SlideShare a Scribd company logo
1 of 19
Download to read offline
MIT OpenCourseWare
http://ocw.mit.edu
8.21 The Physics of Energy
Fall 2009
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Heat capacity
Heat flow
Work from Thermal Energy
8.21 Lecture 4
Heat and Thermal Energy
September 16, 2009
8.21 Lecture 4: Heat and Thermal Energy 1 / 18
Heat and thermal energy
Heat capacity
Heat flow
Work from Thermal Energy
Electric Power Losses
9.6 EJ (45.4%)
Space Heating
4.9 EJ (23%)
Water Heating
1.8 EJ (8.4%)
Air Conditioning
0.7 EJ (3.1%)
Other
4.3 EJ (20.1%)
2001 U.S. Residential Energy Use
Total 21 EJ Heating/cooling:
> 50% of U.S. household energy use
∼ 40% of U.S. total energy use
Thermal energy conversion:
> 97% of U.S. energy direct/converted TE
(exceptions: hydro, solar PV, wind)
Basic energy applications of thermal physics:
• Heat capacity [Heat a teapot]
• Heat flow [Building insulation]
• Thermal energy conversion [Power plants, cars]
8.21 Lecture 4: Heat and Thermal Energy
Heat capacity
Heat flow
Work from Thermal Energy
Last lecture we reviewed mechanical energy: Kinetic/Potential
Many particle system: micro kinetic/potential E Thermal Energy
→
For a closed, isolated system:
Thermal Energy: Total energy from relative motion, excitations of particles
above absolute 0.
Internal Energy: All contributions to energy, including binding, rest mass
energies– Needed for chemical, nuclear Rx
Temperature: Measure of internal/thermal energy (Def. L8)
Heat: Transferred thermal energy (high T low T)
→
3 / 18
8.21 Lecture 4: Heat and Thermal Energy
�
Heat capacity
Heat flow
Work from Thermal Energy
Example: Monatomic ideal gas N molecules
–Ideal gas: pointlike particles, elastic collisions
–Monatomic: no internal excitations [e.g. Argon]
–Thermal equilibrium (“settled down”)
Ei = 2
1
m(v(i)
)2
for molecule i = 1, . . . , N
Total thermal energy: = 1.38 × 10−23
J/K)
(kB
N
U =
�
Ei = N�
2
1
mv2
� = N
2
1
m
�
�vx
2
� + �vy
2
� + �v2
z �
�
≡
2
3
NkBT
i=1
Equipartition of energy: At high T, each DOF has energy 1
2 kBT
4 / 18
8.21 Lecture 4: Heat and Thermal Energy
1. Heat capacity
Heat capacity
Heat flow
Work from Thermal Energy
Thermal energy of a fixed system: U(T)
Example: monatomic ideal gas U = 2
3
NkBT
Heat capacity: (constant volume)
CV =
�
∂U
∂T
�
V
dU = CVdT
Ideal gas: CV = ĉvNkB (monatomic: ĉv = 3/2)
Real gas:
–DOF increase at higher T
–Complicated by interactions,
finite volume effects
ĉV of H2 [Kittel/Kroemer]
8.21 Lecture 4: Heat and Thermal Energy 5 / 18
Heat capacity
Heat flow
Work from Thermal Energy
Specific heat capacity
(J/g K):
·
Examples
substance cp cv
water (liquid, 25◦
C)
air (room temp.)
concrete
wood
4.18
1.01
0.88
0.42
4.14
0.72
—
—
Example: water for a shower, 5 gal./min., 8 minutes, 50◦
F → 104◦
F
Q = cpmΔT
∼
= (4.18 J/g · K)(40 gallons)(3.79 L/gal)(1 kg/L)(30 K) ∼
= 19 MJ
Example: air in a house
10 m
6 m
15 m
900 m3
from 32◦
F → 67◦
F
(1.01 J/g · K)(900 m3
)(1.2 kg/m
3
)(20 K)
∼
= 22 MJ
Notes: only air, neglects heat loss
8.21 Lecture 4: Heat and Thermal Energy 6 / 18
