®³̶øØ &­ºı­ØØ ı­º ̶­Ł 4² ³ª²³ ̶œ %½­̶ß
ıª µ©œ³ßØ エオ ı ³Ø オ イーアウ カウオ カオイ
Chavez J. Overview of the Current Seismic Codes in Central and
South America. #³œœØ²ı­º ©Œ **4&& µ©œ³ßØ エカ イーアイ アオウ アカー
FEMA-451. Recommended Provisions: Design Examples, Federal
&ßØ ºØ­ª½ .̶­̶ºØßØ­²"ºØ­ª½ '&." 8̶ æı­º²©­ 64" イーーカ
*#$ ーケ *­²Ø ­̶²ı©­̶œ #³ıœŁı­º $©ŁØ *­²Ø ­̶²ı©­̶œ $©ŁØ $©³­ªıœ
'̶œœ $æ³ ªæ 7" 64" イーーケ
MDOC-08. Design Manual of Civil Structures–Seismic Design,
$©ßı ıŸ­ 'ØŁØ ̶œ ŁØ &œØª² ıªıŁ̶Ł $'& .ؼıª© イーーク
.ı ̶­Ł̶ & $©³ Ø ©Œ &̶ ²æ®³̶øØ &­ºı­ØØ ı­º $œ̶ /©²Ø /̶-
²ı©­̶œ 6­ıµØ ı²½ ©Œ .ؼıª© 6/". イーーキ
Miranda E. Strength Reduction Factors in Performance-Based De-
ıº­ ©­ 1 ©ªØØŁı­º ©Œ &&3$ $63&Ø 4½ß¬© ı³ß #Ø ø؜ؽ
CA, 1997.
Miranda E. and Bertero V. Evaluation of Strength Reduction Fac-
tors for Earthquake-Resistant Design. +©³ ­̶œ ©Œ &̶ ²æ®³̶øØ
4¬Øª² ̶ µ©œ³ßØ アー ı ³Ø イ アケケエ ウオキ ウキケ
.© ©­ı . " ² ©¾̶ . (Ÿßؾ + (³¾ßÀ­ 3 & ²̶Æœı æı­º 3 ̶­Ł
$Ł '̶ª²© Œ© $©­R­ØŁ .̶ ©­ ½ #³ıœŁı­º +©³ ­̶œ ©Œ 4² ³ª
²³ ̶œ &­ºı­ØØ ı­º "4$&, volume 122 (issue 10), 1996: 1208-
1215.
/&)31 ーウ 3ت©ßßØ­ŁØŁ 1 ©µı ı©­ Œ© 4Øı ßıª 3غ³œ̶²ı©­ Œ©
/ع #³ıœŁı­º ̶­Ł 0²æØ 4² ³ª²³ Ø '&." エオー #³ıœŁı­º
4Øı ßıª 4̶ŒØ²½ $©³­ªıœ 8̶ æı­º²©­ %$ 64" イーーウ
/عß̶ ø / ̶­Ł )̶œœ 8 &̶ ²æ®³̶øØ 4¬Øª² ̶ ̶­Ł %Ø ıº­, Earthquake
&­ºı­ØØ ı­º 3Ø Ø̶ ªæ *­ ²ı²³²Ø &&3* &œ $Ø ı²© $" 64" アケクイ
/5$ 4 ーエ .ؼıª© $ı²½ #³ıœŁı­º 4²̶­Ł̶ Ł Œ© 4Øı ßıª %Ø ıº­ ©Œ
#³ıœŁı­º 4² ³ª²³ Ø (̶ªØ²̶ 0Rªı̶œ ŁØœ %ı ² ı²© 'ØŁØ ̶œ .ؼı-
co, 2004.
Ordaz M. and Meli R. Seismic Design Codes in Mexico, on: Pro-
ªØØŁı­º ©Œ アウ²æ 8© œŁ $©­ŒØ Ø­ªØ ©­ &̶ ²æ®³̶øØ
&­ºı­ØØ ı­º アイ8$&& 7̶­ª©³µØ $̶­̶Ł̶ ¬̶¬Ø エーーー
2004.
Ordaz M. and Pérez-Rocha L. Estimation of Strength-Reduction
'̶ª²© Œ© &œ̶ ²©¬œ̶ ²ıª 4½ ²Øß ̶ /ع "¬¬ ©̶ªæ +©³ ­̶œ ©Œ
&̶ ²æ®³̶øØ &­ºı­ØØ ı­º ̶­Ł 4² ³ª²³ ̶œ %½­̶ßıª , volume 27,
1998: 889-901.
Priestley M. Performance Based Seismic Design, on: Proceedings of
アイ²æ 8© œŁ $©­ŒØ Ø­ªØ ©­ &̶ ²æ®³̶øØ &­ºı­ØØ ı­º アイ8$&&
"³ªøœ̶­Ł /ع ;Ø̶œ̶­Ł ¬̶¬Ø イクウア イーーー
Priestley M., Calvi G., Kowalsky M. %ı ¬œ̶ªØßØ­² #̶ ØŁ 4Øı ßıª
%Ø ıº­ ©Œ 4² ³ª²³ Ø *644 1 Ø *²̶œ½ イーーキ
Rosenblueth E. Seismic Design Requirements in a Mexican 1976
code. +©³ ­̶œ ©Œ &̶ ²æ®³̶øØ &­ºı­ØØ ı­º ̶­Ł 4² ³ª²³ ̶œ %½­̶ß
ıª , volume 7, 1979: 49-61.
4©­¾©º­ı 7 $̶ Ł©­̶ " *ŁØœ ©æ­ 4 *­Øœ̶ ²ıª 4Øı ßıª "­̶œ½ ı ©Œ
a Building Structure Designed by Argentine Codes. +©³ ­̶œ ©Œ
&̶ ²æ®³̶øØ &­ºı­ØØ ı­º ̶­Ł 4² ³ª²³ ̶œ %½­̶ßıª , volume 12,
アケクエ キイア キウカ
5Ø­̶ $©œ³­º̶ " .Ø­̶ )Ø ­À­ŁØ¾ 6 1Ô Ø¾ 3©ªæ̶ - "µıœÔ +
0 Ł̶¾ . 7ıœ̶ + 6¬Ł̶²ØŁ 4Øı ßıª %Ø ıº­ (³ıŁØœı­Ø Œ©
Model Building Code of Mexico. +©³ ­̶œ ©Œ &̶ ²æ®³̶øØ 4¬Øª² ̶,
volume 25 (issue 4), 2009: 869-898.
5 © 8 ̶­Ł /̶³ß© øı / 1Ø ı©Ł %جحŁØ­² 4Øı ßıª '© ªØ 3ØŁ³ª-
tion Factors for Short-Period Structures. $̶­̶Łı̶­ +©³ ­̶œ ©Œ
$ıµıœ &­ºı­ØØ ı­º, volume 18, 1991: 568-574.
6̶­º $æ & ²̶Æœı æı­º 3 © 3¹ ̶­Ł $Ł '̶ª²© Œ© #³ıœŁı­º 4Øı -
mic Provisions. +©³ ­̶œ ©Œ 4² ³ª²³ ̶œ &­ºı­ØØ ı­º "4$&, vol-
ume 117 (issue 1), 1989: 19-28.
7̶ Øœ̶ + 5̶­­Ø + ,œı­º­Ø 3 %ص؜©¬ßØ­² ©Œ 3Ø ¬©­ Ø .©ŁıR-
ª̶²ı©­ $©ØUªıØ­² ̶­Ł %ØSت²ı©­ "߬œıRª̶²ı©­ '̶ª²© Œ©
%Ø ıº­ ©Œ ""$ 4² ³ª²³ ̶œ 4½ ²Øß ©­ 1 ©ªØØŁı­º ©Œ アウ²æ
8© œŁ $©­ŒØ Ø­ªØ ©­ &̶ ²æ®³̶øØ &­ºı­ØØ ı­º アイ8$&&
Vancouver, Canada, paper 1058, 2004.
Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico
Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM
162
About the authors
+³œıÀ­ $̶ ıœœ©. He has been assistant professor in the Department of Civil Engineering
̶² 6­ıµØ ıŁ̶Ł .ıœı²̶ /³Øµ̶ ( ̶­̶Ł̶ ı­ #©º©²̶ $©œ©ßÆı̶ ı­ªØ イーーエ )Ø ØªØı-
ved his B.S. degree in civil engineering from the same university. He received his
. 4ª ŁØº ØØ ı­ ² ³ª²³ ̶œ ­ºı­ØØ ı­º Œ ©ß 6­ıµØ ı²½ ©Œ -© "­ŁØ ı­ #©º©²̶
$©œ©ßÆı̶ ı­ イーーエ ̶­Ł æı 1æ % ŁØº ØØ ı­ ² ³ª²³ ̶œ Ø­ºı­ØØ ı­º Œ ©ß 6­ıµØ ıŁ̶Ł
/̶ªı©­̶œ "³²Ÿ­©ß̶ ŁØ .Ô¼ıª© 6/". ı­ イーアー %³Ø ²© æı ª©­² ıƳ²ı©­ ²© Øı ßıª
ŁØ ıº­ ©Œ œ©¹ ı Ø æ©³ ı­º æØ º ̶Ł³̶²ØŁ ¹ı²æ æ©­© Œ ©ß 6/". )Ø ı ̶ ßØß-
ÆØ ©Œ "$* $©ßßımØØ ウアエ 4ı߬œıRØŁ %Ø ıº­ ©Œ $©­ª Ø²Ø #³ıœŁı­º ウカケ 4Øı ßıª
3ج̶ı ̶­Ł 3Øæ̶Æıœı²̶²ı©­ ̶­Ł ウキエ 1Ø Œ© ß̶­ªØ #̶ ØŁ 4Øı ßıª %Ø ıº­ ©Œ $©­ª زØ
Buildings.
)³º© )Ø ­À­ŁØ¾ #̶ ı© . He received his bachelor degree in civil engineering in 1990.
He worked for 6 years as a design engineer, designing various reinforced concrete
structures. He received his M.Sc. and Ph.D. degrees and graduated with honors
Œ ©ß 6­ıµØ ıŁ̶Ł /̶ªı©­̶œ "³²Ÿ­©ß̶ ŁØ .ؼıª© 6/". ı­ イーーイ )Ø ­À­ŁØ¾
research interests include but not limited to seismic analysis and design of highway
bridges, laboratory testing of reinforced and prestressed concrete members. He is
3Ø Ø̶ ªæØ -ص؜ ア ı­ ²æØ 4/* $0/"$½5 4ı­ªØ イーーエ æØ ı ¬ ©ŒØ © ̶² 6­ıµØ ı-
Ł̶Ł .ıªæ©̶ª̶­̶ ŁØ 4̶­ /ıª©œ̶ ŁØ )ıŁ̶œº© 6.4/) $ıµıœ &­ºı­ØØ ı­º 4ªæ©©œ
Morelia, México.
" ² ıŁ 3³Æı̶­© '©­ ت̶ 4æØ º ̶Ł³̶²ØŁ ̶ ̶ ßتæ̶² ©­ıª Ø­ºı­ØØ ı­ イーーカ ̶² ²æØ 6­ı-
µØ ıŁ̶Ł .ıœı²̶ /³Øµ̶ ( ̶­̶Ł̶ ı­ $©œ©ßÆı̶ ̶­Ł ı ª̶­ŁıŁ̶²Ø ²© ºØ² ̶ ß̶ ²Ø
ŁØº ØØ ı­ ̶³²©ß̶²ıª ½ ²Øß ©Œ ¬ ©Ł³ª²ı©­ ̶² ²æØ 6­ıµØ ıŁ̶Ł 5ت­©œŸºıª̶ ŁØ 1Ø-
reira. Currently, she is professor, researcher and chief of the Department of Electro-
nics at the Program of Technology in Electronics and Communications in the
'̶ª³œ²½ ©Œ &­ºı­ØØ ı­º ̶² ²æØ 6­ıµØ ıŁ̶Ł .ıœı²̶ /³Øµ̶ ( ̶­̶Ł̶ ı­ $©œ©ßÆı̶
4æØ ı ßØßÆØ ©Œ ²æØ *­²Ø ­̶²ı©­̶œ 4©ªıز½ Œ© 5ØœØßØŁıªı­Ø ̶­Ł Ø)Ø̶œ²æ* *4Œ5Ø)
Citation for this article:
Chicago citation style
Carrillo, Julián, Hugo Hernández-Barrios, Astrid Rubiano-Fonseca.
Analysis of the Earthquake-Resistant Design Approach for Build-
ings in Mexico. Ingeniería Investigación y Tecnología, XV, 01
(2014): 151-162.
ISO 690 citation style
Carrillo J., Hernández-Barrios H., Rubiano-Fonseca A. Analysis of
the Earthquake-Resistant Design Approach for Buildings in Mexi-
co. Ingeniería Investigación y Tecnología, volume XV (issue 1),
January-March 2014: 151-162.

