SlideShare a Scribd company logo
1 of 44
Download to read offline
ĐẠI HỌC ĐÀ NẴNG
TRƯỜNG ĐẠI HỌC BÁCH KHOA
PHAN MINH TÚ
NGHIÊN CỨU, THIẾT KẾ HỆ THỐNG ĐIỆN
MẶT TRỜI NỔI TRÊN HỒ THỦY ĐIỆN ĐỒNG NAI 4
Chuyên ngành: Kỹ Thuật Điện
Mã số: 60.52.02.02
LUẬN VĂN THẠC SỸ KỸ THUẬT
Người hướng dẫn khoa học: TS. LƯU NGỌC AN
Đà Nẵng - Năm 2018
LỜI CAM ĐOAN
Tôi cam đoan đây là công trình nghiên cứu của riêng tôi.
Các số liệu, kết quả nêu trong luận văn là trung thực và chưa từng được ai công
bố trong bất kỳ công trình nào khác.
Tác giả luận văn
Phan Minh Tú
TRANG TÓM TẮT TIẾNG ANH, TIẾNG VIỆT
NGHIÊN CỨU, THIẾT KẾ HỆ THỐNG ĐIỆN MẶT TRỜI NỔI TRÊN HỒ THỦY
ĐIỆN ĐỒNG NAI 4
Học viên: Phan Minh Tú. Chuyên ngành: Kỹ thuật điện.
Mã số: 60.52.50. Khóa: K31.KTĐ Trường Đại học Bách khoa - ĐHĐN
Tóm tắt - Năng lượng tái tạo trong đó có năng lượng mặt trời đang được nghiên cứu và
ứng dụng rộng rãi trong nhiều lĩnh vực. Tại Việt Nam tiềm năng về năng lượng mặt trời
là rất lớn tuy nhiên chúng ta vẫn chưa phát triển đúng với tiềm năng, trong các năm gần
đây chính phủ đã có những chính sách ưu tiên để phát triển các nguồn điện tái tạo và đã
có một số công trình đưa vào vận hành, trong đó điện mặt trời nổi trên các mặt hồ thủy
điện là một tiềm năng rất lớn do diện tích bỏ không lớn, khu vực ít dân cư nhưng giao
thông thuận tiện và gần các trạm phân phối điện năng. Hồ thủy điện Đồng Nai 4 nằm ở vị
trí có bức xạ mặt trời khá tốt, độ giao động mức nước nhỏ rất thích hợp để thiết kế một hệ
thống điện mặt trời nối với lưới điện Quốc gia .Sử dụng phần mềm PVsyst để thiết kế,
tính toán và mô phỏng hoạt động của các máy phát PV nối lên lưới điện. Vị trí địa lý, lưới
điện tại khu vực, sự biến đổi theo mùa và ngày đêm của bức xạ mặt trời được phân tích
để xác định công suất và phương án nối lưới cho hệ thống. Nghiên cứu này áp dụng đề
xuất thiết kế, đánh giá về mặt kỹ thuật và tính khả thi cho việc lắp đặt một hệ thống điện
mặt trời nối lưới đặt nổi trên mặt hồ Đồng Nai 4.
Từ khóa– Hệ thống năng lượng mặt trời nối lưới; Năng lượng tái tạo; Điện mặt trời nổi.
STUDY, DESIGNING POWER GENERATION FLOATING PV SYSTEM ON
DONG NAI 4 HYDRO POWER RESEVOIR
Abtract - Renewable energy in which solar energy is being studied and used extensively
in a wide range of areas. In Vietnam, the potential for solar energy is huge, but we have
not developed to the potential. In recent years, the government has given priority to the
development of renewable energy sources. Some project had put into operation, in which
the solar power on the surface of hydropower resevoir is a great potential because the
area is not large, the area is less populated but the traffic is convenient and near the power
distribution station. Dong Nai 4 hydropower reservoir is located in a place with good
solar radiation, differen water level is small. It’s suitable for designing a solar power
system connected to the national grid. Using PVsyst software to design, calculate and
simulate the operation of the PV generator connected to the grid. Geographic location,
area network, seasonal and diurnal variation of solar radiation were analyzed to determine
the capacity and grid connection for solar power system on Dong Nai 4 hydropower
reservoir. This study applied the proposed design, technical evaluation and feasibility for
the installation of a solar grid connected system.
Keywords - Grid connected solar system; Recycled energy; Solar cell floating.
MỤC LỤC
TRANG BÌA
LỜI CAM ĐOAN
TRANG TÓM TẮT TIẾNG ANH, TIẾNG VIỆT
MỤC LỤC
DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT
DANH MỤC CÁC BẢNG
DANH MỤC CÁC HÌNH
MỞ ĐẦU .........................................................................................................................1
1. Lý do chọn đề tài ....................................................................................................1
2. Mục tiêu nghiên cứu ...............................................................................................1
3. Đối tượng và phạm vi nghiên cứu ..........................................................................2
4. Phương pháp nghiên cứu ........................................................................................2
5. Ý nghĩa khoa học và thực tiễn của đề tài................................................................2
6. Bố cục đề tài ...........................................................................................................3
CHƯƠNG 1. TỔNG QUAN VỀ ĐIỆN MẶT TRỜI......................................................4
1.1 TỔNG QUAN VỀ NĂNG LƯỢNG MẶT TRỜI.....................................................4
1.1.1 Bức xạ mặt trời ..................................................................................................4
1.1.2 Nguồn gốc năng lượng mặt trời.........................................................................4
1.1.3 Quá trình phát triển và triển khai ứng dụng năng lượng mặt trời......................6
1.2 TÌNH HÌNH ỨNG DỤNG ĐIỆN MẶT TRỜI TRÊN THẾ GIỚI VÀ TẠI VIỆT
NAM .............................................................................................................................7
1.2.1 Tình hình phát triển điện mặt trời trên thế giới .................................................7
1.2.2 Tình hình phát triển điện mặt trời tại Việt Nam ..............................................10
1.2.2.1 Tiềm năng điện mặt trời ở Việt Nam............................................................10
1.2.2.2 Những dự án điện mặt trời ở Việt Nam........................................................11
1.3 MỘT SỐ CÔNG NGHỆ ỨNG DỤNG SỬ DỤNG TRONG ĐỀ TÀI ...................11
1.3.1 Pin mặt trời ......................................................................................................11
1.3.1.1 Cấu tạo của pin mặt trời................................................................................11
1.3.1.2 Nguyên lý hoạt động của pin mặt trời .........................................................13
1.3.2 Bộ nghịch lưu...................................................................................................20
1.4 CÁC MÔ HÌNH CƠ BẢN CỦA HỆ THỐNG PIN MẶT TRỜI............................20
1.4.1 Vận hành độc lập với lưới (Off Grid)..............................................................20
1.4.2 Vận hành kiểu lai (Hybrid) ..............................................................................21
1.4.3 Vận hành kết nối với lưới điện (grid tie) .........................................................21
1.5 KẾT LUẬN .............................................................................................................22
CHƯƠNG 2. KHẢO SÁT THỰC TRẠNG HỒ THỦY ĐIỆN ĐỒNG NAI 4 ............23
2.1. TỔNG QUAN VỀ HỒ THỦY ĐIỆN ĐỒNG NAI 4.............................................23
2.1.1. Vị trí địa lý: [6] ...............................................................................................23
2.1.2. Tình trạng mặt thoáng:....................................................................................24
2.1.3. Vị trí lắp đặt thiết bị:.......................................................................................24
2.1.3.1. Vị trí lắp đặt các tấm PV..............................................................................24
2.1.3.2. Vị trí đặt trạm phân phối 230kV..................................................................25
2.1.4. Giao thông.......................................................................................................25
2.2. TIỀM NĂNG ĐIỆN MẶT TRỜI LÝ THUYẾT TẠI KHU VỰC [7]...................26
2.2.1. Số giờ nắng trung bình tháng năm tại khu vực ...............................................27
2.2.2. Nhiệt độ trung bình tháng và năm tại khu vực................................................27
2.2.3. Tổng xạ theo phương ngang (GHI) tại khu vực..............................................28
2.3. THỰC TRẠNG LƯỚI ĐIỆN TẠI HỒ THỦY ĐIỆN ĐỒNG NAI 4....................29
2.3.1. Lưới điện hạ thế và thông tin liên lac: ............................................................29
2.3.2. Hệ thống lưới điện 22kV:................................................................................29
2.3.3. Lưới điện 230kV:............................................................................................30
2.4. KẾT LUẬN ............................................................................................................31
CHƯƠNG 3. TÍNH TOÁN, THIẾT KẾ HỆ THỐNG ĐIỆN MẶT TRỜI NỔI TRÊN
HỒ ĐỒNG NAI 4..........................................................................................................33
3.1. GIỚI THIỆU SƠ LƯỢC VỀ PHẦN MỀM PVSYST [8]......................................33
3.2. ĐỊNH VỊ ĐỊA ĐIỂM LẤY SỐ DỮ LIỆU KHÍ TƯỢNG......................................34
3.2.1. Nhập số liệu đầu vào.......................................................................................34
3.2.2. Kết quả số liệu của chương trình ....................................................................34
3.3. LỰA CHỌN, BỐ TRÍ CÁC TẤM PV...................................................................35
3.3.1. Chọn góc nghiêng tấm Pin..............................................................................36
3.3.2. Chọn khoảng cách giữa các hàng ...................................................................37
3.3.3. Tính toán, lựa chọn số lượng tấm pin.............................................................38
3.3.4. Thiết kế, lựa chọn hệ thống giá đỡ và phao nổi..............................................41
3.3.4.1. Giá đỡ các tấm PV trên cạn .........................................................................41
3.3.4.2. Phao và giá đỡ trên mặt hồ ..........................................................................41
3.3.4.3. Lựa chọn các tấm PV...................................................................................43
3.4. LỰA CHỌN INVERTER.......................................................................................44
3.5. LỰA CHỌN, ĐẤU NỐI CÁP DC: ........................................................................46
3.6. NHẬP CÁC THÔNG SỐ HỆ THỐNG CHO PHẦN MỀM..................................47
3.6.1. Nhập các thông số chính đầu vào ...................................................................47
3.6.2. Nhập các dữ liệu tổn thất ................................................................................48
3.7. KẾT QUẢ MÔ PHỎNG TRONG PHẦN MỀM PVSYST ...................................49
3.7.1. Các tham số mô phỏng....................................................................................49
3.7.2. Các kết quả chính............................................................................................51
3.7.3. Biểu đồ tổn thất trong cả năm.........................................................................52
3.8. BỐ TRÍ VÀ ĐẤU NỐI THIẾT BỊ.........................................................................54
3.8.1. Đấu nối các chuỗi PV .....................................................................................55
3.8.2. Đấu nối các tấm PV tới inverter .....................................................................56
3.8.3. Đấu nối các trạm inverter vào máy biến áp 22kV ..........................................56
3.8.4. Đấu nối máy biến áp 22kV lên trạm phân phối và nối với lưới 220kV .........57
3.9. KẾT LUẬN ............................................................................................................58
KẾT LUẬN VÀ KIẾN NGHỊ.......................................................................................59
TÀI LIỆU THAM KHẢO.............................................................................................61
QUYẾT ĐỊNH GIAO ĐỀ TÀI LUẬN VĂN THẠC SĨ (BẢN SAO)
BẢN SAO KẾT LUẬN CỦA HỘI ĐỒNG, BẢN SAO NHẬN XÉT CỦA CÁC
PHẢN BIỆN.
DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT
1. Danh mục kí hiệu cơ bản
Ký hiệu Thứ nguyên Mô tả
q W/m2
Mật độ dòng bức xạ trực xạ ở ngoài lớp khí quyển
En W/m2
Cường độ bức xạ cực đại trong ngày
VOC V Điện áp hở mạch đầu ra của pin quang điện
Isc A Dòng điện ngắn mạch trong mạch của pin quang điện
Vm V Điện áp tại điểm công suất cực đại
Im A Dòng điện tại điểm công suất cực đại
Pm W Công suất cực đại
ηm % Hiệu suất của pin quang điện ở nhiệt độ T
To
o
C Nhiệt độ pin quang điện trong điều kiện tiêu chuẩn
Tamb
o
C Nhiệt độ không khí
U W/m2.K Hệ số nhiệt pin quang điện
PR % Tỉ số hiệu suất
SF % Hệ số sử dụng điện năng của hệ thống
2. Danh mục viết tắt
Viết tắt Cụm từ Nghĩa
NLTT Năng lượng tái tạo
NLMT Năng lượng mặt trời
EIA Energy Information Administration
Cơ quan quản lý thông tin năng
lượng Hoa Kỳ
IFC International Finance Corporation Tổ chức tài chính quốc tế
IEC
International Electrotechnical
Commission
Ủy ban kỹ thuật điện quốc tế
IAM Incidence Angle Modifier Sự điều chỉnh góc tới
MPP Maximum power point Điểm công suất cực đại
STC Standard Test Conditions Các điều kiện tiêu chuẩn
PV Photovoltaic Quang điện hay điện mặt trời
NOCT Nominal Operating Cell
Temperature
Nhiệt độ pin vận hành danh nghĩa
LID Light Induced Degradation Ánh sáng bị suy giảm cảm ứng
DANH MỤC CÁC BẢNG
Số
hiệu
Tên bảng Trang
1.1
Các nước có nhà máy điện từ pin mặt trời cỡ lớn (công suất trên
1MWp).
8
1.2 Các nhà máy điện mặt trời PV lớn nhất thế giới (trên 50MW) 8
1.3 Các nhà máy điện từ pin mặt trời lớn nhất thế giới 9
2.1 Số giờ nắng trung bình tại khu vực (Giờ) 27
2.2 Nhiệt độ trung bình tháng, năm tại khu vực (oC) 27
3.1 Thông số nhập vào mục Meteo database 34
3.2
Bảng phân bố trào lưu công suất khi nối nhà máy điện mặt trời vào
đường dây hiện hữu
39
3.3 Thông số kỹ thuật tấm PV 43
3.4 Thông số kỹ thuật chính của Inverter 45
3.5 Tổng hợp thông số thiết kế nhà máy 46
3.6 Bảng tổng hợp số liệu chính để tính toán mô phỏng dự án 47
3.7 Giá trị tổn thất nhập vào phần mềm 49
3.8 Tổng hợp kết quả mô phỏng dự án 51
3.9 Tổn thất bức xạ mặt trời trên bề mặt PV quang điện trong 1 năm. 53
3.10
Tổn thất bên trong hệ thống PV quang điện trong hệ thống điện năng
lượng mặt trời.
54
DANH MỤC CÁC HÌNH
Số
hiệu
Tên hình Trang
1.1 Các vùng năng lượng 13
1.2 Hệ 2 mức năng lượng 14
1.3 Đường đặc trưng theo độ chiếu sáng của pin mặt trời 15
1.4 Điểm làm việc và điểm công suất cực đại 17
1.5
Ghép nối tiếp hai module pin mặt trời (a)và đường đặc trưng VA
của các module và của cả hệ (b)
18
1.6
Ghép song song hai module pin mặt trời (a)và đường đặc trưng
VA của các module và của cả hệ (b)
19
1.7 Dàn pin năng lượng mặt trời 20
2.1 Hồ thủy điện Đồng Nai 4 từ phần mềm Google Earth. 23
2.2 Bản đồ tiềm năng kỹ thuật về CSP tại Việt Nam 24
2.3 Bãi đất trống dự định đặt các tấm PV trên cạn 25
2.4 Bãi đất dự định đặt trạm phân phối 230kV 26
2.5 Các khu vực dự định đặt thiết bị. 26
2.6 Biểu đồ số giờ nắng trong năm tại khu vực dự án 27
2.7 Biểu đồ nhiệt độ trung bình tháng, năm tại khu vực. 28
2.8 Bản đồ GHI trung bình ngày lý thuyết khu vực 29
2.9 Sơ đồ lưới điện 22kV tại khu vực thủy điện Đồng Nai 4 30
2.10 Sơ đồ lưới điện 230kV tại gần khu vực dự án 31
2.11 Vị trí dự kiến đấu nối NMĐMT ĐN4 vào lưới 230kV 31
3.1 Giao diện nhập số liệu và kết quả của chương trình 34
3.2 Số liệu khí tượng lấy từ phần mềm PVsyst 35
3.3 Mô hình Bố trí lắp đặt PV 36
3.4 Góc nghiêng tối ưu phân tích từ phần mềm PVsyst 37
3.5 Khoảng cách lựa chọn giữa các hàng Pin 38
3.6 Giá đỡ các tấm PV trên cạn. 41
3.7 Mặt bằng tổ hợp các tấm PV trên cạn 41
3.8 Phao dạng lắp ghép sau khi đã tổ hợp 42
3.9 Hệ thống phao nổi đã lắp đặt hoàn thiện 42
3.10 Mặt bằng phao đỡ nổi tấm PV 44
3.11 Mô hình kết nối của Inverter trung tâm và Inverter chuỗi. 45
3.12 Giao diện phần mềm sau khi nhập dữ liệu đầu vào 48
3.13 Giao diện nhập các giá trị tổn thất 48
Số
hiệu
Tên hình Trang
3.14 Các tham số chính của hệ thống 50
3.15 Tổng hợp kết quả mô phỏng dự án 51
3.16 Kết quả mô phỏng sản lượng dự án 52
3.17 Lược đồ tổn thất trong năm của dự án 53
3.18
Tổng mặt bằng bố trí thiết bị tại nhà máy điện mặt trời nổi trên hồ
thủy điện Đồng Nai 4
55
3.19 Đấu nối các chuỗi PV về hộp gom dây 56
3.20 Đấu nối các hộp gom dây về bộ inverter 56
3.21 Đấu nối phía AC inverter và máy biến áp 0.4/22kV 57
3.22
Sơ đồ nối điện chính trạm 22/230kV nhà máy điện mặt trời nổi
trên hồ Đồng Nai 4
57
1
MỞ ĐẦU
1. Lý do chọn đề tài
Nhu cầu về năng lượng của con người trong thời đại khoa học kỹ thuật phát triển
ngày càng tăng. Trong khi đó các nguồn năng lượng dự trữ như than đá, dầu mỏ, khí
thiên nhiên … đều có hạn, khiến cho nhân loại đứng trước nguy cơ thiếu hụt. Việc tìm
kiếm và khai thác các nguồn năng lượng mới như năng lượng gió, năng lượng mặt trời,
năng lượng địa nhiệt … là hướng quan trọng để phát triển nguồn năng lượng.
Việc nghiên cứu sử dụng năng lượng mặt trời ngày càng được quan tâm, nhất là
trong tình trạng thiếu hụt năng lượng và vấn đề cấp bách về môi trường như hiện nay.
Năng lượng mặt trời được xem là dạng năng lượng ưu việt trong tương lai, đó là dạng
năng lượng sẵn có, siêu sạch và miễn phí. Do vậy năng lượng mặt trời đã và ngày càng
được sử dụng rộng rãi ở các nước trên thế giới.
Tại Việt Nam điện mặt trời vẫn là một chủ đề vẫn còn mới mẻ và chưa được đầu tư
để phát triển đúng với tiềm năng của nó, tuy nhiên chính phủ cũng đã và đang có
những quyết định hỗ trợ đầu tư, phát triển nguồn năng lượng sạch này, đồng thời cũng
đặt ra các mục tiêu phát triển đến năm 2050.
Hiện nay EVN đang chú trọng phát triển điện mặt trời, một số công trình điện mặt
trời đã được đưa vào vận hành và một số dự án đang chuẩn bị khởi công tuy nhiên để
đạt được lộ trình như chính phủ đưa ra cần phát triển các dự án mặt trời nổi trên các hồ
thủy điện do có diện tích bỏ không lớn, phí thuê đất thấp, hiệu suất các tấm pin cao do
được làm mát từ nước hồ, mặt khác giảm được lượng bốc hơi trên các mặt hồ để có
thêm nước chạy các máy phát thủy điện.
Hồ Đồng Nai 4 nằm ở khu vực ít dân cư, giao thông tương đối thuận lợi, lưới điện
truyền tải đi gần khu vực hồ, độ chênh mực nước hồ nhỏ do đó thuận lợi cho việc thiết
kế một hệ thống điện mặt trời nổi nối với lưới điện quốc gia.
Vì các lý do trên nên việc “Nghiên cứu, thiết kế hệ thống điện mặt trời nổi trên
hồ thủy điện Đồng Nai 4” để cung cấp năng lượng sạch cho lưới điện quốc gia là cần
thiết và đó cũng là lý do Tôi chọn đề tài này.
2. Mục tiêu nghiên cứu
Thiết kế hệ thống nguồn điện từ các tấm pin mặt trời đặt nổi trên mặt hồ thủy
điện Đồng Nai 4, kết nối với hệ thống lưới điện 220kV Quốc gia nhằm cung cấp
2
nguồn cho hệ thống điện Quốc gia theo lộ trình phát triển các nguồn điện sử dụng
năng lượng tái tạo. Các mục tiêu cụ thể bao gồm:
Khảo sát, tính toán và đưa ra được các phương án nối lưới cho các máy phát
điện mặt trời.
Xác định số lượng và vị trí lắp đặt các thiết bị (Tấm pin mặt trời, inveter, máy
biến áp…), lựa chọn thiết bị, thiết kế các giá và phao đỡ cho các tấm pin mặt
trời
Sử dụng phần mềm PVsyst để mô phỏng sơ đồ đấu nối và chạy ra được kết
quả cần thiết.
3. Đối tượng và phạm vi nghiên cứu
Đối tượng nghiên cứu của đề tài này là thiết kế hệ thống máy phát sử dụng các
tấm pin mặt trời đặt nổi trên mặt hồ đấu nối với lưới điện 220kV.
Phạm vi nghiên cứu
- Nghiên cứu các công nghệ về pin mặt trời và các bộ nghịch lưu ứng dụng cho
việc thi công hệ thống điện mặt trời nổi trên hồ thủy điện Đồng Nai 4.
- Nghiên cứu các phương án kết nối hệ thống điện mặt trời đặt nổi tại hồ thủy
điện Đồng Nai 4 với lưới điện quốc gia.
- Mô phỏng hệ thống pin năng lượng mặt trời nối lưới bằng phần mềm PVsyst
4. Phương pháp nghiên cứu
Để giải quyết các mục tiêu nêu trên, luận văn đưa ra phương pháp nghiên cứu
như sau:
- Nghiên cứu lý thuyết: các lý thuyết về năng lượng mặt trời, cấu tạo, nguyên lý
làm làm việc của hệ thống pin mặt trời
-Xây dựng hệ thống pin năng lượng mặt trời nổi nối lưới tại hồ thủy điện Đồng
Nai 4.
- Mô phỏng hoạt động hệ thống pin năng lượng mặt trời nối lưới tại hồ thủy điện
Đồng Nai 4 bằng phần mềm PVsys chuyên dụng
5. Ý nghĩa khoa học và thực tiễn của đề tài
Ý nghĩa khoa học: Ứng dụng được công nghệ mới vào sản xuất, góp phần phát
triển năng lượng mặt trời, là nguồn năng lượng tái tạo, sạch và được nhà nước khuyến
khích đầu tư.Thiết kế, tính toán, mô phỏng được sự hoạt động của hệ thống pin năng
lượng mặt trời nối với lưới điện 230kV Quốc gia, từ đó có cơ sở đánh giá tính hiệu quả
về mặt kinh tế và kỹ thuật của hệ thống trước khi đầu tư xây dựng.
3
Tính thực tiễn: Góp phần phát triển hệ thống điện mặt trời nối lưới tại các mặt hồ
đặc biệt là các mặt hồ thủy điện để đáp ứng nhu cầu về phát triển nguồn năng lượng
sạch theo lộ trình của Chính phủ.
6. Bố cục đề tài
Mở đầu.
Chương 1: Tổng quan về năng lượng mặt trời trời
Chương 2: Khảo sát thực trạng tại hồ thủy điện Đồng Nai 4.
Chương 3: Tính toán , thiết kế hệ thống điện mặt trời nổi trên hồ thủy điện Đồng
Nai 4.
Kết luận và kiến nghị.
4
CHƯƠNG 1
TỔNG QUAN VỀ ĐIỆN MẶT TRỜI
1.1 TỔNG QUAN VỀ NĂNG LƯỢNG MẶT TRỜI
1.1.1 Bức xạ mặt trời
Mặt trời là quả cầu lửa khổng lồ với đường kính trung bình khoảng 1,36 triệu
km và ở cách Trái đất khoảng 150 triệu km. Theo các số liệu hiện có, nhiệt độ bề mặt
của mặt trời vào khoảng 6.000K, trong khi đó nhiệt độ ở vùng trung tâm của mặt trời
rất lớn, vào khoảng 8.106K đến 40.106K. Mặt trời được xem là một lò phản ứng nhiệt
hạch hoạt động liên tục. Do luôn luôn bức xạ năng lượng vào trong vũ trụ nên khối
lượng của mặt trời sẽ giảm dần. Điều này dẫn đến kết quả là đến một ngày nào đó mặt
trời sẽ thôi không tồn tại nữa. Tuy nhiên, do khối lượng của mặt trời vô cùng lớn, , nên
thời gian để mặt trời còn tồn tại cũng vô cùng lớn. Bên cạnh sự biến đổi nhiệt độ rất
đáng kể theo hướng kính, một điểm đặc biệt khác của mặt trời là sự phân bố khối
lượng rất không đồng đều. Ví dụ, khối lượng riêng ở vị trí gần tâm mặt trời vào
khoảng 100g/cm3, trong khi đó khối lượng riêng trung bình của mặt trời chỉ vào
khoảng 1,41g/cm3.
Các kết quả nghiên cứu cho thấy, khoảng cách từ mặt trời đến Trái đất không
hoàn toàn ổn định mà dao động trong khoảng ±1,7% xoay quanh giá trị trung bình đã
trình bày ở trên. Trong kỹ thuật NLMT, người ta rất chú ý đến khái niệm hằng số mặt
trời (Solar Constant). Về mặt định nghĩa, hằng số mặt trời được hiểu là lượng bức xạ
mặt trời (BXMT) nhận được trên bề mặt có diện tích 1m2
đặt bên ngoài bầu khí quyển
và thẳng góc với tia tới. Tùy theo nguồn tài liệu mà hằng số mặt trời sẽ có một giá trị
cụ thể nào đó, các giá trị này có thể khác nhau tuy nhiên sự sai biệt không nhiều.
Trong tài liệu này ta thống nhất lấy giá trị hằng số mặt trời là 1353W/m2
.
Có 2 loại bức xạ mặt trời: BXMT đến bên ngoài bầu khí quyển và BXMT đến
trên mặt đất. Trong mục này ta cần phân biệt ý nghĩa của các ký hiệu được dùng để
biểu diễn giá trị của lượng bức xạ khảo sát là G, I và H. Đơn vị của G là W/m2, đơn vị
của I và H là J/m2, trong đó thời gian tương ứng với các ký hiệu I và H lần lượt là giờ
và ngày. Khái niệm ngày trong kỹ thuật NLMT được hiểu là khoảng thời gian từ lúc
mặt trời mọc cho đến lúc mặt trời lặn.
1.1.2 Nguồn gốc năng lượng mặt trời
NLMT có vai trò quan trọng đối với sự tồn tại và tồn tại và phát triển của các
yến tố sự sống trên trái đất.
Trước hết, NLMT là nguồn năng lượng khổng lồ có tính tái sinh. NLMT được
sinh ra do các phản ứng nhiệt hạt nhân tổng hợp các hạt nhân đồng vị Hydro (H) để
5
tạo ra các hạt nhân Heli (He) liên tục xảy ra trên mặt trời . Công suất bức xạ của mặt
trời là 3,865.1026W, tương đương với năng lượng đốt cháy hết 1,32.1016 tấn than đá
tiêu chuẩn. Nhưng phần NLMT đến bề mặt trái đất chỉ là 17,57.1016J/s hay tương ứng
với năng lượng đốt cháy hết 6.106 tấn than đá.
Ngoài khí quyển trái đất (hay còn gọi là ngoài vũ trụ) mật độ NLMT là
1.353W/m2. Nhưng khi tới mặt đất các tia mặt trời phải đi qua lớp khí quyển trái đất
(chiều dày khoảng 16km) nên bị mất mát khoảng 30% do các hiện tượng hấp thụ, tán
xạ bởi các phân tử khí, hơi nước... của lớp khí quyển. Vì vật trên bề mặt trái đất, mật
độ bức xạ mặt trời chỉ còn khoảng 1.000W/m2. Mặc dù ở các vĩ độ khác nhau thì
NLMT khác nhau, nhưng nhìn chung NLMT phân bố khắp trên bề mặt trái đất. Ở đâu
cũng có thể khai thác và ứng dụng nguồn năng lượng này.
Bản chất của BXMT là sóng điện từ có phổ bước sóng trải từ 10-10 m đến
1014 m, trong đó mắt người có thể nhận biết được giải sóng có bước sóng từ 0,4 đến