Heat capacity
Heat flow
Work from Thermal Energy
Phase Transitions
H2O latent heat
of melting:
334 J/g
H2O latent heat
of vaporization:
2260 J/g
• Extra E needed to break intermolecular bonds in solid/liquid
• Constant p � enthalpy of transformation
• Water � steam stores lots of E (steam engine/turbines)
Example: evaporate 1 oz. sweat: 28 g × 2260 J/g = 63 kJ
cool by 63 kJ/(4.18 J/gK × 70 kg) = 0.22 K �
= 0.39�
F
8
1
/
7
y
g
r
e
n
E
l
a
m
r
e
h
T
d
n
a
t
a
e
H
:
4
e
r
u
t
c
e
L
1
2
.
8
Photo courtesy of Jon Wiley on Flickr Photo courtesy of totalpodcatastrophe on Flickr Photo courtesy of xtrarant on Flickr
2. Heat flow
Heat capacity
Heat flow
Work from Thermal Energy
Heat is transported in 3 primary ways:
Conduction: Heat transfer between adjacent molecules.
Ex. Metal spoon in cup of hot coffee
Convection: Heat transfer through flow of liquid/gas
Ex. Air rising over hot blacktop parking lot
Radiation: Hot object T4
EM radiation
→
Ex. Solar, earth radiation
Heat transfer: Sometimes bad [Lose heat from house]
Sometimes good [Heating, engines, conversion]
Main focus today: Conduction
8 / 18
8.21 Lecture 4: Heat and Thermal Energy
Heat capacity
Heat flow
Work from Thermal Energy
Heat Conduction
HEAT
⇒ heat flow q
q = heat current density [J/m2
s]
heat flowing per second through ⊥ surface
Fourier law: q = −k�T
–Different for different materials
k: thermal conductivity [W/mK]
•
–Can be temperature dependent
Intuitive: heat from hotter colder
• →
–Depends only on local properties (gradient)
9 / 18
8.21 Lecture 4: Heat and Thermal Energy
Heat capacity
Heat flow
Work from Thermal Energy
Heat conduction from Fourier law q = −k�T
—Analogy with electric conductivity [j = −σ�V]
Example: 1D problem: thin bar, length L, area A → q = qx̂
�
�
L
A
T0 TL
q = qx̂ ⇒
Solve for T(x), q(x) constant in time with fixed boundary conditions
• No change in time ⇒ q constant in x (or T changes locally in time)
⇒ q = −kdT
dx = constant ⇒ T(x) = T0 + (TL − T0) x
L , q = −kTL−T0
L
Rate of heat transfer: “thermal resistance”
�
qA = −k(TL−T0)A
L ⇒ TL − T0 = (qA)( L
Ak ) ∼ V = IR
8.21 Lecture 4: Heat and Thermal Energy 10 / 18
�
��
�
��
Heat capacity
Heat flow
Work from Thermal Energy
Heat conduction: example
Heat xfer through 0.2m concrete
20◦
C
0◦
C
material k [W/mK]
air 0.026
fiberglass insulation 0.043
hard wood 0.16
concrete 1.4
steel 52
q = −k
ΔT
= (1.4 W/mK)(20 K/0.2 m) = 140 W/m
2
L
Heat loss from our building if concrete?
area = 300 m2
+ 150 m2
= 450 m2
10 m
6 m
15 m
⇒ 60 kW ×24 hours ∼
= 1500 kWh
Roughly 5 GJ/day!
Wood: ×0.16
⇒ ∼ 500 MJ/day
1.4
8.21 Lecture 4: Heat and Thermal Energy 11 / 18
Heat capacity
Heat flow
Work from Thermal Energy
Concrete: lose 5 GJ/day. Wood: 500 MJ/day. What if we insulate?
3 cm
wood
3 cm
wood
0.2 m
fiberglass
T4 T3 T2 T1
q = ΔT k
L same for each material
T4 − T1 = (T4 − T3) + (T3 − T2) + (T2 − T1)
= q(
Lw
kw
+
Lf
kf
+
Lw
kw
)
∼
= q(2
0.03 m
0.16 W/mK
+
0.2 m
0.043 W/mK
)
∼
= q(5.1 Km2
/W)
So qA = 900 m2 20K
5.1 Km2/W
∼
= 1900 W ∼
= 160 MJ/day
• Note analogy to serial resistors Rtotal = R1 + R2 + R3