More Related Content

Recently uploaded

Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisDr.Costas Sachpazis
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptjigup7320
 
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfInvolute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfJNTUA
 
Autodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxAutodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxMustafa Ahmed
 
Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...IJECEIAES
 
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书c3384a92eb32
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxCHAIRMAN M
 
Presentation on Slab, Beam, Column, and Foundation/Footing
Presentation on Slab,  Beam, Column, and Foundation/FootingPresentation on Slab,  Beam, Column, and Foundation/Footing
Presentation on Slab, Beam, Column, and Foundation/FootingEr. Suman Jyoti
 
Working Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdfWorking Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdfSkNahidulIslamShrabo
 
21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docxrahulmanepalli02
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxMustafa Ahmed
 
☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...
☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...
☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...mikehavy0
 
Basics of Relay for Engineering Students
Basics of Relay for Engineering StudentsBasics of Relay for Engineering Students
Basics of Relay for Engineering Studentskannan348865
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptamrabdallah9
 
Databricks Generative AI FoundationCertified.pdf
Databricks Generative AI FoundationCertified.pdfDatabricks Generative AI FoundationCertified.pdf
Databricks Generative AI FoundationCertified.pdfVinayVadlagattu
 
handbook on reinforce concrete and detailing
handbook on reinforce concrete and detailinghandbook on reinforce concrete and detailing
handbook on reinforce concrete and detailingAshishSingh1301
 
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and ToolsMaximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Toolssoginsider
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelDrAjayKumarYadav4
 
Artificial Intelligence in due diligence
Artificial Intelligence in due diligenceArtificial Intelligence in due diligence
Artificial Intelligence in due diligencemahaffeycheryld
 
Diploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfDiploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfJNTUA
 

Recently uploaded (20)

Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) ppt
 
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfInvolute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
 
Autodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxAutodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptx
 
Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...
 
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
 
Presentation on Slab, Beam, Column, and Foundation/Footing
Presentation on Slab,  Beam, Column, and Foundation/FootingPresentation on Slab,  Beam, Column, and Foundation/Footing
Presentation on Slab, Beam, Column, and Foundation/Footing
 
Working Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdfWorking Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdf
 
21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptx
 
☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...
☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...
☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...
 
Basics of Relay for Engineering Students
Basics of Relay for Engineering StudentsBasics of Relay for Engineering Students
Basics of Relay for Engineering Students
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.ppt
 
Databricks Generative AI FoundationCertified.pdf
Databricks Generative AI FoundationCertified.pdfDatabricks Generative AI FoundationCertified.pdf
Databricks Generative AI FoundationCertified.pdf
 
handbook on reinforce concrete and detailing
handbook on reinforce concrete and detailinghandbook on reinforce concrete and detailing
handbook on reinforce concrete and detailing
 
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and ToolsMaximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
Artificial Intelligence in due diligence
Artificial Intelligence in due diligenceArtificial Intelligence in due diligence
Artificial Intelligence in due diligence
 
Diploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfDiploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdf
 

Featured

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by HubspotMarius Sescu
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTExpeed Software
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsPixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 