0,7 m và được gọi là áng sáng nhìn thấy (vùng khả kiến). Vùng bức xạ điện từ có
bước sóng nhỏ hơn 0,4 m được gọi là vùng sóng tử ngoại. Còn vùng có bước sóng lớn
hơn 0,7 m được gọi là vùng hồng ngoại. Do bản chất của sóng điện từ nên NLMT là
nguồn năng lượng không có phát thải, không gây ô nhiễm môi trường hay được gọi là
nguồn năng lượng sạch.
Các thành phần của BXMT trên mặt đất:
Ngoài lớp khí quyển trái đất bức xạ mặt trời chỉ có một thành phần. Đó là các tia
mặt trời đi thẳng phát ra từ mặt trời. Nhưng khi tới mặt đất, do các hiện tượng tán xạ
trong lớp khí quyển quả đất, bức xạ mặt trời bị biến đổi và gồm 3 thành phần:
- Thành phần trực xạ gồm các tia mặt trời đi thẳng từ mặt trời đến mặt đất. Nhờ
các tia trực xạ này mà ta có thể nhìn thấy mặt trời;
- Thành phần nhiễu hay tán xạ gồm các tia mặt trời tới mặt đất từ mọi phương
trên bầu trời do hiện tường tán xạ của tia mặt trời trên các phân tử khí, hơi nước, các
hạt bụi,…. Nhờ các tia tán xạ này mà chúng ta vẫn có ánh sáng ngay cả những ngày
mây mù, không thể nhìn thấy mặt trời, ở trong nhà, dưới bóng cây,…;
Tổng hai thành phần trên được gọi là tổng xạ của bức xạ mặt trời ở mặt đất. Các
Trạm Khí tượng thường đo các thành phần này nhiều lần trong một ngày và liên tục
trong nhiều năm để có số liệu đánh giá tiềm năng NLMT.
Tỷ lệ của các thành phần trực xạ và tán xạ trong tổng xạ phụ thuộc vào điều kiện
tự nhiên và trạng thái thời tiết của địa điểm và thời điểm quan sát hay đo đạc. Ví dụ ở
nước ta, trong các tháng mùa Hè, từ tháng 5 đến tháng 8, thì thành phần trực xạ chiếm
ưu thế (trên 50%), còn trong mùa Đông, từ tháng 12 đến tháng 2 năm sau thành phần
tán xạ lại chiếm ưu thế.
Thành phần phản xạ từ mặt nền ở nơi quan sát hay nơi đặt bộ thu NLMT, nó phụ
thuộc vào hệ số phản xạ của mặt nền và tổng xạ tới. Thành phần này chỉ được phân
6
biệt khi thiết kế, tính toán các bộ thu NLMT. Trong trường hợp chung nó là một phần
rất nhỏ trong thành phần bức xạ tán xạ.
1.1.3 Quá trình phát triển và triển khai ứng dụng năng lượng mặt trời
NLMT trung bình trên bề mặt quả đất nằm trong khoảng 150 đến 300W/m2 hay
từ 3,5 đến 7,0kWh/m2 ngày.
NLMT từ lâu đã được con người khai thác sử dụng bằng các phương pháp tự
nhiên, trực tiếp và đơn giản như phơi sấy (quần áo, vật dụng; nông, lâm, hải sản; sưởi
ấm…). Tuy nhiên cách sử dụng NLMT theo các phương cách tự nhiên nói trên có hiệu
quả thấp và hoàn toàn thụ động.
NLMT có thể sử dụng dưới dạng nhiệt hay biến đổi thành điện. Điện từ mặt trời
là dạng điện năng được tạo ra khi biến đổi NLMT thành điện năng nhờ hiệu ứng quang
điện (photovoltaic effect, viết tắt PV) một cách trực tiếp, hoặc nhờ các hệ thống nhiệt
điện thông qua hiệu ứng hội tụ tia mặt trời (concentrated solar power, CSP) một cách
gián tiếp. Các hệ thống CSP sử dụng các thấu kính hay các gương hội tụ và hệ thống
“dõi theo mặt trời” (solar tracking systems) để hội tụ một diện tích lớn các tia mặt trời
vào một diện tích nhỏ hơn (gọi là điểm hay đường hội tụ). Nguồn nhiệt hội tụ này sau
đó được sử dụng để phát điện. Các hệ thống này gọi là hệ nhiệt điện mặt trời. Còn các
hệ thống PV biến đổi ánh sáng thành điện năng khi dùng hiệu ứng quang điện được
gọi là hệ thống điện PV.
Ứng dụng quan trọng đầu tiên của pin mặt trời là nguồn dự phòng (back-up) cho
về tinh nhân tạo Vanguard I vào năm 1958, nó đã cho phép truyền tín hiệu về quả đất
hơn một năm sau khi nguồn ắc qui điện hóa đã bị kiệt. Sự hoạt động thành công này
của pin mặt trời trên vệ tinh đã được lặp lại trong nhiều về tinh khác của Liên Xô và
Mỹ. Vào cuối những năm 1960, PV đã trở thành nguồn năng lượng được được sử
dụng riêng cho vệ tinh. PV đã có một vai trò rất quan trọng công nghệ vệ tinh thương
mại và nó vẫn giữ vị trí đó đối với hạ tầng viễn thong ngày nay.
Nhờ sự phát triển của khoa học công nghệ nên hiện nay con người đã biết khai
thác NLMT một cách hiệu quả và chủ động hơn nhờ các công nghệ hiện đại.
Nhà máy nhiệt điện mặt trời thương mại đầu tiên được xây dựng trong những
năm 1980. Nhà máy có công suất lớn nhất là 354MW xây dựng tại Sa mạc Mojave ở
California (Mỹ). Các nhà máy lớn khác như nhà máy Solnova (150MW) và Andasol
(100MW), cả hai đều ở Tây Ban Nha [4].
Những phát triển giai đoạn đầu của công nghệ năng lượng mặt trời (CN NLMT)
bắt đầu trong những năm thập niên 1980 đã được kích thích bởi sự kiện rằng than sẽ
không lâu nữa sẽ bị cạn kiệt. Tuy nhiên sự phát triển của CN NLMT sau đó bị chậm
lại vào thời gian đầu của thế kỷ 20 do phải đối mặt với các vấn đề về giá, tính kinh tế
và tính tiện dụng của than và dầu. Năm 1974 người ta đã ước tính rằng chỉ có 6 hộ ở
tất cả khu vực Bắc Mỹ sử dụng hoàn toàn năng lượng cho sưởi ấm và làm lạnh nhờ
các hệ thống thiết bị NLMT. Sự cấm vận dầu năm 1973 và sự khủng hoảng năng
7
lượng năm 1979 đã làm thay đổi chính sách năng lượng trên phạm vi thế giới và CN
NLMT lại được quan tâm thúc đẩy phát triển. Chiến lược triển khai tập trung vào các
chương trình tăng tốc như Chương trình sử dụng PV Liên Bang ở Mỹ, Chương trình
NLMT ở Nhật. Các cố gắng khác gồm có sự xây dựng các cơ sở nghiên cứu ở Mỹ
(SERI, nay là NREL), Nhật (NEDO), và Đức (Fraunhofer Institute for Solar Energy
Systems ISE).
Giữa các năm 1970 và 1983 các lắp đặt PV tăng rất nhanh, nhưng đầu những
năm 1980 do giá dầu giảm nên làm giảm nhịp độ phát triển của PV từ 1984 đến 1996.
Từ 1997, sự phát triển của PV lại được gia tốc do các vấn đề khó khăn về cung cấp
dầu và khí, do sự nóng lên của quả đất, và sự cải thiện của công nghệ sản xuất PV, dẫn
đến tính tính tế của PV trở nên tốt hơn. Sản xuất PV tăng trung bình 40%/năm từ năm
2000 và công suất lắp đặt đã đạt đến 10,6GW vào cuối năm 2007 và 14,73GW vào
năm 2008. Năm 2010 các nhà máy điện PV lớn nhất trên thế giới là Sania Power plant
ở Canada.
1.2 TÌNH HÌNH ỨNG DỤNG ĐIỆN MẶT TRỜI TRÊN THẾ GIỚI VÀ
TẠI VIỆT NAM
1.2.1 Tình hình phát triển điện mặt trời trên thế giới
Tới nay, rất nhiều quốc gia đã nghiên cứu và đang ứng dụng thành công nguồn
NLMT trong nhiều lĩnh vực của đời sống. Tại Hoa Kì, các hoạt động quảng bá NLMT
diễn ra rất sôi nổi. Hàng năm, các tiểu bang ở miền đông đều mở hội nghị về năng
lượng xanh với mục đích giới thiệu công nghệ mới về các thiết bị áp dụng NLMT cho
các hộ gia đình và cơ sở kinh doanh nhỏ.
Ở Pháp, từ những năm của thập niên 60 thế kỉ trước, họ đã rất chú trọng tới việc
giải quyết thiếu hụt năng lượng cho quốc gia phát triển. Họ đã thành công trong việc
thiết kế và lắp đặt các hệ thống biến NLMT thành điện năng cung ứng cho các làng xã
có quy mô 1.000 hộ. Nhờ đó, một số quốc gia vùng Trung Mỹ đã thừa hưởng thành
tựu này vì dễ lắp ráp và chi phí tương đối rẻ.
Đan Mạch được cho là quốc gia sử dụng năng lượng hiệu quả nhất thế giới. Ở
Đan Mạch, ước tính có tới 30% các hộ sử dụng tấm thu NLMT. Đan Mạch là nước
đầu tiên triển khai cơ chế buộc các nhà máy điện lớn phải mua điện xanh từ các địa
phương với giá cao (Feed - in tariff - FIT). Với cơ chế này, các địa phương hào hứng
sản xuất điện xanh. Mô hình đã được 30 nước áp dụng như: Đức, Tây Ba Nha, Nhật
Bản… Đức trở thành nước dẫn đầu thị trường PV thế giới (chiến 45%) kể từ khi điều
chỉnh lại hệ thống giá điện (Feed-in tariff) như là một phần của Chương trình “Hành
động nguồn năng lượng tái tạo” (Renewable Energy Sources Act). Công suất lắp đặt
PV đã tăng từ 100MW năm 2000 lên gần 4150MW vào cuối năm 2007 (bảng 1.1). Sau
năm 2007, Tây Ban Nha trở thành nước có sự phát triển sôi động nhất. Các nước Pháp,
8
Italy, Hàn Quốc và Mỹ cũng đã tăng công suất lắp đặt lên rất nhanh trong các năm mới
đây nhờ các chương trình kích thích và các điều kiện thị trường địa phương. Các
nghiên cứu mới đây đã cho thấy rằng, thị trường PV thế giới được dự báo vượt quá
16GW vào năm 2010.
Bảng 1.1 Các nước có nhà máy điện từ pin mặt trời cỡ lớn
(công suất trên 1MWp).
STT Tên nước
Tổng công suất
(MWp)
Thị phần (%)
1. Đức 400 45
2. Tây Ban Nha 245 28
3. Mỹ 142 16
4. Italy 17 2
5. Nhật Bản 17 2
6. Hàn Quốc 13 2
7. Bồ Đào Nha 12 1,5
8. Hà Lan 9 1
9. Thụy Sỹ 5 1
10. Bỉ 3 0,5
11. Úc 2 0,5
12. Trung Quốc 2 0,2
13. Áo 1,5 0,2
14. Cộng hòa Séc 1,4 0,2
15. Philipines 1,1 0,1
16. Réunion 1 0,1
Ở Trung Quốc, sự hưởng ứng mang tính tự phát của người dân trong việc lắp đặt
các tấm thu NLMT cũng đang đưa nước này vượt qua Đức trở thành thị trường tấm
thu NLMT lớn nhất thế giới. Trung Quốc cũng đã ban hành luật năng lượng tái tạo
(năm 2005), tạo cơ sở cho các hoạt động về dạng năng lượng này trở nên sôi nổi hơn.
Bảng 1.2 Các nhà máy điện mặt trời PV lớn nhất thế giới (trên 50MW)
TT Nhà máy PV
Công suất DC
cực đại (MW)
Ghi chú
1 Sarnia PV Power Plant (Canada) 97
Đã được xây dựng
2009-2010
2
Montalto di Castro PV Station
(Italy)
84,2
Đã được xây dựng
2009-2010
9
3 Finsterwalde Solar Park (Đức) 80,7
Pha 1 hoàn thành
2009, pha 2 và 3,
2010
4 Rovigo PV Power Plant (Italia) 70 Hoàn thành 11/2010
5 Olmedilla PV Park (Tây Ban Nha) 60 Hoàn thành 9/2008
6 Strasskirchen Solar Park (Đức) 54
7 Lieberose PV Park (Đức) 53 Hoàn thành 2009
8
Puertollano PV Park (Tây Ban
Nha)
50 Khởi công 2008
Từ Bảng 1.2 Các nhà máy điện mặt trời PV lớn nhất thế giới (trên 50MW)có thể
thấy, các nước thi đua khai thác nguồn năng lượng vô tận từ mặt trời. Về mức độ khai
thác và sử dụng NLMT, Việt Nam chỉ đang xếp hạng xấp xỉ với Lào hoặc ở mức gần
bằng với Campuchia.
Các nhà máy nhiệt điện mặt trời thương mại (CSP) đã được xây dựng lần đầu
tiên vào những năm 1980. Tháp NLMT PS10, 11MW ở Tây Ban Nha, đã hoàn thành
vào cuối năm 2005, là hệ CSP thương mại đầu tiên ở Châu Âu và một nhà máy khác
công suất 300MW được chờ đợi sẽ xây dựng vào năm 2013 cùng tại vị trí đó. Ngoài ra
nhà máy Ivanpah Solar Power ở Đông Nam California gần biên giới Nevada được chờ
đợi có công suất 392MW.
Công suất lắp đặt pin mặt trời trên toàn thế giới đến năm 2007 là 10.300MWp.
Đức hiện đang dẫn đầu với 3.862MWp. Trong đó, WP (watt-peak) là công suất điện
một chiều của pin mặt trời được đo đạc trong các điều kiện tiêu chuẩn (với cường độ
sáng: 1000 W/m2, nhiệt độ môi trường: 25O
C, quang phổ của nguồn sáng thử nghiệm
phải tương tự như quang phổ của BXMT tương ứng với hệ số khối lượng không khí là
1,5) (bảng 1.3).
Bảng 1.3 Các nhà máy điện từ pin mặt trời lớn nhất thế giới
STT Công suất (MWp) Thành phố Quốc gia
1. 20 Jumilla (Murcia) Tây Ban Nha
2. 20 Beneixama (Alicante) Tây Ban Nha
3. 14 Nellis, NV Mỹ
4. 13,8 Salamanca Tây Ban Nha
5. 12,7 Lobosillo (Murcia) Tây Ban Nha
6. 12 Erlasee (Arnstein) Đức
7. 11 Serpa (Alentejo) Bồ Đào Nha
8. 10,35 Bradis Đức
9. 10 Porkinh Đức
10
10. 9,55 Milagro Tây Ban Nha
11. 8,76 Viana (Navarra) Tây Ban Nha
12. 8,4 Gottelbom Đức
13. 8,22 San Luis Valley Mỹ
14. 6,3 Muhkhausen Đức
15. 6,277 Aldea del Conde
(Extremmadura)
Tây Ban Nha
16. 6 Olmedilla (Castilla la Mancha) Tây Ban Nha
17. 6 Doberschutz Đức
18. 5,8 Darro (Granada) Tây Ban Nha
19. 5,568 Oberottmarshausen Đức
20. 5,27 Miegersbach Nhật Bản
21. 5,21 Kameyama Đức
22. 5,076 Kleinaitingen Đức
23. 5,04 Alvarado Tây Ban Nha
Từ giữa các năm 1990 các nước dẫn đầu trong lĩnh vực PV đã dịch từ Mỹ sang
Nhật Bản và Châu Âu. Trong các năm 1992 - 1994 Nhật Bản đã tăng nguồn cung cấp
kinh phí cho các hoạt động R&D, đã xây dựng hướng dẫn về ĐMT nối lưới và đã đưa
vào một chương trình bù giá cho ĐMT, và do đó đã thúc đẩy sự lắp đặt các hệ thống
PV cho khu dân cư. Kết quả là, sản xuất trên thế giới đã tăng 30% trong các năm cuối
của thập kỷ 1990.
Các hệ PV cho dân sự (domestic) thường được tính công suất theo đơn vị
kilowatt-peak, kWp (thông thường nằm trong dải từ 1 đến 10kWp).Mặc dù tiềm năng
NLMT rất lớn. Tuy nhiên, đến năm 2008 nó mới chỉ cung cấp được dưới 0,02% tổng
nhu cầu năng lượng của nhân loại.
Một vấn đề quan trọng với ĐMT là chi phí lắp đặt còn cao, mặc dù chi phi đó đã
giảm nhiều so với các thập niên trước đây. Đặc biệt các nước đang phát triển có thể
không có đủ quĩ tài chính để xây dựng các nhà máy PV, mặc dù các ứng dụng qui mô
nhỏ hiện nay đã có thể thay thế các nguồn khác trong các nước đang phát triển.
1.2.2 Tình hình phát triển điện mặt trời tại Việt Nam
1.2.2.1 Tiềm năng điện mặt trời ở Việt Nam
Việt Nam thuộc vùng có bức xạ mặt trời vào loại cao trên thế giới, với số giờ
nắng dao động từ1600-2600giờ/năm, (trung bình xấp xỉ 5kwh/m2/ngày), được đánh
giá là khu vực có tiềm năng rất lớn về năng lượng mặt trời, đặc biệt là tại khu vực
miền Trung và miền Nam. Theo các nhà chuyên môn thì trong tương lai, nhu cầu sử
dụng các thiết bị chạy bằng năng lượng mặt trời ở nước ta là rất lớn, kể cả khu vực
11
thành thị cũng như khu vực nông thôn. Pin mặt trời vừa có thể thay thế cho thuỷ điện
nhỏ khi mùa hanh khô, vừa có thể là nguồn năng lượng dự trữ khi điện lưới quốc gia
không đủ cung cấp cho người dân.
1.2.2.2 Những dự án điện mặt trời ở Việt Nam
Tuy tiềm năng điện mặt trời ở Việt Nam là rất lớn nhưng do chi phí phát triển
điện mặt trời hiện nay còn khá cao nên các dự án điện mặt trời ở Việt Nam chủ yếu có
quy mô nhỏ lẻ và mang tính chất thử nghiệm. Các dự án điện mặt trời này thường là
các hệ thống điện mặt trời độc lập cung cấp điện cho các khu vực mà lưới điện quốc
gia chưa thể vươn tới như các vùng núi, vùng xa vùng xôi, hải đảo.
Các dự án điện mặt trời tiêu biểu có thể kể đến như :
- Dự án điện mặt trời trên đảo Cù Lao Chàm – Quảng Nam với 166 tấm pin mặt
trời tổng công suất 28 kWp.
- Trung tâm Hội nghị Quốc gia Mỹ Đình. Tổng công suất 154KW.
- Dự án tại Xã Thượng Trạch, Bố Trạch, Quảng Bình. Công suất 11kW.
- Hệ thống điện mặt trời cung cấp điện cho quần đảo Trường Sa.
Bên cạnh những dự án điện mặt trời độc lập kể trên, các hệ thống điện mặt trời
nối lưới cũng bắt đầu xuất hiện ở Việt Nam, tiêu biểu là hệ thống điện mặt trời trên
nóc tòa nhà bộ công thương với công suất 12kW. Dự án này với mục tiêu trình diễn
công nghệ là chính, nhưng nó cũng cho thấy sự hiệu quả của mình.
1.3 MỘT SỐ CÔNG NGHỆ ỨNG DỤNG SỬ DỤNG TRONG ĐỀ TÀI
1.3.1 Pin mặt trời
1.3.1.1 Cấu tạo của pin mặt trời
Cấu tạo bằng Silic: Trong bảng tuần hoàn Silic (Si) có số thứ tự 14-
1s2
2s2
2p6
3s2
3p2
. Các điện tử của nó được sắp xếp vào 3 lớp vỏ, 2 lớp vỏ bên trong
được xếp đầy bởi 10 điện tử. Tuy nhiên lớp ngoài cùng của nó chỉ được lấp đầy 1
nửa với 4 điện tử 3s23p2. Điều này làm nguyên tử Si có xu hướng dùng chung các
điện tử của nó với các nguyên tử Si khác. Trong cấu trúc mạng tinh thể nguyên tử Si
liên kết với 4 nguyên tử Si lân cận để lớp vỏ ngoài cùng có chung 8 điện tử (bền
vững).
Để tăng khả năng dẫn điện của bán dẫn silicon người ta thường pha tạp chất vào
trong đó. Trước tiên ta xem xét trường hợp tạp chất là nguyên tử phospho (P) với tỷ lệ
khoảng một phần triệu. P có 5 điện tử ở lớp vỏ ngoài cùng nên khi liên kết trong tinh
thể Si sẽ dư ra 1 điện tử. Điện tử này trong điều kiện bị kích thích nhiệt có thể bứt khỏi
liên kết với hạt nhân P để khuếch tán trong mạng tinh thể.
Chất bán dẫn Si pha tạp P được gọi là bán dẫn loại N (Negative) vì có tính chất
dẫn điện bằng các điện tử tự do. Ngược lại, nếu chúng ta pha tạp tinh thể Si bằng các
nguyên tử Boron (B) chỉ có 3 điện tử ở lớp vỏ, chúng ta sẽ có chất bán dẫn loại P
(Positive) có tính chất dẫn điện chủ yếu bằng các lỗ trống
12
Khi ta cho 2 loại bán dẫn trên tiếp xúc với nhau. Khi đó, các điện tử tự do ở gần
mặt tiếp xúc trong bán dẫn loại N sẽ khuyếch tán từ bán dẫn loại N - bán dẫn loại P và
lấp các lỗ trống trong phần bán dẫn loại P này.
Liệu các điện tử tự do của bán dẫn N có bị chạy hết sang bán dẫn P hay không?
Câu trả lời là không. Vì khi các điện tử di chuyển như vậy nó làm cho bán dẫn N mất
điện tử và tích điện dương, ngược lại bán dẫn P tích điện âm. Ở bề mặt tiếp xúc của 2
chất bán dẫn bây giờ tích điện trái ngược và xuất hiện 1 điện trường hướng từ bán dẫn
N sang P ngăn cản dòng điện tử chạy từ bán dẫn N sang P. Và trong khoảng tạo bởi
điện trường này hầu như không có electron hay lỗ trống tự do .
Tinh thể Si tinh khiết là chất bán dẫn dẫn điện rất kém vì các điện tử bị giam giữ
bởi liên kết mạng, không có điện tử tự do. Chỉ trong điều kiện kích thích quang, hay
nhiệt làm các điện tử bị bứt ra khỏi liên kết,các điện tử (tích điện âm) nhảy từ vùng
hóa trị lên vùng dẫn bỏ lại vùng hóa trị 1 lỗ trống (tích điện dương), thì khi đó chất
bán dẫn mới dẫn điện.
Hiện nay vật liệu chủ yếu cho pin mặt trời là các silic tinh thể. Pin mặt trời từ
tinh thể silic chia thành 3 loại:
Một tinh thể hay đơn tinh thể module sản xuất dựa trên quá trình czoschralski,
đơn tinh thể này có hiệu suất tới 16% và thường rất đắt tiền. Do được cắt từ các thỏi
hình ống, các tấm đơn thể này có các mặt trống ở góc nối các module.
Đa tinh thể từ các thỏi đúc – đúc từ silic nung chảy cẩn thận được làm nguội và
làm rắn. Các pin này thường rẻ hơn các đơn tinh thể, tuy nhiên hiệu suất kém hơn.
Chúng có thể tạo thành các vuông che phủ bề mặt nhiều hơn đơn tinh thể bù lại cho
hiệu suất thấp của nó.
Một lớp tiếp xúc bán dẫn p – n có khả năng biến đổi trực tiếp năng lượng bức xạ
mặt trời thành điện năng nhờ hiệu ứng quan điện bên trong gọi là pin mặt trời. Pin mặt
trời được sản xuất và ứng dụng phổ biến hiện nay là các pin mặt trời được chế tạo từ
vật liệu tinh thể bán dẫn silicon (Si) có hóa trị 4. Từ tinh thể silic tinh khiết, để có vật
liệu tinh thể bán dẫn Si loại n, người ta pha tạp chất donor là photpho có hóa trị 5. Còn
có thể có vật liệu bán dẫn tinh thể loại p thì tạp chất acceptor được dùng để pha vào
silic là Bo có hóa trị 3. Đối với pin mặt trời từ vật liệu tinh thể silic khi bức xạ mặt trời
chiếu đến thì hiệu điện thế hở mạch giữa 2 cực khoảng 0,55V và dòng điện đoản
mạch của nó khi bức xạ mặt trời có cường độ 1000W/m2 vào khoảng 25 – 30
mA/cm2.
13
1.3.1.2 Nguyên lý hoạt động của pin mặt trời
a. Hiện tượng quang điện
Hình 1.1 Các vùng năng lượng
Hiệu ứng quang điện được phát hiện đầu tiên năm 1839 bởi nhà vật lý Pháp
Alexandre Edmond Becquerel. Tuy nhiên tới năm 1883 thì một pin mặt trời mới tạo
thành bởi Charles Fritts, ông phủ lên mặt bán dẫn selen một lớp cực mỏng vàng để tạo
nên mạch nối. Thiết bị chỉ có hiệu suất 1%, Russell Ohl được xem là người tạo ra pin
mặt trời đầu tiên 1946. Sau đó Sven Ason Berglund đã có các phương pháp liên quan
đến việc tăng khả năng cảm nhận ánh sáng của pin.
Xét một hệ hai mức năng lượng điện tử E1 < E2, bình thường điện tử chiếm mức
năng lượng thấp hơn E1. Khi nhận bức xạ mặt trời, lượng tử ánh sáng photon có năng
lượng hv (trong đó h là hằng số Planck, v là tần số ánh sáng) bị điện tử hấp thụ và
chuyển lên mức năng lượng E2. Ta có phương trình cân bằng năng lượng:
Hv= E2–E1 (1.1)
Trong các vật thể rắn, do tương tác rất mạnh của mạng tinh thể lên điện tử vòng
ngoài, nên các mức năng lượng của nó bị tách ra nhiều mức năng lượng sát nhau và
tạo thành các vùng năng lượng (Hình 1.1). Vùng năng lượng thấp bị các năng lượng
điện tử chiếm đầy khi ở trạng thái cân bằng gọi là vùng hóa trị, mà mặt trên của nó có
chức năng lượng Ev. Vùng năng lượng ở trên tiếp đó hoàn toàn trống hoặc chỉ chiếm
một phần gọi là vùng dẫn, mặt dưới của vùng có năng lượng Ec. Cách ly giữa hai vùng
hóa trị và vùng dẫn là một vùng có cấp độ rộng với năng lượng là Eg, trong đó không
có mức năng lượng cho phép nào của điện tử.
14
Hình 1.2 Hệ 2 mức năng lượng
Khi nhận bức xạ mặt trời, photon có năng lượng hv tới hệ thống và bị điện tử
ởvùng hóa trị thấp hấp thu và nó có thể chuyển lên vùng dẫn để trở thành điện tử tự do
e-, để lại ở vùng hóa trị một lỗ trống có thể như hạt mang điện dương, ký hiệu là h+.
Lỗ trống này có thể duy chuyển và tham gia vào quá trình dẫn điện.Hiệu ứng lượng tử
của quá trình hấp thụ photon có thể miêu tả bằng phương trình:
Ev + hv -> e-+h+ (1.2)
Trong thực tế các hạt dẫn bị kích thích e- và h+ đều tự phát tham gia vào quá
trình phục hồi, chuyển động đến mặt của các vùng năng lượng: điện tử e- giải phóng
năng lượng để giải phóng đến mặt của vùng dẫn Ec, còn lỗ trống h+ duy chuyển đến
mặt của Ev, quá trình phục hồi chỉ xảy ra trong khoảng thời gian rất ngắn 10-12 - 10-1
giây và gây ra dao động mạnh (photon). Năng lượng bị tổn hao do quá trình phục hồi
sẽ là:
Eph = hv–Eg (1.3)
Tóm lại khi vật rắn nhận tia bức xạ mặt trời, điện tử ở vùng hóa trị hấp thụ năng
lượng photon hv và chuyển lên vùng dẫn và tạo ra cặp hạt dẫn điện tử - lỗ trống e- -
h+, tức là đã tạo ra một hiệu điện thế. Hiện tượng đó gọi là hiệu ứng quang điện bên
trong.
b. Nguyên lý hoạt động của pin mặt trời
Nguyên lý hoạt động của pin mặt trời chính là hiện tượng quang điện xảy ra trên
lớp tiếp xúc p-n
Khi một nhóm photon chạm vào mảnh silic, một trong hai điều sẽ xảy ra
Năng lượng photon truyền xuyên qua mảnh silic. Điều này thường xuyên xảy ra
khi năng lượng của photon thấp hơn năng lượng đủ để đưa các hạt electron lên mức
năng lượng cao hơn
Năng lượng của photon được hấp thụ bởi silic.Điều này thường xuyên xảy ra khi
năng lượng của photon lớn hơn năng lượng đủ để đưa các hạt electron lên mức năng
lượng cao hơn.
Khi photon được hấp thụ, năng lượng của nó được truyền đến các hạt electron
trong mạng tinh thể ( thông thường các electron này ở lớp ngoài cùng). Khi electron
15
được kích thích, trở thành dẫn điện, các lectron này có thể tự do di chuyển trong bán
dẫn.Khi đó nguyên tử sẽ thiếu 1 electron gọi là lỗ trống.Lỗ trống này tạo điều kiện cho
các electron của các nguyên tử bên cạnh di chuyển đến điều vào chỗ trống và điều này
tạo điều kiện cho nguyên tử bên cạnh hình thành nên lỗ trống. Cứ tiếp tục như vậy
electron và lỗ trống di chuyển xuyên suốt mạch bán dẫn và tạo ra dòng điện
Với mạng tinh thể silic, giá trị Eg = Eg - EV tương đối thấp (vào 1,1eV),
tương đương với năng lượng của tia hồng ngoại (1,7eV).Do đó, silic có thể hấp thu
phần lớn ánh sáng mặt trời (từ tia hồng ngoại đến tia tử ngoại).Tuy nhiên, do những
photon có năng lượng lớn sẽ bị thất thoát phần dư thừa ở dạng nhiệt nên phần năng
lượng hấp thụ được chuyển đổi thành nhiệt năng lớn hơn năng lượng điện (ngoài ra
còn phải kể đến sự thất thoát gây ra bởi cấu trúc vật liệu, phản xạ bề mặt và sự tinh
khiết của silicon…) Hiệu suất lý thuyết tối đa của pin mặt trời silicon dơn tinh thể là
31% (với loại pin một lớp silicon).
c. Đặc tính làm việc của pin mặt trời
 Mạch điện tương đương
Khi được chiếu sáng, nếu ta nối các bán dẫn p và n của một tiếp xúc p-n bằng
một dây dẫn, thì pin mặt trời phát ra một dòng quang điện Iph. Vì vậy pin mặt trời có
thể xem như một nguồn dòng.
Lớp tiếp xúc bán dẫn p-n có tính chỉnh lưu tương đương một diode.Tuy nhiên,
khi phân cực ngược, do điện trở tiếp xúc có tính giới hạn, nên vẫn có một dòng điện
được gọi là dòng rò qua nó. Đặc trưng cho dòng rò qua lớp tiếp xúc p-n người ta đưa
vào đại lượng điện trở Rsh
Dòng điện chạy trong mạch phải đi qua các lớp bán dẫn p và n, các điện cực, các
lớp tiếp xúc,…Đặc trưng cho tổng các điện trở của các lớp đó là một điện trở Rsh nối
tiếp trong mạch (có thể coi là nội điện trở của pin mặt trời, phụ thuộc vào độ sâu của
lớp bán dẫn , sự tinh khiết và điện trở tiếp xúc).
Như vậy, một pin mặt Trời được chiếu sáng có sơ đồ tương đương như :
Hình 1.3 Đường đặc trưng theo độ chiếu sáng của pin mặt trời
16
I = Iα − I0 − Ish = Iα − Is [(exp
q(V+IRs)
nkT
− 1) −
(V+IRs)
Rsh
] (1.1)
Trong đó:
Iα : dòng quang điện (A/m2).
Id : dòng qua diot (A/m2).
Ish : dòng dò (A/m2).
Is : dòng bão hòa (A/m2).
n: được gọi là thừa số lý tưởng phụ thuộc vào các mức độ hoàn thiện công nghệ
pin mặt Trời. Gần đúng có thể lấy n = 1.
Rs: điện trở nối tiếp (điện trở trong) của pin mặt Trời (Ω/m2);
Rsh : điện trở shun (Ω/m2);
q: điện tích của điện tử (C);
Thông thường điện trở sơn Rsh rất lớn vì vậy có thể bỏ qua số hạng cuối trong
biểu thức (1.1). Đường đặc trưng sáng V-A của pin mặt trời cho bởi biểu thức có dạng
như đường cong trong (hình 1.5) . Có ba điểm quan trọng trên đường đặc trưng này:
Dòng ngắn mạch Isc
Điện áp hở mạch Voc
Điểm công suất cực đại PM
 Điểm làm việc cực đại
Xét một đường đặc tính V-A của pin mặt Trời đối với một cường độ bức xạ cho
trước và ở nhiệt độ xác định. Nếu các cực của pin mặt trời được nối với tải tiêu thụ
điện R thì điểm cắt nhau của đường đăc tính V-A của pin mặt Trời và đường đặc trưng
của tải trong tọa độ OIV là điểm làm việc của pin mặt Trời. Nếu tải tiêu thụ điện của
một pin mặt Trời là một tải điện trở Ohm thuần, thì đường đặc trưng tải là một đường
thẳng đi qua gốc tọa độ và có độ nghiêng α đối với trục OV và tgα = 1/R (trên