• Heat loss proportional to ΔT
• In construction: use “R-value” R = ΔT/q (L/k for single material)
12 / 18
8.21 Lecture 4: Heat and Thermal Energy
Heat capacity
Heat flow
Work from Thermal Energy
Heat equation: Include time dependence in heat flow
• Begin with Fourier equation q(x, t) = −k�T(x, t)
For simplicity, work in one space dimension, qx(x, t) = −k∂T(x,t)
∂x
qx(x + δx/2)
qx(x − δx/2) =⇒
=⇒ dU
x − δx/2 x x + δx/2
dU = −
∂qx
dxAdt = cpρ(dx)A(dT)
∂x
so in 1D ∂T(x,t)
∂t = − 1
ρcp
∂qx(x,t)
∂x = a∂T(x,t)
∂x2
3D :
∂T(x, t)
∂t
= a�2
T(x, t) = a
�
∂2
T(x, t)
∂x2
+
∂2
T(x, t)
∂y2
+
∂2
T(x, t)
∂z2
�
where a = k/(ρcp) is Fourier coefficient of material.
8.21 Lecture 4: Heat and Thermal Energy 13 / 18
3. Work from Thermal Energy
piston
A
L
mv
-mv
x
x
Heat capacity
Heat flow
Work from Thermal Energy
Pressure: Bouncing molecules force on piston
→
Each impact: ΔPpiston = 2mvx
Time between impacts: 2L/vx
F = pA dP � � vx
� 2
dP F = = (2mvx) = Nm
�vx�
= dt dt 2L L
Pressure : p =
F
=
N
m�v2
x� = ρ�v2
x�
A A L
·
For ideal gas: pV = NkBT (= nRT)
8.21 Lecture 4: Heat and Thermal Energy 14 / 18
Heat capacity
Heat flow
Work from Thermal Energy
Expansion
Now, heat up air in cylinder
piston moves
⇒
dW = Fdx = pAdx = pdV
F = pA
piston
moves
dx p increases
Work done by gas:
So dU = -pdV
First Law of Thermodynamics
heat input dQ dQ = dU + p dV
⇒
Heat engine: Raise T Raise p expand + do work cycle
⇒ → ⇒
Question: how much thermal energy can be used?
15 / 18
8.21 Lecture 4: Heat and Thermal Energy
Heat capacity
Heat flow
Work from Thermal Energy
Work done when piston moves dx:
dW = pindV.
Some is work on outside gas
dWlost = poutdV.
Usable work is dWuseful = (pin − pout)dV.
For ideal gas: p = NkBT/V.
How much useful work can we get from thermal energy?
Fnet = A(pin − pout)
pout
pin
NkB NkB
dW = TindV, dWlost = ToutdV,
V V
efficiency =
dWuseful
=
dW − dWlost
=
Tin − Tout
dWtot dW Tin
Remarkably, this is maximum efficiency possible! [L8].
8.21 Lecture 4: Heat and Thermal Energy 16 / 18
� �
� �
Heat capacity
Heat flow
Work from Thermal Energy
Enthalpy
Recall specific heat at constant volume
Fnet = A(pin − pout)
pout
pin
dU = dQ = CVdT ⇒ CV = ∂
∂
U
T V
At constant p, some energy pdV work
→
dU + pdV = dQ = CpdT
Define Enthalpy: H = U + pV at constant pressure
so dH = d(U + pV)p = dU + pdV = CpdT ⇒ Cp = ∂
∂
H
T p
Ideal gas:
U = ĉvNkBT, ĉv = 1
2 (# DOF)
H = (ĉv + 1)NkBT = ĉpNkBT ⇒ ĉp = ĉv + 1
8.21 Lecture 4: Heat and Thermal Energy 17 / 18
Heat capacity
Heat flow
Work from Thermal Energy
SUMMARY
• Thermal Energy: internal energy above T = 0,
U = 3
2 NkBT for monatomic ideal gas
Internal Energy: all energy in isolated system (w/ bond, rest E)
• Heat capacity CV =
�∂U
∂T
�
V
(constant volume),
Cp =
�∂H
∂T
�
p
(constant pressure, enthalpy H = U + pV)
• Rate of heat flow in material: q(x) = −k�T(x)
• Heat equation: ∂T(x,t)
∂t = a�2
T(x, t)
• Pressure = Force/Unit Area, pV = NkBT ideal gas law
• Not all heat E → useful work, η = TH−TC
TH
will be max.
8.21 Lecture 4: Heat and Thermal Energy 18 / 18