Featured (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

Analysis of the Earthquake-Resistant Design Approach for Building in Mexico.pdf

  • 1. Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM (artículo arbitrado) Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico Análisis del enfoque de diseño sismorresistente para edificios en México Keywords: Mexican codes buildings earthquake-resistant design strength reduction overstrength ductility displacement amplification lateral displacement Carrillo Julián Faculty of Engineering Universidad Militar Nueva Granada, UMNG, Bogotá, Colombia E-mail: wjcarrillo@gmail.com Hernández-Barrios Hugo Faculty of Engineering Universidad Michoacana de San Nicolás de Hidalgo, Morelia E-mail: hugohbarrios@yahoo.com.mx Rubiano-Fonseca Astrid Faculty of Engineering Universidad Militar Nueva Granada. Bogotá, Colombia E-mail: astrid.rubiano@unimilitar.edu.co Information on the article: received: November 2012, accepted: March 2013 Abstract 5æØ ŁØµØœ©¬ßØ­² ©Œ ­Ø¹ ª©ŁØ Œ© Ø̶ ²æ®³̶øØ Ø ı ²̶­² ² ³ª²³ Ø æ̶ ß̶ŁØ ¬© ıÆœØ ²© º³̶ ̶­²ØØ ̶ ÆØmØ ¬Ø Œ© ß̶­ªØ ©Œ ƳıœŁı­º ¹æØ­ ²æؽ ̶ Ø ³ÆłØª²ØŁ ²© Øı ßıª ̶ª²ı©­ 5æØ ØŒ© Ø ı² ı ª©­µØ­ıØ­² ²æ̶² ª³ Ø­² ª©ŁØ Œ© ŁØ ıº­ ©Œ ƳıœŁ ı­º Æت©ßØ ª©­ªØ¬²³̶œœ½ ² ̶­ ¬̶ Ø­² ¹æØ­ ŁØR­ı­º ²æØ ² Ø­º²æ ß©ŁıRª̶²ı©­ Œ̶ª²© ̶­Ł ̶ Ø ı­º ß̶¼ıß³ß œ̶²Ø ̶œ Łı ¬œ̶ªØßØ­² © ²æ̶² ²æØ ŁØ ıº­ ¬ ©ªØ ª̶­ ÆØ ªœØ̶ œ½ ³­ŁØ ²©©Ł ƽ ² ³ª²³ ̶œ Ø­ºı­ØØ 5æØ ̶ıß ©Œ ²æı ²³Ł½ ı ²© ̶­̶œ½¾Ø ²æØ ² ̶­ ¬̶ Ø­ª½ ©Œ Ø̶ ²æ®³̶øØ Ø ı ²̶­² ŁØ ıº­ ̶¬¬ ©̶ªæ Œ© ƳıœŁı­º ı­ .ؼıª© ƽ ßØ̶­ ©Œ ̶ ª ı²ıª̶œ صıع ©Œ ²æØ Œ̶ª²© Œ© ² Ø­º²æ ß©ŁıRª̶²ı©­ ̶­Ł Łı ¬œ̶ªØßØ­² ̶߬œıRª̶²ı©­ 5æØ ̶¬¬ ©̶ªæ ©Œ ƳıœŁı­º ŁØ ıº­ ª©ŁØ ı­ 64 ı ̶œ © ̶­̶œ½¾ØŁ *² ı ª©­ªœ³ŁØŁ ²æ̶² Ø̶ ²æ®³̶øØ Ø ı ²̶­² ŁØ ıº­ ı­ .ؼıª© æ̶µØ ص©œµØŁ ı­ ØR­ØßØ­² ̶­Ł ª©ß¬œØ¼ı²½ *² ı ̶œ © ŁØß©­ ² ̶²ØŁ ²æ̶² ²æØ ¬ ©ªØŁ³ Ø ¬ Ø ª ıÆØŁ ƽ ³ªæ ŁØ ıº­ ª©ŁØ ̶œœ©¹ ²æØ ̶ Ø ßØ­² ©Œ ²æØ ŁØ ıº­ ² Ø­º²æ ̶­Ł Łı ¬œ̶ªØßØ­² ı­ ̶ ß© Ø ̶²ı©­̶œ ¹̶½ ı­ ̶ªª© Ł̶­ªØ ­©² ©­œ½ ¹ı²æ ²æØ ¬ Ø Ø­² ²̶ºØ ©Œ ø­©¹œØŁºØ Ƴ² ̶œ © ¹ı²æ ²æØ ª©­²Ø߬© ̶ ½ ²Ø­ŁØ­ªıØ ı­ ƳıœŁı­º ª©ŁØ *­ ª©­² ̶ ² ²æØ ¬ ©ªØŁ³ Ø ³ ØŁ ı­ 64 ª©ŁØ ß̶½ ­©² ¬ ©µıŁØ ̶ ªœØ̶ µıع Œ© Øı ßıª Ø ¬©­ Ø ̶ Ø ßØ­² ©Œ ƳıœŁı­º
  • 2. Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM 152 Introduction Many areas of Latin America are widely known for their high seismicity. Recognizing the seismic activity in the region, earthquake-resistant design of structures is a requirement in these countries. Therefore, each country has developed their own seismic codes based on their experience and laws (Chavez, 2012). The re- examination of the fundamental precepts of seismic de- ıº­ æ̶ ı­²Ø­ ıRØŁ ı­ تح² ½Ø̶ ¹ı²æ ̶ º Ø̶² ­³ßÆØ ©Œ ª©­Sıª²ı­º ̶¬¬ ©̶ªæØ ÆØı­º ̶Łµ©ª̶²ØŁ *­ ©ßØ ª̶ Ø ²æØ ŁıTØ Ø­ªØ Æز¹ØØ­ ²æØ ̶¬¬ ©̶ªæØ ̶ Ø Œ³­- Ł̶ßØ­²̶œ ¹æıœØ ı­ ©²æØ ²æØ ŁıTØ Ø­ªØ ̶ Ø ª©­ªØ¬²³- ̶œ 1 ıØ ²œØ½ イーーー *­ ºØ­Ø ̶œ Ø̶ ²æ®³̶øØ Ø ı ²̶­² ª© ŁØ æ̶µØ Æت©ßØ ß© Ø ØR­ØŁ ̶­Ł ª©ß¬œØ¼ ı­ªœ³Łı­º at each revision the current state-of-the-art knowledge. However, code compliance and code misinterpretation are prevalent, mainly because two reasons, users are not familiar with the concepts and technologies in- volved, or the parameters prescribed by codes are un- clearly presented (Alcocer and Castaño, 2008). Contemporary earthquake-resistant codes are de- veloped with the intention of ensuring serviceability requirements, life safety and collapse prevention dur- ing frequent, moderate, and major earthquakes, respec- ²ıµØœ½ *­ ²æØ œ̶mØ ª̶ Ø Ø¼²Ø­ ıµØ Ł̶ß̶ºØ ²© ²æØ structure may be acceptable as long as collapse is pre- vented (Moroni ز ̶œ., 1996). Design criteria admit in- elastic excursions when the structure is subjected to the earthquake characterizing the life safety limit state. This situation limits the force demands in the structural elements, hence allowing the use of smaller design strengths, at the cost of certain limited levels of struc- tural damage due to yielding of some portions of the structure (Ordaz and Meli, 2004). *­ ²æØ ŁØµØœ©¬ßØ­² ©Œ Øı ßıª ŁØ ıº­ ¬ ©µı ı©­ Œ© building structures, the most controversial part is the ŁØµØœ©¬ßØ­² ©Œ Æ©²æ ²æØ ² Ø­º²æ ß©ŁıRª̶²ı©­ ̶­Ł ²æØ Łı ¬œ̶ªØßØ­² ̶߬œıRª̶²ı©­ Œ̶ª²© *­ ²æØ R ² ª̶ Ø ¹æıœØ ² Ø­º²æ ß©ŁıRª̶²ı©­ Œ̶ª²© ¬ Ø ª ıÆØŁ ı­ Øı - mic codes, they are intended to account for damping, energy dissipation capacity, as well as for overstrength, ²æØ œØµØœ ©Œ ØŁ³ª²ı©­ ¬ØªıRØŁ ı­ Øı ßıª ª©ŁØ ı ¬ ı- marily based on observation of the performance of dif- ferent structural systems in previous strong earth- ®³̶øØ *­ ̶ŁŁı²ı©­ ²æØ Ø ı ̶ ¹ıŁØ ̶­ºØ ©Œ µ̶œ³Ø ı­ ŁıTØ Ø­² ª©ŁØ ̶ ²æØ ̶¬¬ ©¬ ı̶²Ø œØµØœ ©Œ Œ© ªØ ØŁ³ª- tion factor, it seems that the absolute value of the ² Ø­º²æ ı ©Œ Øœ̶²ıµØœ½ ßı­© ı߬© ²̶­ªØ *­ ²æØ ª̶ Ø ©Œ Łı ¬œ̶ªØßØ­² ̶߬œıRª̶²ı©­ Œ̶ª²© ²æØ ß© ² ª©ßß©­ assumption is the equal-displacement approximation, which states that the displacement of the inelastic sys- tem is the same as that of an equivalent system with the ̶ßØ Øœ̶ ²ıª ²ıT­Ø ̶­Ł ³­œıßı²ØŁ ² Ø­º²æ )©¹ØµØ this approximation is known to be non-conservative for short period structures (FEMA-451, 2006; Priestley ز ̶œ., 2007) or for structures whose period of vibration is close to the site period (Ordaz and Pérez, 1998). Resumen El desarrollo de nuevos reglamentos de diseño de estructuras sismorresis- tentes ha hecho posible que se garantice un mejor comportamiento de los ØŁıRªı© ª³̶­Ł© Ô ²© ©­ ©ßزıŁ© ̶ ̶ªªı©­Ø ç ßıª̶ 1© ²̶­²© Ø ª©­- µØ­ıØ­²Ø ®³Ø œ© غœ̶ßØ­²© ̶ª²³̶œØ ŁØ Łı Øü© ŁØ ØŁıRªı© Ø̶­ ª©­ªØ¬²³- ̶œßØ­²Ø ² ̶­ ¬̶ Ø­²Ø Ø­ ª³̶­²© ̶ œ̶ ŁØR­ıªıŸ­ ŁØ œ© Œ̶ª²© Ø ŁØ ß©Łı Rª̶ªıŸ­ ŁØ Ø ı ²Ø­ªı̶ ½ Ø­ œ̶ Œ© ß̶ ŁØ ص̶œ³̶ œ© ßÀ¼ıß© ŁØ ¬œ̶¾̶ßıØ­- tos laterales, de tal manera que los ingenieros estructurales puedan com- ¬ Ø­ŁØ ªœ̶ ̶ßØ­²Ø Øœ ¬ ©ªØ © ŁØ Łı Øü© &œ ¬ ©¬Ÿ ı²© ŁØ Ø ²Ø Ø ²³Łı© Ø ̶­̶œı¾̶ œ̶ ² ̶­ ¬̶ Ø­ªı̶ ŁØœ ª ı²Ø ı© ŁØ Łı Øü© ı ß© Ø ı ²Ø­²Ø ¬̶ ̶ ØŁıR- ªı© Ø­ .Ô¼ıª© ̶ ¬̶ ²ı ŁØ ³­̶ صı ıŸ­ ª ç²ıª̶ ŁØ œ© Œ̶ª²© Ø ŁØ ß©ŁıR- ª̶ªıŸ­ ŁØ Ø ı ²Ø­ªı̶ ½ ŁØ ̶߬œıRª̶ªıŸ­ ŁØ ŁØ ¬œ̶¾̶ßıØ­²© "ŁØßÀ Ø ̶­̶œı¾̶ Øœ Ø­Œ©®³Ø ŁØ œ© غœ̶ßØ­²© ŁØ Łı Øü© ŁØ ØŁıRªı© Ø­ & ²̶Ł© 6­ı- dos. Se concluye que los reglamentos de diseño sismorresistente en México æ̶­ ص©œ³ªı©­̶Ł© Ø­ ØR­̶ßıØ­²© ½ ª©ß¬œØłıŁ̶Ł "ŁØßÀ Ø ŁØß³Ø ² ̶ ®³Ø Øœ ¬ ©ªØŁıßıØ­²© Ø ¬ØªıRª̶Ł© Ø­ Łıªæ© غœ̶ßØ­²© ¬Ø ßı²Ø ŁØ²Ø ßı­̶ œ̶ Ø ı ²Ø­ªı̶ ŁØ Łı Øü© ½ œ© ŁØ ¬œ̶¾̶ßıØ­²© Ø­ ³­̶ Œ© ß̶ ßÀ ̶ªı©­̶œ ª©­- º ³Ø­²Ø ­© Ÿœ© ª©­ Øœ Ø ²̶Ł© ̶ª²³̶œ ŁØœ ª©­©ªıßıØ­²© ı­© ª©­ œ̶ ²Ø­ŁØ­- ªı̶ ª©­²Ø߬© À­Ø̶ ŁØ œ© غœ̶ßØ­²© ŁØ ØŁıRªı© 1© ©² © œ̶Ł© œ© ¬ ©ªØŁıßıØ­²© ³²ıœı¾̶Ł© Ø­ œ© غœ̶ßØ­²© ŁØ &6 ¬©Ł ç̶­ ­© ¬ ©¬© ªı©- ­̶ ³­̶ µı ıŸ­ ªœ̶ ̶ ¬̶ ̶ œ̶ ص̶œ³̶ªıŸ­ ŁØ œ̶ Ø ¬³Ø ²̶ ç ßıª̶ ŁØ ØŁıRªı© Descriptores: reglamentos mexicanos edificios diseño sismorresistente reducción de resistencia sobrerresistencia ductilidad amplificación de desplazamiento desplazamiento lateral
  • 3. 153 Carrillo Julián, Hernández-Barrios Hugo, Rubiano-Fonseca Astrid Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM The seismic design codes in Mexico are more than 70 years old. At several moments of their history, Mexi- can codes have contributed with new ideas and meth- ods, some of which have later been adopted in codes Øœ عæØ Ø 0 Ł̶¾ ̶­Ł .Øœı イーーエ .© ² ©Œ ²æØ ØT© ² ²© develop the Mexican codes have been made in Mexico City, the capital and largest city in the country; almost 40% of the population lives in the capital and its metro- politan area. Agencies of the Federal Government have ı ³ØŁ ²̶­Ł̶ Ł ̶­Ł ß̶­³̶œ *­ ²Ø ß ©Œ ª©­ ² ³ª²ı©­ practices in Mexico, observations have indicated that lack of compliance with technical standards; adequate design and construction practices are becoming prob- œØß ı­ .ؼıª© $ı²½ 0­Ø ıº­ıRª̶­² Ø̶ ©­ Œ© ²æØ œ̶ªø of compliance with construction codes is that, require- ments are dissociated from current construction tech- nology and practice, and are understood and correctly applied by only a few designers and contractors. There ı ̶ µ̶ ² ŁıTØ Ø­ªØ Æز¹ØØ­ ²æØ œØµØœ ©Œ ؼ¬Ø ²ı Ø ̶­Ł quality of practice of a relatively small group of well- informed specialist and academics, and that of most professionals and construction workers (Alcocer and Castaño, 2008). On the other hand, after some lessons learned from earthquakes that occurred in Chile and Mexico in 1985, Bertero (1986) proposed two solutions Œ© ²æØ ı߬ ©µØßØ­² ©Œ 64 Ø̶ ²æ®³̶øØ Ø ı ²̶­² ŁØ ıº­ of building structures: an ideal (rational) method and a compromise solution. Bertero (1986) emphasizes that Ø̶ ²æ®³̶øØ Ø ı ²̶­ªØ ª̶­­©² ÆØ ıº­ıRª̶­²œ½ Ø­æ̶­ªØŁ simply by increasing the seismic forces because the forces developed during an earthquake shake depend ©­ ²æØ ̶ª²³̶œ ²ıT­Ø ² Ø­º²æ ̶­Ł æ½ ²Ø زıª ªæ̶ ̶ª- teristic supplied to the constructed building. The goals of this paper are: (ı) to provide an over- view of development and most relevant changes of earthquake-resistant design codes in Mexico, and (ıı) to compare and analyze seismic-design approaches speci- RØŁ ƽ 64 ̶­Ł .