hình 1.9), (theo định luật Ohm ta có I = V/R). Trong trường hợp này, công suất pin
mặt trời cấp cho tải chỉ phụ thuộc vào giá trị điện trở R.
Trong tọa độ OIV, công suất pin mặt Trời cấp cho tải R bằng diện tích hình chữ
nhật giới hạn bởi hoành độ và tung độ của điểm làm việc. Với các giá trị R khác nhau,
các điểm làm việc sẽ khác nhau và do đó tải tiêu thụ cũng khác nhau. Tồn tại một giá
trị R=ROPT mà tại đó công suất tải tiêu thụ là cực đại. Điểm làm việc ứng với công suất
cực đại, điểm A trên Hình 1.4 Điểm làm việc và điểm công suất cực đại, là điểm
tiếp xúc giữa đường đặc tính VA của pin mặt Trời và đường công suất không đổi
(đường công suất không đổi IV = const là các đường hypecbol).
17
Hình 1.4 Điểm làm việc và điểm công suất cực đại
Giá trị điện trở tải tối ưu ROPT được xác định theo định luật Ohm:
(1.2)
Điều kiện cường độ bức xạ không đổi và nhiệt độ cho trước ta thấy:
- Nếu điện trở tải nhỏ, R << ROPT, pin mặt trời làm việc trong miền MN là
miền mà cường độ dòng điện gần như không đổi và gần bằng dòng đoản mạchISC.
- Nếu điện trở tải R lớn, R >> ROPT, pin mặt Trời làm việc trong miền PS
với hiệu điện thế gần như không đổi và bằng thế hở mạchVOC.
Ta thấy rằng pin mặt Trời chỉ làm việc có hiệu quả khi tải tiêu thụ điện có giá trị
lân cận ROPT. Điều này không phải lúc nào cũng dễ dàng đạt được bởi vì điểm làm việc
ngay đối với một máy tiêu thụ điện cũng thay đổi. Ngoài ra bức xạ mặt Trời và nhiệt
độ của môi trường thay đổi liên tục theo thời gian, nên đường đặc tính V-A của pin
mặt Trời cũng thay đổi và do đó làm dịch chuyển điểm làm việc ra khỏi điểm làm việc
tối ưu.
Công suất đỉnh là công suất ra cực đại của pin mặt trời dưới điều kiện cường độ
bức xạ và nhiệt độ nhất định. Thường được tính dưới điều kiện thử nghiệm chuẩn
(STC : Standard Test Condition) là cường độ bức xạ 1000W/m2và nhiệt độ 25oC.
Công suất đỉnh thường được đo bằng Wp (Watt peak), để chỉ ra giá công suất
đỉnh ở điều kiện phòng thí nghiệm, giá trị này rất khó đạt được dưới điều kiện hoạt
động thực tế.
d. Dàn pin mặt trời
18
Dàn pin mặt trời (array PV), được ghép nối từ các tấm pin mặt trời (module PV),
là thành phần quan trọng nhất của hệ thống pin năng lượng mặt trời.Chúng có nhiệm
vụ biến đổi năng lượng hấp thụ từ mặt trời thành điện năng cung cấp cho phụ tải. Tùy
theo công suất cần thiết mà kỹ sư thiết kế ghép nối các tấm pin theo các dãy song song
hoặc nối tiếp khác nhau.
Có hai cách ghép cơ bản:
- Ghép nối tiếp các tấm mođun lại sẽ cho điện áp ra lớn hơn.
- Ghép song song các tấm module lại sẽ cho dòng điện ra lớn.
Trong thực tế phương pháp ghép hỗn hợp được sử dụng nhiều hơn để đáp ứng cả
yêu cầu về điện áp và dòng điện.
 Phương pháp ghép nối tiếp các tấm module mặt trời:
Hình 1.5 Ghép nối tiếp hai module pin mặt trời (a)và đường đặc trưng VA của các
module và của cả hệ (b)
Giả sử các module đều giống hệt nhau, có đường đặc tính V-A giống hết nhau, các
thông số dòng đoản mạch ISC, thế hở mạch VOC bằng nhau. Giả sử cường độ chiếu sáng
trên các tấm là đồng đều nhau. Khi ghép nối tiếp các tấm module này ta sẽ có:
I = I1 = I2 = …, = Ii (1.3)
n
1
i
i
V
V
(1.4)
n
1
i
i
n
1
i
i P
IV
I
.
V
P
(1.5)
n
1
i
opti
opt
n
1
i
opti
opt
iopt
opt P
P
,
V
V
,
I
I
(1.6)
Trong đó:
I, P, V : là dòng điện, công suất và hiệu điện thế của cả hệ.
Ii, Vi, Pi : là dòng điện, công suất, hiệu điện thế của module thứ i trong hệ.
19
Iopi, Vopi, Popi : là dòng điện làm việc tối ưu, điện thế làm việc tối ưu, công suất
làm việc tối ưu của các module thứ i trong hệ.
Iop, Vop, Pop : là dòng điện làm việc tối ưu, điện thế làm việc tối ưu, công suất
làm việc tối ưu của hệ.
Khi tải có giá trị 0 < R < Các module làm việc như các máy phát tương
đương. Đường đặc tính vôn - ampe của hệ bằng tổng hình học của hai đường đặc trưng
của mỗi module.
 Ghép song song các module mặt trời:
Ở cách ghép này, ta cũng giả sử các module đều giống hệt nhau, có đường đặc
tính V-A giống hết nhau, các thông số dòng đoản mạch Isc thế hở mạch Voc bằng
nhau. Giả sử cường độ chiếu sáng trên các tấm là đồng đều nhau.
Hình 1.6 Ghép song song hai module pin mặt trời (a)và đường đặc trưng VA của
các module và của cả hệ (b)
Khi đó ta có:
U = U1 = U2 =…= Ui (1.7)
n
1
i
i
n
1
i
i P
VI
I
.
V
P
(1.8)
n
1
i
opti
opt
n
1
i
opti
opt
iopt
opt P
P
,
I
I
,
V
V
(1.9)
n
1
i
opti
opt
n
1
i
opti
opt
iopt
opt P
P
,
I
I
,
V
V
(1.10)
Đường đặc tính VA của hệ cũng được suy ra bằng cách cộng các giá trị dòng
điện I ứng với các giá trị điện thế V không đổi.Trong trường hợp này, các pin cũng
làm việc như các máy phát.
Trên thị trường hiện nay, các tấm pin năng lượng mặt trời được thiết kế với công
suất dao động từ 25Wp đến 230Wp.Tùy theo chủng loại, số lượng cells trên mỗi tấm
20
pin thường là 18, 36, 72 hoặc nhiều hơn. Hiệu suất tiêu chuẩn của các tấm pin năng
lượng mặt trời thương mại vào khoảng 15-18%
Hình 1.7 Dàn pin năng lượng mặt trời
Các tấm pin mặt trời được lắp đặt ở ngoài trời có thể hứng được ánh sáng mặt
trời tốt nhất nên cần thiết kế các tính năng và chất liệu đặt biệt, có thể chịu được sự
khắc nghiệt của thời tiết, khí hậu và nhiệt độ…Ngoài ra chất keo và chất nền phải có
tính dẫn nhiệt để giúp pin tỏa nhiệt tốt, nâng cao hiệu suất chuyển đổi pin.
1.3.2 Bộ nghịch lưu
DC-AC Inverter là thiết bị nghịch lưu, chuyển đổi dòng điện một chiều từ ắc quy
(hoặc tấm pin) thành dòng điện xoay chiều cho tải. Tùy theo nhu cầu mà Inverter
được thiết kế với các cấp công suất khác nhau.
Có nhiều loại Inverter, thường được phân biệt qua dạng sáng điện áp đầu ra:
dạng sóng hình sin chuẩn (true line), giả Since, sóng vuông, sóng bậc thang.Các bộ
Inverter giả sine, sóng vuông, hoặc bậc thang chỉ dùng cho các tải không có tính cảm
(đèn chiếu sáng, tivi, radio). Với các tải là động cơ điện, quạt điện…tức là những thiết
bị có cuộn cảm thì phải dùng các bộ biến đổi có sóng ra dạng sin chuẩn. Các bộ
Inverter dùng trong các hệ thống pin mặt trời lớn thường là dạng sin chuẩn (có thể sử
dụng cho nhiều loại tải khác nhau)
Ngoài ra còn các thiết bị khác như hệ thống rơ le bảo vệ, máy cắt, hệ thống điều
khiển... tuy nhiên trong phạm vi đề tài này tôi xin chỉ nêu những thiết bị chính về mặt
nhất thứ dùng riêng cho hệt thống điện mặt trời nối lưới tại hồ thủy điện Đồng Nai 4.
1.4 CÁC MÔ HÌNH CƠ BẢN CỦA HỆ THỐNG PIN MẶT TRỜI
1.4.1 Vận hành độc lập với lưới (Off Grid)
Hệ thống pin mặt trời vận hành độc lập chỉ dựa vào năng lượng mặt trời để phát
ra điện năng.Tùy nhu cầu và mục đích sử dụng mà có thể có hoặc không có ắc quy để
dự trữ năng lượng. Qui mô và thiết kế của hệ thống này phù hợp cho các tải điện một
chiều hoặc xoay chiều công suất nhỏ hoặc ứng dụng cho các vùng không có điện lưới.
Dạng đơn giản nhất của hệ thống quang điện độc lập là hệ thống liên kết tải trực
tiếp, tức là dòng điện một chiều phát ra từ module quang điện sẽ được dẫn trực tiếp
21
vào mà không thông qua hệ thống trung gian (như bình ắc quy). Đương nhiên là hệ
thống này chỉ có tác dụng ban ngày (vào những giờ nắng), cung cấp điện cho các tải
nhỏ như hệ thống quạt thông khí, hệ thống bơm nước…Phần thiết kế quan trọng nhất
cho hệ thống trực tiếp là tính toán điện trở tải sao cho phù hợp với công suất tối đa
của hệ thống pin mặt trời. Đối với một số loại tải như máy bơm nước, người ta gắn
một dạng biến thiên điện DC-AC điện từ, gọi là hệ thống theo dõi công suất tối đa
giữa nguồn và tải có thể tận dụng tốt hơn công suất tối đa của nguồn.
1.4.2 Vận hành kiểu lai (Hybrid)
Hệ thống cục bộ có thể kết hợp với các nguồn khác (điện gió, máy phát điện
diesel…) như nguồn phát thứ cấp, khi đó ta có hệ thống pin mặt trời liên kết hay hệ
thống kiểu lai (hybrid system)…Về mặt vận hành, hệ thống liên kết tương tự hệ thống
độc lập, tuy nhiên khi không có ánh sáng mặt trời thì nguồn điện của hệ vẫn được duy
trì nhờ các nguồn thứ cấp.
Hệ thống liên kết này đặc biệt thích hợp cho các vùng có tiềm năng cả về năng
lượng gió và năng lượng mặt trời. Ban ngày, hệ thống pin mặt trời sẽ làm nhiệm vụ
cung cấp điện chính, còn ban đêm thì hệ thống điện gió sẽ làm nhiệm vụ cung cấp điện
chính cho tải.
1.4.3 Vận hành kết nối với lưới điện (grid tie)
Hệ thống pin năng lượng mặt trời vận hành kết nối với lưới điện có vai trò như
một phần của mạng điện khu vực. Có hai dạng hệ thống pin mặt trời nối lưới : trực tiếp
và trữ ắc quy. Module pin mặt trời và bộ chuyển DC/AC là hai thành phần thiết yếu
trong cả hai dạng hệ thống nối lưới. Module pin măt trời có vai trò chuyển đổi ánh
sáng mặt trời thành dòng điện một chiều, và bộ chuyển DC/AC chuyển dòng điện một
chiều thành dòng điện xoay chiều.
Hệ thống điện pin mặt trời nối lưới trực tiếp tương đối đơn giản hơn và hiệu quả
hơn trong vài trường hợp. Hệ thống này chuyển đổi tức thời dòng điện một chiều
thành xoay chiều và kết nối vào lưới điện. Tại đây, hệ thống pin mặt trời chia tải với
hệ thống điện lưới và quay ngược đồng hồ điện bất cứ khi nào thặng dư điện. Đây là
dạng thiết kế có giá thành thấp.Tuy nhiên, do hệ thống này không có biện pháp dự
phòng nên khi nguồn điện trung tâm bị cắt, thì xảy ra hiện tượng cúp điện đầu tải.
Hệ thống sử dụng bình ắc quy để trữ điện thi khắc phục được trường hợp mất
điện khi nguồn điện lưới bị cắt. Hệ thống bao gồm một bộ ắc quy và các thiết bị điều
khiển điện tử phức tạp hơn. Một khi nguồn điện lưới bị cắt, điện dự trữ từ ắc quy sẽ
được sử dụng thay thế cho đến khi cạn nguồn dự trữ.Nếu nguồn điện bị cắt vào ban
ngày, hệ thống pin mặt trời sẽ liên tục nạp điện vào hệ thống ắc quy, từ đó kéo dài khả
năng dự trữ điện cho buổi tối.
22
1.5 KẾT LUẬN
Năng lượng mặt trời truyền đến trái đất dưới dạng bức xạ. Trong những ngày
quang đãng (không có mây), phần năng lượng bức xạ mặt trời truyền tới bề mặt trái
đất ở thời điểm cao nhất khoảng 1000W/m2.
Một hệ thống điện pin mặt trời cơ bản gồm có ba thành phần là:
- Dàn pin mặt trời (nguồn điện)
- Dàn ắc quy (dự trữ điện năng)
- Hệ thống điều phối điện năng
Có ba mô hình vận hành cơ bản của hệ thống pin năng lượng mặt trời là
- Mô hình vận hành độc lập
- Mô hình vận hành kiểu lai
- Mô hình vận hành kết nối lưới điện
Tùy theo yêu cầu và điều kiện cụ thể tại nơi lắp đặt mà ta chọn mô hình vận hành
của hệ thống điện pin mặt trời thích hợp, để từ đó tính toán và thiết kế hệ thống.
Hiện nay trên thế giới đang phát triển mạnh mẽ nguồn năng lượng mặt trời, có
nhiều nhà máy điện đã và đang được xây dựng với công suất rất lớn.
Tại Việt Nam sản lượng điện mặt trời đang còn khá khiêm tốn, tuy nhiên Chính
Phủ đã đề ra các mục tiêu cũng như các chính sách nhằm phát triển nguồn năng lượng
này.
23
CHƯƠNG 2
KHẢO SÁT THỰC TRẠNG HỒ THỦY ĐIỆN ĐỒNG NAI 4
2.1. TỔNG QUAN VỀ HỒ THỦY ĐIỆN ĐỒNG NAI 4
Hồ thủy điện Đồng Nai 4 được hình thành bởi dự án thủy điện Đồng Nai 3&4
bằng cách ngăn dòng chảy trên sông Đồng Nai đoạn từ hạ lưu nhà máy thủy điện
Đồng Nai 3 đến đập chính và đập tràn của hồ thủy điện Đồng Nai 4. Hồ được tích
nước từ đầu tháng 11 năm 2011 với mục đích chính của hồ là tích nước để chạy 2 tổ
máy của nhà máy thủy điện Đồng Nai 4. Hiện nay hồ đang vận hành ổn định và thuộc
quyền quản lý của công ty thủy điện Đồng Nai, xã Quảng Khê huyện Đăk Glong, xã
Lộc Bảo huyện Bảo Lâm
Hình 2.1 Hồ thủy điện Đồng Nai 4 từ phần mềm Google Earth.
2.1.1. Vị trí địa lý: [6]
Hồ thủy điện Đồng Nai 4 nằm tại 110
-120
20 vĩ Bắc, 1070
– 1080
30 kinh đông,
nơi giáp ranh giữa xã Quảng Khê, huyện Đăk Glong, tỉnh Đăk Nông và xã Lộc Bảo,
huyện Bảo Lâm, tỉnh Lâm Đồng, cách thị trấn Quảng Khê khoảng 10km về phía đông
nam. Đây là vị trí thuộc khu vực cao nguyên Nam trung bộ của Việt Nam là khu vực
có tiềm năng kỹ thuật để nghiên cứu, đầu tư phát triển điện mặt trời CSP.
24
Hình 2.2 Bản đồ tiềm năng kỹ thuật về CSP tại Việt Nam
2.1.2. Tình trạng mặt thoáng:
Trong vận hành mực nước hồ giao động từ cao trình 474m đến cao trình 476m,
trong trường hợp đặc biệt mực nước gia cường lớn nhất ở tần suất P0.02% có thể dâng
đến cao trình 479.24m. Diện tích mặt hồ ở cao trình 474m (mực nước chết) là 8,03km2
và diện tích ở cao trình 476m (mực nước dâng bình thường) là 8.32km2
, độ chênh mực
nước thấp thích hợp với việc đặt các phao nổi trên mặt hồ để lắp đặt các tấm pin năng
lượng mặt trời.
Trong lòng hồ có một số hòn đảo nhỏ tuy nhiên không có núi cao nên mặt hồ
không bị che phủ bởi vách núi và cây cối, khu vực hồ dân cư thưa thớt an ninh tốt chỉ
có một số hộ dân nuôi cá bè và đánh bắt cá với hình thức nhỏ lẻ, tự phát.
2.1.3. Vị trí lắp đặt thiết bị:
2.1.3.1. Vị trí lắp đặt các tấm PV.
Do tại các vị trí đập và cửa nhận nước đã có sẵn đường dây 22kV nên dự định sẽ
đặt các tấm PV tại gần 2 vị trí này
Tại khu vực gần đường ra cửa nhận nước có 1 khu đất trống có diện tích vào
khoảng 4 ha, nằm trên địa phận của xã Lộc Bảo, huyện Bảo Lâm, tỉnh Lâm Đồng. Khu
đất này trước đây dùng để đổ đất đá thải lúc thi công cửa nhận nước, nay bỏ trống đất
đai cằn cỗi mặt bằng tương đối bằng phẳng, không có bóng che và gần với mặt hồ có
thể sử dụng để đặt các giá đỡ và các tấm PV trên cạn, đây cũng là vị trí được chọn để
đặt trạm inverter C và các trạm biến áp 0,4/22kV.
25
Hình 2.3 Bãi đất trống dự định đặt các tấm PV trên cạn
Khu vực lòng hồ cửa nhận nước có diện tích vào khoảng 30,5 ha thuộc địa phận
xã Lộc Bảo, huyện Bảo Lâm, tỉnh Lâm Đồng. Đây là khu vực nước tĩnh, vận tốc dòng
chảy nhỏ, mực nươc hồ giao động ít, ít bị ảnh hưởng của bóng che, không ảnh hưởng
đến lưu thông của thuyền bè, thuận lợi cho việc neo các tấm phao nên được chọn để
đặt các phao nổi và các tấm pin PV trên mặt hồ.
Tương tự khu vực lòng hồ phía phải của đập nhìn từ thượng lưu có diện tích vào
khoảng 60,6 ha thuộc địa phận xã Quảng Khê, huyện Đăk Glong, tỉnh Đăk Nông cũng
được chọn để đặt các phao nổi và các tấm PV trên mặt hồ, gần đó có một hòn đảo diện
tích khoảng 1 ha có thể sử dụng để đặt trạm inverter A và một số trạm biến áp
0,4/22kV. Tương tự trạm inverter B và một số trạm biến áp sẽ được đặt tại khu đất
trống bên bờ trái gần đó.
2.1.3.2. Vị trí đặt trạm phân phối 230kV
Cách vai trái của đập dâng hồ thủy điện Đồng nai 4 khoảng 300m có một khoảng
đất trống bằng phẳng có diện tích vào khoảng 6 ha trước đây là khu phụ trợ để xây
dựng đập nay bỏ hoang, nằm trên đỉnh đồi thuộc xã Quảng Khê, huyện Đăk Glong,
tỉnh Đăk Nông, khá bằng phẳng có thể sử dụng để đặt nhà điều hành, máy biến áp tăng
áp 22/220kV và các thiết bị trạm phân phối.
2.1.4. Giao thông
Bên cạnh hồ có quốc lộ 28 chạy qua phía bên vai phải của đập dâng và đập tràn,
bên vai trái của đập đã có sẵn đường giao thông nội bộ từ đập tràn đi cửa nhận nước
của dự án thủy điện Đồng Nai 4. Khu vực ven hồ và các vị trí đặt thiết bị cần được xây
dựng thêm đường để thi công và vận hành.
26
Hình 2.4 Bãi đất dự định đặt trạm phân phối 230kV
Hình 2.5 Các khu vực dự định đặt thiết bị.
2.2. TIỀM NĂNG ĐIỆN MẶT TRỜI LÝ THUYẾT TẠI KHU VỰC [7]
Hồ thủy điện Đồng Nai 4 nằm giáp ranh giữa 2 tỉnh Đăk Nông và Lâm Đồng,
theo thống kê được lấy từ các trạm khí tượng thủy văn tại 2 trạm khí tượng Đăk Nông
và Đà Lạt số liệu về năng lượng mặt trời lấy được như sau
27
2.2.1. Số giờ nắng trung bình tháng năm tại khu vực
Bảng 2.1 Số giờ nắng trung bình tại khu vực (Giờ)
Tháng 1 2 3 4 5 6 7 8 9 10 11 12 Năm
Đăk
Nông
250 241 251 222 191 150 140 128 125 165 194 223 2.281
Đà Lạt 257 237 259 203 191 148 160 137 133 142 174 220 2.118
Hình 2.6 Biểu đồ số giờ nắng trong năm tại khu vực dự án
Số giờ nắng trung bình năm khu vực dự án khoảng 2281 giờ, tương ứng khoảng
6.25 giờ/ngày là cao so với số giờ nắng trung bình năm của cả nước.
2.2.2. Nhiệt độ trung bình tháng và năm tại khu vực.
Bảng 2.2 Nhiệt độ trung bình tháng, năm tại khu vực (o
C)
Tháng 1 2 3 4 5 6 7 8 9 10 11 12 Năm
Đăk
Nông
20,5 21,9 23,4 24,2 24,2 23,5 23,1 23,0 23,1 22,8 22,2 20,8 22,7
Đà Lạt 15,8 16,7 17,9 18,9 19,4 19,0 18,8 18,5 18,5 18,0 17,4 16,1 17,9
28
Hình 2.7 Biểu đồ nhiệt độ trung bình tháng, năm tại khu vực.
2.2.3. Tổng xạ theo phương ngang (GHI) tại khu vực
Theo nguồn số liệu từ Solargis khu vực tỉnh Lâm Đồng có tổng xạ theo phương
ngang từ 1500 – 2000 kWh/năm, khu vực tỉnh Đăk Nông có tổng xạ theo phương
ngang từ 1700 – 2000 kWh/năm
Tổng xạ theo phương ngang hàng năm (GHI) là thông số cơ bản nhất cần xem
xét khi cần đánh giá tiềm năng mặt trời tại khu vực dự án, GHI càng cao năng suất
phát điện tính trên 1kWp công suất lắp đặt sẽ càng lớn.
Dựa trên bản đồ GHI trung bình ngày lý thuyết tại khu vực 2 huyện Đăk Glong,
huyện Đăk Nông và huyện Bảo Lâm, tỉnh Lâm Đồng là vùng có nguồn bức xạ mặt trời
tốt, từ 4,9 đến 5,3 kWh/m2
.ngày (Hình 2.8Hình 2.8 Bản đồ GHI trung bình
ngày lý thuyết khu vực
29
Hình 2.8 Bản đồ GHI trung bình ngày lý thuyết khu vực
Nhận xét: Qua các số liệu trên cho thấy nguồn năng lượng mặt trời tại khu vực
dự án là tốt, số giờ nắng trung bình năm tại khu vực là cao so với cả nước, tổng xạ
theo phương ngang tại khu vực thuộc loại cao. Ngoài ra điều kiện thời tiết tại khu vực
khá thuận lợi do ít ảnh hưởng của mưa bão rất thích hợp cho việc xây dựng 1 nhà máy
điện mặt trời
2.3. THỰC TRẠNG LƯỚI ĐIỆN TẠI HỒ THỦY ĐIỆN ĐỒNG NAI 4
2.3.1. Lưới điện hạ thế và thông tin liên lac:
Tại đập tràn và cửa nhận nước đã có nguồn điện 3 pha 400V có thể lựa chọn lấy
từ đường dây 22kV nhà máy thủy điện Đồng Nai 4 hoặc từ phía trạm 22kV Đăk Nông
đặt tại thị xã Gia Nghĩa để cấp cho công tác vận hành các cửa tràn và cửa nhận nước
và các nguồn 1 pha cấp cho điện sinh hoạt và chiếu sáng đường, vai đập và cảnh báo
tại đập tràn và cửa nhận nước. Tại đập tràn có 1 máy phát Diesel dự phòng công suất
100kVA.
Hệ thống thông tin liên lạc và điều khiển giám sát đã được kết nối từ đập tràn và
cửa nhận nước với phòng điều khiển trung tâm nhà máy thủy điện Đồng Nai 4 thông
qua 2 đường cáp quang và có thể kết nối với internet
2.3.2. Hệ thống lưới điện 22kV:
Hiện tại khu vực đã có lưới điện 22kV nối liền từ tỉnh Đăk Nông với nhà máy
thủy điện Đồng Nai 4 theo sơ đồ như Hình 2.9 Sơ đồ lưới điện 22kV tại khu
vực thủy điện Đồng Nai 4
30
Hình 2.9 Sơ đồ lưới điện 22kV tại khu vực thủy điện Đồng Nai 4
Hiện tại đường dây 22kV tại khu vực được lấy từ nhà máy thủy điện Đồng Nai 4
qua máy biến áp BFT01 1600kVA, đầu hạ áp (0,4kV) của BFT01(T381) được nối với
thanh cái III tại tủ BHA02 qua máy cắt QFB4, đầu cao áp (22kV) của BFT01 được nối
với đường dây 22kV qua LBFCO 400-8 dẫn đến đập tràn, cửa nhận nước, công ty cao
su Bảo Lâm và một số khu dân cư qua các trạm T248, T249, T460, T487.
LBFCO-10 được nối đến đường dây 22kV Đăk Nông, trong vận hành bình
thường nguồn cấp sẽ được lựa chọn từ tự dùng của nhà máy thủy điện Đồng Nai 4,
phía đường dây 22kV Đăk Nông sẽ dự phòng khi nguồn chính bị sự cố.
Như vậy có thể sử dụng hệ thống điện mặt trời nổi trên mặt hồ kết nối với lưới
điện 22kV để phát cho các phụ tải địa phương, tự dùng nhà máy Đồng Nai 4 và phụ tải
22kV phía Đăk Nông tuy nhiên công suất sẽ không được lớn do phụ tải tại khu vực
nhỏ và đường dây mạch đơn dẫn ra trạm 22kV Đăk Nông sử dụng dây ACSR95 nên
công suất truyền tải cũng không được lớn.
2.3.3. Lưới điện 230kV:
Tại gần khu vực dự định đặt trạm phân phối của dự án có 2 vị trí có đường dây
230kV gần đó và cách trạm phân phối 500kV Đăk Nông khoảng 10 km.
31
Hình 2.10 Sơ đồ lưới điện 230kV tại gần khu vực dự án
Trạm 230kV Đồng Nai 4 nằm cách vị trí dự án khoảng 7km về hướng đông tuy
nhiên trạm đang sử dụng loại trạm tứ giác hiện không thể mở rộng ngăn lộ tại trạm
này, chỉ có thể đấu nối vào đường dây mạch kép sử dụng loại dây ACRS500 từ trạm
Đồng Nai 4 ra trạm 500kV Đăk Nông.
Cách vị trí đập tràn và đập dâng khoảng 3km về phía thị trấn Quảng Khê có 1
mạch đường dây kép 230kV chạy qua, đường dây này nối từ trạm 230kV Đồng Nai 3
đến trạm 500kV Đăk Nông sử dụng dây loại ACRS400, có thể đấu nối từ ngõ ra của
dự án vào đường dây này.
Như vậy để thực hiện nối lưới hệ thống điện mặt trời nổi trên hồ thủy điện Đồng
Nai 4 với hệ thống điện 230kV Quốc gia đạt hiệu quả cao nhất ta chọn phương án đấu
nối vào đường dây kép từ trạm 230kV Đồng Nai 3 tới trạm 500kV Đăk Nông
Hình 2.11 Vị trí dự kiến đấu nối NMĐMT ĐN4 vào lưới 230kV
2.4. KẾT LUẬN
Tải bản FULL (file word 85 trang): bit.ly/2Ywib4t
Dự phòng: fb.com/KhoTaiLieuAZ
32
Các điều kiện tại hồ thủy điện Đồng Nai 4 có khá nhiều điểm thuận lợi cho việc
thiết kế 1 hệ thống điện mặt trời đặt nổi trên mặt hồ như
- Độ chênh mực nước thấp.
- Các số liệu khảo sát khí tượng thủy văn tại khu vực phù hợp với điều kiện
xây dựng và phát triển điện mặt trời
- Giao thông thuận lợi, đã có đường quốc lộ chạy qua và đường vận hành
nội bộ của khu vực đập tràn và cửa nhận nước.
- Điện sinh hoạt cũng như đường dây 22kV sẵn có thuận lợi cho công tác
thi công .
- Khu vực ít dân cư sinh sống không phải giải tỏa, đền bù.
- An ninh tại khu vực tương đối tốt.
- Cách vị trí đặt dự án khoảng 3 km có đường dây mạch kép 230kV nối
giữa trạm 230kV Đồng Nai 3 và trạm 500kV Đăk Nông chạy qua có thể
kết nối hệ thống với lưới điện 230kV tại vị trí này.
Như vậy khu vực hồ thủy điện Đồng Nai 4 rất phù hợp với việc xây dựng một
nhà máy điện mặt trời nổi nối lưới với công suất rất lớn.
Tải bản FULL (file word 85 trang): bit.ly/2Ywib4t
Dự phòng: fb.com/KhoTaiLieuAZ
33
CHƯƠNG 3
TÍNH TOÁN, THIẾT KẾ HỆ THỐNG ĐIỆN MẶT TRỜI NỔI TRÊN HỒ
ĐỒNG NAI 4
Để hoàn thành được dự án điện mặt trời nổi nối lưới cần phải thực hiện các hạng
mục công việc chính cụ thể như sau:
- Tính toán lựa chọn thiết bị cho nhà máy điện mặt trời nổi trên mặt hồ thủy điện
Đồng Nai 4 sử dụng công nghệ tấm pin quang điện đặt trên các phao, giá đỡ đồng thời
cũng là các máng đi cáp và đường giao thông vận hành, bảo dưỡng.
- Tính toán, lựa chọn thiết bị cho các trạm Inverter nối với nhà máy điện mặt trời
nổi.
- Tính toán, lựa chọn thiết bị cho các trạm biến áp 0.4/22kV đặt ngoài trời để đấu
nối từ các trạm Inverter đến đường dây 22kV.
- Tính toán lựa chọn thiết bị cho 1 trạm biến áp nâng áp 22/230kV ngoài với 3
ngăn lộ bố trí theo sơ đồ tam giác (có khả năng mở rộng 1 ngăn lộ trong tương lai).
- Lựa chọn thiết bị cho 1 đường dây 230kV mạch kép từ trạm 22/230kV của nhà
máy điện mặt trời đến đấu nối chuyển tiếp đồng bộ vào đường dây 230kV Đồng Nai 3
– Đăk Nông hiện hữu.
- Ngoài ra còn phải thực hiện tính toán lựa chọn thiết bị cho các hệ thống khác
như hệ thống điều khiển bảo vệ, đo lường, hệ thống thông tin viễn thông, điều độ vận
hành. Hệ thống điện tự dùng, hệ thống nối đất chống sét, hệ thống chiếu sáng…
Tuy nhiên, trong phạm vi đề tài này chỉ tập trung vào phần công nghệ mang tính
đặc trưng của dự án năng lượng mặt trời nổi như hệ thống phao nổi, Pin, Inverter và 1
số sơ đồ kết nối tổng quan.
3.1. GIỚI THIỆU SƠ LƯỢC VỀ PHẦN MỀM PVSYST [8]
Phần mềm PVsyst được ra đời vào năm 1994, do hai tác giả đồng sáng lập là ông
André Mermoud và ông Michel Villoz.
Các chức năng của phần mềm là nghiên cứu, tính toán, thiết kế hệ thống năng
lượng mặt trời, bao gồm hệ thống điện năng lượng mặt trời nối lưới, hệ thống điện
năng lượng mặt trời độc lập, hệ thống bơm năng lượng mặt trời và hệ thống điện năng
lượng mặt trời lưới DC.
Những tính năng của phần mềm PVsyst đối với việc thiết kế hệ thống điện năng
lượng mặt trời:
+ Có thể chọn vị trí lắp đặt hệ thống năng lượng mặt trời ở bất kỳ vị trí nào trên
toàn thế giới, với việc thống kê dữ liệu khí tượng từ các nguồn uy tín, để phục vụ cho
việc đánh giá trữ lượng năng lượng mặt trời ở khu vực đó.
34
+ Chọn hệ thống pin quang điện, hệ thống biến tần, hệ thống dự trữ, hệ thống dây
điện, hệ thống máy bơm…với những số liệu cụ thể, đánh giá khả năng của các hệ
thống thông qua những vùng đặc tính làm việc tối ưu của nó.
+ Tính toán các tổn thất trong hệ thống một cách chi tiết.
+ Đánh giá khả năng đáp ứng của hệ thống năng lượng mặt trời đối với phụ tải.
+ Tính toán kinh tế của hệ thống năng lượng mặt trời từ đó kết luận có nên thực
hiện dự án hay không.
3.2. ĐỊNH VỊ ĐỊA ĐIỂM LẤY SỐ DỮ LIỆU KHÍ TƯỢNG
3.2.1. Nhập số liệu đầu vào
Nhập các số liệu đầu vào cần thiết vào mục Meteo database
Bảng 3.1 Thông số nhập vào mục Meteo database
Thông số Giá trị Ghi chú
Tên dự án Dong Nai 4
Tọa độ vị trí điểm dữ liệu
11o
88’ vĩ bắc,
107o
73’ kinh đông
Cao trình dự án 475 mét So mực nước biển
Múi giờ 7.0
Nguồn dữ liệu khí tượng
thủy văn
Meteonorm 7.1
Dữ liệu khảo sát từ năm
1991 đến 2010
Hình 3.1 Giao diện nhập số liệu và kết quả của chương trình
3.2.2. Kết quả số liệu của chương trình
Sau khi nhập số liệu chương trình sẽ ra được bảng số liệu như Số liệu khí tượng
lấy từ phần mềm PVsyst
6431189