More Related Content

Similar to Energi_termal---MIT8_21s09_lec04.pdf

Probs5,11,17
Probs5,11,17Probs5,11,17
Probs5,11,17Lark Inc.
 
Direct energy conversion v
Direct energy conversion vDirect energy conversion v
Direct energy conversion vSARAN RAJ I
 
Improvement in the efficiency of thermal power plant
Improvement in the efficiency of thermal power plantImprovement in the efficiency of thermal power plant
Improvement in the efficiency of thermal power plantAnshu Agrawal
 
IB Chemistry on Energetics, Enthalpy Change and Thermodynamics
IB Chemistry on Energetics, Enthalpy Change and ThermodynamicsIB Chemistry on Energetics, Enthalpy Change and Thermodynamics
IB Chemistry on Energetics, Enthalpy Change and ThermodynamicsLawrence kok
 
heat diffusion equation.ppt
heat diffusion equation.pptheat diffusion equation.ppt
heat diffusion equation.ppt056JatinGavel
 
heat diffusion equation.ppt
heat diffusion equation.pptheat diffusion equation.ppt
heat diffusion equation.ppt056JatinGavel
 
Ch6 z5e thermo
Ch6 z5e thermoCh6 z5e thermo
Ch6 z5e thermoblachman
 
HdhdPM3125_Lectures_16to17_Evaporation.ppt
HdhdPM3125_Lectures_16to17_Evaporation.pptHdhdPM3125_Lectures_16to17_Evaporation.ppt
HdhdPM3125_Lectures_16to17_Evaporation.pptJENILPATEL919230
 
Diethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy BalanceDiethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy BalancePratik Patel
 
Review on Thermoelectric materials and applications
Review on Thermoelectric materials and applicationsReview on Thermoelectric materials and applications
Review on Thermoelectric materials and applicationsijsrd.com
 
thermal conductivity.ppt
thermal conductivity.pptthermal conductivity.ppt
thermal conductivity.pptBimalR2
 

Similar to Energi_termal---MIT8_21s09_lec04.pdf (20)

Probs5,11,17
Probs5,11,17Probs5,11,17
Probs5,11,17
 
Direct energy conversion v
Direct energy conversion vDirect energy conversion v
Direct energy conversion v
 
Improvement in the efficiency of thermal power plant
Improvement in the efficiency of thermal power plantImprovement in the efficiency of thermal power plant
Improvement in the efficiency of thermal power plant
 
IB Chemistry on Energetics, Enthalpy Change and Thermodynamics
IB Chemistry on Energetics, Enthalpy Change and ThermodynamicsIB Chemistry on Energetics, Enthalpy Change and Thermodynamics
IB Chemistry on Energetics, Enthalpy Change and Thermodynamics
 
Lecture 12 heat transfer.
Lecture 12   heat transfer.Lecture 12   heat transfer.
Lecture 12 heat transfer.
 
Thermal conductivity shushu
Thermal conductivity shushuThermal conductivity shushu
Thermal conductivity shushu
 
Ch19 ssm
Ch19 ssmCh19 ssm
Ch19 ssm
 
Thermochemistry
ThermochemistryThermochemistry
Thermochemistry
 
heat diffusion equation.ppt
heat diffusion equation.pptheat diffusion equation.ppt
heat diffusion equation.ppt
 
heat diffusion equation.ppt
heat diffusion equation.pptheat diffusion equation.ppt
heat diffusion equation.ppt
 
Ch6 z5e thermo
Ch6 z5e thermoCh6 z5e thermo
Ch6 z5e thermo
 
HdhdPM3125_Lectures_16to17_Evaporation.ppt
HdhdPM3125_Lectures_16to17_Evaporation.pptHdhdPM3125_Lectures_16to17_Evaporation.ppt
HdhdPM3125_Lectures_16to17_Evaporation.ppt
 
Informe de laboratorio 2
Informe de laboratorio 2Informe de laboratorio 2
Informe de laboratorio 2
 
Diethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy BalanceDiethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy Balance
 
Review on Thermoelectric materials and applications
Review on Thermoelectric materials and applicationsReview on Thermoelectric materials and applications
Review on Thermoelectric materials and applications
 
(1) Introduction.ppt
(1) Introduction.ppt(1) Introduction.ppt
(1) Introduction.ppt
 
Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237
 
ch6.pptx
ch6.pptxch6.pptx
ch6.pptx
 
thermal conductivity.ppt
thermal conductivity.pptthermal conductivity.ppt
thermal conductivity.ppt
 
04_thermal.ppt
04_thermal.ppt04_thermal.ppt
04_thermal.ppt
 

More from mukhtareffendi2

sintesis-01-ee518top-downandbottom-up1-200715063951.pptx
sintesis-01-ee518top-downandbottom-up1-200715063951.pptxsintesis-01-ee518top-downandbottom-up1-200715063951.pptx
sintesis-01-ee518top-downandbottom-up1-200715063951.pptxmukhtareffendi2
 
Energi-Leketromagnetik---MIT8_21s09_lec05.pdf
Energi-Leketromagnetik---MIT8_21s09_lec05.pdfEnergi-Leketromagnetik---MIT8_21s09_lec05.pdf
Energi-Leketromagnetik---MIT8_21s09_lec05.pdfmukhtareffendi2
 
classi-nanotech-copy-130304011722-phpapp02.pdf
classi-nanotech-copy-130304011722-phpapp02.pdfclassi-nanotech-copy-130304011722-phpapp02.pdf
classi-nanotech-copy-130304011722-phpapp02.pdfmukhtareffendi2
 
cnt-nanomaterials-130227040648-phpapp02.pdf
cnt-nanomaterials-130227040648-phpapp02.pdfcnt-nanomaterials-130227040648-phpapp02.pdf
cnt-nanomaterials-130227040648-phpapp02.pdfmukhtareffendi2
 
syntesis-nanoppt-171031050730.pdf
syntesis-nanoppt-171031050730.pdfsyntesis-nanoppt-171031050730.pdf
syntesis-nanoppt-171031050730.pdfmukhtareffendi2
 
1. Gelombang Elektromagnetik.pptx
1. Gelombang Elektromagnetik.pptx1. Gelombang Elektromagnetik.pptx
1. Gelombang Elektromagnetik.pptxmukhtareffendi2
 
PhotoVoltaic-6027399.ppt
PhotoVoltaic-6027399.pptPhotoVoltaic-6027399.ppt
PhotoVoltaic-6027399.pptmukhtareffendi2
 
osean termal -10213600.ppt
osean termal -10213600.pptosean termal -10213600.ppt
osean termal -10213600.pptmukhtareffendi2
 

More from mukhtareffendi2 (11)

sintesis-01-ee518top-downandbottom-up1-200715063951.pptx
sintesis-01-ee518top-downandbottom-up1-200715063951.pptxsintesis-01-ee518top-downandbottom-up1-200715063951.pptx
sintesis-01-ee518top-downandbottom-up1-200715063951.pptx
 
Energi-Leketromagnetik---MIT8_21s09_lec05.pdf
Energi-Leketromagnetik---MIT8_21s09_lec05.pdfEnergi-Leketromagnetik---MIT8_21s09_lec05.pdf
Energi-Leketromagnetik---MIT8_21s09_lec05.pdf
 
classi-nanotech-copy-130304011722-phpapp02.pdf
classi-nanotech-copy-130304011722-phpapp02.pdfclassi-nanotech-copy-130304011722-phpapp02.pdf
classi-nanotech-copy-130304011722-phpapp02.pdf
 
cnt-nanomaterials-130227040648-phpapp02.pdf
cnt-nanomaterials-130227040648-phpapp02.pdfcnt-nanomaterials-130227040648-phpapp02.pdf
cnt-nanomaterials-130227040648-phpapp02.pdf
 
syntesis-nanoppt-171031050730.pdf
syntesis-nanoppt-171031050730.pdfsyntesis-nanoppt-171031050730.pdf
syntesis-nanoppt-171031050730.pdf
 
1. Gelombang Elektromagnetik.pptx
1. Gelombang Elektromagnetik.pptx1. Gelombang Elektromagnetik.pptx
1. Gelombang Elektromagnetik.pptx
 
982595812.pdf
982595812.pdf982595812.pdf
982595812.pdf
 
PhotoVoltaic-6027399.ppt
PhotoVoltaic-6027399.pptPhotoVoltaic-6027399.ppt
PhotoVoltaic-6027399.ppt
 