ؼıª̶­ ª©ŁØ 5æØ ²³Ł½ ı­ªœ³ŁØ ŁØ discussion of the most important parameters for seis- ßıª ŁØ ıº­ ³ªæ ̶ ² Ø­º²æ ß©ŁıRª̶²ı©­ Œ̶ª²© Łı - ¬œ̶ªØßØ­² ̶߬œıRª̶²ı©­ Œ̶ª²© ̶­Ł Ł ıŒ² œıßı² 5æØ results are presented in a common format that allows a straightforward comparison. Strength modification factors As an understanding developed in the 1960s and 1970s of the importance of inelastic structural response to large earthquakes, the research community became in- ª Ø̶ ı­ºœ½ ı­µ©œµØŁ ı­ ̶mØ߬² ²© ®³̶­²ıŒ½ ²æØ ı­Øœ̶ ²ıª deformation capacity of structural components. The seismic design philosophy of most current building codes allows most structures to undergo inelastic de- formations in the event of strong earthquake ground motions. As a result, the designed lateral strength can be lower than that required to maintain the structure in the elastic range. The evolution of seismic codes and ¬ ̶ª²ıªØ ı­ 64 ̶­Ł .ؼıª© ̶ Ø Æ ıØS½ ŁØ ª ıÆØŁ ̶­Ł ª ı²ıª̶œœ½ ̶­̶œ½¾ØŁ ı­ ²æØ Œ©œœ©¹ı­º ت²ı©­ *­ ©ßØ ª̶ Ø ²æØ ­©²̶²ı©­ æ̶ ̶œ © ÆØØ­ ß©ŁıRØŁ Œ ©ß ²æØ original codes) in order to make comparisons among them. Strength reduction factor due to nonlinear hysteretic behavior *­ ²æØ œı­Ø̶ œ½ Øœ̶ ²ıª ¬Ø ŒØª²œ½ ¬œ̶ ²ıª ª³ µØ ı­ 'ıº³ Ø 1, the displacement ductility ratio o ı ŁØR­ØŁ ̶ ²æØ ratio of maximum relative displacement to its yield displacement (o = Fß̶¼/F½). The displacement is com- ß©­œ½ ؼ¬ Ø ØŁ ı­ ²Ø ß ©Œ ²© ½ Ł ıŒ² *­ ̶ŁŁı²ı©­ ı² is customary to divide the story drift by the story height and express it as a percentage of this height. An adequate design is accomplished when a structure is dimensioned and detailed in such a way that the local (story and member) ductility demands are smaller than their corresponding capacities. Thus, during the preliminary design of a structure, there is a need to estimate the lateral strength (lateral load capacity) of the structure that is required in order to limit the glob- al (structure) displacement ductility demand to a cer- tain pre-determined value which results in the adequate control of local ductility demands (Miranda and Bertero, 1994). Since a properly designed structure usually can pro- vide a certain amount of ductility, the structure has ca- Figure 1. Idealized structural response: equal displacement approximation
  • 4. Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM 154 pacity to dissipate hysteretic energy. Because of this energy dissipation, the structure can be designed eco- nomically and thus, the elastic design force Ve can be reduced to a yield strength level V½, by the factor Ro (V½ = Ve / Ro) (Moroni ز ̶œ., 1996), and the corresponding maximum deformation demand is Fß̶¼ 'ıº³ Ø ア *­ ̶ linearly elastic-perfectly plastic model (Figure 1), the yield strength level refers to the structural collapse lev- el (F = Fß̶¼ ­©² ²© ²æØ œØµØœ ©Œ R ² ıº­ıRª̶­² ½ıØœŁı­º For a correct evaluation of the reduction factor Ro, it is necessary to guarantee that the structure is able to ac- commodate the maximum displacement demand Fß̶¼ in Figure 1, preventing collapse. *­ ºØ­Ø ̶œ Œ© ² ³ª²³ Ø Ø ¬©­Łı­º ı­Øœ̶ ²ıª̶œœ½ during earthquake ground motions, inelastic deforma- tions increase as the lateral yielding strength of the structures decreases, or as the design reduction factor increases. For design purposes, Ro corresponds to the maximum reduction in strength that is consistent with limiting the displacement ductility ratio demand to the pre-determined target ductility oı , in a structure that will have strength equal to the designed lateral strength (Miranda and Bertero, 1994). A 5% equivalent viscous damping ratio is usually considered in the computation of the reduction factor Ro 6̶­º アケクケ Several studies (i.e., Miranda and Bertero,1994; Or- daz and Pérez, 1998; Avilés and Pérez, 2005) agree that for a given ground motion, the reduction factor Ro is ¬ ıß̶ ıœ½ ı­S³Ø­ªØŁ ­©² ©­œ½ ƽ ²æØ œØµØœ ©Œ ı­Øœ̶ ²ıª deformation, but also by the natural period of the struc- ture T, the soil conditions at the site, and the soil-struc- ture interaction. Since the strength reduction factor Ro is a function of the ground motion for a given system undergoing a ductility demand oı, the reduction will be ŁıTØ Ø­² Œ© ŁıTØ Ø­² º ©³­Ł ß©²ı©­ 4©ıœ ª©­Łı²ı©­ ̶² ı²Ø ª̶­ æ̶µØ ̶­ ı߬© ²̶­² ØTت² ©­ Ro, particularly Œ© µØ ½ ©Œ² ©ıœ 0²æØ Œ̶ª²© ²æ̶² ß̶½ ̶Tت² ²æØ Ø- duction factor Ro, but to a much lesser degree, are the damping and the type of hysteretic behavior of the ² ³ª²³ Ø ³­ŁØ ²æØ ̶ ³ß¬²ı©­ ²æ̶² ²æØ Ø ı ­© ıº­ıR- cant strength deterioration). Strength amplification factor due to overstrength Real structures are usually much stronger than re- quired by design. This extra strength, when recognized, can be used to reduce the ductility demands. For in- stance, if the overstrength were so large that the re- sponse was elastic, the ductility demand would be less than 1.0 (FEMA-451, 2006). The role of overstrength is صح ß© Ø ıº­ıRª̶­² Œ© ƳıœŁı­º ¹ı²æ æ© ² ¬Ø ı©Ł Æت̶³ Ø Ł³ª²ıœı²½ ı ı­ØTت²ıµØ ı­ ØŁ³ªı­º ²æØ Ø®³ı ØŁ Øœ̶ ²ıª ² Ø­º²æ ı­ ²æı ¬Ø ı©Ł ̶­ºØ *­ ̶ŁŁı²ı©­ ²æØ seismic overstrength factor will also be higher if the building is located in low seismic zones, because grav- ity and wind loads are more likely to govern the design 6̶­º アケクケ /©²Ø ²æ̶² ©µØ ² Ø­º²æ ŁıŁ ­©² Ø­²Ø ı­²© the previous discussion because the structural response was considered an idealized system. The additional strength reduction is due to the fact that lateral strength of a structure is usually higher and, in some cases, much higher that the nominal strength capacity of the structure. We can divide this reduction to take into account the additional strength from the ­©ßı­̶œ ² Ø­º²æ ²© ²æØ Œ© ß̶²ı©­ ©Œ ²æØ R ² ¬œ̶ ²ıª hinge and the additional strength from this point to the formation of a mechanism (Miranda, 1997). The sys- ²Øß ©µØ ² Ø­º²æ Œ̶ª²© ı ŁØR­ØŁ ̶ ²æØ ¬ ©Ł³ª² ©Œ ²æØ Œ©œœ©¹ı­º ı­ŁØ¬Ø­ŁØ­² ©µØ ² Ø­º²æ Œ̶ª²© 6̶­º 1989): (ı) development of sequential plastic hinges in redun- dant structures, (ıı ß̶²Ø ı̶œ ² Ø­º²æ æıºæØ ²æ̶­ ²æ© Ø ¬ØªıRØŁ ı­ ²æØ design, (ııı) strength reduction factors, (ıµ ¬ØªıRØŁ ت²ı©­ ̶­Ł Øı­Œ© ªØßØ­² ¬̶mØ ­ º Ø̶²- er than those required in design, (v) nonstructural elements, and (vi) variation of lateral forces (Varela ز ̶œ., 2004). *² ı ­©² ³­ª©ßß©­ Œ© ²æØ ² ³Ø ² Ø­º²æ ©Œ ̶ ² ³ª²³ Ø to be two or three times the design strength (FEMA- 451, 2006). One important source of overstrength in many structures is the design procedure itself. The structure must be analyzed using forces reduced with a factor that depends on the structure’s global ductility capacity rather than the displacement itself. However, the global behavior of the structure is not, in general, linearly elas- tic-perfectly plastic; it would be so if all structural members had linearly elastic-perfectly plastic behavior and they yielded at the same time. This consideration implies that, in many cases, the real strength is higher than its nominal strength (Ordaz and Meli, 2004). Consider, for example, the typical global structural response in Figure 2. The design strength of a structure, VŁ ı Ø®³̶œ ²© ²æØ Ø ı ²̶­ªØ ̶² R ² ıº­ıRª̶­² ½ıØœŁ *Œ ²æØ æı­ºı­º غı©­ æ̶ ̶ŁØ®³̶²Ø Ł³ª²ıœı²½ ı² ª̶­ ³ - tain increased plastic rotations without loss of strength. 5æØ R ² æı­ºØ ²© Œ© ß ı ª©­²ı­³ı­º ²© ©²̶²Ø ı­Øœ̶ ²ı- cally but has not reached its rotational capacity. As ad- ditional load is applied to the structure, the other ¬©²Ø­²ı̶œ æı­ºı­º غı©­ ©Œ ²æØ ² ³ª²³ Ø ¹ıœœ ̶m ̶ª² additional moment until they begin to yield (FEMA-