More Related Content

What's hot

Luận văn: Phân tích và đề xuất một số giải pháp giảm tổn thất điện năng tại C...
Luận văn: Phân tích và đề xuất một số giải pháp giảm tổn thất điện năng tại C...Luận văn: Phân tích và đề xuất một số giải pháp giảm tổn thất điện năng tại C...
Luận văn: Phân tích và đề xuất một số giải pháp giảm tổn thất điện năng tại C...Viết thuê trọn gói ZALO 0934573149
 
Boost converter.pptx (Bộ biến đổi tăng áp một chiều)
Boost converter.pptx (Bộ biến đổi tăng áp một chiều)Boost converter.pptx (Bộ biến đổi tăng áp một chiều)
Boost converter.pptx (Bộ biến đổi tăng áp một chiều)vuongduongpkt
 
Thiết kế động cơ điện không đồng bộ ba pha rôto lồng sóc (Kèm file Autocad)
Thiết kế động cơ điện không đồng bộ ba pha rôto lồng sóc (Kèm file Autocad) Thiết kế động cơ điện không đồng bộ ba pha rôto lồng sóc (Kèm file Autocad)
Thiết kế động cơ điện không đồng bộ ba pha rôto lồng sóc (Kèm file Autocad) nataliej4
 
đồ áN cung cấp điện đề tài thiết kế cung câp điện cho phân xưởng sửa chữa thi...
đồ áN cung cấp điện đề tài thiết kế cung câp điện cho phân xưởng sửa chữa thi...đồ áN cung cấp điện đề tài thiết kế cung câp điện cho phân xưởng sửa chữa thi...
đồ áN cung cấp điện đề tài thiết kế cung câp điện cho phân xưởng sửa chữa thi...jackjohn45
 
Chất lượng điện năng và một số giải pháp nâng cao chất lượng điện năng trong ...
Chất lượng điện năng và một số giải pháp nâng cao chất lượng điện năng trong ...Chất lượng điện năng và một số giải pháp nâng cao chất lượng điện năng trong ...
Chất lượng điện năng và một số giải pháp nâng cao chất lượng điện năng trong ...Man_Ebook
 
Luận văn Thạc sĩ Nghiên cứu các loại máy phát điện, đi sâu phân tích hệ thống...
Luận văn Thạc sĩ Nghiên cứu các loại máy phát điện, đi sâu phân tích hệ thống...Luận văn Thạc sĩ Nghiên cứu các loại máy phát điện, đi sâu phân tích hệ thống...
Luận văn Thạc sĩ Nghiên cứu các loại máy phát điện, đi sâu phân tích hệ thống...Dịch vụ viết thuê Luận Văn - ZALO 0932091562
 
Cải thiện ổn định điện áp cho lưới điện phân phối dùng thiết bị bù ngang
Cải thiện ổn định điện áp cho lưới điện phân phối dùng thiết bị bù ngangCải thiện ổn định điện áp cho lưới điện phân phối dùng thiết bị bù ngang
Cải thiện ổn định điện áp cho lưới điện phân phối dùng thiết bị bù ngangMan_Ebook
 
Đồ Án Tốt Nghiệp KCD2 MOBILE ROBOT_10215412052019
Đồ Án Tốt Nghiệp KCD2 MOBILE ROBOT_10215412052019Đồ Án Tốt Nghiệp KCD2 MOBILE ROBOT_10215412052019
Đồ Án Tốt Nghiệp KCD2 MOBILE ROBOT_10215412052019PinkHandmade
 
NGHỊCH LƯU VÀ BIẾN TẦN.pdf
NGHỊCH LƯU VÀ BIẾN TẦN.pdfNGHỊCH LƯU VÀ BIẾN TẦN.pdf
NGHỊCH LƯU VÀ BIẾN TẦN.pdfMan_Ebook
 
dự án trang trại chăn nuôi bò
dự án trang trại chăn nuôi bòdự án trang trại chăn nuôi bò
dự án trang trại chăn nuôi bòLẬP DỰ ÁN VIỆT
 
Đồ án Thiết kế hệ thống cung cấp điện cho một phân xưởng
Đồ án Thiết kế hệ thống cung cấp điện cho một phân xưởngĐồ án Thiết kế hệ thống cung cấp điện cho một phân xưởng
Đồ án Thiết kế hệ thống cung cấp điện cho một phân xưởngBryce Breitenberg
 
Năng lượng-gió-thuyết-trình (2)
Năng lượng-gió-thuyết-trình (2)Năng lượng-gió-thuyết-trình (2)
Năng lượng-gió-thuyết-trình (2)liomenphan
 
Nghiên cứu thiết kế hệ thống scada cho hệ thống cung cấp nước sạch tại xí ngh...
Nghiên cứu thiết kế hệ thống scada cho hệ thống cung cấp nước sạch tại xí ngh...Nghiên cứu thiết kế hệ thống scada cho hệ thống cung cấp nước sạch tại xí ngh...
Nghiên cứu thiết kế hệ thống scada cho hệ thống cung cấp nước sạch tại xí ngh...Man_Ebook
 

What's hot (20)

Luận văn: Phân tích và đề xuất một số giải pháp giảm tổn thất điện năng tại C...
Luận văn: Phân tích và đề xuất một số giải pháp giảm tổn thất điện năng tại C...Luận văn: Phân tích và đề xuất một số giải pháp giảm tổn thất điện năng tại C...
Luận văn: Phân tích và đề xuất một số giải pháp giảm tổn thất điện năng tại C...
 
Boost converter.pptx (Bộ biến đổi tăng áp một chiều)
Boost converter.pptx (Bộ biến đổi tăng áp một chiều)Boost converter.pptx (Bộ biến đổi tăng áp một chiều)
Boost converter.pptx (Bộ biến đổi tăng áp một chiều)
 
Thiết kế động cơ điện không đồng bộ ba pha rôto lồng sóc (Kèm file Autocad)
Thiết kế động cơ điện không đồng bộ ba pha rôto lồng sóc (Kèm file Autocad) Thiết kế động cơ điện không đồng bộ ba pha rôto lồng sóc (Kèm file Autocad)
Thiết kế động cơ điện không đồng bộ ba pha rôto lồng sóc (Kèm file Autocad)
 
Đề tài: Hệ thống giám sát điện năng tiêu thụ trong hộ gia đình
Đề tài: Hệ thống giám sát điện năng tiêu thụ trong hộ gia đìnhĐề tài: Hệ thống giám sát điện năng tiêu thụ trong hộ gia đình
Đề tài: Hệ thống giám sát điện năng tiêu thụ trong hộ gia đình
 
đồ áN cung cấp điện đề tài thiết kế cung câp điện cho phân xưởng sửa chữa thi...
đồ áN cung cấp điện đề tài thiết kế cung câp điện cho phân xưởng sửa chữa thi...đồ áN cung cấp điện đề tài thiết kế cung câp điện cho phân xưởng sửa chữa thi...
đồ áN cung cấp điện đề tài thiết kế cung câp điện cho phân xưởng sửa chữa thi...
 
Pin mặt trời và ứng dụng
Pin mặt trời và ứng dụngPin mặt trời và ứng dụng
Pin mặt trời và ứng dụng
 
Chất lượng điện năng và một số giải pháp nâng cao chất lượng điện năng trong ...
Chất lượng điện năng và một số giải pháp nâng cao chất lượng điện năng trong ...Chất lượng điện năng và một số giải pháp nâng cao chất lượng điện năng trong ...
Chất lượng điện năng và một số giải pháp nâng cao chất lượng điện năng trong ...
 
Luận văn Thạc sĩ Nghiên cứu các loại máy phát điện, đi sâu phân tích hệ thống...
Luận văn Thạc sĩ Nghiên cứu các loại máy phát điện, đi sâu phân tích hệ thống...Luận văn Thạc sĩ Nghiên cứu các loại máy phát điện, đi sâu phân tích hệ thống...
Luận văn Thạc sĩ Nghiên cứu các loại máy phát điện, đi sâu phân tích hệ thống...
 
Luận văn: Xây dựng bộ biến đổi DC/AC có điện áp ra 220V, HAY
Luận văn: Xây dựng bộ biến đổi DC/AC có điện áp ra 220V, HAYLuận văn: Xây dựng bộ biến đổi DC/AC có điện áp ra 220V, HAY
Luận văn: Xây dựng bộ biến đổi DC/AC có điện áp ra 220V, HAY
 
Đề tài: Giám sát điện năng qua internet, HAY, 9đ
Đề tài: Giám sát điện năng qua internet, HAY, 9đĐề tài: Giám sát điện năng qua internet, HAY, 9đ
Đề tài: Giám sát điện năng qua internet, HAY, 9đ
 
Cải thiện ổn định điện áp cho lưới điện phân phối dùng thiết bị bù ngang
Cải thiện ổn định điện áp cho lưới điện phân phối dùng thiết bị bù ngangCải thiện ổn định điện áp cho lưới điện phân phối dùng thiết bị bù ngang
Cải thiện ổn định điện áp cho lưới điện phân phối dùng thiết bị bù ngang
 
Đồ Án Tốt Nghiệp KCD2 MOBILE ROBOT_10215412052019
Đồ Án Tốt Nghiệp KCD2 MOBILE ROBOT_10215412052019Đồ Án Tốt Nghiệp KCD2 MOBILE ROBOT_10215412052019
Đồ Án Tốt Nghiệp KCD2 MOBILE ROBOT_10215412052019
 
Đề tài: Hệ thống giám sát quá trình chiết rót và đóng nắp chai tự động
Đề tài: Hệ thống giám sát quá trình chiết rót và đóng nắp chai tự độngĐề tài: Hệ thống giám sát quá trình chiết rót và đóng nắp chai tự động
Đề tài: Hệ thống giám sát quá trình chiết rót và đóng nắp chai tự động
 
NGHỊCH LƯU VÀ BIẾN TẦN.pdf
NGHỊCH LƯU VÀ BIẾN TẦN.pdfNGHỊCH LƯU VÀ BIẾN TẦN.pdf
NGHỊCH LƯU VÀ BIẾN TẦN.pdf
 
dự án trang trại chăn nuôi bò
dự án trang trại chăn nuôi bòdự án trang trại chăn nuôi bò
dự án trang trại chăn nuôi bò
 
Đồ án Thiết kế hệ thống cung cấp điện cho một phân xưởng
Đồ án Thiết kế hệ thống cung cấp điện cho một phân xưởngĐồ án Thiết kế hệ thống cung cấp điện cho một phân xưởng
Đồ án Thiết kế hệ thống cung cấp điện cho một phân xưởng
 
Đề tài: Thiết kế mạng lưới điện 1 nguồn và 6 phụ tải, HAY, 9đ
Đề tài: Thiết kế mạng lưới điện 1 nguồn và 6 phụ tải, HAY, 9đĐề tài: Thiết kế mạng lưới điện 1 nguồn và 6 phụ tải, HAY, 9đ
Đề tài: Thiết kế mạng lưới điện 1 nguồn và 6 phụ tải, HAY, 9đ
 
Năng lượng-gió-thuyết-trình (2)
Năng lượng-gió-thuyết-trình (2)Năng lượng-gió-thuyết-trình (2)
Năng lượng-gió-thuyết-trình (2)
 
Nghiên cứu thiết kế hệ thống scada cho hệ thống cung cấp nước sạch tại xí ngh...
Nghiên cứu thiết kế hệ thống scada cho hệ thống cung cấp nước sạch tại xí ngh...Nghiên cứu thiết kế hệ thống scada cho hệ thống cung cấp nước sạch tại xí ngh...
Nghiên cứu thiết kế hệ thống scada cho hệ thống cung cấp nước sạch tại xí ngh...
 
Đề tài: Tính toán hệ thống cung cấp điện cho tòa nhà 7 tầng, HOT
Đề tài: Tính toán hệ thống cung cấp điện cho tòa nhà 7 tầng, HOTĐề tài: Tính toán hệ thống cung cấp điện cho tòa nhà 7 tầng, HOT
Đề tài: Tính toán hệ thống cung cấp điện cho tòa nhà 7 tầng, HOT
 

Similar to Nghiên cứu, thiết kế hệ thống điện mặt trời nổi trên hồ thủy điện đồng nai 4

NGHIÊN CỨU ĐỀ XUẤT GIẢI PHÁP NÂNG CAO ĐỘ TIN CẬY CUNG CẤP ĐIỆN CHO LƯỚI ĐIỆN ...
NGHIÊN CỨU ĐỀ XUẤT GIẢI PHÁP NÂNG CAO ĐỘ TIN CẬY CUNG CẤP ĐIỆN CHO LƯỚI ĐIỆN ...NGHIÊN CỨU ĐỀ XUẤT GIẢI PHÁP NÂNG CAO ĐỘ TIN CẬY CUNG CẤP ĐIỆN CHO LƯỚI ĐIỆN ...
NGHIÊN CỨU ĐỀ XUẤT GIẢI PHÁP NÂNG CAO ĐỘ TIN CẬY CUNG CẤP ĐIỆN CHO LƯỚI ĐIỆN ...nataliej4
 
Nghiên cứu các biện pháp bảo vệ chống sét cho đường dây 220kv Thái Bình- Nam ...
Nghiên cứu các biện pháp bảo vệ chống sét cho đường dây 220kv Thái Bình- Nam ...Nghiên cứu các biện pháp bảo vệ chống sét cho đường dây 220kv Thái Bình- Nam ...
Nghiên cứu các biện pháp bảo vệ chống sét cho đường dây 220kv Thái Bình- Nam ...Man_Ebook
 
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...Man_Ebook
 
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...Man_Ebook
 
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...Man_Ebook
 
CÁC GIẢI PHÁP TIẾT KIỆM ĐIỆN CHO HỆ THỐNG ĐIỆN TỰ DÙNG CỦA NHÀ MÁY THỦY ĐIỆN ...
CÁC GIẢI PHÁP TIẾT KIỆM ĐIỆN CHO HỆ THỐNG ĐIỆN TỰ DÙNG CỦA NHÀ MÁY THỦY ĐIỆN ...CÁC GIẢI PHÁP TIẾT KIỆM ĐIỆN CHO HỆ THỐNG ĐIỆN TỰ DÙNG CỦA NHÀ MÁY THỦY ĐIỆN ...
CÁC GIẢI PHÁP TIẾT KIỆM ĐIỆN CHO HỆ THỐNG ĐIỆN TỰ DÙNG CỦA NHÀ MÁY THỦY ĐIỆN ...nataliej4
 
ĐIều khiển công suất tác dụng và phản kháng của hệ thống điện năng lượng gió​
ĐIều khiển công suất tác dụng và phản kháng của hệ thống điện năng lượng gió​ĐIều khiển công suất tác dụng và phản kháng của hệ thống điện năng lượng gió​
ĐIều khiển công suất tác dụng và phản kháng của hệ thống điện năng lượng gió​Man_Ebook
 
PHÂN TÍCH ĐÁNH GIÁ ỨNG DỤNG RƠ LE G60 TRONG BẢO VỆ MÁY PHÁT NHÀ MÁY THỦY ĐIỆN...
PHÂN TÍCH ĐÁNH GIÁ ỨNG DỤNG RƠ LE G60 TRONG BẢO VỆ MÁY PHÁT NHÀ MÁY THỦY ĐIỆN...PHÂN TÍCH ĐÁNH GIÁ ỨNG DỤNG RƠ LE G60 TRONG BẢO VỆ MÁY PHÁT NHÀ MÁY THỦY ĐIỆN...
PHÂN TÍCH ĐÁNH GIÁ ỨNG DỤNG RƠ LE G60 TRONG BẢO VỆ MÁY PHÁT NHÀ MÁY THỦY ĐIỆN...nataliej4
 
THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...
THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...
THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...nataliej4
 
Xác định tiềm năng năng lượng mặt trời áp mái tỉnh Hậu Giang.pdf
Xác định tiềm năng năng lượng mặt trời áp mái tỉnh Hậu Giang.pdfXác định tiềm năng năng lượng mặt trời áp mái tỉnh Hậu Giang.pdf
Xác định tiềm năng năng lượng mặt trời áp mái tỉnh Hậu Giang.pdfMan_Ebook
 
Nghiên cứu hệ SCADA cho hệ thống xử lý nước trong nhà máy nhiệt điện.pdf
Nghiên cứu hệ SCADA cho hệ thống xử lý nước trong nhà máy nhiệt điện.pdfNghiên cứu hệ SCADA cho hệ thống xử lý nước trong nhà máy nhiệt điện.pdf
Nghiên cứu hệ SCADA cho hệ thống xử lý nước trong nhà máy nhiệt điện.pdfMan_Ebook
 
NGHIÊN CỨU VÀ ĐỀ XUẤT CÁC GIẢI PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG TRÊN LƯỚI ĐIỆN PH...
NGHIÊN CỨU VÀ ĐỀ XUẤT CÁC GIẢI PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG TRÊN LƯỚI ĐIỆN PH...NGHIÊN CỨU VÀ ĐỀ XUẤT CÁC GIẢI PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG TRÊN LƯỚI ĐIỆN PH...
NGHIÊN CỨU VÀ ĐỀ XUẤT CÁC GIẢI PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG TRÊN LƯỚI ĐIỆN PH...HanaTiti
 
ĐÁNH GIÁ HIỆU QUẢ KINH TẾ CÁC PHƯƠNG PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG ỨNG DỤNG CH...
ĐÁNH GIÁ HIỆU QUẢ KINH TẾ CÁC PHƯƠNG PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG ỨNG DỤNG CH...ĐÁNH GIÁ HIỆU QUẢ KINH TẾ CÁC PHƯƠNG PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG ỨNG DỤNG CH...
ĐÁNH GIÁ HIỆU QUẢ KINH TẾ CÁC PHƯƠNG PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG ỨNG DỤNG CH...nataliej4
 
ĐIỀU KHIỂN TỰ CHỈNH ĐỊNH THAM SỐ BỘ ĐIỀU KHIỂN PID CHO HỆ THỐNG ĐIỀU TỐC NHÀ ...
ĐIỀU KHIỂN TỰ CHỈNH ĐỊNH THAM SỐ BỘ ĐIỀU KHIỂN PID CHO HỆ THỐNG ĐIỀU TỐC NHÀ ...ĐIỀU KHIỂN TỰ CHỈNH ĐỊNH THAM SỐ BỘ ĐIỀU KHIỂN PID CHO HỆ THỐNG ĐIỀU TỐC NHÀ ...
ĐIỀU KHIỂN TỰ CHỈNH ĐỊNH THAM SỐ BỘ ĐIỀU KHIỂN PID CHO HỆ THỐNG ĐIỀU TỐC NHÀ ...HanaTiti
 
Nghiên cứu phương pháp xác định vị trí sự cố trên đường dây tải điện dựa trên...
Nghiên cứu phương pháp xác định vị trí sự cố trên đường dây tải điện dựa trên...Nghiên cứu phương pháp xác định vị trí sự cố trên đường dây tải điện dựa trên...
Nghiên cứu phương pháp xác định vị trí sự cố trên đường dây tải điện dựa trên...Man_Ebook
 
Đề tài Ứng dụng phần mềm PSSADETP bù tối ưu công suất phản kháng cho hệ thống...
Đề tài Ứng dụng phần mềm PSSADETP bù tối ưu công suất phản kháng cho hệ thống...Đề tài Ứng dụng phần mềm PSSADETP bù tối ưu công suất phản kháng cho hệ thống...
Đề tài Ứng dụng phần mềm PSSADETP bù tối ưu công suất phản kháng cho hệ thống...Brooklyn Abbott
 
NGHIÊN CỨU SỬ DỤNG GIẢI PHÁP TỰ ĐỘNG HÓA LƯỚI ĐIỆN PHÂN PHỐI (DAS) ĐỂ NÂNG CA...
NGHIÊN CỨU SỬ DỤNG GIẢI PHÁP TỰ ĐỘNG HÓA LƯỚI ĐIỆN PHÂN PHỐI (DAS) ĐỂ NÂNG CA...NGHIÊN CỨU SỬ DỤNG GIẢI PHÁP TỰ ĐỘNG HÓA LƯỚI ĐIỆN PHÂN PHỐI (DAS) ĐỂ NÂNG CA...
NGHIÊN CỨU SỬ DỤNG GIẢI PHÁP TỰ ĐỘNG HÓA LƯỚI ĐIỆN PHÂN PHỐI (DAS) ĐỂ NÂNG CA...nataliej4
 
ĐÁNH GIÁ HIỆU QUẢ VÀ ĐỀ XUẤT GIẢI PHÁP CẢI TIẾN CÔNG NGHỆ SỬA CHỮA NÓNG TRÊN ...
ĐÁNH GIÁ HIỆU QUẢ VÀ ĐỀ XUẤT GIẢI PHÁP CẢI TIẾN CÔNG NGHỆ SỬA CHỮA NÓNG TRÊN ...ĐÁNH GIÁ HIỆU QUẢ VÀ ĐỀ XUẤT GIẢI PHÁP CẢI TIẾN CÔNG NGHỆ SỬA CHỮA NÓNG TRÊN ...
ĐÁNH GIÁ HIỆU QUẢ VÀ ĐỀ XUẤT GIẢI PHÁP CẢI TIẾN CÔNG NGHỆ SỬA CHỮA NÓNG TRÊN ...HanaTiti
 

Similar to Nghiên cứu, thiết kế hệ thống điện mặt trời nổi trên hồ thủy điện đồng nai 4 (20)

NGHIÊN CỨU ĐỀ XUẤT GIẢI PHÁP NÂNG CAO ĐỘ TIN CẬY CUNG CẤP ĐIỆN CHO LƯỚI ĐIỆN ...
NGHIÊN CỨU ĐỀ XUẤT GIẢI PHÁP NÂNG CAO ĐỘ TIN CẬY CUNG CẤP ĐIỆN CHO LƯỚI ĐIỆN ...NGHIÊN CỨU ĐỀ XUẤT GIẢI PHÁP NÂNG CAO ĐỘ TIN CẬY CUNG CẤP ĐIỆN CHO LƯỚI ĐIỆN ...
NGHIÊN CỨU ĐỀ XUẤT GIẢI PHÁP NÂNG CAO ĐỘ TIN CẬY CUNG CẤP ĐIỆN CHO LƯỚI ĐIỆN ...
 
Nghiên cứu các biện pháp bảo vệ chống sét cho đường dây 220kv Thái Bình- Nam ...
Nghiên cứu các biện pháp bảo vệ chống sét cho đường dây 220kv Thái Bình- Nam ...Nghiên cứu các biện pháp bảo vệ chống sét cho đường dây 220kv Thái Bình- Nam ...
Nghiên cứu các biện pháp bảo vệ chống sét cho đường dây 220kv Thái Bình- Nam ...
 
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...
 
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...
 
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...
Nghiên cứu chế tạo đèn LED tích điện kết hợp pin mặt trời ứng dụng cho vùng s...
 
Hệ thống chăm sóc vườn lan sử dụng năng lượng mặt trời, HOT
Hệ thống chăm sóc vườn lan sử dụng năng lượng mặt trời, HOTHệ thống chăm sóc vườn lan sử dụng năng lượng mặt trời, HOT
Hệ thống chăm sóc vườn lan sử dụng năng lượng mặt trời, HOT
 
CÁC GIẢI PHÁP TIẾT KIỆM ĐIỆN CHO HỆ THỐNG ĐIỆN TỰ DÙNG CỦA NHÀ MÁY THỦY ĐIỆN ...
CÁC GIẢI PHÁP TIẾT KIỆM ĐIỆN CHO HỆ THỐNG ĐIỆN TỰ DÙNG CỦA NHÀ MÁY THỦY ĐIỆN ...CÁC GIẢI PHÁP TIẾT KIỆM ĐIỆN CHO HỆ THỐNG ĐIỆN TỰ DÙNG CỦA NHÀ MÁY THỦY ĐIỆN ...
CÁC GIẢI PHÁP TIẾT KIỆM ĐIỆN CHO HỆ THỐNG ĐIỆN TỰ DÙNG CỦA NHÀ MÁY THỦY ĐIỆN ...
 