Physics 8 - Energy.pptx
Physics 8 - Energy.pptxPhysics 8 - Energy.pptx
Physics 8 - Energy.pptx
 
osean termal -10213600.ppt
osean termal -10213600.pptosean termal -10213600.ppt
osean termal -10213600.ppt
 
5.2_Islamic Empires.ppt
5.2_Islamic Empires.ppt5.2_Islamic Empires.ppt
5.2_Islamic Empires.ppt
 

Recently uploaded

Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxjana861314
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 

Recently uploaded (20)

Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 

Energi_termal---MIT8_21s09_lec04.pdf

  • 1. MIT OpenCourseWare http://ocw.mit.edu 8.21 The Physics of Energy Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
  • 2. Heat capacity Heat flow Work from Thermal Energy 8.21 Lecture 4 Heat and Thermal Energy September 16, 2009 8.21 Lecture 4: Heat and Thermal Energy 1 / 18
  • 3. Heat and thermal energy Heat capacity Heat flow Work from Thermal Energy Electric Power Losses 9.6 EJ (45.4%) Space Heating 4.9 EJ (23%) Water Heating 1.8 EJ (8.4%) Air Conditioning 0.7 EJ (3.1%) Other 4.3 EJ (20.1%) 2001 U.S. Residential Energy Use Total 21 EJ Heating/cooling: > 50% of U.S. household energy use ∼ 40% of U.S. total energy use Thermal energy conversion: > 97% of U.S. energy direct/converted TE (exceptions: hydro, solar PV, wind) Basic energy applications of thermal physics: • Heat capacity [Heat a teapot] • Heat flow [Building insulation] • Thermal energy conversion [Power plants, cars] 8.21 Lecture 4: Heat and Thermal Energy
  • 4. Heat capacity Heat flow Work from Thermal Energy Last lecture we reviewed mechanical energy: Kinetic/Potential Many particle system: micro kinetic/potential E Thermal Energy → For a closed, isolated system: Thermal Energy: Total energy from relative motion, excitations of particles above absolute 0. Internal Energy: All contributions to energy, including binding, rest mass energies– Needed for chemical, nuclear Rx Temperature: Measure of internal/thermal energy (Def. L8) Heat: Transferred thermal energy (high T low T) → 3 / 18 8.21 Lecture 4: Heat and Thermal Energy
  • 5. � Heat capacity Heat flow Work from Thermal Energy Example: Monatomic ideal gas N molecules –Ideal gas: pointlike particles, elastic collisions –Monatomic: no internal excitations [e.g. Argon] –Thermal equilibrium (“settled down”) Ei = 2 1 m(v(i) )2 for molecule i = 1, . . . , N Total thermal energy: = 1.38 × 10−23 J/K) (kB N U = � Ei = N� 2 1 mv2 � = N 2 1 m � �vx 2 � + �vy 2 � + �v2 z � � ≡ 2 3 NkBT i=1 Equipartition of energy: At high T, each DOF has energy 1 2 kBT 4 / 18 8.21 Lecture 4: Heat and Thermal Energy
  • 6. 1. Heat capacity Heat capacity Heat flow Work from Thermal Energy Thermal energy of a fixed system: U(T) Example: monatomic ideal gas U = 2 3 NkBT Heat capacity: (constant volume) CV = � ∂U ∂T � V dU = CVdT Ideal gas: CV = ĉvNkB (monatomic: ĉv = 3/2) Real gas: –DOF increase at higher T –Complicated by interactions, finite volume effects ĉV of H2 [Kittel/Kroemer] 8.21 Lecture 4: Heat and Thermal Energy 5 / 18