  • 5. 155 Carrillo Julián, Hernández-Barrios Hugo, Rubiano-Fonseca Astrid Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM 451, 2006). Even more load can be applied as additional æı­ºØ Œ© ß )©¹ØµØ ²æØ R ² æı­ºØ ²© Œ© ß ̶ Ø ­Ø̶ their rotational capacity and may begin to loose strength. )Ø­ªØ ²æØ Æ̶ªøÆ©­Ø ª³ µØ Æغı­ ²© S̶mØ­ "² ²æØ ³œ²ı- ß̶²Ø ²̶ºØ ²æØ ² ³ª²³ Ø æ̶ R­̶œœ½ Ø̶ªæØŁ ı² ² Ø­º²æ and deformation capacity. The additional strength be- yond the design strength is called the overstrength and the total strength of the system is referred to as the ac- tual maximum strength, V½. Figure 2 shows that the overstrength factor Y can be ŁØR­ØŁ ̶ ²æØ ̶²ı© Æز¹ØØ­ V½ and VŁ (Y = V½/VŁ), the œ̶mØ ÆØı­º ²æØ Ø®³ı ØŁ ² Ø­º²æ ¬ Ø ª ıÆØŁ ƽ ª©ŁØ that use a strength design approach (Moroni ز ̶œ., 1996). Existence of structural overstrength has been ex- plicitly recognized in some building codes in the world. "œ²æ©³ºæ ²æØ ØTت² ©Œ ©µØ ² Ø­º²æ 橳œŁ ÆØ ̶ªª©³­²- ed for when evaluating member’s strength (increasing the strength), because of the limitations when using ad- vanced non-linear analysis techniques by practicing en- ºı­ØØ ı² ı ­ØªØ ̶ ½ ²© ª©­²ı­³Ø ̶¬¬œ½ı­º ²æØ ØTت² ©Œ overstrength as a reduction factor to the loads instead ©Œ ̶­ ̶߬œıRª̶²ı©­ Œ̶ª²© ²© ²æØ ² Ø­º²æ 0 Ł̶¾ ̶­Ł Meli, 2004). However, the use of force demands lower than those developed in the structure can be unsafe for designing of the foundation. Strength modification factors in US building codes *­ 64 ƳıœŁı­º ª©ŁØ ̶­Ł ¬ ©µı ı©­ ³ªæ ̶ *#$ ーケ /&)31 ーウ ̶­Ł "4$& キ アー ²æØ Œ̶ª²© ³ ØŁ ²© ª̶œª³œ̶²Ø the reduced design base shear and design seismic forc- Ø ©Œ ̶ ² ³ª²³ ̶œ ½ ²Øß ı ª̶œœØŁ Ø ¬©­ Ø ß©ŁıRª̶- tion factor R. This factor R ı ŁØR­ØŁ ̶ ²æØ ̶²ı© between the base shear developed in the structure if it were to remain in the elastic range and the minimum required base shear to resist the seismic action and to accommodate nonlinear displacements without any risk to its stability (Moroni ز ̶œ アケケカ ' ©ß 'ıº³ Ø ウ ²æØ ²©²̶œ ² Ø­º²æ ß©ŁıRª̶²ı©­ Œ̶ª²© 3 can be consid- ered as the product of the ductility reduction factor Ro and the structural overstrength factor Y (Varela ز ̶œ., 2004). Y ? ? o R V V R d e (1) Most of investigations reviewed by Miranda and Bertero (1994) recommended the use of period-dependent ² Ø­º²æ ØŁ³ª²ı©­ Œ̶ª²© *­ ̶ŁŁı²ı©­ 6̶­º アケクケ æ̶ established basic formulas for evaluating 3 factor from the global structure response characterized by the rela- tionship between the base shear ratio and the story drift. *² ı ­©²Ø¹© ²æ½ ²æ̶² ² Ø­º²æ ØŁ³ª²ı©­ Œ̶ª²© 3 pre- ª ıÆØŁ ƽ ª³ Ø­² 64 ª©ŁØ ̶ Ø ı­ŁØ¬Ø­ŁØ­² ©Œ ¬Ø ı©Ł ©Œ vibration, which is incorrect and thus, their use is not recommended (Miranda, 2007; Tena ز ̶œ., 2009). Even though the equations presented by Miranda and Bertero (1994) seem reasonable and may be incor- ¬© ̶²ØŁ ı­ Œ³²³ Ø 64 Øı ßıª ª©ŁØ ²æØ Ø̶œı²½ ı ²æ̶² today (2012) single values of the 3 factors are still pro- ¬© ØŁ ı­ ²æ© Ø Øı ßıª ª©ŁØ ²© ŁØ ıº­ ŁıTØ Ø­² ² ³ª- tural systems (Varela ز ̶œ., 2004). For instance, current Øı ßıª ŁØ ıº­ ¬ ©µı ı©­ ı­ 64 Ł© ­©² Ø®³ı Ø ŁØ ıº­- ers to quantify R and Y factors. Table 12.2-1 of ASCE Figure 2. General structural response Figure 3. Procedure in US building codes
  • 6. Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM 156 7-10 provides R factors for a large number of structural systems. Table 1 shows the factors for a few selected concrete and steel systems. 8æØ­ ŁØ ıº­ı­º ²æØ ØœØßØ­² ²æØ "$* ウアク アア #³ıœŁ- ing Code mainly relies on conventional force-based limit states (i.e. ultimate limit state) and on a service- ability limit state, but they do not include an explicit relationship between displacement demand and capac- ı²½ *­ ̶­ ̶mØ߬² ²© ß̶øØ 64 ƳıœŁı­º ª©ŁØ ª©­ªØ¬²³- ̶œœ½ ² ̶­ ¬̶ Ø­² ­Ø¹ ØŁı²ı©­ ©Œ ²æØ "$* ウアク アア ¬ØªıRØ explicitly an overstrength factor Y0. This factor is relat- ed to the seismic-force-resisting system used for the structure, and is used for the design of certain fragile elements that are incapable to dissipate energy in the non linear range, such as certain wall piers, anchors and collector elements, or where greater concerns about shear failure remain. For designing such elements, the design shear force need not exceed Y0 times the fac- tored shear determined by analysis of the structure for Ø̶ ²æ®³̶øØ ØTت² 5æØ ̶߬œıRª̶²ı©­ Œ̶ª²© Y0 ranges Æز¹ØØ­ ア オ ̶­Ł ウ ー ŁØ¬Ø­Łı­º ©­ ²æØ ²½¬Ø ©Œ Øı ßıª ½ ²Øß *­ ²æı ̶¬¬ ©̶ªæ ²æØ ŁØ ıº­ æØ̶ Œ© ªØ ı ª©ß- puted as Y0 times the shear induced under design dis- placements. Strength modification factors in Mexican codes The Mexico City Building Code for seismic design of ƳıœŁı­º /5$ 4 ーエ æ̶ ÆØØ­ ̶ ß©ŁØœ ª©ŁØ ı­ .ؼıª© for the drafting of most of the Mexican codes, which, by law, is of the municipal competence (Ordaz and Meli, 2004). Agencies of the Federal Government have issued standards and manuals, such as the Manual of Civil Structures MDOC-08. This manual is ̶ µØ ½ ª©ß¬ ØæØ­ ıµØ ª©ŁØ ²æ̶² ¬ØªıRª̶œœ½ ̶ŁŁ Ø - es the design of several structural systems (buildings, bridges, dams, power stations, industrial facilities, etc.) to such hazards as earthquakes and winds. This manual is another model design code in Mexico (Tena ز ̶œ., 2009). .ؼıª© $ı²½ ƳıœŁı­º ª©ŁØ /5$ 4 ーエ ı­ªœ³ŁØ two procedures for seismic design of buildings: main Æ©Ł½ ̶­Ł ̶¬¬Ø­Łı¼ " *­ ²æØ ß̶ı­ Æ©Ł½ ©Œ /5$ 4 ーエ and in the previous version of MDOC, spectra are not Øœ̶²ØŁ ²© Øœ̶ ²ıª Øı ßıª ŁØß̶­Ł *­ ²æØ Ø ª©ŁØ ²æØ elastic design spectrum is obtained by dividing the spectral ordinates by a somewhat obscure reductive seismic force factor that accounted for everything (ductility, redundancy, overstrength, etc.) (Tena ز ̶œ., 2009). Hence, the overstrength parameter is implicitly included in the spectrum, so that it is an invisible pa- rameter for the engineer. Thus, their use is not recom- ßØ­ŁØŁ *­ ²Ø̶Ł ¬Øª² ̶ ¬ØªıRØŁ ƽ ̶¬¬Ø­Łı¼ " ©Œ /5$ 4 ーエ © ƽ .%0$ ーク 橳œŁ ÆØ ³ ØŁ .ı ̶­Ł̶ 2007; Tena ز ̶œ., 2009). For clarity in the design process, there is an impor- tant conceptual adjustment in the reduction of elastic Ø ¬©­ Ø ¬̶ ̶ßØ²Ø Œ© ŁØ ıº­ ı­ ̶¬¬Ø­Łı¼ " ©Œ /5$ 4 ーエ ̶­Ł ı­ .%0$ ーク *­ ²æØ Ø ª©ŁØ ŁØ ıº­ ¬Øª² ̶ ̶ Ø ı²Ø ¬ØªıRª ̶­Ł µ̶œ³Ø ©Œ ©µØ ² Ø­º²æ ¬̶ ̶ßØ²Ø ̶ Ø Ø¼¬œıªı²œ½ ¬ØªıRØŁ Æت̶³ Ø ²æØ ŁØ- sign spectra are not reduced by an over- strength parameter Y (Alcocer and $̶ ²̶ü© イーーク *­ Œ̶ª² ²æØ ¬ ©¬© ̶œ Œ© the Y factor in MDOC-08 is an improved version of the one presented in appen- Łı¼ " ©Œ /5$ 4 ーエ *­ ̶¬¬Ø­Łı¼ " ©Œ /5$ 4 ーエ Y is independent of the structural system. This conceptual æ© ²ª©ßı­º ı R¼ØŁ ı­ .%0$ ーク where it is also recognized that the over- strength that a structure can develop under earthquake loading strongly de- pends on the structural system, as it is done in other modern seismic codes, ³ªæ ̶ "4$& キ アー ̶­Ł *#$ ーケ 5Ø­̶ ز ̶œ., 2009). The general procedure of seis- mic design prescribed by MDOC-08 and by appendix A is shown in Figure 4, where Q’ is a seismic reduction force factor that accounts primarily for ductil- ity (deformation) capacity, Y is an over- Table 1. Design factors specified by ASCE 7-10 for building structures Structural system R Y0 Rm=R/Y0 Cd Reinforced concrete structures Special moment frame 8.0 3.0 2.7 5.5 Intermediate moment frame 5.0 3.0 1.7 4.5 Ordinary moment frame 3.0 3.0 1.0 2.5 Special reinforced shear wall 5.0 2.5 2.0 5.0 Ordinary reinforced shear wall 4.0 2.5 1.6 4.0 Detailed plain concrete wall 2.0 2.5 0.8 2.0 Ordinary plain concrete wall 1.5 2.5 0.6 1.5 Steel structures Special moment frame 8.0 3.0 2.7 5.5 Intermediate moment frame 4.5 3.0 1.5 4.0 Ordinary moment frame 3.5 3.0 1.2 3.0 Eccentric braced frame 8.0 2.0 4.0 4.0 Eccentric braced frame (pinned) 7.0 2.0 3.5 4.0 Special concentrically braced frame 6.0 2.0 3.0 5.0 Ordinary concentric braced frame 3.3 2.0 1.6 3.3 Not detailed 3.0 3.0 1.0 3.0