ĐIều khiển công suất tác dụng và phản kháng của hệ thống điện năng lượng gió​
ĐIều khiển công suất tác dụng và phản kháng của hệ thống điện năng lượng gió​ĐIều khiển công suất tác dụng và phản kháng của hệ thống điện năng lượng gió​
ĐIều khiển công suất tác dụng và phản kháng của hệ thống điện năng lượng gió​
 
PHÂN TÍCH ĐÁNH GIÁ ỨNG DỤNG RƠ LE G60 TRONG BẢO VỆ MÁY PHÁT NHÀ MÁY THỦY ĐIỆN...
PHÂN TÍCH ĐÁNH GIÁ ỨNG DỤNG RƠ LE G60 TRONG BẢO VỆ MÁY PHÁT NHÀ MÁY THỦY ĐIỆN...PHÂN TÍCH ĐÁNH GIÁ ỨNG DỤNG RƠ LE G60 TRONG BẢO VỆ MÁY PHÁT NHÀ MÁY THỦY ĐIỆN...
PHÂN TÍCH ĐÁNH GIÁ ỨNG DỤNG RƠ LE G60 TRONG BẢO VỆ MÁY PHÁT NHÀ MÁY THỦY ĐIỆN...
 
THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...
THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...
THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...
 
Xác định tiềm năng năng lượng mặt trời áp mái tỉnh Hậu Giang.pdf
Xác định tiềm năng năng lượng mặt trời áp mái tỉnh Hậu Giang.pdfXác định tiềm năng năng lượng mặt trời áp mái tỉnh Hậu Giang.pdf
Xác định tiềm năng năng lượng mặt trời áp mái tỉnh Hậu Giang.pdf
 
Nghiên cứu hệ SCADA cho hệ thống xử lý nước trong nhà máy nhiệt điện.pdf
Nghiên cứu hệ SCADA cho hệ thống xử lý nước trong nhà máy nhiệt điện.pdfNghiên cứu hệ SCADA cho hệ thống xử lý nước trong nhà máy nhiệt điện.pdf
Nghiên cứu hệ SCADA cho hệ thống xử lý nước trong nhà máy nhiệt điện.pdf
 
NGHIÊN CỨU VÀ ĐỀ XUẤT CÁC GIẢI PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG TRÊN LƯỚI ĐIỆN PH...
NGHIÊN CỨU VÀ ĐỀ XUẤT CÁC GIẢI PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG TRÊN LƯỚI ĐIỆN PH...NGHIÊN CỨU VÀ ĐỀ XUẤT CÁC GIẢI PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG TRÊN LƯỚI ĐIỆN PH...
NGHIÊN CỨU VÀ ĐỀ XUẤT CÁC GIẢI PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG TRÊN LƯỚI ĐIỆN PH...
 
ĐÁNH GIÁ HIỆU QUẢ KINH TẾ CÁC PHƯƠNG PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG ỨNG DỤNG CH...
ĐÁNH GIÁ HIỆU QUẢ KINH TẾ CÁC PHƯƠNG PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG ỨNG DỤNG CH...ĐÁNH GIÁ HIỆU QUẢ KINH TẾ CÁC PHƯƠNG PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG ỨNG DỤNG CH...
ĐÁNH GIÁ HIỆU QUẢ KINH TẾ CÁC PHƯƠNG PHÁP GIẢM TỔN THẤT ĐIỆN NĂNG ỨNG DỤNG CH...
 
ĐIỀU KHIỂN TỰ CHỈNH ĐỊNH THAM SỐ BỘ ĐIỀU KHIỂN PID CHO HỆ THỐNG ĐIỀU TỐC NHÀ ...
ĐIỀU KHIỂN TỰ CHỈNH ĐỊNH THAM SỐ BỘ ĐIỀU KHIỂN PID CHO HỆ THỐNG ĐIỀU TỐC NHÀ ...ĐIỀU KHIỂN TỰ CHỈNH ĐỊNH THAM SỐ BỘ ĐIỀU KHIỂN PID CHO HỆ THỐNG ĐIỀU TỐC NHÀ ...
ĐIỀU KHIỂN TỰ CHỈNH ĐỊNH THAM SỐ BỘ ĐIỀU KHIỂN PID CHO HỆ THỐNG ĐIỀU TỐC NHÀ ...
 
Gia công bộ chuyển đổi điện dùng trong năng lượng mặt trời, 9đ
Gia công bộ chuyển đổi điện dùng trong năng lượng mặt trời, 9đGia công bộ chuyển đổi điện dùng trong năng lượng mặt trời, 9đ
Gia công bộ chuyển đổi điện dùng trong năng lượng mặt trời, 9đ
 
Nghiên cứu phương pháp xác định vị trí sự cố trên đường dây tải điện dựa trên...
Nghiên cứu phương pháp xác định vị trí sự cố trên đường dây tải điện dựa trên...Nghiên cứu phương pháp xác định vị trí sự cố trên đường dây tải điện dựa trên...
Nghiên cứu phương pháp xác định vị trí sự cố trên đường dây tải điện dựa trên...
 
Đề tài Ứng dụng phần mềm PSSADETP bù tối ưu công suất phản kháng cho hệ thống...
Đề tài Ứng dụng phần mềm PSSADETP bù tối ưu công suất phản kháng cho hệ thống...Đề tài Ứng dụng phần mềm PSSADETP bù tối ưu công suất phản kháng cho hệ thống...
Đề tài Ứng dụng phần mềm PSSADETP bù tối ưu công suất phản kháng cho hệ thống...
 
NGHIÊN CỨU SỬ DỤNG GIẢI PHÁP TỰ ĐỘNG HÓA LƯỚI ĐIỆN PHÂN PHỐI (DAS) ĐỂ NÂNG CA...
NGHIÊN CỨU SỬ DỤNG GIẢI PHÁP TỰ ĐỘNG HÓA LƯỚI ĐIỆN PHÂN PHỐI (DAS) ĐỂ NÂNG CA...NGHIÊN CỨU SỬ DỤNG GIẢI PHÁP TỰ ĐỘNG HÓA LƯỚI ĐIỆN PHÂN PHỐI (DAS) ĐỂ NÂNG CA...
NGHIÊN CỨU SỬ DỤNG GIẢI PHÁP TỰ ĐỘNG HÓA LƯỚI ĐIỆN PHÂN PHỐI (DAS) ĐỂ NÂNG CA...
 
ĐÁNH GIÁ HIỆU QUẢ VÀ ĐỀ XUẤT GIẢI PHÁP CẢI TIẾN CÔNG NGHỆ SỬA CHỮA NÓNG TRÊN ...
ĐÁNH GIÁ HIỆU QUẢ VÀ ĐỀ XUẤT GIẢI PHÁP CẢI TIẾN CÔNG NGHỆ SỬA CHỮA NÓNG TRÊN ...ĐÁNH GIÁ HIỆU QUẢ VÀ ĐỀ XUẤT GIẢI PHÁP CẢI TIẾN CÔNG NGHỆ SỬA CHỮA NÓNG TRÊN ...
ĐÁNH GIÁ HIỆU QUẢ VÀ ĐỀ XUẤT GIẢI PHÁP CẢI TIẾN CÔNG NGHỆ SỬA CHỮA NÓNG TRÊN ...
 

More from nataliej4

đồ áN xây dựng website bán laptop 1129155
đồ áN xây dựng website bán laptop 1129155đồ áN xây dựng website bán laptop 1129155
đồ áN xây dựng website bán laptop 1129155nataliej4
 
Nghệ thuật chiến tranh nhân dân việt nam trong công cuộc xây dựng và bảo vệ t...
Nghệ thuật chiến tranh nhân dân việt nam trong công cuộc xây dựng và bảo vệ t...Nghệ thuật chiến tranh nhân dân việt nam trong công cuộc xây dựng và bảo vệ t...
Nghệ thuật chiến tranh nhân dân việt nam trong công cuộc xây dựng và bảo vệ t...nataliej4
 
Quản lý dịch vụ ô tô toyota 724279
Quản lý dịch vụ ô tô toyota 724279Quản lý dịch vụ ô tô toyota 724279
Quản lý dịch vụ ô tô toyota 724279nataliej4
 
Từ vựng tiếng anh luyện thi thpt quốc gia
Từ vựng tiếng anh luyện thi thpt quốc giaTừ vựng tiếng anh luyện thi thpt quốc gia
Từ vựng tiếng anh luyện thi thpt quốc gianataliej4
 
Công tác dược lâm sàng tại bv cấp cứu trưng vương
Công tác dược lâm sàng tại bv cấp cứu trưng vươngCông tác dược lâm sàng tại bv cấp cứu trưng vương
Công tác dược lâm sàng tại bv cấp cứu trưng vươngnataliej4
 
Bài giảng nghề giám đốc
Bài giảng nghề giám đốcBài giảng nghề giám đốc
Bài giảng nghề giám đốcnataliej4
 
đề Cương chương trình đào tạo trình độ trung cấp kế toán tin học
đề Cương chương trình đào tạo trình độ trung cấp kế toán   tin họcđề Cương chương trình đào tạo trình độ trung cấp kế toán   tin học
đề Cương chương trình đào tạo trình độ trung cấp kế toán tin họcnataliej4
 
Giáo trình kỹ thuật an toàn và bảo hộ lao động
Giáo trình kỹ thuật an toàn và bảo hộ lao độngGiáo trình kỹ thuật an toàn và bảo hộ lao động
Giáo trình kỹ thuật an toàn và bảo hộ lao độngnataliej4
 
Lựa chọn trong điều kiện không chắc chắn
Lựa chọn trong điều kiện không chắc chắnLựa chọn trong điều kiện không chắc chắn
Lựa chọn trong điều kiện không chắc chắnnataliej4
 
Thực trạng phân bố và khai thác khoáng sét ở đồng bằng sông cửu long 4857877
Thực trạng phân bố và khai thác khoáng sét ở đồng bằng sông cửu long 4857877Thực trạng phân bố và khai thác khoáng sét ở đồng bằng sông cửu long 4857877
Thực trạng phân bố và khai thác khoáng sét ở đồng bằng sông cửu long 4857877nataliej4
 
Sổ tay hướng dẫn khách thuê tòa nhà ree tower
Sổ tay hướng dẫn khách thuê   tòa nhà ree towerSổ tay hướng dẫn khách thuê   tòa nhà ree tower
Sổ tay hướng dẫn khách thuê tòa nhà ree towernataliej4
 
Phân tích tác động của thiên lệch hành vi đến quyết định của nhà đầu tư cá nh...
Phân tích tác động của thiên lệch hành vi đến quyết định của nhà đầu tư cá nh...Phân tích tác động của thiên lệch hành vi đến quyết định của nhà đầu tư cá nh...
Phân tích tác động của thiên lệch hành vi đến quyết định của nhà đầu tư cá nh...nataliej4
 
Bài giảng giáo dục hoà nhập trẻ khuyết tật
Bài giảng giáo dục hoà nhập trẻ khuyết tậtBài giảng giáo dục hoà nhập trẻ khuyết tật
Bài giảng giáo dục hoà nhập trẻ khuyết tậtnataliej4
 
đồ áN thiết kế quần âu nam 6838864
đồ áN thiết kế quần âu nam 6838864đồ áN thiết kế quần âu nam 6838864
đồ áN thiết kế quần âu nam 6838864nataliej4
 
Tài liệu hội thảo chuyên đề công tác tuyển sinh – thực trạng và giải pháp 717...
Tài liệu hội thảo chuyên đề công tác tuyển sinh – thực trạng và giải pháp 717...Tài liệu hội thảo chuyên đề công tác tuyển sinh – thực trạng và giải pháp 717...
Tài liệu hội thảo chuyên đề công tác tuyển sinh – thực trạng và giải pháp 717...nataliej4
 
Bài giảng dịch tễ học bệnh nhiễm trùng
Bài giảng dịch tễ học bệnh nhiễm trùngBài giảng dịch tễ học bệnh nhiễm trùng
Bài giảng dịch tễ học bệnh nhiễm trùngnataliej4
 
Bài giảng môn khởi sự kinh doanh
Bài giảng môn khởi sự kinh doanhBài giảng môn khởi sự kinh doanh
Bài giảng môn khởi sự kinh doanhnataliej4
 
Giới thiệu học máy – mô hình naïve bayes learning intro
Giới thiệu học máy – mô hình naïve bayes   learning introGiới thiệu học máy – mô hình naïve bayes   learning intro
Giới thiệu học máy – mô hình naïve bayes learning intronataliej4
 
Lý thuyết thuế chuẩn tắc
Lý thuyết thuế chuẩn tắcLý thuyết thuế chuẩn tắc
Lý thuyết thuế chuẩn tắcnataliej4
 
Bài giảng thuế thu nhập (cá nhân, doanh nghiệp)
Bài giảng thuế thu nhập (cá nhân, doanh nghiệp)Bài giảng thuế thu nhập (cá nhân, doanh nghiệp)
Bài giảng thuế thu nhập (cá nhân, doanh nghiệp)nataliej4
 

More from nataliej4 (20)

đồ áN xây dựng website bán laptop 1129155
đồ áN xây dựng website bán laptop 1129155đồ áN xây dựng website bán laptop 1129155
đồ áN xây dựng website bán laptop 1129155
 
Nghệ thuật chiến tranh nhân dân việt nam trong công cuộc xây dựng và bảo vệ t...
Nghệ thuật chiến tranh nhân dân việt nam trong công cuộc xây dựng và bảo vệ t...Nghệ thuật chiến tranh nhân dân việt nam trong công cuộc xây dựng và bảo vệ t...
Nghệ thuật chiến tranh nhân dân việt nam trong công cuộc xây dựng và bảo vệ t...
 
Quản lý dịch vụ ô tô toyota 724279
Quản lý dịch vụ ô tô toyota 724279Quản lý dịch vụ ô tô toyota 724279
Quản lý dịch vụ ô tô toyota 724279
 
Từ vựng tiếng anh luyện thi thpt quốc gia
Từ vựng tiếng anh luyện thi thpt quốc giaTừ vựng tiếng anh luyện thi thpt quốc gia
Từ vựng tiếng anh luyện thi thpt quốc gia
 
Công tác dược lâm sàng tại bv cấp cứu trưng vương
Công tác dược lâm sàng tại bv cấp cứu trưng vươngCông tác dược lâm sàng tại bv cấp cứu trưng vương
Công tác dược lâm sàng tại bv cấp cứu trưng vương
 
Bài giảng nghề giám đốc
Bài giảng nghề giám đốcBài giảng nghề giám đốc
Bài giảng nghề giám đốc
 
đề Cương chương trình đào tạo trình độ trung cấp kế toán tin học
đề Cương chương trình đào tạo trình độ trung cấp kế toán   tin họcđề Cương chương trình đào tạo trình độ trung cấp kế toán   tin học
đề Cương chương trình đào tạo trình độ trung cấp kế toán tin học
 
Giáo trình kỹ thuật an toàn và bảo hộ lao động
Giáo trình kỹ thuật an toàn và bảo hộ lao độngGiáo trình kỹ thuật an toàn và bảo hộ lao động
Giáo trình kỹ thuật an toàn và bảo hộ lao động
 
Lựa chọn trong điều kiện không chắc chắn
Lựa chọn trong điều kiện không chắc chắnLựa chọn trong điều kiện không chắc chắn
Lựa chọn trong điều kiện không chắc chắn
 
Thực trạng phân bố và khai thác khoáng sét ở đồng bằng sông cửu long 4857877
Thực trạng phân bố và khai thác khoáng sét ở đồng bằng sông cửu long 4857877Thực trạng phân bố và khai thác khoáng sét ở đồng bằng sông cửu long 4857877
Thực trạng phân bố và khai thác khoáng sét ở đồng bằng sông cửu long 4857877
 
Sổ tay hướng dẫn khách thuê tòa nhà ree tower
Sổ tay hướng dẫn khách thuê   tòa nhà ree towerSổ tay hướng dẫn khách thuê   tòa nhà ree tower
Sổ tay hướng dẫn khách thuê tòa nhà ree tower
 
Phân tích tác động của thiên lệch hành vi đến quyết định của nhà đầu tư cá nh...
Phân tích tác động của thiên lệch hành vi đến quyết định của nhà đầu tư cá nh...Phân tích tác động của thiên lệch hành vi đến quyết định của nhà đầu tư cá nh...
Phân tích tác động của thiên lệch hành vi đến quyết định của nhà đầu tư cá nh...
 
Bài giảng giáo dục hoà nhập trẻ khuyết tật
Bài giảng giáo dục hoà nhập trẻ khuyết tậtBài giảng giáo dục hoà nhập trẻ khuyết tật
Bài giảng giáo dục hoà nhập trẻ khuyết tật
 
đồ áN thiết kế quần âu nam 6838864
đồ áN thiết kế quần âu nam 6838864đồ áN thiết kế quần âu nam 6838864
đồ áN thiết kế quần âu nam 6838864
 
Tài liệu hội thảo chuyên đề công tác tuyển sinh – thực trạng và giải pháp 717...
Tài liệu hội thảo chuyên đề công tác tuyển sinh – thực trạng và giải pháp 717...Tài liệu hội thảo chuyên đề công tác tuyển sinh – thực trạng và giải pháp 717...
Tài liệu hội thảo chuyên đề công tác tuyển sinh – thực trạng và giải pháp 717...
 
Bài giảng dịch tễ học bệnh nhiễm trùng
Bài giảng dịch tễ học bệnh nhiễm trùngBài giảng dịch tễ học bệnh nhiễm trùng
Bài giảng dịch tễ học bệnh nhiễm trùng
 
Bài giảng môn khởi sự kinh doanh
Bài giảng môn khởi sự kinh doanhBài giảng môn khởi sự kinh doanh
Bài giảng môn khởi sự kinh doanh
 
Giới thiệu học máy – mô hình naïve bayes learning intro
Giới thiệu học máy – mô hình naïve bayes   learning introGiới thiệu học máy – mô hình naïve bayes   learning intro
Giới thiệu học máy – mô hình naïve bayes learning intro
 
Lý thuyết thuế chuẩn tắc
Lý thuyết thuế chuẩn tắcLý thuyết thuế chuẩn tắc
Lý thuyết thuế chuẩn tắc
 
Bài giảng thuế thu nhập (cá nhân, doanh nghiệp)
Bài giảng thuế thu nhập (cá nhân, doanh nghiệp)Bài giảng thuế thu nhập (cá nhân, doanh nghiệp)
Bài giảng thuế thu nhập (cá nhân, doanh nghiệp)
 

Recently uploaded

Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...
Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...
Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...hoangtuansinh1
 
xemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdf
xemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdfxemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdf
xemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdfXem Số Mệnh
 
20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...
20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...
20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...Nguyen Thanh Tu Collection
 
SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...
SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...
SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...ChuThNgnFEFPLHN
 
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdfltbdieu
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
các nội dung phòng chống xâm hại tình dục ở trẻ em
các nội dung phòng chống xâm hại tình dục ở trẻ emcác nội dung phòng chống xâm hại tình dục ở trẻ em
các nội dung phòng chống xâm hại tình dục ở trẻ emTrangNhung96
 
TUYỂN TẬP ĐỀ THI GIỮA KÌ, CUỐI KÌ 2 MÔN VẬT LÍ LỚP 11 THEO HÌNH THỨC THI MỚI ...
TUYỂN TẬP ĐỀ THI GIỮA KÌ, CUỐI KÌ 2 MÔN VẬT LÍ LỚP 11 THEO HÌNH THỨC THI MỚI ...TUYỂN TẬP ĐỀ THI GIỮA KÌ, CUỐI KÌ 2 MÔN VẬT LÍ LỚP 11 THEO HÌNH THỨC THI MỚI ...
TUYỂN TẬP ĐỀ THI GIỮA KÌ, CUỐI KÌ 2 MÔN VẬT LÍ LỚP 11 THEO HÌNH THỨC THI MỚI ...Nguyen Thanh Tu Collection
 
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdfGiáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf4pdx29gsr9
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...
TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...
TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...Nguyen Thanh Tu Collection
 
Bài giảng môn Truyền thông đa phương tiện
Bài giảng môn Truyền thông đa phương tiệnBài giảng môn Truyền thông đa phương tiện
Bài giảng môn Truyền thông đa phương tiệnpmtiendhti14a5hn
 
Bài học phòng cháy chữa cháy - PCCC tại tòa nhà
Bài học phòng cháy chữa cháy - PCCC tại tòa nhàBài học phòng cháy chữa cháy - PCCC tại tòa nhà
Bài học phòng cháy chữa cháy - PCCC tại tòa nhàNguyen Thi Trang Nhung
 
C6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoi
C6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoiC6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoi
C6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoidnghia2002
 
bài thi bảo vệ nền tảng tư tưởng của Đảng.docx
bài thi bảo vệ nền tảng tư tưởng của Đảng.docxbài thi bảo vệ nền tảng tư tưởng của Đảng.docx
bài thi bảo vệ nền tảng tư tưởng của Đảng.docxTrnHiYn5
 
Đề thi tin học HK2 lớp 3 Chân Trời Sáng Tạo
Đề thi tin học HK2 lớp 3 Chân Trời Sáng TạoĐề thi tin học HK2 lớp 3 Chân Trời Sáng Tạo
Đề thi tin học HK2 lớp 3 Chân Trời Sáng Tạowindcances
 
Kiến thức cơ bản về tư duy số - VTC Net Viet
Kiến thức cơ bản về tư duy số - VTC Net VietKiến thức cơ bản về tư duy số - VTC Net Viet
Kiến thức cơ bản về tư duy số - VTC Net VietNguyễn Quang Huy
 
xemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdf
xemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdfxemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdf
xemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdfXem Số Mệnh
 
bài tập lớn môn kiến trúc máy tính và hệ điều hành
bài tập lớn môn kiến trúc máy tính và hệ điều hànhbài tập lớn môn kiến trúc máy tính và hệ điều hành
bài tập lớn môn kiến trúc máy tính và hệ điều hànhdangdinhkien2k4
 
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận HạnTử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận HạnKabala
 

Recently uploaded (20)

Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...
Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...
Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...
 
xemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdf
xemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdfxemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdf
xemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdf
 
20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...
20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...
20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...
 
SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...
SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...
SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...
 
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
các nội dung phòng chống xâm hại tình dục ở trẻ em
các nội dung phòng chống xâm hại tình dục ở trẻ emcác nội dung phòng chống xâm hại tình dục ở trẻ em
các nội dung phòng chống xâm hại tình dục ở trẻ em
 
TUYỂN TẬP ĐỀ THI GIỮA KÌ, CUỐI KÌ 2 MÔN VẬT LÍ LỚP 11 THEO HÌNH THỨC THI MỚI ...
TUYỂN TẬP ĐỀ THI GIỮA KÌ, CUỐI KÌ 2 MÔN VẬT LÍ LỚP 11 THEO HÌNH THỨC THI MỚI ...TUYỂN TẬP ĐỀ THI GIỮA KÌ, CUỐI KÌ 2 MÔN VẬT LÍ LỚP 11 THEO HÌNH THỨC THI MỚI ...
TUYỂN TẬP ĐỀ THI GIỮA KÌ, CUỐI KÌ 2 MÔN VẬT LÍ LỚP 11 THEO HÌNH THỨC THI MỚI ...
 
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdfGiáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...
TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...
TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...
 
Bài giảng môn Truyền thông đa phương tiện
Bài giảng môn Truyền thông đa phương tiệnBài giảng môn Truyền thông đa phương tiện
Bài giảng môn Truyền thông đa phương tiện
 
Bài học phòng cháy chữa cháy - PCCC tại tòa nhà
Bài học phòng cháy chữa cháy - PCCC tại tòa nhàBài học phòng cháy chữa cháy - PCCC tại tòa nhà
Bài học phòng cháy chữa cháy - PCCC tại tòa nhà
 
C6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoi
C6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoiC6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoi
C6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoi
 
bài thi bảo vệ nền tảng tư tưởng của Đảng.docx
bài thi bảo vệ nền tảng tư tưởng của Đảng.docxbài thi bảo vệ nền tảng tư tưởng của Đảng.docx
bài thi bảo vệ nền tảng tư tưởng của Đảng.docx
 
Đề thi tin học HK2 lớp 3 Chân Trời Sáng Tạo
Đề thi tin học HK2 lớp 3 Chân Trời Sáng TạoĐề thi tin học HK2 lớp 3 Chân Trời Sáng Tạo
Đề thi tin học HK2 lớp 3 Chân Trời Sáng Tạo
 
Kiến thức cơ bản về tư duy số - VTC Net Viet
Kiến thức cơ bản về tư duy số - VTC Net VietKiến thức cơ bản về tư duy số - VTC Net Viet
Kiến thức cơ bản về tư duy số - VTC Net Viet
 
xemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdf
xemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdfxemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdf
xemsomenh.com-Vòng Thái Tuế và Ý Nghĩa Các Sao Tại Cung Mệnh.pdf
 
bài tập lớn môn kiến trúc máy tính và hệ điều hành
bài tập lớn môn kiến trúc máy tính và hệ điều hànhbài tập lớn môn kiến trúc máy tính và hệ điều hành
bài tập lớn môn kiến trúc máy tính và hệ điều hành
 
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận HạnTử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
 