  • 7. Heat capacity Heat flow Work from Thermal Energy Specific heat capacity (J/g K): · Examples substance cp cv water (liquid, 25◦ C) air (room temp.) concrete wood 4.18 1.01 0.88 0.42 4.14 0.72 — — Example: water for a shower, 5 gal./min., 8 minutes, 50◦ F → 104◦ F Q = cpmΔT ∼ = (4.18 J/g · K)(40 gallons)(3.79 L/gal)(1 kg/L)(30 K) ∼ = 19 MJ Example: air in a house 10 m 6 m 15 m 900 m3 from 32◦ F → 67◦ F (1.01 J/g · K)(900 m3 )(1.2 kg/m 3 )(20 K) ∼ = 22 MJ Notes: only air, neglects heat loss 8.21 Lecture 4: Heat and Thermal Energy 6 / 18
  • 8. Heat capacity Heat flow Work from Thermal Energy Phase Transitions H2O latent heat of melting: 334 J/g H2O latent heat of vaporization: 2260 J/g • Extra E needed to break intermolecular bonds in solid/liquid • Constant p � enthalpy of transformation • Water � steam stores lots of E (steam engine/turbines) Example: evaporate 1 oz. sweat: 28 g × 2260 J/g = 63 kJ cool by 63 kJ/(4.18 J/gK × 70 kg) = 0.22 K � = 0.39� F 8 1 / 7 y g r e n E l a m r e h T d n a t a e H : 4 e r u t c e L 1 2 . 8 Photo courtesy of Jon Wiley on Flickr Photo courtesy of totalpodcatastrophe on Flickr Photo courtesy of xtrarant on Flickr
  • 9. 2. Heat flow Heat capacity Heat flow Work from Thermal Energy Heat is transported in 3 primary ways: Conduction: Heat transfer between adjacent molecules. Ex. Metal spoon in cup of hot coffee Convection: Heat transfer through flow of liquid/gas Ex. Air rising over hot blacktop parking lot Radiation: Hot object T4 EM radiation → Ex. Solar, earth radiation Heat transfer: Sometimes bad [Lose heat from house] Sometimes good [Heating, engines, conversion] Main focus today: Conduction 8 / 18 8.21 Lecture 4: Heat and Thermal Energy
  • 10. Heat capacity Heat flow Work from Thermal Energy Heat Conduction HEAT ⇒ heat flow q q = heat current density [J/m2 s] heat flowing per second through ⊥ surface Fourier law: q = −k�T –Different for different materials k: thermal conductivity [W/mK] • –Can be temperature dependent Intuitive: heat from hotter colder • → –Depends only on local properties (gradient) 9 / 18 8.21 Lecture 4: Heat and Thermal Energy
  • 11. Heat capacity Heat flow Work from Thermal Energy Heat conduction from Fourier law q = −k�T —Analogy with electric conductivity [j = −σ�V] Example: 1D problem: thin bar, length L, area A → q = qx̂ � � L A T0 TL q = qx̂ ⇒ Solve for T(x), q(x) constant in time with fixed boundary conditions • No change in time ⇒ q constant in x (or T changes locally in time) ⇒ q = −kdT dx = constant ⇒ T(x) = T0 + (TL − T0) x L , q = −kTL−T0 L Rate of heat transfer: “thermal resistance” � qA = −k(TL−T0)A L ⇒ TL − T0 = (qA)( L Ak ) ∼ V = IR 8.21 Lecture 4: Heat and Thermal Energy 10 / 18
  • 12. � �� � �� Heat capacity Heat flow Work from Thermal Energy Heat conduction: example Heat xfer through 0.2m concrete 20◦ C 0◦ C material k [W/mK] air 0.026 fiberglass insulation 0.043 hard wood 0.16 concrete 1.4 steel 52 q = −k ΔT = (1.4 W/mK)(20 K/0.2 m) = 140 W/m 2 L Heat loss from our building if concrete? area = 300 m2 + 150 m2 = 450 m2 10 m 6 m 15 m ⇒ 60 kW ×24 hours ∼ = 1500 kWh Roughly 5 GJ/day! Wood: ×0.16 ⇒ ∼ 500 MJ/day 1.4 8.21 Lecture 4: Heat and Thermal Energy 11 / 18