  • 7. 157 Carrillo Julián, Hernández-Barrios Hugo, Rubiano-Fonseca Astrid Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM strength factor that depends on the structural period and/or the structural system. *­ ²æØ .%0$ ーク ª©ŁØ ̶­Ł ı­ ̶¬¬Ø­Łı¼ " ©Œ /5$ S-04, the seismic force reduction factor Q’ stands only for the approximate ductility deformation capacity of the selected structural system, given in terms of the Øı ßıª Ø ¬©­ Ø ß©ŁıRª̶²ı©­ Œ̶ª²© Q. The proposed Q’ factor is not constant and depends on the structural period T ̶­Ł ²æØ ı²Ø ¬Ø ı©Ł *­ Œ̶ª² Q’ is the ratio be- tween the minimum strength required to limit a struc- tural system to an elastic response and the strength required for a structural system to limit its ductility ca- pacity to a given Q value (Tena, 2009). The seismic re- ¬©­ Ø ß©ŁıRª̶²ı©­ Œ̶ª²© Q of Mexican codes account primarily for the deformation capacity of the structural system. Therefore, it is valid to compare the Q factors used in the design of the building with respect to the global ductility demand. The values of Q established by ̶œœ ß©ŁØ ­ .ؼıª̶­ ª©ŁØ ̶ Ø ア ア オ イ ウ ̶­Ł エ ̶­Ł ²æؽ depend on the selected structural system (Tena ز ̶œ., 2009). Hence, parameters Q’ and Q prescribed by .%0$ ーク ª©ŁØ ̶­Ł ƽ ̶¬¬Ø­Łı¼ " ©Œ /5$ 4 ーエ ̶ Ø Ø- lated to Ro and o, respectively. 5æØ アケキカ .ؼıª© $ı²½ #³ıœŁı­º $©ŁØ ¹̶ ²æØ R ² earthquake-resistant code to prescribe explicitly peri- od-dependent strength reduction factors, which ac- count for smaller reductions in the short period range (Rosenblueth, 1979). That code included a bilinear Ro ¬Øª² ³ß ̶ ̶ Œ³­ª²ı©­ ©Œ ²æØ ©ıœ ª©­Łı²ı©­ ̶ ØSت²ØŁ ı­ ²æØ ßıª © ¾©­̶²ı©­ ©Œ ²æØ ªı²½ *­ ØTت² Œ̶ª²© Ro was linearly interpolated between 1.0 and the displacement ductility ratio o (termed as Q ı­ ²æ̶² ª©ŁØ Œ© ²ıT ² ³ª- tures falling in the linear ascending branch of the de- sign spectrum. For all other periods, the force reduction factor was o (Alcocer and Castaño, 2008). The bilinear Ro spectrum, similar to that used in the Mexico City Code, has also been recommended in the Argentine Building Code (Sonzogni ز ̶œ., 1984). Then, bilinear ex- pressions for Ro ¹Ø Ø ³ººØ ²ØŁ 5 © ̶­Ł /̶³ß© øı 1991) to improve the period-independent reduction fac- ²© ©Œ ²æØ アケケー ØŁı²ı©­ ©Œ ²æØ /̶²ı©­̶œ #³ıœŁı­º $©ŁØ ©Œ Canada. Period-dependent Ro factors have been pro- ¬© ØŁ 6̶­º アケクケ Œ© ­Ø¹ µØ ı©­ ©Œ ²æØ $æıœØ̶­ Øı - mic code. Parameters t, AªŁ and c are included in MDOC-08 only. The introduction of a redundancy factor t in MDOC-08 is a new concept for Mexican seismic codes. Factor t basically corrects the previous assessment of the overstrength factor Y, as most of the available stud- ies where Y has been computed using 2-D models with ŁıTØ Ø­² ŁØº ØØ ©Œ ØŁ³­Ł̶­ª½ 5æı Œ̶ª²© ت©º­ı¾Ø directly that structural systems are able to develop more strength and increase their deformation capacity ̶ ²æؽ Æت©ßØ ß© Ø ØŁ³­Ł̶­² *­ ̶ŁŁı²ı©­ ²æı Œ̶ª²© takes into account unfavorable performances of weak- ly-redundant structures in strong earthquakes occurred ¹© œŁ¹ıŁØ ı­ ²æØ œ̶ ² ウオ ½Ø̶ 5æı Œ̶ª² ı ¹Øœœ ø­©¹­ by the structural engineering community worldwide. However, it seems some seismic codes have come up short before, by not recognizing that a more redundant structural system under lateral loading should be al- lowed to be designed with higher reductions and that weakly-redundant systems should be penalized and be ŁØ ıº­ØŁ ¹ı²æ ß̶œœØ ØŁ³ª²ı©­ *² ı ̶œ © ¹© ²æ ­©²- ing that the value of t may vary in each main orthogo- nal direction (Tena-Colunga, 2009). Factor t varies between 0.8 and 1.25. The value de- pends on number of bays and lines of defense in the direction of analysis. One-bay framed buildings are now penalized with t = 0.8, because they are weakly- redundant, and their observed performance during ² ©­º Ø̶ ²æ®³̶øØ æ̶µØ ÆØØ­ ¬©© *² ı æ©¬ØŁ ²æ̶² ²æı approach would help structural engineers to promote the use of more redundant structural systems in zones of high earthquake hazard and to limit or avoid the use of weakly-redundant structures (Tena ز ̶œ., 2009). The introduction of a correction factor AªŁ to account Œ© ²ıT­Ø ̶­Ł © ² Ø­º²æ ŁØº ̶Ł̶²ı©­ ³­ŁØ ª½ªœıª loading of reinforced concrete (RC) structural systems located in soft soils, is also a new concept for the seis- ßıª ª©ŁØ ı­ .ؼıª© *² æ̶ ÆØØ­ 橹­ ²æ̶² œ©¹ ª½ªœØ fatigue is very important in the seismic behavior of ²ıT­Ø ̶­Ł ² Ø­º²æ ŁØº ̶Łı­º ½ ²Øß ³ªæ ̶ ß̶- ©­ ½ ̶­Ł 3$ ² ³ª²³ Ø $̶ ıœœ© ̶­Ł "œª©ªØ イーアウ located in soft soils where large durations of the earth- Figure 4. Procedure in modern Mexican codes
  • 8. Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM 158 quake motions are observed, such as in the lake bed zone of Mexico City (Tena ز ̶œ., 2009). " ı­ ¬ صı©³ µØ ı©­ .%$0 ーク ŁØR­Ø アア ª©­- ditions of regularity for elevation and plan analysis that buildings must satisfy to directly use the reduc- tive seismic force factor Q *Œ ̶ ƳıœŁı­º ² ³ª²³ Ø ̶²- ı RØ ̶œœ アア ª©­Łı²ı©­ ©Œ ² ³ª²³ ̶œ غ³œ̶ ı²½ ı² ı ŁØR­ØŁ ̶ ̶ غ³œ̶ ² ³ª²³ Ø © Q’ remains un- changed. However, if at least one conditions of struc- ²³ ̶œ غ³œ̶ ı²½ ı ­©² ̶²ı RØŁ ²æØ Æ³ıœŁı­º ı ŁØR­ØŁ as irregular structure, and then Q’ is reduced for de- sign purposes using the corrective reduction factor c that varies between 1.0 (regular structure) and 0.7, and depends on the degree of irregularity according to MDOC-08. For design purposes, irregular buildings must be designed for higher forces but required to ª©ß¬œ½ ¹ı²æ ²æØ œ̶²Ø ̶œ ²© ½ Ł ıŒ² ª ı²Ø ı̶ ¬ØªıRØŁ Œ© regular buildings (Tena ز ̶œ., 2009). Deflection amplification factor 5æØ Ø®³ı ØßØ­² ©Œ ̶ ² Ø­º²æ œØµØœ ı ı­ ³UªıØ­² ̶ ²æØ only parameter for seismic design. Therefore, it is nec- essary to combine it with an adequate criterion to esti- mate the maximum displacements that a structure will have to accommodate during the action of a severe earthquake. The most common assumption is the equal-displacement approximation. This approxima- tion implies that “the displacement of an inelastic sys- ²Øß ¹ı²æ ²ıT­Ø K and strength V½, subjected to a particular ground motion, is approximately equal to the displacement of the same system responding elasti- ª̶œœ½ '&." エオア イーーカ 'ıº³ Ø ア 橹 ²æ̶² ²æØ Ø®³̶œ displacement approximation of seismic response im- plies that o = Ro (Priestley, 2000). The equal-displace- ment approximation implies that peak displacements may be related to peak accelerations assuming sinusoi- dal response equations, which is reasonable approxi- mation for medium period structures (Priestley ز ̶œ., 2007) of or for structures whose period of vibration is distant from the site period (Ordaz and Pérez, 1998). An apparently conservative assumption (with regard to displacements) is shown in Figure 1. The basis assump- tion is that the displacement demand is relatively in- sensitive to system yield strength V½, because the value of Fß̶¼ will be the same for any value of V½ (FEMA-451, 2006). For design purposes, it may be assumed that inelas- tic displacements are equal to the displacement that would occur during an elastic response. The required force levels under inelastic response are much less than the force levels required for elastic response. The equal displacement concept allows structural engineers to use elastic analysis to predict inelastic displacements, that is, the displacements from the reduced-force elastic analysis must be multiplied by the ductility ratio to ¬ ©Ł³ªØ ²æØ ² ³Ø ı­Øœ̶ ²ıª Łı ¬œ̶ªØßØ­² *² æ̶ ÆØØ­ 橹­ ²æ̶² ²æØ Ø®³̶œ Łı ¬œ̶ªØßØ­² ̶¬- proximation is non-conservative for short period structures and therefore, the equal energy approxima- tion should be applied for these structures. Thus, in ²æØ R ² غı©­ ©Œ ²æØ ¬Øª² ³ß Ro increases linearly with increasing period from Ro = 1 to a value which is near to the value of the ductility ratio o (FEMA-451, イーーカ "4$& キ アー ØTت²ıµØœ½ ØŁ³ªØ ²æØ ̶ªªØœØ ̶²ı©­ spectrum by a strength reduction factor at all period ranges. However, the ASCE 7-10 provisions allows no reduction to the peak ground acceleration in the very short period region (acceleration spectrum with a con- stant plateau that extends from T = 0 s) so this partially ª©ß¬Ø­ ̶²Ø Œ© Ø © ı­ Ø®³̶œ Łı ¬œ̶ªØßØ­² ̶ - ³ß¬²ı©­ ̶² æ© ² ¬Ø ı©Ł µ̶œ³Ø '&." エオア イーーカ *­ the medium region of the spectrum, the reduction fac- tor Ro is only slightly dependent on the period of vi- bration T. For very long periods, the Ro factor maintains a constant value equal to the prescribed ductility o, and thus, the equal displacement approximation can be applied (Ro = o '&." エオア イーーカ 4ı߬œıRØŁ ؼ- pressions to obtain analytical estimates of the strength reduction factors have been proposed. According to /عß̶ ø ̶­Ł )̶œœ アケクイ Œ© ² ³ª²³ Ø ¹ı²æ œ©­º medium and short periods, Ro = o, Ro = (2o – 1)0.5 , and Ro = 1, respectively. These expressions indicate that Ro/o is not greater than 1. Moreover, this ratio is sig- ­ıRª̶­²œ½ œØ ²æ̶­ ア Œ© ² ³ª²³ Ø ¹ı²æ ßØŁı³ß ̶­Ł short periods. Displacement amplification Most codes recognize that a structure’s actual deforma- tion may be several times the elastics displacements es- timated from the action on the prescribed seismic design forces (Moroni ز ̶œ アケケカ *­ © ŁØ ²© Ø ²ıß̶²Ø maximum expected displacements of structure includ- ı­º ØTت² ©Œ ı­Øœ̶ ²ıª ŁØŒ© ß̶²ı©­ Fß̶¼, displacements from elastic analysis, with reduced forces FŁ, are ampli- RØŁ ƽ ²æØ Łı ¬œ̶ªØßØ­² ̶߬œıRª̶²ı©­ Œ̶ª²© CŁ. This factor can also be derived from Figure 2 as follows 6̶­º アケクケ Y ? F F F F ? F F ? o d y y d d C max max (2)