Nghiên cứu, thiết kế hệ thống điện mặt trời nổi trên hồ thủy điện đồng nai 4

  • 1. ĐẠI HỌC ĐÀ NẴNG TRƯỜNG ĐẠI HỌC BÁCH KHOA PHAN MINH TÚ NGHIÊN CỨU, THIẾT KẾ HỆ THỐNG ĐIỆN MẶT TRỜI NỔI TRÊN HỒ THỦY ĐIỆN ĐỒNG NAI 4 Chuyên ngành: Kỹ Thuật Điện Mã số: 60.52.02.02 LUẬN VĂN THẠC SỸ KỸ THUẬT Người hướng dẫn khoa học: TS. LƯU NGỌC AN Đà Nẵng - Năm 2018
  • 2. LỜI CAM ĐOAN Tôi cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu, kết quả nêu trong luận văn là trung thực và chưa từng được ai công bố trong bất kỳ công trình nào khác. Tác giả luận văn Phan Minh Tú
  • 3. TRANG TÓM TẮT TIẾNG ANH, TIẾNG VIỆT NGHIÊN CỨU, THIẾT KẾ HỆ THỐNG ĐIỆN MẶT TRỜI NỔI TRÊN HỒ THỦY ĐIỆN ĐỒNG NAI 4 Học viên: Phan Minh Tú. Chuyên ngành: Kỹ thuật điện. Mã số: 60.52.50. Khóa: K31.KTĐ Trường Đại học Bách khoa - ĐHĐN Tóm tắt - Năng lượng tái tạo trong đó có năng lượng mặt trời đang được nghiên cứu và ứng dụng rộng rãi trong nhiều lĩnh vực. Tại Việt Nam tiềm năng về năng lượng mặt trời là rất lớn tuy nhiên chúng ta vẫn chưa phát triển đúng với tiềm năng, trong các năm gần đây chính phủ đã có những chính sách ưu tiên để phát triển các nguồn điện tái tạo và đã có một số công trình đưa vào vận hành, trong đó điện mặt trời nổi trên các mặt hồ thủy điện là một tiềm năng rất lớn do diện tích bỏ không lớn, khu vực ít dân cư nhưng giao thông thuận tiện và gần các trạm phân phối điện năng. Hồ thủy điện Đồng Nai 4 nằm ở vị trí có bức xạ mặt trời khá tốt, độ giao động mức nước nhỏ rất thích hợp để thiết kế một hệ thống điện mặt trời nối với lưới điện Quốc gia .Sử dụng phần mềm PVsyst để thiết kế, tính toán và mô phỏng hoạt động của các máy phát PV nối lên lưới điện. Vị trí địa lý, lưới điện tại khu vực, sự biến đổi theo mùa và ngày đêm của bức xạ mặt trời được phân tích để xác định công suất và phương án nối lưới cho hệ thống. Nghiên cứu này áp dụng đề xuất thiết kế, đánh giá về mặt kỹ thuật và tính khả thi cho việc lắp đặt một hệ thống điện mặt trời nối lưới đặt nổi trên mặt hồ Đồng Nai 4. Từ khóa– Hệ thống năng lượng mặt trời nối lưới; Năng lượng tái tạo; Điện mặt trời nổi. STUDY, DESIGNING POWER GENERATION FLOATING PV SYSTEM ON DONG NAI 4 HYDRO POWER RESEVOIR Abtract - Renewable energy in which solar energy is being studied and used extensively in a wide range of areas. In Vietnam, the potential for solar energy is huge, but we have not developed to the potential. In recent years, the government has given priority to the development of renewable energy sources. Some project had put into operation, in which the solar power on the surface of hydropower resevoir is a great potential because the area is not large, the area is less populated but the traffic is convenient and near the power distribution station. Dong Nai 4 hydropower reservoir is located in a place with good solar radiation, differen water level is small. It’s suitable for designing a solar power system connected to the national grid. Using PVsyst software to design, calculate and simulate the operation of the PV generator connected to the grid. Geographic location, area network, seasonal and diurnal variation of solar radiation were analyzed to determine the capacity and grid connection for solar power system on Dong Nai 4 hydropower reservoir. This study applied the proposed design, technical evaluation and feasibility for the installation of a solar grid connected system. Keywords - Grid connected solar system; Recycled energy; Solar cell floating.
  • 4. MỤC LỤC TRANG BÌA LỜI CAM ĐOAN TRANG TÓM TẮT TIẾNG ANH, TIẾNG VIỆT MỤC LỤC DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT DANH MỤC CÁC BẢNG DANH MỤC CÁC HÌNH MỞ ĐẦU .........................................................................................................................1 1. Lý do chọn đề tài ....................................................................................................1 2. Mục tiêu nghiên cứu ...............................................................................................1 3. Đối tượng và phạm vi nghiên cứu ..........................................................................2 4. Phương pháp nghiên cứu ........................................................................................2 5. Ý nghĩa khoa học và thực tiễn của đề tài................................................................2 6. Bố cục đề tài ...........................................................................................................3 CHƯƠNG 1. TỔNG QUAN VỀ ĐIỆN MẶT TRỜI......................................................4 1.1 TỔNG QUAN VỀ NĂNG LƯỢNG MẶT TRỜI.....................................................4 1.1.1 Bức xạ mặt trời ..................................................................................................4 1.1.2 Nguồn gốc năng lượng mặt trời.........................................................................4 1.1.3 Quá trình phát triển và triển khai ứng dụng năng lượng mặt trời......................6 1.2 TÌNH HÌNH ỨNG DỤNG ĐIỆN MẶT TRỜI TRÊN THẾ GIỚI VÀ TẠI VIỆT NAM .............................................................................................................................7 1.2.1 Tình hình phát triển điện mặt trời trên thế giới .................................................7 1.2.2 Tình hình phát triển điện mặt trời tại Việt Nam ..............................................10 1.2.2.1 Tiềm năng điện mặt trời ở Việt Nam............................................................10 1.2.2.2 Những dự án điện mặt trời ở Việt Nam........................................................11 1.3 MỘT SỐ CÔNG NGHỆ ỨNG DỤNG SỬ DỤNG TRONG ĐỀ TÀI ...................11 1.3.1 Pin mặt trời ......................................................................................................11 1.3.1.1 Cấu tạo của pin mặt trời................................................................................11 1.3.1.2 Nguyên lý hoạt động của pin mặt trời .........................................................13 1.3.2 Bộ nghịch lưu...................................................................................................20 1.4 CÁC MÔ HÌNH CƠ BẢN CỦA HỆ THỐNG PIN MẶT TRỜI............................20 1.4.1 Vận hành độc lập với lưới (Off Grid)..............................................................20 1.4.2 Vận hành kiểu lai (Hybrid) ..............................................................................21 1.4.3 Vận hành kết nối với lưới điện (grid tie) .........................................................21
  • 5. 1.5 KẾT LUẬN .............................................................................................................22 CHƯƠNG 2. KHẢO SÁT THỰC TRẠNG HỒ THỦY ĐIỆN ĐỒNG NAI 4 ............23 2.1. TỔNG QUAN VỀ HỒ THỦY ĐIỆN ĐỒNG NAI 4.............................................23 2.1.1. Vị trí địa lý: [6] ...............................................................................................23 2.1.2. Tình trạng mặt thoáng:....................................................................................24 2.1.3. Vị trí lắp đặt thiết bị:.......................................................................................24 2.1.3.1. Vị trí lắp đặt các tấm PV..............................................................................24 2.1.3.2. Vị trí đặt trạm phân phối 230kV..................................................................25 2.1.4. Giao thông.......................................................................................................25 2.2. TIỀM NĂNG ĐIỆN MẶT TRỜI LÝ THUYẾT TẠI KHU VỰC [7]...................26 2.2.1. Số giờ nắng trung bình tháng năm tại khu vực ...............................................27 2.2.2. Nhiệt độ trung bình tháng và năm tại khu vực................................................27 2.2.3. Tổng xạ theo phương ngang (GHI) tại khu vực..............................................28 2.3. THỰC TRẠNG LƯỚI ĐIỆN TẠI HỒ THỦY ĐIỆN ĐỒNG NAI 4....................29 2.3.1. Lưới điện hạ thế và thông tin liên lac: ............................................................29 2.3.2. Hệ thống lưới điện 22kV:................................................................................29 2.3.3. Lưới điện 230kV:............................................................................................30 2.4. KẾT LUẬN ............................................................................................................31 CHƯƠNG 3. TÍNH TOÁN, THIẾT KẾ HỆ THỐNG ĐIỆN MẶT TRỜI NỔI TRÊN HỒ ĐỒNG NAI 4..........................................................................................................33 3.1. GIỚI THIỆU SƠ LƯỢC VỀ PHẦN MỀM PVSYST [8]......................................33 3.2. ĐỊNH VỊ ĐỊA ĐIỂM LẤY SỐ DỮ LIỆU KHÍ TƯỢNG......................................34 3.2.1. Nhập số liệu đầu vào.......................................................................................34 3.2.2. Kết quả số liệu của chương trình ....................................................................34 3.3. LỰA CHỌN, BỐ TRÍ CÁC TẤM PV...................................................................35 3.3.1. Chọn góc nghiêng tấm Pin..............................................................................36 3.3.2. Chọn khoảng cách giữa các hàng ...................................................................37 3.3.3. Tính toán, lựa chọn số lượng tấm pin.............................................................38 3.3.4. Thiết kế, lựa chọn hệ thống giá đỡ và phao nổi..............................................41 3.3.4.1. Giá đỡ các tấm PV trên cạn .........................................................................41 3.3.4.2. Phao và giá đỡ trên mặt hồ ..........................................................................41 3.3.4.3. Lựa chọn các tấm PV...................................................................................43 3.4. LỰA CHỌN INVERTER.......................................................................................44 3.5. LỰA CHỌN, ĐẤU NỐI CÁP DC: ........................................................................46 3.6. NHẬP CÁC THÔNG SỐ HỆ THỐNG CHO PHẦN MỀM..................................47 3.6.1. Nhập các thông số chính đầu vào ...................................................................47
  • 6. 3.6.2. Nhập các dữ liệu tổn thất ................................................................................48 3.7. KẾT QUẢ MÔ PHỎNG TRONG PHẦN MỀM PVSYST ...................................49 3.7.1. Các tham số mô phỏng....................................................................................49 3.7.2. Các kết quả chính............................................................................................51 3.7.3. Biểu đồ tổn thất trong cả năm.........................................................................52 3.8. BỐ TRÍ VÀ ĐẤU NỐI THIẾT BỊ.........................................................................54 3.8.1. Đấu nối các chuỗi PV .....................................................................................55 3.8.2. Đấu nối các tấm PV tới inverter .....................................................................56 3.8.3. Đấu nối các trạm inverter vào máy biến áp 22kV ..........................................56 3.8.4. Đấu nối máy biến áp 22kV lên trạm phân phối và nối với lưới 220kV .........57 3.9. KẾT LUẬN ............................................................................................................58 KẾT LUẬN VÀ KIẾN NGHỊ.......................................................................................59 TÀI LIỆU THAM KHẢO.............................................................................................61 QUYẾT ĐỊNH GIAO ĐỀ TÀI LUẬN VĂN THẠC SĨ (BẢN SAO) BẢN SAO KẾT LUẬN CỦA HỘI ĐỒNG, BẢN SAO NHẬN XÉT CỦA CÁC PHẢN BIỆN.
  • 7. DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT 1. Danh mục kí hiệu cơ bản Ký hiệu Thứ nguyên Mô tả q W/m2 Mật độ dòng bức xạ trực xạ ở ngoài lớp khí quyển En W/m2 Cường độ bức xạ cực đại trong ngày VOC V Điện áp hở mạch đầu ra của pin quang điện Isc A Dòng điện ngắn mạch trong mạch của pin quang điện Vm V Điện áp tại điểm công suất cực đại Im A Dòng điện tại điểm công suất cực đại Pm W Công suất cực đại ηm % Hiệu suất của pin quang điện ở nhiệt độ T To o C Nhiệt độ pin quang điện trong điều kiện tiêu chuẩn Tamb o C Nhiệt độ không khí U W/m2.K Hệ số nhiệt pin quang điện PR % Tỉ số hiệu suất SF % Hệ số sử dụng điện năng của hệ thống 2. Danh mục viết tắt Viết tắt Cụm từ Nghĩa NLTT Năng lượng tái tạo NLMT Năng lượng mặt trời EIA Energy Information Administration Cơ quan quản lý thông tin năng lượng Hoa Kỳ IFC International Finance Corporation Tổ chức tài chính quốc tế IEC International Electrotechnical Commission Ủy ban kỹ thuật điện quốc tế IAM Incidence Angle Modifier Sự điều chỉnh góc tới MPP Maximum power point Điểm công suất cực đại STC Standard Test Conditions Các điều kiện tiêu chuẩn PV Photovoltaic Quang điện hay điện mặt trời NOCT Nominal Operating Cell Temperature Nhiệt độ pin vận hành danh nghĩa LID Light Induced Degradation Ánh sáng bị suy giảm cảm ứng
  • 8. DANH MỤC CÁC BẢNG Số hiệu Tên bảng Trang 1.1 Các nước có nhà máy điện từ pin mặt trời cỡ lớn (công suất trên 1MWp). 8 1.2 Các nhà máy điện mặt trời PV lớn nhất thế giới (trên 50MW) 8 1.3 Các nhà máy điện từ pin mặt trời lớn nhất thế giới 9 2.1 Số giờ nắng trung bình tại khu vực (Giờ) 27 2.2 Nhiệt độ trung bình tháng, năm tại khu vực (oC) 27 3.1 Thông số nhập vào mục Meteo database 34 3.2 Bảng phân bố trào lưu công suất khi nối nhà máy điện mặt trời vào đường dây hiện hữu 39 3.3 Thông số kỹ thuật tấm PV 43 3.4 Thông số kỹ thuật chính của Inverter 45 3.5 Tổng hợp thông số thiết kế nhà máy 46 3.6 Bảng tổng hợp số liệu chính để tính toán mô phỏng dự án 47 3.7 Giá trị tổn thất nhập vào phần mềm 49 3.8 Tổng hợp kết quả mô phỏng dự án 51 3.9 Tổn thất bức xạ mặt trời trên bề mặt PV quang điện trong 1 năm. 53 3.10 Tổn thất bên trong hệ thống PV quang điện trong hệ thống điện năng lượng mặt trời. 54
  • 9. DANH MỤC CÁC HÌNH Số hiệu Tên hình Trang 1.1 Các vùng năng lượng 13 1.2 Hệ 2 mức năng lượng 14 1.3 Đường đặc trưng theo độ chiếu sáng của pin mặt trời 15 1.4 Điểm làm việc và điểm công suất cực đại 17 1.5 Ghép nối tiếp hai module pin mặt trời (a)và đường đặc trưng VA của các module và của cả hệ (b) 18 1.6 Ghép song song hai module pin mặt trời (a)và đường đặc trưng VA của các module và của cả hệ (b) 19 1.7 Dàn pin năng lượng mặt trời 20 2.1 Hồ thủy điện Đồng Nai 4 từ phần mềm Google Earth. 23 2.2 Bản đồ tiềm năng kỹ thuật về CSP tại Việt Nam 24 2.3 Bãi đất trống dự định đặt các tấm PV trên cạn 25 2.4 Bãi đất dự định đặt trạm phân phối 230kV 26 2.5 Các khu vực dự định đặt thiết bị. 26 2.6 Biểu đồ số giờ nắng trong năm tại khu vực dự án 27 2.7 Biểu đồ nhiệt độ trung bình tháng, năm tại khu vực. 28 2.8 Bản đồ GHI trung bình ngày lý thuyết khu vực 29 2.9 Sơ đồ lưới điện 22kV tại khu vực thủy điện Đồng Nai 4 30 2.10 Sơ đồ lưới điện 230kV tại gần khu vực dự án 31 2.11 Vị trí dự kiến đấu nối NMĐMT ĐN4 vào lưới 230kV 31 3.1 Giao diện nhập số liệu và kết quả của chương trình 34 3.2 Số liệu khí tượng lấy từ phần mềm PVsyst 35 3.3 Mô hình Bố trí lắp đặt PV 36 3.4 Góc nghiêng tối ưu phân tích từ phần mềm PVsyst 37 3.5 Khoảng cách lựa chọn giữa các hàng Pin 38 3.6 Giá đỡ các tấm PV trên cạn. 41 3.7 Mặt bằng tổ hợp các tấm PV trên cạn 41 3.8 Phao dạng lắp ghép sau khi đã tổ hợp 42 3.9 Hệ thống phao nổi đã lắp đặt hoàn thiện 42 3.10 Mặt bằng phao đỡ nổi tấm PV 44 3.11 Mô hình kết nối của Inverter trung tâm và Inverter chuỗi. 45 3.12 Giao diện phần mềm sau khi nhập dữ liệu đầu vào 48 3.13 Giao diện nhập các giá trị tổn thất 48
  • 10. Số hiệu Tên hình Trang 3.14 Các tham số chính của hệ thống 50 3.15 Tổng hợp kết quả mô phỏng dự án 51 3.16 Kết quả mô phỏng sản lượng dự án 52 3.17 Lược đồ tổn thất trong năm của dự án 53 3.18 Tổng mặt bằng bố trí thiết bị tại nhà máy điện mặt trời nổi trên hồ thủy điện Đồng Nai 4 55 3.19 Đấu nối các chuỗi PV về hộp gom dây 56 3.20 Đấu nối các hộp gom dây về bộ inverter 56 3.21 Đấu nối phía AC inverter và máy biến áp 0.4/22kV 57 3.22 Sơ đồ nối điện chính trạm 22/230kV nhà máy điện mặt trời nổi trên hồ Đồng Nai 4 57
  • 11. 1 MỞ ĐẦU 1. Lý do chọn đề tài Nhu cầu về năng lượng của con người trong thời đại khoa học kỹ thuật phát triển ngày càng tăng. Trong khi đó các nguồn năng lượng dự trữ như than đá, dầu mỏ, khí thiên nhiên … đều có hạn, khiến cho nhân loại đứng trước nguy cơ thiếu hụt. Việc tìm kiếm và khai thác các nguồn năng lượng mới như năng lượng gió, năng lượng mặt trời, năng lượng địa nhiệt … là hướng quan trọng để phát triển nguồn năng lượng. Việc nghiên cứu sử dụng năng lượng mặt trời ngày càng được quan tâm, nhất là trong tình trạng thiếu hụt năng lượng và vấn đề cấp bách về môi trường như hiện nay. Năng lượng mặt trời được xem là dạng năng lượng ưu việt trong tương lai, đó là dạng năng lượng sẵn có, siêu sạch và miễn phí. Do vậy năng lượng mặt trời đã và ngày càng được sử dụng rộng rãi ở các nước trên thế giới. Tại Việt Nam điện mặt trời vẫn là một chủ đề vẫn còn mới mẻ và chưa được đầu tư để phát triển đúng với tiềm năng của nó, tuy nhiên chính phủ cũng đã và đang có những quyết định hỗ trợ đầu tư, phát triển nguồn năng lượng sạch này, đồng thời cũng đặt ra các mục tiêu phát triển đến năm 2050. Hiện nay EVN đang chú trọng phát triển điện mặt trời, một số công trình điện mặt trời đã được đưa vào vận hành và một số dự án đang chuẩn bị khởi công tuy nhiên để đạt được lộ trình như chính phủ đưa ra cần phát triển các dự án mặt trời nổi trên các hồ thủy điện do có diện tích bỏ không lớn, phí thuê đất thấp, hiệu suất các tấm pin cao do được làm mát từ nước hồ, mặt khác giảm được lượng bốc hơi trên các mặt hồ để có thêm nước chạy các máy phát thủy điện. Hồ Đồng Nai 4 nằm ở khu vực ít dân cư, giao thông tương đối thuận lợi, lưới điện truyền tải đi gần khu vực hồ, độ chênh mực nước hồ nhỏ do đó thuận lợi cho việc thiết kế một hệ thống điện mặt trời nổi nối với lưới điện quốc gia. Vì các lý do trên nên việc “Nghiên cứu, thiết kế hệ thống điện mặt trời nổi trên hồ thủy điện Đồng Nai 4” để cung cấp năng lượng sạch cho lưới điện quốc gia là cần thiết và đó cũng là lý do Tôi chọn đề tài này. 2. Mục tiêu nghiên cứu Thiết kế hệ thống nguồn điện từ các tấm pin mặt trời đặt nổi trên mặt hồ thủy điện Đồng Nai 4, kết nối với hệ thống lưới điện 220kV Quốc gia nhằm cung cấp
  • 12. 2 nguồn cho hệ thống điện Quốc gia theo lộ trình phát triển các nguồn điện sử dụng năng lượng tái tạo. Các mục tiêu cụ thể bao gồm: Khảo sát, tính toán và đưa ra được các phương án nối lưới cho các máy phát điện mặt trời. Xác định số lượng và vị trí lắp đặt các thiết bị (Tấm pin mặt trời, inveter, máy biến áp…), lựa chọn thiết bị, thiết kế các giá và phao đỡ cho các tấm pin mặt trời Sử dụng phần mềm PVsyst để mô phỏng sơ đồ đấu nối và chạy ra được kết quả cần thiết. 3. Đối tượng và phạm vi nghiên cứu Đối tượng nghiên cứu của đề tài này là thiết kế hệ thống máy phát sử dụng các tấm pin mặt trời đặt nổi trên mặt hồ đấu nối với lưới điện 220kV. Phạm vi nghiên cứu - Nghiên cứu các công nghệ về pin mặt trời và các bộ nghịch lưu ứng dụng cho việc thi công hệ thống điện mặt trời nổi trên hồ thủy điện Đồng Nai 4. - Nghiên cứu các phương án kết nối hệ thống điện mặt trời đặt nổi tại hồ thủy điện Đồng Nai 4 với lưới điện quốc gia. - Mô phỏng hệ thống pin năng lượng mặt trời nối lưới bằng phần mềm PVsyst 4. Phương pháp nghiên cứu Để giải quyết các mục tiêu nêu trên, luận văn đưa ra phương pháp nghiên cứu như sau: - Nghiên cứu lý thuyết: các lý thuyết về năng lượng mặt trời, cấu tạo, nguyên lý làm làm việc của hệ thống pin mặt trời -Xây dựng hệ thống pin năng lượng mặt trời nổi nối lưới tại hồ thủy điện Đồng Nai 4. - Mô phỏng hoạt động hệ thống pin năng lượng mặt trời nối lưới tại hồ thủy điện Đồng Nai 4 bằng phần mềm PVsys chuyên dụng 5. Ý nghĩa khoa học và thực tiễn của đề tài Ý nghĩa khoa học: Ứng dụng được công nghệ mới vào sản xuất, góp phần phát triển năng lượng mặt trời, là nguồn năng lượng tái tạo, sạch và được nhà nước khuyến khích đầu tư.Thiết kế, tính toán, mô phỏng được sự hoạt động của hệ thống pin năng lượng mặt trời nối với lưới điện 230kV Quốc gia, từ đó có cơ sở đánh giá tính hiệu quả về mặt kinh tế và kỹ thuật của hệ thống trước khi đầu tư xây dựng.
  • 13. 3 Tính thực tiễn: Góp phần phát triển hệ thống điện mặt trời nối lưới tại các mặt hồ đặc biệt là các mặt hồ thủy điện để đáp ứng nhu cầu về phát triển nguồn năng lượng sạch theo lộ trình của Chính phủ. 6. Bố cục đề tài Mở đầu. Chương 1: Tổng quan về năng lượng mặt trời trời Chương 2: Khảo sát thực trạng tại hồ thủy điện Đồng Nai 4. Chương 3: Tính toán , thiết kế hệ thống điện mặt trời nổi trên hồ thủy điện Đồng Nai 4. Kết luận và kiến nghị.
  • 14. 4 CHƯƠNG 1 TỔNG QUAN VỀ ĐIỆN MẶT TRỜI 1.1 TỔNG QUAN VỀ NĂNG LƯỢNG MẶT TRỜI 1.1.1 Bức xạ mặt trời Mặt trời là quả cầu lửa khổng lồ với đường kính trung bình khoảng 1,36 triệu km và ở cách Trái đất khoảng 150 triệu km. Theo các số liệu hiện có, nhiệt độ bề mặt của mặt trời vào khoảng 6.000K, trong khi đó nhiệt độ ở vùng trung tâm của mặt trời rất lớn, vào khoảng 8.106K đến 40.106K. Mặt trời được xem là một lò phản ứng nhiệt hạch hoạt động liên tục. Do luôn luôn bức xạ năng lượng vào trong vũ trụ nên khối lượng của mặt trời sẽ giảm dần. Điều này dẫn đến kết quả là đến một ngày nào đó mặt trời sẽ thôi không tồn tại nữa. Tuy nhiên, do khối lượng của mặt trời vô cùng lớn, , nên thời gian để mặt trời còn tồn tại cũng vô cùng lớn. Bên cạnh sự biến đổi nhiệt độ rất đáng kể theo hướng kính, một điểm đặc biệt khác của mặt trời là sự phân bố khối lượng rất không đồng đều. Ví dụ, khối lượng riêng ở vị trí gần tâm mặt trời vào khoảng 100g/cm3, trong khi đó khối lượng riêng trung bình của mặt trời chỉ vào khoảng 1,41g/cm3. Các kết quả nghiên cứu cho thấy, khoảng cách từ mặt trời đến Trái đất không hoàn toàn ổn định mà dao động trong khoảng ±1,7% xoay quanh giá trị trung bình đã trình bày ở trên. Trong kỹ thuật NLMT, người ta rất chú ý đến khái niệm hằng số mặt trời (Solar Constant). Về mặt định nghĩa, hằng số mặt trời được hiểu là lượng bức xạ mặt trời (BXMT) nhận được trên bề mặt có diện tích 1m2 đặt bên ngoài bầu khí quyển và thẳng góc với tia tới. Tùy theo nguồn tài liệu mà hằng số mặt trời sẽ có một giá trị cụ thể nào đó, các giá trị này có thể khác nhau tuy nhiên sự sai biệt không nhiều. Trong tài liệu này ta thống nhất lấy giá trị hằng số mặt trời là 1353W/m2 . Có 2 loại bức xạ mặt trời: BXMT đến bên ngoài bầu khí quyển và BXMT đến trên mặt đất. Trong mục này ta cần phân biệt ý nghĩa của các ký hiệu được dùng để biểu diễn giá trị của lượng bức xạ khảo sát là G, I và H. Đơn vị của G là W/m2, đơn vị của I và H là J/m2, trong đó thời gian tương ứng với các ký hiệu I và H lần lượt là giờ và ngày. Khái niệm ngày trong kỹ thuật NLMT được hiểu là khoảng thời gian từ lúc mặt trời mọc cho đến lúc mặt trời lặn. 1.1.2 Nguồn gốc năng lượng mặt trời NLMT có vai trò quan trọng đối với sự tồn tại và tồn tại và phát triển của các yến tố sự sống trên trái đất. Trước hết, NLMT là nguồn năng lượng khổng lồ có tính tái sinh. NLMT được sinh ra do các phản ứng nhiệt hạt nhân tổng hợp các hạt nhân đồng vị Hydro (H) để