  • 13. Heat capacity Heat flow Work from Thermal Energy Concrete: lose 5 GJ/day. Wood: 500 MJ/day. What if we insulate? 3 cm wood 3 cm wood 0.2 m fiberglass T4 T3 T2 T1 q = ΔT k L same for each material T4 − T1 = (T4 − T3) + (T3 − T2) + (T2 − T1) = q( Lw kw + Lf kf + Lw kw ) ∼ = q(2 0.03 m 0.16 W/mK + 0.2 m 0.043 W/mK ) ∼ = q(5.1 Km2 /W) So qA = 900 m2 20K 5.1 Km2/W ∼ = 1900 W ∼ = 160 MJ/day • Note analogy to serial resistors Rtotal = R1 + R2 + R3 • Heat loss proportional to ΔT • In construction: use “R-value” R = ΔT/q (L/k for single material) 12 / 18 8.21 Lecture 4: Heat and Thermal Energy
  • 14. Heat capacity Heat flow Work from Thermal Energy Heat equation: Include time dependence in heat flow • Begin with Fourier equation q(x, t) = −k�T(x, t) For simplicity, work in one space dimension, qx(x, t) = −k∂T(x,t) ∂x qx(x + δx/2) qx(x − δx/2) =⇒ =⇒ dU x − δx/2 x x + δx/2 dU = − ∂qx dxAdt = cpρ(dx)A(dT) ∂x so in 1D ∂T(x,t) ∂t = − 1 ρcp ∂qx(x,t) ∂x = a∂T(x,t) ∂x2 3D : ∂T(x, t) ∂t = a�2 T(x, t) = a � ∂2 T(x, t) ∂x2 + ∂2 T(x, t) ∂y2 + ∂2 T(x, t) ∂z2 � where a = k/(ρcp) is Fourier coefficient of material. 8.21 Lecture 4: Heat and Thermal Energy 13 / 18
  • 15. 3. Work from Thermal Energy piston A L mv -mv x x Heat capacity Heat flow Work from Thermal Energy Pressure: Bouncing molecules force on piston → Each impact: ΔPpiston = 2mvx Time between impacts: 2L/vx F = pA dP � � vx � 2 dP F = = (2mvx) = Nm �vx� = dt dt 2L L Pressure : p = F = N m�v2 x� = ρ�v2 x� A A L · For ideal gas: pV = NkBT (= nRT) 8.21 Lecture 4: Heat and Thermal Energy 14 / 18
  • 16. Heat capacity Heat flow Work from Thermal Energy Expansion Now, heat up air in cylinder piston moves ⇒ dW = Fdx = pAdx = pdV F = pA piston moves dx p increases Work done by gas: So dU = -pdV First Law of Thermodynamics heat input dQ dQ = dU + p dV ⇒ Heat engine: Raise T Raise p expand + do work cycle ⇒ → ⇒ Question: how much thermal energy can be used? 15 / 18 8.21 Lecture 4: Heat and Thermal Energy
  • 17. Heat capacity Heat flow Work from Thermal Energy Work done when piston moves dx: dW = pindV. Some is work on outside gas dWlost = poutdV. Usable work is dWuseful = (pin − pout)dV. For ideal gas: p = NkBT/V. How much useful work can we get from thermal energy? Fnet = A(pin − pout) pout pin NkB NkB dW = TindV, dWlost = ToutdV, V V efficiency = dWuseful = dW − dWlost = Tin − Tout dWtot dW Tin Remarkably, this is maximum efficiency possible! [L8]. 8.21 Lecture 4: Heat and Thermal Energy 16 / 18
  • 18. � � � � Heat capacity Heat flow Work from Thermal Energy Enthalpy Recall specific heat at constant volume Fnet = A(pin − pout) pout pin dU = dQ = CVdT ⇒ CV = ∂ ∂ U T V At constant p, some energy pdV work → dU + pdV = dQ = CpdT Define Enthalpy: H = U + pV at constant pressure so dH = d(U + pV)p = dU + pdV = CpdT ⇒ Cp = ∂ ∂ H T p Ideal gas: U = ĉvNkBT, ĉv = 1 2 (# DOF) H = (ĉv + 1)NkBT = ĉpNkBT ⇒ ĉp = ĉv + 1 8.21 Lecture 4: Heat and Thermal Energy 17 / 18
  • 19. Heat capacity Heat flow Work from Thermal Energy SUMMARY • Thermal Energy: internal energy above T = 0, U = 3 2 NkBT for monatomic ideal gas Internal Energy: all energy in isolated system (w/ bond, rest E) • Heat capacity CV = �∂U ∂T � V (constant volume), Cp = �∂H ∂T � p (constant pressure, enthalpy H = U + pV) • Rate of heat flow in material: q(x) = −k�T(x) • Heat equation: ∂T(x,t) ∂t = a�2 T(x, t) • Pressure = Force/Unit Area, pV = NkBT ideal gas law • Not all heat E → useful work, η = TH−TC TH will be max. 8.21 Lecture 4: Heat and Thermal Energy 18 / 18