  • 9. 159 Carrillo Julián, Hernández-Barrios Hugo, Rubiano-Fonseca Astrid Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM From these derivations, it is observed that CŁ factors a function of the structural overstrength factor, the struc- ²³ ̶œ Ł³ª²ıœı²½ ̶²ı© ̶­Ł ²æØ Ł̶߬ı­º ̶²ı© ²æØ ØTت² ©Œ the damping ratio is generally included in the ductility reduction factor Ro. Displacement amplification factor in US building codes *­ 64 ƳıœŁı­º ª©ŁØ ²æØ Łı ¬œ̶ªØßØ­² ß©ŁıRª̶²ı©­ factor CŁ is used to compute the expected maximum in- elastic displacement from the elastic displacement in- duced by the seismic design forces. Based on the equal displacement approximation, the inelastic displace- ment demand is the same as the elastic displacement ŁØß̶­Ł 5æØ ̶¬¬ ©̶ªæ ©Œ 64 Øı ßıª ª©ŁØ Œ© Łı - placements is to determine design forces generated by VŁ. Then, the reduced design strength is distributed vertically and horizontally through the structure in or- der to determine members’ forces, and compute dis- placements using linear elastic analysis. The analysis domain represents the response of the linear elastic sys- tem as analyzed with the reduced forces. $œØ̶ œ½ ı­ 'ıº³ Ø ウ ²æØ Łı ¬œ̶ªØßØ­² FŁ predicted ƽ ²æı ̶­̶œ½ ı ¹©³œŁ ÆØ ²©© œ©¹ 64 Øı ßıª ŁØ ıº­ codes compensate through the use of the CŁ factor. To correct for the too-low displacement predicted by the reduced force elastic analysis, the “computed design Łı ¬œ̶ªØßØ­² FŁ should be multiplied by the factor CŁ to obtain estimate of true maximum inelastic response. This factor is always less than the R factor because R contains ingredients other than pure ductility (FEMA- 451, 2006). Both factors R and CŁ ¬ Ø ª ıÆØŁ ı­ 64 Øı - mic codes are primarily based on the observation of the ¬Ø Œ© ß̶­ªØ ©Œ ŁıTØ Ø­² ² ³ª²³ ̶œ ½ ²Øß ı­ ²æØ ¬̶ ² strong earthquakes, on consensus of engineering judg- ßØ­² ©­ ²Øªæ­ıª̶œ ł³ ²ıRª̶²ı©­ ̶­Ł ©­ ² ̶Łı²ı©­ /&- )31 ーウ 4ıßıœ̶ œ½ ²© R and Y factors, Table 1 of ASCE 7-10 provides the CŁ factor (see Table 1). Table 1 of ASCE 7-10 also provides the allowable story drift to be com- pared with true maximum inelastic drift. Table 2 shows that allowable drift ratio depends on risk category (im- portance) of the building. Displacement amplification factor in Mexican codes *­ ²æØ ß̶ı­ Æ©Ł½ ©Œ /5$ 4 ーエ ̶­Ł ı­ ²æØ ¬ صı©³ µØ - sion of MDOC, inelastic displacement demands gener- ally did not lead to suitable estimates because the values of the ratio Q/Q’ (Figure 4) are not adequate (Mi- randa, 2007; Tena ز ̶œ., 2009). One more drawback of some building codes for seismic design is that lateral Łı ¬œ̶ªØßØ­² ©Œ ƳıœŁı­º ̶ Ø Øµ̶œ³̶²ØŁ ı­ ̶ ŁØRªıØ­² way. For instance, allowable story drift ratios pre- ª ıÆØŁ ı­ ²æØ ß̶ı­ Æ©Ł½ ©Œ ²æØ /5$ 4 ーエ ̶ Ø Ø®³̶œ ²© 0.6% if non-structural elements are not separated from the structure, and 1.2% if non-structural elements are isolated. Actually, these values are not related to the displacements under the design earthquake, because ²æØ Ø¼¬Øª²ØŁ Ł ıŒ² µ̶œ³Ø ¹ıœœ ÆØ ıº­ıRª̶­²œ½ æıºæØ This fact results from using a design spectrum that is not adequate for calculating displacements under the ultimate level (Ordaz and Meli, 2004). Table 2. Story drift limits specified by ASCE 7-10 Structural system Drift limit Risk category I or II III IV Structures, other than masonry wall structures, 4 stories or less above the base with partitions that have been designed to accommodate the story drifts 2.5 % 2.0 % 1.5 % Masonry cantilever shear wall structures 1.0 % 1.0 % 1.0 % Other masonry shear wall structures 0.7 % 0.7 % 0.7 % All other structures 2.0 % 1.5 % 1.0 % Table 3. Story drift limits for collapse prevention specified by MDOC-08 for RC structures Structural system Drift limit Reinforced concrete structures Special ductile frame (m = 3 or 4) 3.0 % Ordinary or intermediate frame (m = 1 or 2) 1.5 % Concentric braced frame 1.5 % Dual system: walls with ductile frames (m = 3) 1.5 % Dual system: walls with ordinary or intermediate moments-resisting frame (m = 1 or 2) 1.0 % Steel structures Special ductile frame (m = 3 or 4) 3.0 % Ordinary or intermediate frame (m = 1 or 2) 1.5 % Eccentric braced frame 2.0 % Concentric braced frame 1.5 % Masonry structures Infill panels 0.60 % Confined wall system made with solid units and with horizontal steel reinforcement (joint reinforcement or wire mesh) 0.40 % Confined wall system: walls made with (i) solid units, and (ii) hollow units and horizontal steel reinforcement (joint reinforcement or wire mesh) 0.30 % Combined and confined wall system 0.30 % Confined wall system made with hollow units and without horizontal steel reinforcement (joint reinforcement or wire mesh) 0.20 % Unreinforced and unconfined wall system 0.15 %
  • 10. Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM 160 *­ ²æØ ̶¬¬Ø­Łı¼ " ©Œ /5$ 4 ーエ ̶­Ł ı­ .%0$ ーク actual lateral displacements are computed multiply- ing those obtained under reduced loads by certain fac- tors (Figure 4). The criterion for controlling the lateral displacements is improved, because these codes pro- pose revision of displacements for two limit states: serviceability and collapse prevention under maxi- mum credible earthquake. The review of drift limits Œ© ²æØ Ø µıªØ Ø̶ ²æ®³̶øØ ı ̶ ­©µØœ²½ ı­ .%0$ ーク *² ¹̶ ¬ ©¬© ØŁ ²© æ̶µØ ̶ ªœØ̶ œ½ ¬ØªıRØŁ Ø µıªØ œıßı² state, to limit displacements for earthquakes that oc- cur much more frequently than the collapse event. Damage to non-structural members should not be tol- erated for an earthquake like this one. For the service limit state, buildings should remain elastic, so the damage control of non-structural members is achieved by comparing the calculated elastic displacements with allowable drift ratios equal to 0.2% if non-struc- tural elements are connected to the structural system, or 0.4% if non-structural elements are properly sepa- rated from the structural system (Ordaz and Meli, 2004). For the collapse prevention limit state, story drifts are commonly computed by multiplying the reduced displacements from linear analysis for the reduced spectrum FŁ by QYt *­ ª©­² ̶ ² ¹ı²æ ²æØ ¬ صı©³ µØ - ı©­ ©Œ .%0$ © ı­ ²æØ ß̶ı­ Æ©Ł½ ©Œ /5$ 4 ーエ ¹æØ Ø ²æØ ²© ½ Ł ıŒ² œıßı² ̶ Ø ­©² ŁØR­ØŁ ı­ ²Ø ß ©Œ ²æØ ² ³ª²³ ̶œ ½ ²Øß ²æØ ²© ½ Ł ıŒ² œıßı² ŁØR­ØŁ ı­ MDOC-08 for collapse prevention are function of the structural system. The calculated displacements must be compared with allowable values (drift limits) given ı­ 5̶ÆœØ ウ Œ© ŁıµØ Ø ² ³ª²³ ̶œ ½ ²Øß 5̶ÆœØ ウ 橹 ²æ̶² ²æØ Ø µ̶œ³Ø ̶ Ø ıº­ıRª̶­²œ½ æıºæØ ²æ̶­ ²æ© Ø ¬ØªıRØŁ ı­ ²æØ ß̶ı­ Æ©Ł½ ©Œ /5$ 4 ーエ Æت̶³ Ø ²æØ ŁØ- ıº­ ¬Øª² ³ß ı ¬ØªıRØŁ ı­ ̶ ̶²ı©­̶œ ¹̶½ 0 Ł̶¾ ̶­Ł .Øœı イーーエ *­ ̶ŁŁı²ı©­ ­©²Ø ²æ̶² ¬ ©¬© ØŁ Ł ıŒ² œıßı² ß© ²œ½ ª©ı­ªıŁØ ¹ı²æ ¹æ© Ø Øª©ßßØ­ŁØŁ ı­ 64 ª©ŁØ "4$& キ アー *#$ ーケ ØØ 5̶ÆœØ イ Final remarks Modern design procedures give more emphasis to the deformation capacity of the system. For example, per- formance-based seismic design requires the explicit consideration of lateral displacement as a performance indicator, besides verifying the structural design through an essentially force-based procedure (Priest- ley, 2000). There is currently an intensive re-examina- tion of the approaches for seismic design of structures. This paper has summarized and discussed the ap- proach in the seismic design provisions for buildings in 64 ̶­Ł .ؼıª© 5æØ Œ©œœ©¹ı­º ª©­ªœ³ ı©­ ª̶­ ÆØ drawn from this study: /"*­ ²æØ ß̶ı­ Æ©Ł½ ©Œ /5$ 4 ーエ ̶­Ł ı­ ²æØ ¬ صı©³ µØ - sion of MDOC, the overstrength factor is implicitly in- cludedinthespectrum,sothatitisaninvisibleparameter Œ© ²æØ Ø­ºı­ØØ *­ ̶ŁŁı²ı©­ ı­Øœ̶ ²ıª Łı ¬œ̶ªØßØ­² ŁØ- mands generally did not lead to suitable estimates be- cause the ratio Q/Q’ (Figure 4) is not adequate. Thus, ²æØı ³ Ø ı ­©² ت©ßßØ­ŁØŁ *­ ²Ø̶Ł ¬Øª² ̶ ¬ØªıRØŁ ƽ ̶¬¬Ø­Łı¼ " ©Œ /5$ 4 ーエ © ƽ .%0$ ーク 橳œŁ ÆØ used (Miranda, 2007; Tena ز ̶œ., 2009). /"4² Ø­º²æ ß©ŁıRª̶²ı©­ ̶­Ł Łı ¬œ̶ªØßØ­² ̶߬œıRª̶- tion factors, which to date are empirical in nature, are based on general consensus of engineering judgment, observed structural performance in the past earth- ®³̶øØ ̶­Ł © ©­ /)31 ーウ 5æØ ©­œ½ ¹̶½ ²© ̶²ı©- nalize these factors is to quantify the overstrength and structural ductility ratios by analytical studies ̶­Ł ؼ¬Ø ıßØ­²̶œ ²Ø ²ı­º 6̶­º アケクケ 3̶²ı©­̶œ ² Ø­º²æ ß©ŁıRª̶²ı©­ ̶­Ł Łı ¬œ̶ªØßØ­² ̶߬œıRª̶- tion factors based on ductility, period and soil condi- tions, together with estimates of the overstrength of the structure and the relationship between global and local ductility demands (Varela ز ̶œ., 2004), are now used to establish more rational and transparent seis- mic design approaches in Mexico. For instance, Mex- ican seismic codes are moving towards design procedures where the overstrength is directly taken on account to reduce the elastic design spectra. This is the philosophy in the procedure outlined in appen- Łı¼ " ©Œ /5$ 4 ーエ ̶­Ł ı­ ²æØ ­Ø¹ º³ıŁØœı­Ø .