  • 15. 5 tạo ra các hạt nhân Heli (He) liên tục xảy ra trên mặt trời . Công suất bức xạ của mặt trời là 3,865.1026W, tương đương với năng lượng đốt cháy hết 1,32.1016 tấn than đá tiêu chuẩn. Nhưng phần NLMT đến bề mặt trái đất chỉ là 17,57.1016J/s hay tương ứng với năng lượng đốt cháy hết 6.106 tấn than đá. Ngoài khí quyển trái đất (hay còn gọi là ngoài vũ trụ) mật độ NLMT là 1.353W/m2. Nhưng khi tới mặt đất các tia mặt trời phải đi qua lớp khí quyển trái đất (chiều dày khoảng 16km) nên bị mất mát khoảng 30% do các hiện tượng hấp thụ, tán xạ bởi các phân tử khí, hơi nước... của lớp khí quyển. Vì vật trên bề mặt trái đất, mật độ bức xạ mặt trời chỉ còn khoảng 1.000W/m2. Mặc dù ở các vĩ độ khác nhau thì NLMT khác nhau, nhưng nhìn chung NLMT phân bố khắp trên bề mặt trái đất. Ở đâu cũng có thể khai thác và ứng dụng nguồn năng lượng này. Bản chất của BXMT là sóng điện từ có phổ bước sóng trải từ 10-10 m đến 1014 m, trong đó mắt người có thể nhận biết được giải sóng có bước sóng từ 0,4 đến 0,7 m và được gọi là áng sáng nhìn thấy (vùng khả kiến). Vùng bức xạ điện từ có bước sóng nhỏ hơn 0,4 m được gọi là vùng sóng tử ngoại. Còn vùng có bước sóng lớn hơn 0,7 m được gọi là vùng hồng ngoại. Do bản chất của sóng điện từ nên NLMT là nguồn năng lượng không có phát thải, không gây ô nhiễm môi trường hay được gọi là nguồn năng lượng sạch. Các thành phần của BXMT trên mặt đất: Ngoài lớp khí quyển trái đất bức xạ mặt trời chỉ có một thành phần. Đó là các tia mặt trời đi thẳng phát ra từ mặt trời. Nhưng khi tới mặt đất, do các hiện tượng tán xạ trong lớp khí quyển quả đất, bức xạ mặt trời bị biến đổi và gồm 3 thành phần: - Thành phần trực xạ gồm các tia mặt trời đi thẳng từ mặt trời đến mặt đất. Nhờ các tia trực xạ này mà ta có thể nhìn thấy mặt trời; - Thành phần nhiễu hay tán xạ gồm các tia mặt trời tới mặt đất từ mọi phương trên bầu trời do hiện tường tán xạ của tia mặt trời trên các phân tử khí, hơi nước, các hạt bụi,…. Nhờ các tia tán xạ này mà chúng ta vẫn có ánh sáng ngay cả những ngày mây mù, không thể nhìn thấy mặt trời, ở trong nhà, dưới bóng cây,…; Tổng hai thành phần trên được gọi là tổng xạ của bức xạ mặt trời ở mặt đất. Các Trạm Khí tượng thường đo các thành phần này nhiều lần trong một ngày và liên tục trong nhiều năm để có số liệu đánh giá tiềm năng NLMT. Tỷ lệ của các thành phần trực xạ và tán xạ trong tổng xạ phụ thuộc vào điều kiện tự nhiên và trạng thái thời tiết của địa điểm và thời điểm quan sát hay đo đạc. Ví dụ ở nước ta, trong các tháng mùa Hè, từ tháng 5 đến tháng 8, thì thành phần trực xạ chiếm ưu thế (trên 50%), còn trong mùa Đông, từ tháng 12 đến tháng 2 năm sau thành phần tán xạ lại chiếm ưu thế. Thành phần phản xạ từ mặt nền ở nơi quan sát hay nơi đặt bộ thu NLMT, nó phụ thuộc vào hệ số phản xạ của mặt nền và tổng xạ tới. Thành phần này chỉ được phân
  • 16. 6 biệt khi thiết kế, tính toán các bộ thu NLMT. Trong trường hợp chung nó là một phần rất nhỏ trong thành phần bức xạ tán xạ. 1.1.3 Quá trình phát triển và triển khai ứng dụng năng lượng mặt trời NLMT trung bình trên bề mặt quả đất nằm trong khoảng 150 đến 300W/m2 hay từ 3,5 đến 7,0kWh/m2 ngày. NLMT từ lâu đã được con người khai thác sử dụng bằng các phương pháp tự nhiên, trực tiếp và đơn giản như phơi sấy (quần áo, vật dụng; nông, lâm, hải sản; sưởi ấm…). Tuy nhiên cách sử dụng NLMT theo các phương cách tự nhiên nói trên có hiệu quả thấp và hoàn toàn thụ động. NLMT có thể sử dụng dưới dạng nhiệt hay biến đổi thành điện. Điện từ mặt trời là dạng điện năng được tạo ra khi biến đổi NLMT thành điện năng nhờ hiệu ứng quang điện (photovoltaic effect, viết tắt PV) một cách trực tiếp, hoặc nhờ các hệ thống nhiệt điện thông qua hiệu ứng hội tụ tia mặt trời (concentrated solar power, CSP) một cách gián tiếp. Các hệ thống CSP sử dụng các thấu kính hay các gương hội tụ và hệ thống “dõi theo mặt trời” (solar tracking systems) để hội tụ một diện tích lớn các tia mặt trời vào một diện tích nhỏ hơn (gọi là điểm hay đường hội tụ). Nguồn nhiệt hội tụ này sau đó được sử dụng để phát điện. Các hệ thống này gọi là hệ nhiệt điện mặt trời. Còn các hệ thống PV biến đổi ánh sáng thành điện năng khi dùng hiệu ứng quang điện được gọi là hệ thống điện PV. Ứng dụng quan trọng đầu tiên của pin mặt trời là nguồn dự phòng (back-up) cho về tinh nhân tạo Vanguard I vào năm 1958, nó đã cho phép truyền tín hiệu về quả đất hơn một năm sau khi nguồn ắc qui điện hóa đã bị kiệt. Sự hoạt động thành công này của pin mặt trời trên vệ tinh đã được lặp lại trong nhiều về tinh khác của Liên Xô và Mỹ. Vào cuối những năm 1960, PV đã trở thành nguồn năng lượng được được sử dụng riêng cho vệ tinh. PV đã có một vai trò rất quan trọng công nghệ vệ tinh thương mại và nó vẫn giữ vị trí đó đối với hạ tầng viễn thong ngày nay. Nhờ sự phát triển của khoa học công nghệ nên hiện nay con người đã biết khai thác NLMT một cách hiệu quả và chủ động hơn nhờ các công nghệ hiện đại. Nhà máy nhiệt điện mặt trời thương mại đầu tiên được xây dựng trong những năm 1980. Nhà máy có công suất lớn nhất là 354MW xây dựng tại Sa mạc Mojave ở California (Mỹ). Các nhà máy lớn khác như nhà máy Solnova (150MW) và Andasol (100MW), cả hai đều ở Tây Ban Nha [4]. Những phát triển giai đoạn đầu của công nghệ năng lượng mặt trời (CN NLMT) bắt đầu trong những năm thập niên 1980 đã được kích thích bởi sự kiện rằng than sẽ không lâu nữa sẽ bị cạn kiệt. Tuy nhiên sự phát triển của CN NLMT sau đó bị chậm lại vào thời gian đầu của thế kỷ 20 do phải đối mặt với các vấn đề về giá, tính kinh tế và tính tiện dụng của than và dầu. Năm 1974 người ta đã ước tính rằng chỉ có 6 hộ ở tất cả khu vực Bắc Mỹ sử dụng hoàn toàn năng lượng cho sưởi ấm và làm lạnh nhờ các hệ thống thiết bị NLMT. Sự cấm vận dầu năm 1973 và sự khủng hoảng năng
  • 17. 7 lượng năm 1979 đã làm thay đổi chính sách năng lượng trên phạm vi thế giới và CN NLMT lại được quan tâm thúc đẩy phát triển. Chiến lược triển khai tập trung vào các chương trình tăng tốc như Chương trình sử dụng PV Liên Bang ở Mỹ, Chương trình NLMT ở Nhật. Các cố gắng khác gồm có sự xây dựng các cơ sở nghiên cứu ở Mỹ (SERI, nay là NREL), Nhật (NEDO), và Đức (Fraunhofer Institute for Solar Energy Systems ISE). Giữa các năm 1970 và 1983 các lắp đặt PV tăng rất nhanh, nhưng đầu những năm 1980 do giá dầu giảm nên làm giảm nhịp độ phát triển của PV từ 1984 đến 1996. Từ 1997, sự phát triển của PV lại được gia tốc do các vấn đề khó khăn về cung cấp dầu và khí, do sự nóng lên của quả đất, và sự cải thiện của công nghệ sản xuất PV, dẫn đến tính tính tế của PV trở nên tốt hơn. Sản xuất PV tăng trung bình 40%/năm từ năm 2000 và công suất lắp đặt đã đạt đến 10,6GW vào cuối năm 2007 và 14,73GW vào năm 2008. Năm 2010 các nhà máy điện PV lớn nhất trên thế giới là Sania Power plant ở Canada. 1.2 TÌNH HÌNH ỨNG DỤNG ĐIỆN MẶT TRỜI TRÊN THẾ GIỚI VÀ TẠI VIỆT NAM 1.2.1 Tình hình phát triển điện mặt trời trên thế giới Tới nay, rất nhiều quốc gia đã nghiên cứu và đang ứng dụng thành công nguồn NLMT trong nhiều lĩnh vực của đời sống. Tại Hoa Kì, các hoạt động quảng bá NLMT diễn ra rất sôi nổi. Hàng năm, các tiểu bang ở miền đông đều mở hội nghị về năng lượng xanh với mục đích giới thiệu công nghệ mới về các thiết bị áp dụng NLMT cho các hộ gia đình và cơ sở kinh doanh nhỏ. Ở Pháp, từ những năm của thập niên 60 thế kỉ trước, họ đã rất chú trọng tới việc giải quyết thiếu hụt năng lượng cho quốc gia phát triển. Họ đã thành công trong việc thiết kế và lắp đặt các hệ thống biến NLMT thành điện năng cung ứng cho các làng xã có quy mô 1.000 hộ. Nhờ đó, một số quốc gia vùng Trung Mỹ đã thừa hưởng thành tựu này vì dễ lắp ráp và chi phí tương đối rẻ. Đan Mạch được cho là quốc gia sử dụng năng lượng hiệu quả nhất thế giới. Ở Đan Mạch, ước tính có tới 30% các hộ sử dụng tấm thu NLMT. Đan Mạch là nước đầu tiên triển khai cơ chế buộc các nhà máy điện lớn phải mua điện xanh từ các địa phương với giá cao (Feed - in tariff - FIT). Với cơ chế này, các địa phương hào hứng sản xuất điện xanh. Mô hình đã được 30 nước áp dụng như: Đức, Tây Ba Nha, Nhật Bản… Đức trở thành nước dẫn đầu thị trường PV thế giới (chiến 45%) kể từ khi điều chỉnh lại hệ thống giá điện (Feed-in tariff) như là một phần của Chương trình “Hành động nguồn năng lượng tái tạo” (Renewable Energy Sources Act). Công suất lắp đặt PV đã tăng từ 100MW năm 2000 lên gần 4150MW vào cuối năm 2007 (bảng 1.1). Sau năm 2007, Tây Ban Nha trở thành nước có sự phát triển sôi động nhất. Các nước Pháp,
  • 18. 8 Italy, Hàn Quốc và Mỹ cũng đã tăng công suất lắp đặt lên rất nhanh trong các năm mới đây nhờ các chương trình kích thích và các điều kiện thị trường địa phương. Các nghiên cứu mới đây đã cho thấy rằng, thị trường PV thế giới được dự báo vượt quá 16GW vào năm 2010. Bảng 1.1 Các nước có nhà máy điện từ pin mặt trời cỡ lớn (công suất trên 1MWp). STT Tên nước Tổng công suất (MWp) Thị phần (%) 1. Đức 400 45 2. Tây Ban Nha 245 28 3. Mỹ 142 16 4. Italy 17 2 5. Nhật Bản 17 2 6. Hàn Quốc 13 2 7. Bồ Đào Nha 12 1,5 8. Hà Lan 9 1 9. Thụy Sỹ 5 1 10. Bỉ 3 0,5 11. Úc 2 0,5 12. Trung Quốc 2 0,2 13. Áo 1,5 0,2 14. Cộng hòa Séc 1,4 0,2 15. Philipines 1,1 0,1 16. Réunion 1 0,1 Ở Trung Quốc, sự hưởng ứng mang tính tự phát của người dân trong việc lắp đặt các tấm thu NLMT cũng đang đưa nước này vượt qua Đức trở thành thị trường tấm thu NLMT lớn nhất thế giới. Trung Quốc cũng đã ban hành luật năng lượng tái tạo (năm 2005), tạo cơ sở cho các hoạt động về dạng năng lượng này trở nên sôi nổi hơn. Bảng 1.2 Các nhà máy điện mặt trời PV lớn nhất thế giới (trên 50MW) TT Nhà máy PV Công suất DC cực đại (MW) Ghi chú 1 Sarnia PV Power Plant (Canada) 97 Đã được xây dựng 2009-2010 2 Montalto di Castro PV Station (Italy) 84,2 Đã được xây dựng 2009-2010
  • 19. 9 3 Finsterwalde Solar Park (Đức) 80,7 Pha 1 hoàn thành 2009, pha 2 và 3, 2010 4 Rovigo PV Power Plant (Italia) 70 Hoàn thành 11/2010 5 Olmedilla PV Park (Tây Ban Nha) 60 Hoàn thành 9/2008 6 Strasskirchen Solar Park (Đức) 54 7 Lieberose PV Park (Đức) 53 Hoàn thành 2009 8 Puertollano PV Park (Tây Ban Nha) 50 Khởi công 2008 Từ Bảng 1.2 Các nhà máy điện mặt trời PV lớn nhất thế giới (trên 50MW)có thể thấy, các nước thi đua khai thác nguồn năng lượng vô tận từ mặt trời. Về mức độ khai thác và sử dụng NLMT, Việt Nam chỉ đang xếp hạng xấp xỉ với Lào hoặc ở mức gần bằng với Campuchia. Các nhà máy nhiệt điện mặt trời thương mại (CSP) đã được xây dựng lần đầu tiên vào những năm 1980. Tháp NLMT PS10, 11MW ở Tây Ban Nha, đã hoàn thành vào cuối năm 2005, là hệ CSP thương mại đầu tiên ở Châu Âu và một nhà máy khác công suất 300MW được chờ đợi sẽ xây dựng vào năm 2013 cùng tại vị trí đó. Ngoài ra nhà máy Ivanpah Solar Power ở Đông Nam California gần biên giới Nevada được chờ đợi có công suất 392MW. Công suất lắp đặt pin mặt trời trên toàn thế giới đến năm 2007 là 10.300MWp. Đức hiện đang dẫn đầu với 3.862MWp. Trong đó, WP (watt-peak) là công suất điện một chiều của pin mặt trời được đo đạc trong các điều kiện tiêu chuẩn (với cường độ sáng: 1000 W/m2, nhiệt độ môi trường: 25O C, quang phổ của nguồn sáng thử nghiệm phải tương tự như quang phổ của BXMT tương ứng với hệ số khối lượng không khí là 1,5) (bảng 1.3). Bảng 1.3 Các nhà máy điện từ pin mặt trời lớn nhất thế giới STT Công suất (MWp) Thành phố Quốc gia 1. 20 Jumilla (Murcia) Tây Ban Nha 2. 20 Beneixama (Alicante) Tây Ban Nha 3. 14 Nellis, NV Mỹ 4. 13,8 Salamanca Tây Ban Nha 5. 12,7 Lobosillo (Murcia) Tây Ban Nha 6. 12 Erlasee (Arnstein) Đức 7. 11 Serpa (Alentejo) Bồ Đào Nha 8. 10,35 Bradis Đức 9. 10 Porkinh Đức
  • 20. 10 10. 9,55 Milagro Tây Ban Nha 11. 8,76 Viana (Navarra) Tây Ban Nha 12. 8,4 Gottelbom Đức 13. 8,22 San Luis Valley Mỹ 14. 6,3 Muhkhausen Đức 15. 6,277 Aldea del Conde (Extremmadura) Tây Ban Nha 16. 6 Olmedilla (Castilla la Mancha) Tây Ban Nha 17. 6 Doberschutz Đức 18. 5,8 Darro (Granada) Tây Ban Nha 19. 5,568 Oberottmarshausen Đức 20. 5,27 Miegersbach Nhật Bản 21. 5,21 Kameyama Đức 22. 5,076 Kleinaitingen Đức 23. 5,04 Alvarado Tây Ban Nha Từ giữa các năm 1990 các nước dẫn đầu trong lĩnh vực PV đã dịch từ Mỹ sang Nhật Bản và Châu Âu. Trong các năm 1992 - 1994 Nhật Bản đã tăng nguồn cung cấp kinh phí cho các hoạt động R&D, đã xây dựng hướng dẫn về ĐMT nối lưới và đã đưa vào một chương trình bù giá cho ĐMT, và do đó đã thúc đẩy sự lắp đặt các hệ thống PV cho khu dân cư. Kết quả là, sản xuất trên thế giới đã tăng 30% trong các năm cuối của thập kỷ 1990. Các hệ PV cho dân sự (domestic) thường được tính công suất theo đơn vị kilowatt-peak, kWp (thông thường nằm trong dải từ 1 đến 10kWp).Mặc dù tiềm năng NLMT rất lớn. Tuy nhiên, đến năm 2008 nó mới chỉ cung cấp được dưới 0,02% tổng nhu cầu năng lượng của nhân loại. Một vấn đề quan trọng với ĐMT là chi phí lắp đặt còn cao, mặc dù chi phi đó đã giảm nhiều so với các thập niên trước đây. Đặc biệt các nước đang phát triển có thể không có đủ quĩ tài chính để xây dựng các nhà máy PV, mặc dù các ứng dụng qui mô nhỏ hiện nay đã có thể thay thế các nguồn khác trong các nước đang phát triển. 1.2.2 Tình hình phát triển điện mặt trời tại Việt Nam 1.2.2.1 Tiềm năng điện mặt trời ở Việt Nam Việt Nam thuộc vùng có bức xạ mặt trời vào loại cao trên thế giới, với số giờ nắng dao động từ1600-2600giờ/năm, (trung bình xấp xỉ 5kwh/m2/ngày), được đánh giá là khu vực có tiềm năng rất lớn về năng lượng mặt trời, đặc biệt là tại khu vực miền Trung và miền Nam. Theo các nhà chuyên môn thì trong tương lai, nhu cầu sử dụng các thiết bị chạy bằng năng lượng mặt trời ở nước ta là rất lớn, kể cả khu vực
  • 21. 11 thành thị cũng như khu vực nông thôn. Pin mặt trời vừa có thể thay thế cho thuỷ điện nhỏ khi mùa hanh khô, vừa có thể là nguồn năng lượng dự trữ khi điện lưới quốc gia không đủ cung cấp cho người dân. 1.2.2.2 Những dự án điện mặt trời ở Việt Nam Tuy tiềm năng điện mặt trời ở Việt Nam là rất lớn nhưng do chi phí phát triển điện mặt trời hiện nay còn khá cao nên các dự án điện mặt trời ở Việt Nam chủ yếu có quy mô nhỏ lẻ và mang tính chất thử nghiệm. Các dự án điện mặt trời này thường là các hệ thống điện mặt trời độc lập cung cấp điện cho các khu vực mà lưới điện quốc gia chưa thể vươn tới như các vùng núi, vùng xa vùng xôi, hải đảo. Các dự án điện mặt trời tiêu biểu có thể kể đến như : - Dự án điện mặt trời trên đảo Cù Lao Chàm – Quảng Nam với 166 tấm pin mặt trời tổng công suất 28 kWp. - Trung tâm Hội nghị Quốc gia Mỹ Đình. Tổng công suất 154KW. - Dự án tại Xã Thượng Trạch, Bố Trạch, Quảng Bình. Công suất 11kW. - Hệ thống điện mặt trời cung cấp điện cho quần đảo Trường Sa. Bên cạnh những dự án điện mặt trời độc lập kể trên, các hệ thống điện mặt trời nối lưới cũng bắt đầu xuất hiện ở Việt Nam, tiêu biểu là hệ thống điện mặt trời trên nóc tòa nhà bộ công thương với công suất 12kW. Dự án này với mục tiêu trình diễn công nghệ là chính, nhưng nó cũng cho thấy sự hiệu quả của mình. 1.3 MỘT SỐ CÔNG NGHỆ ỨNG DỤNG SỬ DỤNG TRONG ĐỀ TÀI 1.3.1 Pin mặt trời 1.3.1.1 Cấu tạo của pin mặt trời Cấu tạo bằng Silic: Trong bảng tuần hoàn Silic (Si) có số thứ tự 14- 1s2 2s2 2p6 3s2 3p2 . Các điện tử của nó được sắp xếp vào 3 lớp vỏ, 2 lớp vỏ bên trong được xếp đầy bởi 10 điện tử. Tuy nhiên lớp ngoài cùng của nó chỉ được lấp đầy 1 nửa với 4 điện tử 3s23p2. Điều này làm nguyên tử Si có xu hướng dùng chung các điện tử của nó với các nguyên tử Si khác. Trong cấu trúc mạng tinh thể nguyên tử Si liên kết với 4 nguyên tử Si lân cận để lớp vỏ ngoài cùng có chung 8 điện tử (bền vững). Để tăng khả năng dẫn điện của bán dẫn silicon người ta thường pha tạp chất vào trong đó. Trước tiên ta xem xét trường hợp tạp chất là nguyên tử phospho (P) với tỷ lệ khoảng một phần triệu. P có 5 điện tử ở lớp vỏ ngoài cùng nên khi liên kết trong tinh thể Si sẽ dư ra 1 điện tử. Điện tử này trong điều kiện bị kích thích nhiệt có thể bứt khỏi liên kết với hạt nhân P để khuếch tán trong mạng tinh thể. Chất bán dẫn Si pha tạp P được gọi là bán dẫn loại N (Negative) vì có tính chất dẫn điện bằng các điện tử tự do. Ngược lại, nếu chúng ta pha tạp tinh thể Si bằng các nguyên tử Boron (B) chỉ có 3 điện tử ở lớp vỏ, chúng ta sẽ có chất bán dẫn loại P (Positive) có tính chất dẫn điện chủ yếu bằng các lỗ trống
  • 22. 12 Khi ta cho 2 loại bán dẫn trên tiếp xúc với nhau. Khi đó, các điện tử tự do ở gần mặt tiếp xúc trong bán dẫn loại N sẽ khuyếch tán từ bán dẫn loại N - bán dẫn loại P và lấp các lỗ trống trong phần bán dẫn loại P này. Liệu các điện tử tự do của bán dẫn N có bị chạy hết sang bán dẫn P hay không? Câu trả lời là không. Vì khi các điện tử di chuyển như vậy nó làm cho bán dẫn N mất điện tử và tích điện dương, ngược lại bán dẫn P tích điện âm. Ở bề mặt tiếp xúc của 2 chất bán dẫn bây giờ tích điện trái ngược và xuất hiện 1 điện trường hướng từ bán dẫn N sang P ngăn cản dòng điện tử chạy từ bán dẫn N sang P. Và trong khoảng tạo bởi điện trường này hầu như không có electron hay lỗ trống tự do . Tinh thể Si tinh khiết là chất bán dẫn dẫn điện rất kém vì các điện tử bị giam giữ bởi liên kết mạng, không có điện tử tự do. Chỉ trong điều kiện kích thích quang, hay nhiệt làm các điện tử bị bứt ra khỏi liên kết,các điện tử (tích điện âm) nhảy từ vùng hóa trị lên vùng dẫn bỏ lại vùng hóa trị 1 lỗ trống (tích điện dương), thì khi đó chất bán dẫn mới dẫn điện. Hiện nay vật liệu chủ yếu cho pin mặt trời là các silic tinh thể. Pin mặt trời từ tinh thể silic chia thành 3 loại: Một tinh thể hay đơn tinh thể module sản xuất dựa trên quá trình czoschralski, đơn tinh thể này có hiệu suất tới 16% và thường rất đắt tiền. Do được cắt từ các thỏi hình ống, các tấm đơn thể này có các mặt trống ở góc nối các module. Đa tinh thể từ các thỏi đúc – đúc từ silic nung chảy cẩn thận được làm nguội và làm rắn. Các pin này thường rẻ hơn các đơn tinh thể, tuy nhiên hiệu suất kém hơn. Chúng có thể tạo thành các vuông che phủ bề mặt nhiều hơn đơn tinh thể bù lại cho hiệu suất thấp của nó. Một lớp tiếp xúc bán dẫn p – n có khả năng biến đổi trực tiếp năng lượng bức xạ mặt trời thành điện năng nhờ hiệu ứng quan điện bên trong gọi là pin mặt trời. Pin mặt trời được sản xuất và ứng dụng phổ biến hiện nay là các pin mặt trời được chế tạo từ vật liệu tinh thể bán dẫn silicon (Si) có hóa trị 4. Từ tinh thể silic tinh khiết, để có vật liệu tinh thể bán dẫn Si loại n, người ta pha tạp chất donor là photpho có hóa trị 5. Còn có thể có vật liệu bán dẫn tinh thể loại p thì tạp chất acceptor được dùng để pha vào silic là Bo có hóa trị 3. Đối với pin mặt trời từ vật liệu tinh thể silic khi bức xạ mặt trời chiếu đến thì hiệu điện thế hở mạch giữa 2 cực khoảng 0,55V và dòng điện đoản mạch của nó khi bức xạ mặt trời có cường độ 1000W/m2 vào khoảng 25 – 30 mA/cm2.
  • 23. 13 1.3.1.2 Nguyên lý hoạt động của pin mặt trời a. Hiện tượng quang điện Hình 1.1 Các vùng năng lượng Hiệu ứng quang điện được phát hiện đầu tiên năm 1839 bởi nhà vật lý Pháp Alexandre Edmond Becquerel. Tuy nhiên tới năm 1883 thì một pin mặt trời mới tạo thành bởi Charles Fritts, ông phủ lên mặt bán dẫn selen một lớp cực mỏng vàng để tạo nên mạch nối. Thiết bị chỉ có hiệu suất 1%, Russell Ohl được xem là người tạo ra pin mặt trời đầu tiên 1946. Sau đó Sven Ason Berglund đã có các phương pháp liên quan đến việc tăng khả năng cảm nhận ánh sáng của pin. Xét một hệ hai mức năng lượng điện tử E1 < E2, bình thường điện tử chiếm mức năng lượng thấp hơn E1. Khi nhận bức xạ mặt trời, lượng tử ánh sáng photon có năng lượng hv (trong đó h là hằng số Planck, v là tần số ánh sáng) bị điện tử hấp thụ và chuyển lên mức năng lượng E2. Ta có phương trình cân bằng năng lượng: Hv= E2–E1 (1.1) Trong các vật thể rắn, do tương tác rất mạnh của mạng tinh thể lên điện tử vòng ngoài, nên các mức năng lượng của nó bị tách ra nhiều mức năng lượng sát nhau và tạo thành các vùng năng lượng (Hình 1.1). Vùng năng lượng thấp bị các năng lượng điện tử chiếm đầy khi ở trạng thái cân bằng gọi là vùng hóa trị, mà mặt trên của nó có chức năng lượng Ev. Vùng năng lượng ở trên tiếp đó hoàn toàn trống hoặc chỉ chiếm một phần gọi là vùng dẫn, mặt dưới của vùng có năng lượng Ec. Cách ly giữa hai vùng hóa trị và vùng dẫn là một vùng có cấp độ rộng với năng lượng là Eg, trong đó không có mức năng lượng cho phép nào của điện tử.
  • 24. 14 Hình 1.2 Hệ 2 mức năng lượng Khi nhận bức xạ mặt trời, photon có năng lượng hv tới hệ thống và bị điện tử ởvùng hóa trị thấp hấp thu và nó có thể chuyển lên vùng dẫn để trở thành điện tử tự do e-, để lại ở vùng hóa trị một lỗ trống có thể như hạt mang điện dương, ký hiệu là h+. Lỗ trống này có thể duy chuyển và tham gia vào quá trình dẫn điện.Hiệu ứng lượng tử của quá trình hấp thụ photon có thể miêu tả bằng phương trình: Ev + hv -> e-+h+ (1.2) Trong thực tế các hạt dẫn bị kích thích e- và h+ đều tự phát tham gia vào quá trình phục hồi, chuyển động đến mặt của các vùng năng lượng: điện tử e- giải phóng năng lượng để giải phóng đến mặt của vùng dẫn Ec, còn lỗ trống h+ duy chuyển đến mặt của Ev, quá trình phục hồi chỉ xảy ra trong khoảng thời gian rất ngắn 10-12 - 10-1 giây và gây ra dao động mạnh (photon). Năng lượng bị tổn hao do quá trình phục hồi sẽ là: Eph = hv–Eg (1.3) Tóm lại khi vật rắn nhận tia bức xạ mặt trời, điện tử ở vùng hóa trị hấp thụ năng lượng photon hv và chuyển lên vùng dẫn và tạo ra cặp hạt dẫn điện tử - lỗ trống e- - h+, tức là đã tạo ra một hiệu điện thế. Hiện tượng đó gọi là hiệu ứng quang điện bên trong. b. Nguyên lý hoạt động của pin mặt trời Nguyên lý hoạt động của pin mặt trời chính là hiện tượng quang điện xảy ra trên lớp tiếp xúc p-n Khi một nhóm photon chạm vào mảnh silic, một trong hai điều sẽ xảy ra Năng lượng photon truyền xuyên qua mảnh silic. Điều này thường xuyên xảy ra khi năng lượng của photon thấp hơn năng lượng đủ để đưa các hạt electron lên mức năng lượng cao hơn Năng lượng của photon được hấp thụ bởi silic.Điều này thường xuyên xảy ra khi năng lượng của photon lớn hơn năng lượng đủ để đưa các hạt electron lên mức năng lượng cao hơn. Khi photon được hấp thụ, năng lượng của nó được truyền đến các hạt electron trong mạng tinh thể ( thông thường các electron này ở lớp ngoài cùng). Khi electron
  • 25. 15 được kích thích, trở thành dẫn điện, các lectron này có thể tự do di chuyển trong bán dẫn.Khi đó nguyên tử sẽ thiếu 1 electron gọi là lỗ trống.Lỗ trống này tạo điều kiện cho các electron của các nguyên tử bên cạnh di chuyển đến điều vào chỗ trống và điều này tạo điều kiện cho nguyên tử bên cạnh hình thành nên lỗ trống. Cứ tiếp tục như vậy electron và lỗ trống di chuyển xuyên suốt mạch bán dẫn và tạo ra dòng điện Với mạng tinh thể silic, giá trị Eg = Eg - EV tương đối thấp (vào 1,1eV), tương đương với năng lượng của tia hồng ngoại (1,7eV).Do đó, silic có thể hấp thu phần lớn ánh sáng mặt trời (từ tia hồng ngoại đến tia tử ngoại).Tuy nhiên, do những photon có năng lượng lớn sẽ bị thất thoát phần dư thừa ở dạng nhiệt nên phần năng lượng hấp thụ được chuyển đổi thành nhiệt năng lớn hơn năng lượng điện (ngoài ra còn phải kể đến sự thất thoát gây ra bởi cấu trúc vật liệu, phản xạ bề mặt và sự tinh khiết của silicon…) Hiệu suất lý thuyết tối đa của pin mặt trời silicon dơn tinh thể là 31% (với loại pin một lớp silicon). c. Đặc tính làm việc của pin mặt trời  Mạch điện tương đương Khi được chiếu sáng, nếu ta nối các bán dẫn p và n của một tiếp xúc p-n bằng một dây dẫn, thì pin mặt trời phát ra một dòng quang điện Iph. Vì vậy pin mặt trời có thể xem như một nguồn dòng. Lớp tiếp xúc bán dẫn p-n có tính chỉnh lưu tương đương một diode.Tuy nhiên, khi phân cực ngược, do điện trở tiếp xúc có tính giới hạn, nên vẫn có một dòng điện được gọi là dòng rò qua nó. Đặc trưng cho dòng rò qua lớp tiếp xúc p-n người ta đưa vào đại lượng điện trở Rsh Dòng điện chạy trong mạch phải đi qua các lớp bán dẫn p và n, các điện cực, các lớp tiếp xúc,…Đặc trưng cho tổng các điện trở của các lớp đó là một điện trở Rsh nối tiếp trong mạch (có thể coi là nội điện trở của pin mặt trời, phụ thuộc vào độ sâu của lớp bán dẫn , sự tinh khiết và điện trở tiếp xúc). Như vậy, một pin mặt Trời được chiếu sáng có sơ đồ tương đương như : Hình 1.3 Đường đặc trưng theo độ chiếu sáng của pin mặt trời
  • 26. 16 I = Iα − I0 − Ish = Iα − Is [(exp q(V+IRs) nkT − 1) − (V+IRs) Rsh ] (1.1) Trong đó: Iα : dòng quang điện (A/m2). Id : dòng qua diot (A/m2). Ish : dòng dò (A/m2). Is : dòng bão hòa (A/m2). n: được gọi là thừa số lý tưởng phụ thuộc vào các mức độ hoàn thiện công nghệ pin mặt Trời. Gần đúng có thể lấy n = 1. Rs: điện trở nối tiếp (điện trở trong) của pin mặt Trời (Ω/m2); Rsh : điện trở shun (Ω/m2); q: điện tích của điện tử (C); Thông thường điện trở sơn Rsh rất lớn vì vậy có thể bỏ qua số hạng cuối trong biểu thức (1.1). Đường đặc trưng sáng V-A của pin mặt trời cho bởi biểu thức có dạng như đường cong trong (hình 1.5) . Có ba điểm quan trọng trên đường đặc trưng này: Dòng ngắn mạch Isc Điện áp hở mạch Voc Điểm công suất cực đại PM  Điểm làm việc cực đại Xét một đường đặc tính V-A của pin mặt Trời đối với một cường độ bức xạ cho trước và ở nhiệt độ xác định. Nếu các cực của pin mặt trời được nối với tải tiêu thụ điện R thì điểm cắt nhau của đường đăc tính V-A của pin mặt Trời và đường đặc trưng của tải trong tọa độ OIV là điểm làm việc của pin mặt Trời. Nếu tải tiêu thụ điện của một pin mặt Trời là một tải điện trở Ohm thuần, thì đường đặc trưng tải là một đường thẳng đi qua gốc tọa độ và có độ nghiêng α đối với trục OV và tgα = 1/R (trên hình 1.9), (theo định luật Ohm ta có I = V/R). Trong trường hợp này, công suất pin mặt trời cấp cho tải chỉ phụ thuộc vào giá trị điện trở R. Trong tọa độ OIV, công suất pin mặt Trời cấp cho tải R bằng diện tích hình chữ nhật giới hạn bởi hoành độ và tung độ của điểm làm việc. Với các giá trị R khác nhau, các điểm làm việc sẽ khác nhau và do đó tải tiêu thụ cũng khác nhau. Tồn tại một giá trị R=ROPT mà tại đó công suất tải tiêu thụ là cực đại. Điểm làm việc ứng với công suất cực đại, điểm A trên Hình 1.4 Điểm làm việc và điểm công suất cực đại, là điểm tiếp xúc giữa đường đặc tính VA của pin mặt Trời và đường công suất không đổi (đường công suất không đổi IV = const là các đường hypecbol).
  • 27. 17 Hình 1.4 Điểm làm việc và điểm công suất cực đại Giá trị điện trở tải tối ưu ROPT được xác định theo định luật Ohm: (1.2) Điều kiện cường độ bức xạ không đổi và nhiệt độ cho trước ta thấy: - Nếu điện trở tải nhỏ, R << ROPT, pin mặt trời làm việc trong miền MN là miền mà cường độ dòng điện gần như không đổi và gần bằng dòng đoản mạchISC. - Nếu điện trở tải R lớn, R >> ROPT, pin mặt Trời làm việc trong miền PS với hiệu điện thế gần như không đổi và bằng thế hở mạchVOC. Ta thấy rằng pin mặt Trời chỉ làm việc có hiệu quả khi tải tiêu thụ điện có giá trị lân cận ROPT. Điều này không phải lúc nào cũng dễ dàng đạt được bởi vì điểm làm việc ngay đối với một máy tiêu thụ điện cũng thay đổi. Ngoài ra bức xạ mặt Trời và nhiệt độ của môi trường thay đổi liên tục theo thời gian, nên đường đặc tính V-A của pin mặt Trời cũng thay đổi và do đó làm dịch chuyển điểm làm việc ra khỏi điểm làm việc tối ưu. Công suất đỉnh là công suất ra cực đại của pin mặt trời dưới điều kiện cường độ bức xạ và nhiệt độ nhất định. Thường được tính dưới điều kiện thử nghiệm chuẩn (STC : Standard Test Condition) là cường độ bức xạ 1000W/m2và nhiệt độ 25oC. Công suất đỉnh thường được đo bằng Wp (Watt peak), để chỉ ra giá công suất đỉnh ở điều kiện phòng thí nghiệm, giá trị này rất khó đạt được dưới điều kiện hoạt động thực tế. d. Dàn pin mặt trời
  • 28. 18 Dàn pin mặt trời (array PV), được ghép nối từ các tấm pin mặt trời (module PV), là thành phần quan trọng nhất của hệ thống pin năng lượng mặt trời.Chúng có nhiệm vụ biến đổi năng lượng hấp thụ từ mặt trời thành điện năng cung cấp cho phụ tải. Tùy theo công suất cần thiết mà kỹ sư thiết kế ghép nối các tấm pin theo các dãy song song hoặc nối tiếp khác nhau. Có hai cách ghép cơ bản: - Ghép nối tiếp các tấm mođun lại sẽ cho điện áp ra lớn hơn. - Ghép song song các tấm module lại sẽ cho dòng điện ra lớn. Trong thực tế phương pháp ghép hỗn hợp được sử dụng nhiều hơn để đáp ứng cả yêu cầu về điện áp và dòng điện.  Phương pháp ghép nối tiếp các tấm module mặt trời: Hình 1.5 Ghép nối tiếp hai module pin mặt trời (a)và đường đặc trưng VA của các module và của cả hệ (b) Giả sử các module đều giống hệt nhau, có đường đặc tính V-A giống hết nhau, các thông số dòng đoản mạch ISC, thế hở mạch VOC bằng nhau. Giả sử cường độ chiếu sáng trên các tấm là đồng đều nhau. Khi ghép nối tiếp các tấm module này ta sẽ có: I = I1 = I2 = …, = Ii (1.3) n 1 i i V V (1.4) n 1 i i n 1 i i P IV I . V P (1.5) n 1 i opti opt n 1 i opti opt iopt opt P P , V V , I I (1.6) Trong đó: I, P, V : là dòng điện, công suất và hiệu điện thế của cả hệ. Ii, Vi, Pi : là dòng điện, công suất, hiệu điện thế của module thứ i trong hệ.
  • 29. 19 Iopi, Vopi, Popi : là dòng điện làm việc tối ưu, điện thế làm việc tối ưu, công suất làm việc tối ưu của các module thứ i trong hệ. Iop, Vop, Pop : là dòng điện làm việc tối ưu, điện thế làm việc tối ưu, công suất làm việc tối ưu của hệ. Khi tải có giá trị 0 < R < Các module làm việc như các máy phát tương đương. Đường đặc tính vôn - ampe của hệ bằng tổng hình học của hai đường đặc trưng của mỗi module.  Ghép song song các module mặt trời: Ở cách ghép này, ta cũng giả sử các module đều giống hệt nhau, có đường đặc tính V-A giống hết nhau, các thông số dòng đoản mạch Isc thế hở mạch Voc bằng nhau. Giả sử cường độ chiếu sáng trên các tấm là đồng đều nhau. Hình 1.6 Ghép song song hai module pin mặt trời (a)và đường đặc trưng VA của các module và của cả hệ (b) Khi đó ta có: U = U1 = U2 =…= Ui (1.7) n 1 i i n 1 i i P VI I . V P (1.8) n 1 i opti opt n 1 i opti opt iopt opt P P , I I , V V (1.9) n 1 i opti opt n 1 i opti opt iopt opt P P , I I , V V (1.10) Đường đặc tính VA của hệ cũng được suy ra bằng cách cộng các giá trị dòng điện I ứng với các giá trị điện thế V không đổi.Trong trường hợp này, các pin cũng làm việc như các máy phát. Trên thị trường hiện nay, các tấm pin năng lượng mặt trời được thiết kế với công suất dao động từ 25Wp đến 230Wp.Tùy theo chủng loại, số lượng cells trên mỗi tấm
  • 30. 20 pin thường là 18, 36, 72 hoặc nhiều hơn. Hiệu suất tiêu chuẩn của các tấm pin năng lượng mặt trời thương mại vào khoảng 15-18% Hình 1.7 Dàn pin năng lượng mặt trời Các tấm pin mặt trời được lắp đặt ở ngoài trời có thể hứng được ánh sáng mặt trời tốt nhất nên cần thiết kế các tính năng và chất liệu đặt biệt, có thể chịu được sự khắc nghiệt của thời tiết, khí hậu và nhiệt độ…Ngoài ra chất keo và chất nền phải có tính dẫn nhiệt để giúp pin tỏa nhiệt tốt, nâng cao hiệu suất chuyển đổi pin. 1.3.2 Bộ nghịch lưu DC-AC Inverter là thiết bị nghịch lưu, chuyển đổi dòng điện một chiều từ ắc quy (hoặc tấm pin) thành dòng điện xoay chiều cho tải. Tùy theo nhu cầu mà Inverter được thiết kế với các cấp công suất khác nhau. Có nhiều loại Inverter, thường được phân biệt qua dạng sáng điện áp đầu ra: dạng sóng hình sin chuẩn (true line), giả Since, sóng vuông, sóng bậc thang.Các bộ Inverter giả sine, sóng vuông, hoặc bậc thang chỉ dùng cho các tải không có tính cảm (đèn chiếu sáng, tivi, radio). Với các tải là động cơ điện, quạt điện…tức là những thiết bị có cuộn cảm thì phải dùng các bộ biến đổi có sóng ra dạng sin chuẩn. Các bộ Inverter dùng trong các hệ thống pin mặt trời lớn thường là dạng sin chuẩn (có thể sử dụng cho nhiều loại tải khác nhau) Ngoài ra còn các thiết bị khác như hệ thống rơ le bảo vệ, máy cắt, hệ thống điều khiển... tuy nhiên trong phạm vi đề tài này tôi xin chỉ nêu những thiết bị chính về mặt nhất thứ dùng riêng cho hệt thống điện mặt trời nối lưới tại hồ thủy điện Đồng Nai 4. 1.4 CÁC MÔ HÌNH CƠ BẢN CỦA HỆ THỐNG PIN MẶT TRỜI 1.4.1 Vận hành độc lập với lưới (Off Grid) Hệ thống pin mặt trời vận hành độc lập chỉ dựa vào năng lượng mặt trời để phát ra điện năng.Tùy nhu cầu và mục đích sử dụng mà có thể có hoặc không có ắc quy để dự trữ năng lượng. Qui mô và thiết kế của hệ thống này phù hợp cho các tải điện một chiều hoặc xoay chiều công suất nhỏ hoặc ứng dụng cho các vùng không có điện lưới. Dạng đơn giản nhất của hệ thống quang điện độc lập là hệ thống liên kết tải trực tiếp, tức là dòng điện một chiều phát ra từ module quang điện sẽ được dẫn trực tiếp
  • 31. 21 vào mà không thông qua hệ thống trung gian (như bình ắc quy). Đương nhiên là hệ thống này chỉ có tác dụng ban ngày (vào những giờ nắng), cung cấp điện cho các tải nhỏ như hệ thống quạt thông khí, hệ thống bơm nước…Phần thiết kế quan trọng nhất cho hệ thống trực tiếp là tính toán điện trở tải sao cho phù hợp với công suất tối đa của hệ thống pin mặt trời. Đối với một số loại tải như máy bơm nước, người ta gắn một dạng biến thiên điện DC-AC điện từ, gọi là hệ thống theo dõi công suất tối đa giữa nguồn và tải có thể tận dụng tốt hơn công suất tối đa của nguồn. 1.4.2 Vận hành kiểu lai (Hybrid) Hệ thống cục bộ có thể kết hợp với các nguồn khác (điện gió, máy phát điện diesel…) như nguồn phát thứ cấp, khi đó ta có hệ thống pin mặt trời liên kết hay hệ thống kiểu lai (hybrid system)…Về mặt vận hành, hệ thống liên kết tương tự hệ thống độc lập, tuy nhiên khi không có ánh sáng mặt trời thì nguồn điện của hệ vẫn được duy trì nhờ các nguồn thứ cấp. Hệ thống liên kết này đặc biệt thích hợp cho các vùng có tiềm năng cả về năng lượng gió và năng lượng mặt trời. Ban ngày, hệ thống pin mặt trời sẽ làm nhiệm vụ cung cấp điện chính, còn ban đêm thì hệ thống điện gió sẽ làm nhiệm vụ cung cấp điện chính cho tải. 1.4.3 Vận hành kết nối với lưới điện (grid tie) Hệ thống pin năng lượng mặt trời vận hành kết nối với lưới điện có vai trò như một phần của mạng điện khu vực. Có hai dạng hệ thống pin mặt trời nối lưới : trực tiếp và trữ ắc quy. Module pin mặt trời và bộ chuyển DC/AC là hai thành phần thiết yếu trong cả hai dạng hệ thống nối lưới. Module pin măt trời có vai trò chuyển đổi ánh sáng mặt trời thành dòng điện một chiều, và bộ chuyển DC/AC chuyển dòng điện một chiều thành dòng điện xoay chiều. Hệ thống điện pin mặt trời nối lưới trực tiếp tương đối đơn giản hơn và hiệu quả hơn trong vài trường hợp. Hệ thống này chuyển đổi tức thời dòng điện một chiều thành xoay chiều và kết nối vào lưới điện. Tại đây, hệ thống pin mặt trời chia tải với hệ thống điện lưới và quay ngược đồng hồ điện bất cứ khi nào thặng dư điện. Đây là dạng thiết kế có giá thành thấp.Tuy nhiên, do hệ thống này không có biện pháp dự phòng nên khi nguồn điện trung tâm bị cắt, thì xảy ra hiện tượng cúp điện đầu tải. Hệ thống sử dụng bình ắc quy để trữ điện thi khắc phục được trường hợp mất điện khi nguồn điện lưới bị cắt. Hệ thống bao gồm một bộ ắc quy và các thiết bị điều khiển điện tử phức tạp hơn. Một khi nguồn điện lưới bị cắt, điện dự trữ từ ắc quy sẽ được sử dụng thay thế cho đến khi cạn nguồn dự trữ.Nếu nguồn điện bị cắt vào ban ngày, hệ thống pin mặt trời sẽ liên tục nạp điện vào hệ thống ắc quy, từ đó kéo dài khả năng dự trữ điện cho buổi tối.
  • 32. 22 1.5 KẾT LUẬN Năng lượng mặt trời truyền đến trái đất dưới dạng bức xạ. Trong những ngày quang đãng (không có mây), phần năng lượng bức xạ mặt trời truyền tới bề mặt trái đất ở thời điểm cao nhất khoảng 1000W/m2. Một hệ thống điện pin mặt trời cơ bản gồm có ba thành phần là: - Dàn pin mặt trời (nguồn điện) - Dàn ắc quy (dự trữ điện năng) - Hệ thống điều phối điện năng Có ba mô hình vận hành cơ bản của hệ thống pin năng lượng mặt trời là - Mô hình vận hành độc lập - Mô hình vận hành kiểu lai - Mô hình vận hành kết nối lưới điện Tùy theo yêu cầu và điều kiện cụ thể tại nơi lắp đặt mà ta chọn mô hình vận hành của hệ thống điện pin mặt trời thích hợp, để từ đó tính toán và thiết kế hệ thống. Hiện nay trên thế giới đang phát triển mạnh mẽ nguồn năng lượng mặt trời, có nhiều nhà máy điện đã và đang được xây dựng với công suất rất lớn. Tại Việt Nam sản lượng điện mặt trời đang còn khá khiêm tốn, tuy nhiên Chính Phủ đã đề ra các mục tiêu cũng như các chính sách nhằm phát triển nguồn năng lượng này.
  • 33. 23 CHƯƠNG 2 KHẢO SÁT THỰC TRẠNG HỒ THỦY ĐIỆN ĐỒNG NAI 4 2.1. TỔNG QUAN VỀ HỒ THỦY ĐIỆN ĐỒNG NAI 4 Hồ thủy điện Đồng Nai 4 được hình thành bởi dự án thủy điện Đồng Nai 3&4 bằng cách ngăn dòng chảy trên sông Đồng Nai đoạn từ hạ lưu nhà máy thủy điện Đồng Nai 3 đến đập chính và đập tràn của hồ thủy điện Đồng Nai 4. Hồ được tích nước từ đầu tháng 11 năm 2011 với mục đích chính của hồ là tích nước để chạy 2 tổ máy của nhà máy thủy điện Đồng Nai 4. Hiện nay hồ đang vận hành ổn định và thuộc quyền quản lý của công ty thủy điện Đồng Nai, xã Quảng Khê huyện Đăk Glong, xã Lộc Bảo huyện Bảo Lâm Hình 2.1 Hồ thủy điện Đồng Nai 4 từ phần mềm Google Earth. 2.1.1. Vị trí địa lý: [6] Hồ thủy điện Đồng Nai 4 nằm tại 110 -120 20 vĩ Bắc, 1070 – 1080 30 kinh đông, nơi giáp ranh giữa xã Quảng Khê, huyện Đăk Glong, tỉnh Đăk Nông và xã Lộc Bảo, huyện Bảo Lâm, tỉnh Lâm Đồng, cách thị trấn Quảng Khê khoảng 10km về phía đông nam. Đây là vị trí thuộc khu vực cao nguyên Nam trung bộ của Việt Nam là khu vực có tiềm năng kỹ thuật để nghiên cứu, đầu tư phát triển điện mặt trời CSP.
  • 34. 24 Hình 2.2 Bản đồ tiềm năng kỹ thuật về CSP tại Việt Nam 2.1.2. Tình trạng mặt thoáng: Trong vận hành mực nước hồ giao động từ cao trình 474m đến cao trình 476m, trong trường hợp đặc biệt mực nước gia cường lớn nhất ở tần suất P0.02% có thể dâng đến cao trình 479.24m. Diện tích mặt hồ ở cao trình 474m (mực nước chết) là 8,03km2 và diện tích ở cao trình 476m (mực nước dâng bình thường) là 8.32km2 , độ chênh mực nước thấp thích hợp với việc đặt các phao nổi trên mặt hồ để lắp đặt các tấm pin năng lượng mặt trời. Trong lòng hồ có một số hòn đảo nhỏ tuy nhiên không có núi cao nên mặt hồ không bị che phủ bởi vách núi và cây cối, khu vực hồ dân cư thưa thớt an ninh tốt chỉ có một số hộ dân nuôi cá bè và đánh bắt cá với hình thức nhỏ lẻ, tự phát. 2.1.3. Vị trí lắp đặt thiết bị: 2.1.3.1. Vị trí lắp đặt các tấm PV. Do tại các vị trí đập và cửa nhận nước đã có sẵn đường dây 22kV nên dự định sẽ đặt các tấm PV tại gần 2 vị trí này Tại khu vực gần đường ra cửa nhận nước có 1 khu đất trống có diện tích vào khoảng 4 ha, nằm trên địa phận của xã Lộc Bảo, huyện Bảo Lâm, tỉnh Lâm Đồng. Khu đất này trước đây dùng để đổ đất đá thải lúc thi công cửa nhận nước, nay bỏ trống đất đai cằn cỗi mặt bằng tương đối bằng phẳng, không có bóng che và gần với mặt hồ có thể sử dụng để đặt các giá đỡ và các tấm PV trên cạn, đây cũng là vị trí được chọn để đặt trạm inverter C và các trạm biến áp 0,4/22kV.
  • 35. 25 Hình 2.3 Bãi đất trống dự định đặt các tấm PV trên cạn Khu vực lòng hồ cửa nhận nước có diện tích vào khoảng 30,5 ha thuộc địa phận xã Lộc Bảo, huyện Bảo Lâm, tỉnh Lâm Đồng. Đây là khu vực nước tĩnh, vận tốc dòng chảy nhỏ, mực nươc hồ giao động ít, ít bị ảnh hưởng của bóng che, không ảnh hưởng đến lưu thông của thuyền bè, thuận lợi cho việc neo các tấm phao nên được chọn để đặt các phao nổi và các tấm pin PV trên mặt hồ. Tương tự khu vực lòng hồ phía phải của đập nhìn từ thượng lưu có diện tích vào khoảng 60,6 ha thuộc địa phận xã Quảng Khê, huyện Đăk Glong, tỉnh Đăk Nông cũng được chọn để đặt các phao nổi và các tấm PV trên mặt hồ, gần đó có một hòn đảo diện tích khoảng 1 ha có thể sử dụng để đặt trạm inverter A và một số trạm biến áp 0,4/22kV. Tương tự trạm inverter B và một số trạm biến áp sẽ được đặt tại khu đất trống bên bờ trái gần đó. 2.1.3.2. Vị trí đặt trạm phân phối 230kV Cách vai trái của đập dâng hồ thủy điện Đồng nai 4 khoảng 300m có một khoảng đất trống bằng phẳng có diện tích vào khoảng 6 ha trước đây là khu phụ trợ để xây dựng đập nay bỏ hoang, nằm trên đỉnh đồi thuộc xã Quảng Khê, huyện Đăk Glong, tỉnh Đăk Nông, khá bằng phẳng có thể sử dụng để đặt nhà điều hành, máy biến áp tăng áp 22/220kV và các thiết bị trạm phân phối. 2.1.4. Giao thông Bên cạnh hồ có quốc lộ 28 chạy qua phía bên vai phải của đập dâng và đập tràn, bên vai trái của đập đã có sẵn đường giao thông nội bộ từ đập tràn đi cửa nhận nước của dự án thủy điện Đồng Nai 4. Khu vực ven hồ và các vị trí đặt thiết bị cần được xây dựng thêm đường để thi công và vận hành.
  • 36. 26 Hình 2.4 Bãi đất dự định đặt trạm phân phối 230kV Hình 2.5 Các khu vực dự định đặt thiết bị. 2.2. TIỀM NĂNG ĐIỆN MẶT TRỜI LÝ THUYẾT TẠI KHU VỰC [7] Hồ thủy điện Đồng Nai 4 nằm giáp ranh giữa 2 tỉnh Đăk Nông và Lâm Đồng, theo thống kê được lấy từ các trạm khí tượng thủy văn tại 2 trạm khí tượng Đăk Nông và Đà Lạt số liệu về năng lượng mặt trời lấy được như sau
  • 37. 27 2.2.1. Số giờ nắng trung bình tháng năm tại khu vực Bảng 2.1 Số giờ nắng trung bình tại khu vực (Giờ) Tháng 1 2 3 4 5 6 7 8 9 10 11 12 Năm Đăk Nông 250 241 251 222 191 150 140 128 125 165 194 223 2.281 Đà Lạt 257 237 259 203 191 148 160 137 133 142 174 220 2.118 Hình 2.6 Biểu đồ số giờ nắng trong năm tại khu vực dự án Số giờ nắng trung bình năm khu vực dự án khoảng 2281 giờ, tương ứng khoảng 6.25 giờ/ngày là cao so với số giờ nắng trung bình năm của cả nước. 2.2.2. Nhiệt độ trung bình tháng và năm tại khu vực. Bảng 2.2 Nhiệt độ trung bình tháng, năm tại khu vực (o C) Tháng 1 2 3 4 5 6 7 8 9 10 11 12 Năm Đăk Nông 20,5 21,9 23,4 24,2 24,2 23,5 23,1 23,0 23,1 22,8 22,2 20,8 22,7 Đà Lạt 15,8 16,7 17,9 18,9 19,4 19,0 18,8 18,5 18,5 18,0 17,4 16,1 17,9
  • 38. 28 Hình 2.7 Biểu đồ nhiệt độ trung bình tháng, năm tại khu vực. 2.2.3. Tổng xạ theo phương ngang (GHI) tại khu vực Theo nguồn số liệu từ Solargis khu vực tỉnh Lâm Đồng có tổng xạ theo phương ngang từ 1500 – 2000 kWh/năm, khu vực tỉnh Đăk Nông có tổng xạ theo phương ngang từ 1700 – 2000 kWh/năm Tổng xạ theo phương ngang hàng năm (GHI) là thông số cơ bản nhất cần xem xét khi cần đánh giá tiềm năng mặt trời tại khu vực dự án, GHI càng cao năng suất phát điện tính trên 1kWp công suất lắp đặt sẽ càng lớn. Dựa trên bản đồ GHI trung bình ngày lý thuyết tại khu vực 2 huyện Đăk Glong, huyện Đăk Nông và huyện Bảo Lâm, tỉnh Lâm Đồng là vùng có nguồn bức xạ mặt trời tốt, từ 4,9 đến 5,3 kWh/m2 .ngày (Hình 2.8Hình 2.8 Bản đồ GHI trung bình ngày lý thuyết khu vực
  • 39. 29 Hình 2.8 Bản đồ GHI trung bình ngày lý thuyết khu vực Nhận xét: Qua các số liệu trên cho thấy nguồn năng lượng mặt trời tại khu vực dự án là tốt, số giờ nắng trung bình năm tại khu vực là cao so với cả nước, tổng xạ theo phương ngang tại khu vực thuộc loại cao. Ngoài ra điều kiện thời tiết tại khu vực khá thuận lợi do ít ảnh hưởng của mưa bão rất thích hợp cho việc xây dựng 1 nhà máy điện mặt trời 2.3. THỰC TRẠNG LƯỚI ĐIỆN TẠI HỒ THỦY ĐIỆN ĐỒNG NAI 4 2.3.1. Lưới điện hạ thế và thông tin liên lac: Tại đập tràn và cửa nhận nước đã có nguồn điện 3 pha 400V có thể lựa chọn lấy từ đường dây 22kV nhà máy thủy điện Đồng Nai 4 hoặc từ phía trạm 22kV Đăk Nông đặt tại thị xã Gia Nghĩa để cấp cho công tác vận hành các cửa tràn và cửa nhận nước và các nguồn 1 pha cấp cho điện sinh hoạt và chiếu sáng đường, vai đập và cảnh báo tại đập tràn và cửa nhận nước. Tại đập tràn có 1 máy phát Diesel dự phòng công suất 100kVA. Hệ thống thông tin liên lạc và điều khiển giám sát đã được kết nối từ đập tràn và cửa nhận nước với phòng điều khiển trung tâm nhà máy thủy điện Đồng Nai 4 thông qua 2 đường cáp quang và có thể kết nối với internet 2.3.2. Hệ thống lưới điện 22kV: Hiện tại khu vực đã có lưới điện 22kV nối liền từ tỉnh Đăk Nông với nhà máy thủy điện Đồng Nai 4 theo sơ đồ như Hình 2.9 Sơ đồ lưới điện 22kV tại khu vực thủy điện Đồng Nai 4
  • 40. 30 Hình 2.9 Sơ đồ lưới điện 22kV tại khu vực thủy điện Đồng Nai 4 Hiện tại đường dây 22kV tại khu vực được lấy từ nhà máy thủy điện Đồng Nai 4 qua máy biến áp BFT01 1600kVA, đầu hạ áp (0,4kV) của BFT01(T381) được nối với thanh cái III tại tủ BHA02 qua máy cắt QFB4, đầu cao áp (22kV) của BFT01 được nối với đường dây 22kV qua LBFCO 400-8 dẫn đến đập tràn, cửa nhận nước, công ty cao su Bảo Lâm và một số khu dân cư qua các trạm T248, T249, T460, T487. LBFCO-10 được nối đến đường dây 22kV Đăk Nông, trong vận hành bình thường nguồn cấp sẽ được lựa chọn từ tự dùng của nhà máy thủy điện Đồng Nai 4, phía đường dây 22kV Đăk Nông sẽ dự phòng khi nguồn chính bị sự cố. Như vậy có thể sử dụng hệ thống điện mặt trời nổi trên mặt hồ kết nối với lưới điện 22kV để phát cho các phụ tải địa phương, tự dùng nhà máy Đồng Nai 4 và phụ tải 22kV phía Đăk Nông tuy nhiên công suất sẽ không được lớn do phụ tải tại khu vực nhỏ và đường dây mạch đơn dẫn ra trạm 22kV Đăk Nông sử dụng dây ACSR95 nên công suất truyền tải cũng không được lớn. 2.3.3. Lưới điện 230kV: Tại gần khu vực dự định đặt trạm phân phối của dự án có 2 vị trí có đường dây 230kV gần đó và cách trạm phân phối 500kV Đăk Nông khoảng 10 km.
  • 41. 31 Hình 2.10 Sơ đồ lưới điện 230kV tại gần khu vực dự án Trạm 230kV Đồng Nai 4 nằm cách vị trí dự án khoảng 7km về hướng đông tuy nhiên trạm đang sử dụng loại trạm tứ giác hiện không thể mở rộng ngăn lộ tại trạm này, chỉ có thể đấu nối vào đường dây mạch kép sử dụng loại dây ACRS500 từ trạm Đồng Nai 4 ra trạm 500kV Đăk Nông. Cách vị trí đập tràn và đập dâng khoảng 3km về phía thị trấn Quảng Khê có 1 mạch đường dây kép 230kV chạy qua, đường dây này nối từ trạm 230kV Đồng Nai 3 đến trạm 500kV Đăk Nông sử dụng dây loại ACRS400, có thể đấu nối từ ngõ ra của dự án vào đường dây này. Như vậy để thực hiện nối lưới hệ thống điện mặt trời nổi trên hồ thủy điện Đồng Nai 4 với hệ thống điện 230kV Quốc gia đạt hiệu quả cao nhất ta chọn phương án đấu nối vào đường dây kép từ trạm 230kV Đồng Nai 3 tới trạm 500kV Đăk Nông Hình 2.11 Vị trí dự kiến đấu nối NMĐMT ĐN4 vào lưới 230kV 2.4. KẾT LUẬN Tải bản FULL (file word 85 trang): bit.ly/2Ywib4t Dự phòng: fb.com/KhoTaiLieuAZ
  • 42. 32 Các điều kiện tại hồ thủy điện Đồng Nai 4 có khá nhiều điểm thuận lợi cho việc thiết kế 1 hệ thống điện mặt trời đặt nổi trên mặt hồ như - Độ chênh mực nước thấp. - Các số liệu khảo sát khí tượng thủy văn tại khu vực phù hợp với điều kiện xây dựng và phát triển điện mặt trời - Giao thông thuận lợi, đã có đường quốc lộ chạy qua và đường vận hành nội bộ của khu vực đập tràn và cửa nhận nước. - Điện sinh hoạt cũng như đường dây 22kV sẵn có thuận lợi cho công tác thi công . - Khu vực ít dân cư sinh sống không phải giải tỏa, đền bù. - An ninh tại khu vực tương đối tốt. - Cách vị trí đặt dự án khoảng 3 km có đường dây mạch kép 230kV nối giữa trạm 230kV Đồng Nai 3 và trạm 500kV Đăk Nông chạy qua có thể kết nối hệ thống với lưới điện 230kV tại vị trí này. Như vậy khu vực hồ thủy điện Đồng Nai 4 rất phù hợp với việc xây dựng một nhà máy điện mặt trời nổi nối lưới với công suất rất lớn. Tải bản FULL (file word 85 trang): bit.ly/2Ywib4t Dự phòng: fb.com/KhoTaiLieuAZ
  • 43. 33 CHƯƠNG 3 TÍNH TOÁN, THIẾT KẾ HỆ THỐNG ĐIỆN MẶT TRỜI NỔI TRÊN HỒ ĐỒNG NAI 4 Để hoàn thành được dự án điện mặt trời nổi nối lưới cần phải thực hiện các hạng mục công việc chính cụ thể như sau: - Tính toán lựa chọn thiết bị cho nhà máy điện mặt trời nổi trên mặt hồ thủy điện Đồng Nai 4 sử dụng công nghệ tấm pin quang điện đặt trên các phao, giá đỡ đồng thời cũng là các máng đi cáp và đường giao thông vận hành, bảo dưỡng. - Tính toán, lựa chọn thiết bị cho các trạm Inverter nối với nhà máy điện mặt trời nổi. - Tính toán, lựa chọn thiết bị cho các trạm biến áp 0.4/22kV đặt ngoài trời để đấu nối từ các trạm Inverter đến đường dây 22kV. - Tính toán lựa chọn thiết bị cho 1 trạm biến áp nâng áp 22/230kV ngoài với 3 ngăn lộ bố trí theo sơ đồ tam giác (có khả năng mở rộng 1 ngăn lộ trong tương lai). - Lựa chọn thiết bị cho 1 đường dây 230kV mạch kép từ trạm 22/230kV của nhà máy điện mặt trời đến đấu nối chuyển tiếp đồng bộ vào đường dây 230kV Đồng Nai 3 – Đăk Nông hiện hữu. - Ngoài ra còn phải thực hiện tính toán lựa chọn thiết bị cho các hệ thống khác như hệ thống điều khiển bảo vệ, đo lường, hệ thống thông tin viễn thông, điều độ vận hành. Hệ thống điện tự dùng, hệ thống nối đất chống sét, hệ thống chiếu sáng… Tuy nhiên, trong phạm vi đề tài này chỉ tập trung vào phần công nghệ mang tính đặc trưng của dự án năng lượng mặt trời nổi như hệ thống phao nổi, Pin, Inverter và 1 số sơ đồ kết nối tổng quan. 3.1. GIỚI THIỆU SƠ LƯỢC VỀ PHẦN MỀM PVSYST [8] Phần mềm PVsyst được ra đời vào năm 1994, do hai tác giả đồng sáng lập là ông André Mermoud và ông Michel Villoz. Các chức năng của phần mềm là nghiên cứu, tính toán, thiết kế hệ thống năng lượng mặt trời, bao gồm hệ thống điện năng lượng mặt trời nối lưới, hệ thống điện năng lượng mặt trời độc lập, hệ thống bơm năng lượng mặt trời và hệ thống điện năng lượng mặt trời lưới DC. Những tính năng của phần mềm PVsyst đối với việc thiết kế hệ thống điện năng lượng mặt trời: + Có thể chọn vị trí lắp đặt hệ thống năng lượng mặt trời ở bất kỳ vị trí nào trên toàn thế giới, với việc thống kê dữ liệu khí tượng từ các nguồn uy tín, để phục vụ cho việc đánh giá trữ lượng năng lượng mặt trời ở khu vực đó.
  • 44. 34 + Chọn hệ thống pin quang điện, hệ thống biến tần, hệ thống dự trữ, hệ thống dây điện, hệ thống máy bơm…với những số liệu cụ thể, đánh giá khả năng của các hệ thống thông qua những vùng đặc tính làm việc tối ưu của nó. + Tính toán các tổn thất trong hệ thống một cách chi tiết. + Đánh giá khả năng đáp ứng của hệ thống năng lượng mặt trời đối với phụ tải. + Tính toán kinh tế của hệ thống năng lượng mặt trời từ đó kết luận có nên thực hiện dự án hay không. 3.2. ĐỊNH VỊ ĐỊA ĐIỂM LẤY SỐ DỮ LIỆU KHÍ TƯỢNG 3.2.1. Nhập số liệu đầu vào Nhập các số liệu đầu vào cần thiết vào mục Meteo database Bảng 3.1 Thông số nhập vào mục Meteo database Thông số Giá trị Ghi chú Tên dự án Dong Nai 4 Tọa độ vị trí điểm dữ liệu 11o 88’ vĩ bắc, 107o 73’ kinh đông Cao trình dự án 475 mét So mực nước biển Múi giờ 7.0 Nguồn dữ liệu khí tượng thủy văn Meteonorm 7.1 Dữ liệu khảo sát từ năm 1991 đến 2010 Hình 3.1 Giao diện nhập số liệu và kết quả của chương trình 3.2.2. Kết quả số liệu của chương trình Sau khi nhập số liệu chương trình sẽ ra được bảng số liệu như Số liệu khí tượng lấy từ phần mềm PVsyst 6431189