%0$ 08 (Tena ز ̶œ., 2009). /"*² ı ̶œ © ̶¬¬̶ Ø­² ²æ̶² ²æØ ŁØ ıº­ ª©ŁØ ̶ Ø ©Œ²Ø­ ı­- correctly understood or misinterpreted, and are often not complied with by lay practitioners. The lack of building code compliance shall not be regarded merely as a legal issue to be addressed only through Ø­Œ© ªØßØ­² ̶ª²ı©­ 5© ̶m̶ı­ ̶ Ø̶ ©­̶ÆœØ ̶ŒØ²½ level, it is essential to have consistency between the regulations, the level of expertise of most design and construction professionals, and local materials and construction systems (Alcocer and Castaño, 2008). /"Given that the level of expertise and quality of prac- tice of design and construction professionals in Mex- ico is quite diverse, one way to reach this goal is to implements codes with procedure and requirements ©Œ ŁıTØ Ø­² œØµØœ ©Œ ª©ß¬œØ¼ı²½ 5æØ ß© ² ª©ß¬œØ¼ and comprehensive rules should be aimed at large, important structures; simple yet conservative ap- proaches would be followed for most common struc- tures limited to certain size, geometry and complexity
  • 11. 161 Carrillo Julián, Hernández-Barrios Hugo, Rubiano-Fonseca Astrid Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM (Ordaz and Meli, 2004). This is the case of the recently ØœØ̶ ØŁ "$* ウアエ アア (³ıŁØ²© ı߬œıRØŁ ŁØ ıº­ Œ© Ø- inforced concrete buildings of limited size and height could be also included. Finally, for non-engineered construction guidelines, other educational sources are needed in lieu of merely enforcing codes. References "$* $©ßßımØØ ウアエ (³ıŁØ ²© 4ı߬œıRØŁ %Ø ıº­ Œ© 3Øı­Œ© ªØŁ $©­- ª Ø²Ø #³ıœŁı­º "$* ウアエ3 アア '̶ ßı­º²©­ )ıœœ .ıªæıº̶­ イーアア "$* $©ßßımØØ ウアク #³ıœŁı­º $©ŁØ 3Ø®³ı ØßØ­² Œ© 4² ³ª²³ ̶œ $©­ª Ø²Ø "$* ウアク ̶­Ł ª©ßßØ­²̶ ½ "$* ウアク3 "ßØ ıª̶­ $©­ª Ø²Ø *­ ²ı²³²Ø '̶ ßı­º²©­ )ıœœ .* イーアア Alcocer S. and Castaño V. Evolution of Codes for Structural De- sign in Mexico. +©³ ­̶œ ©Œ 4² ³ª²³ ̶œ 4³ µØ½, volume 26 (issue 1), 2008: 17-28. ASCE 7-10. Minimum Design Loads for Building and Other Struc- tures, American Society of Civil Engineers, ASCE, Reston, Vir- ºı­ı̶ 64" イーアー "µıœÔ + ̶­Ł 1Ô Ø¾ 3©ªæ̶ - *­S³Ø­ªØ ©Œ '©³­Ł̶²ı©­ 'œØ¼ıÆıœı²½ on Rm and Cm Factors. +©³ ­̶œ ©Œ 4² ³ª²³ ̶œ &­ºı­ØØ ı­º "4$&, µ©œ³ßØ アウア ı ³Ø イ イーーオ イイア イウー #Ø ²Ø © 7 *߬œıª̶²ı©­ ©Œ 3تح² &̶ ²æ®³̶øØ ̶­Ł 3Ø Ø̶ ªæ ©­ Earthquake-Resistant Design and Construction of Buildings, 3ج© ² /© 6$# &&3$ クカ ーウ 6­ıµØ ı²½ ©Œ $̶œıŒ© ­ı̶ #Ø øØ- ley, March, 1986. $̶ ıœœ© + ̶­Ł "œª©ªØ 4 &¼¬Ø ıßØ­²̶œ *­µØ ²ıº̶²ı©­ ©­ %½­̶ßıª and Quasi-Static Behavior of Low-Rise Reinforced Concrete Walls. +©³ ­̶œ ©Œ &̶ ²æ®³̶øØ &­ºı­ØØ ı­º ̶­Ł 4² ³ª²³ ̶œ %½­̶ß ıª µ©œ³ßØ エオ ı ³Ø オ イーアウ カウオ カオイ Chavez J. Overview of the Current Seismic Codes in Central and South America. #³œœØ²ı­º ©Œ **4&& µ©œ³ßØ エカ イーアイ アオウ アカー FEMA-451. Recommended Provisions: Design Examples, Federal &ßØ ºØ­ª½ .̶­̶ºØßØ­²"ºØ­ª½ '&." 8̶ æı­º²©­ 64" イーーカ *#$ ーケ *­²Ø ­̶²ı©­̶œ #³ıœŁı­º $©ŁØ *­²Ø ­̶²ı©­̶œ $©ŁØ $©³­ªıœ '̶œœ $æ³ ªæ 7" 64" イーーケ MDOC-08. Design Manual of Civil Structures–Seismic Design, $©ßı ıŸ­ 'ØŁØ ̶œ ŁØ &œØª² ıªıŁ̶Ł $'& .ؼıª© イーーク .ı ̶­Ł̶ & $©³ Ø ©Œ &̶ ²æ®³̶øØ &­ºı­ØØ ı­º $œ̶ /©²Ø /̶- ²ı©­̶œ 6­ıµØ ı²½ ©Œ .ؼıª© 6/". イーーキ Miranda E. Strength Reduction Factors in Performance-Based De- ıº­ ©­ 1 ©ªØØŁı­º ©Œ &&3$ $63&Ø 4½ß¬© ı³ß #Ø ø؜ؽ CA, 1997. Miranda E. and Bertero V. Evaluation of Strength Reduction Fac- tors for Earthquake-Resistant Design. +©³ ­̶œ ©Œ &̶ ²æ®³̶øØ 4¬Øª² ̶ µ©œ³ßØ アー ı ³Ø イ アケケエ ウオキ ウキケ .© ©­ı . " ² ©¾̶ . (Ÿßؾ + (³¾ßÀ­ 3 & ²̶Æœı æı­º 3 ̶­Ł $Ł '̶ª²© Œ© $©­R­ØŁ .̶ ©­ ½ #³ıœŁı­º +©³ ­̶œ ©Œ 4² ³ª ²³ ̶œ &­ºı­ØØ ı­º "4$&, volume 122 (issue 10), 1996: 1208- 1215. /&)31 ーウ 3ت©ßßØ­ŁØŁ 1 ©µı ı©­ Œ© 4Øı ßıª 3غ³œ̶²ı©­ Œ© /ع #³ıœŁı­º ̶­Ł 0²æØ 4² ³ª²³ Ø '&." エオー #³ıœŁı­º 4Øı ßıª 4̶ŒØ²½ $©³­ªıœ 8̶ æı­º²©­ %$ 64" イーーウ /عß̶ ø / ̶­Ł )̶œœ 8 &̶ ²æ®³̶øØ 4¬Øª² ̶ ̶­Ł %Ø ıº­, Earthquake &­ºı­ØØ ı­º 3Ø Ø̶ ªæ *­ ²ı²³²Ø &&3* &œ $Ø ı²© $" 64" アケクイ /5$ 4 ーエ .ؼıª© $ı²½ #³ıœŁı­º 4²̶­Ł̶ Ł Œ© 4Øı ßıª %Ø ıº­ ©Œ #³ıœŁı­º 4² ³ª²³ Ø (̶ªØ²̶ 0Rªı̶œ ŁØœ %ı ² ı²© 'ØŁØ ̶œ .ؼı- co, 2004. Ordaz M. and Meli R. Seismic Design Codes in Mexico, on: Pro- ªØØŁı­º ©Œ アウ²æ 8© œŁ $©­ŒØ Ø­ªØ ©­ &̶ ²æ®³̶øØ &­ºı­ØØ ı­º アイ8$&& 7̶­ª©³µØ $̶­̶Ł̶ ¬̶¬Ø エーーー 2004. Ordaz M. and Pérez-Rocha L. Estimation of Strength-Reduction '̶ª²© Œ© &œ̶ ²©¬œ̶ ²ıª 4½ ²Øß ̶ /ع "¬¬ ©̶ªæ +©³ ­̶œ ©Œ &̶ ²æ®³̶øØ &­ºı­ØØ ı­º ̶­Ł 4² ³ª²³ ̶œ %½­̶ßıª , volume 27, 1998: 889-901. Priestley M. Performance Based Seismic Design, on: Proceedings of アイ²æ 8© œŁ $©­ŒØ Ø­ªØ ©­ &̶ ²æ®³̶øØ &­ºı­ØØ ı­º アイ8$&& "³ªøœ̶­Ł /ع ;Ø̶œ̶­Ł ¬̶¬Ø イクウア イーーー Priestley M., Calvi G., Kowalsky M. %ı ¬œ̶ªØßØ­² #̶ ØŁ 4Øı ßıª %Ø ıº­ ©Œ 4² ³ª²³ Ø *644 1 Ø *²̶œ½ イーーキ Rosenblueth E. Seismic Design Requirements in a Mexican 1976 code. +©³ ­̶œ ©Œ &̶ ²æ®³̶øØ &­ºı­ØØ ı­º ̶­Ł 4² ³ª²³ ̶œ %½­̶ß ıª , volume 7, 1979: 49-61. 4©­¾©º­ı 7 $̶ Ł©­̶ " *ŁØœ ©æ­ 4 *­Øœ̶ ²ıª 4Øı ßıª "­̶œ½ ı ©Œ a Building Structure Designed by Argentine Codes. +©³ ­̶œ ©Œ &̶ ²æ®³̶øØ &­ºı­ØØ ı­º ̶­Ł 4² ³ª²³ ̶œ %½­̶ßıª , volume 12, アケクエ キイア キウカ 5Ø­̶ $©œ³­º̶ " .Ø­̶ )Ø ­À­ŁØ¾ 6 1Ô Ø¾ 3©ªæ̶ - "µıœÔ + 0 Ł̶¾ . 7ıœ̶ + 6¬Ł̶²ØŁ 4Øı ßıª %Ø ıº­ (³ıŁØœı­Ø Œ© Model Building Code of Mexico. +©³ ­̶œ ©Œ &̶ ²æ®³̶øØ 4¬Øª² ̶, volume 25 (issue 4), 2009: 869-898. 5 © 8 ̶­Ł /̶³ß© øı / 1Ø ı©Ł %جحŁØ­² 4Øı ßıª '© ªØ 3ØŁ³ª- tion Factors for Short-Period Structures. $̶­̶Łı̶­ +©³ ­̶œ ©Œ $ıµıœ &­ºı­ØØ ı­º, volume 18, 1991: 568-574. 6̶­º $æ & ²̶Æœı æı­º 3 © 3¹ ̶­Ł $Ł '̶ª²© Œ© #³ıœŁı­º 4Øı - mic Provisions. +©³ ­̶œ ©Œ 4² ³ª²³ ̶œ &­ºı­ØØ ı­º "4$&, vol- ume 117 (issue 1), 1989: 19-28. 7̶ Øœ̶ + 5̶­­Ø + ,œı­º­Ø 3 %ص؜©¬ßØ­² ©Œ 3Ø ¬©­ Ø .©ŁıR- ª̶²ı©­ $©ØUªıØ­² ̶­Ł %ØSت²ı©­ "߬œıRª̶²ı©­ '̶ª²© Œ© %Ø ıº­ ©Œ ""$ 4² ³ª²³ ̶œ 4½ ²Øß ©­ 1 ©ªØØŁı­º ©Œ アウ²æ 8© œŁ $©­ŒØ Ø­ªØ ©­ &̶ ²æ®³̶øØ &­ºı­ØØ ı­º アイ8$&& Vancouver, Canada, paper 1058, 2004.
  • 12. Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 151-162 ISSN 1405-7743 FI-UNAM 162 About the authors +³œıÀ­ $̶ ıœœ©. He has been assistant professor in the Department of Civil Engineering ̶² 6­ıµØ ıŁ̶Ł .ıœı²̶ /³Øµ̶ ( ̶­̶Ł̶ ı­ #©º©²̶ $©œ©ßÆı̶ ı­ªØ イーーエ )Ø ØªØı- ved his B.S. degree in civil engineering from the same university. He received his . 4ª ŁØº ØØ ı­ ² ³ª²³ ̶œ ­ºı­ØØ ı­º Œ ©ß 6­ıµØ ı²½ ©Œ -© "­ŁØ ı­ #©º©²̶ $©œ©ßÆı̶ ı­ イーーエ ̶­Ł æı 1æ % ŁØº ØØ ı­ ² ³ª²³ ̶œ Ø­ºı­ØØ ı­º Œ ©ß 6­ıµØ ıŁ̶Ł /̶ªı©­̶œ "³²Ÿ­©ß̶ ŁØ .Ô¼ıª© 6/". ı­ イーアー %³Ø ²© æı ª©­² ıƳ²ı©­ ²© Øı ßıª ŁØ ıº­ ©Œ œ©¹ ı Ø æ©³ ı­º æØ º ̶Ł³̶²ØŁ ¹ı²æ æ©­© Œ ©ß 6/". )Ø ı ̶ ßØß- ÆØ ©Œ "$* $©ßßımØØ ウアエ 4ı߬œıRØŁ %Ø ıº­ ©Œ $©­ª Ø²Ø #³ıœŁı­º ウカケ 4Øı ßıª 3ج̶ı ̶­Ł 3Øæ̶Æıœı²̶²ı©­ ̶­Ł ウキエ 1Ø Œ© ß̶­ªØ #̶ ØŁ 4Øı ßıª %Ø ıº­ ©Œ $©­ª Ø²Ø Buildings. )³º© )Ø ­À­ŁØ¾ #̶ ı© . He received his bachelor degree in civil engineering in 1990. He worked for 6 years as a design engineer, designing various reinforced concrete structures. He received his M.Sc. and Ph.D. degrees and graduated with honors Œ ©ß 6­ıµØ ıŁ̶Ł /̶ªı©­̶œ "³²Ÿ­©ß̶ ŁØ .ؼıª© 6/". ı­ イーーイ )Ø ­À­ŁØ¾ research interests include but not limited to seismic analysis and design of highway bridges, laboratory testing of reinforced and prestressed concrete members. He is 3Ø Ø̶ ªæØ -ص؜ ア ı­ ²æØ 4/* $0/"$½5 4ı­ªØ イーーエ æØ ı ¬ ©ŒØ © ̶² 6­ıµØ ı- Ł̶Ł .ıªæ©̶ª̶­̶ ŁØ 4̶­ /ıª©œ̶ ŁØ )ıŁ̶œº© 6.4/) $ıµıœ &­ºı­ØØ ı­º 4ªæ©©œ Morelia, México. " ² ıŁ 3³Æı̶­© '©­ ت̶ 4æØ º ̶Ł³̶²ØŁ ̶ ̶ ßتæ̶² ©­ıª Ø­ºı­ØØ ı­ イーーカ ̶² ²æØ 6­ı- µØ ıŁ̶Ł .ıœı²̶ /³Øµ̶ ( ̶­̶Ł̶ ı­ $©œ©ßÆı̶ ̶­Ł ı ª̶­ŁıŁ̶²Ø ²© ºØ² ̶ ß̶ ²Ø ŁØº ØØ ı­ ̶³²©ß̶²ıª ½ ²Øß ©Œ ¬ ©Ł³ª²ı©­ ̶² ²æØ 6­ıµØ ıŁ̶Ł 5ت­©œŸºıª̶ ŁØ 1Ø- reira. Currently, she is professor, researcher and chief of the Department of Electro- nics at the Program of Technology in Electronics and Communications in the '̶ª³œ²½ ©Œ &­ºı­ØØ ı­º ̶² ²æØ 6­ıµØ ıŁ̶Ł .ıœı²̶ /³Øµ̶ ( ̶­̶Ł̶ ı­ $©œ©ßÆı̶ 4æØ ı ßØßÆØ ©Œ ²æØ *­²Ø ­̶²ı©­̶œ 4©ªıز½ Œ© 5ØœØßØŁıªı­Ø ̶­Ł Ø)Ø̶œ²æ* *4Œ5Ø) Citation for this article: Chicago citation style Carrillo, Julián, Hugo Hernández-Barrios, Astrid Rubiano-Fonseca. Analysis of the Earthquake-Resistant Design Approach for Build- ings in Mexico. Ingeniería Investigación y Tecnología, XV, 01 (2014): 151-162. ISO 690 citation style Carrillo J., Hernández-Barrios H., Rubiano-Fonseca A. Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexi- co. Ingeniería Investigación y Tecnología, volume XV (issue 1), January-March 2014: 151-162.