SlideShare a Scribd company logo
1 of 60
Download to read offline
ENZO EXPOSYTO
MATHS
SYMBOLS
OTHER OPERATIONS - 2

Enzo Exposyto 1
n!
OTHER
OPERATIONS - 2
10
∑
k=1
k
3
∏
i=1
i
(
n
k)
4
2
3
3
3
Enzo Exposyto 2


Enzo Exposyto 3
1 - Summation 5
2 - Pi (Product) 13
3 - Factorial 21
4 - Binomial Coefficient 38
5 - Tetration 50
6 - Pentation 54
7 - SitoGraphy 59
Enzo Exposyto 4
SUMMATION
Enzo Exposyto 5
Summation - The Symbol


Enzo Exposyto 6
5 = the upper limit
of summation
this “i” represents
each addend
Σ = the Greek
letter sigma
i = the index
of summation
1 = the lower limit
of summation
Summation
∑ say: sigma
It represents summation
For example:
The expression means:
sum the values of i, starting at i = 1 and ending with i = 5.
This expression
has the same meaning.

Enzo Exposyto 7
Summation
∑ This expression
means:
sum the values of k,
starting at k = 5 and ending with k = 8.
This expression
has the same meaning. 

Enzo Exposyto 8
Summation
∑ This expression
means:
sum the values of 2.k,
starting at k = 1 and ending with k = 3.
This expression
has the same meaning

Enzo Exposyto 9
Summation
∑ This expression (that is equivalent to 3 x 5)
means:
sum the value 5,
starting at 1 and ending with 3.
The expression (that is equivalent to 4.y)
has a similar meaning.

Enzo Exposyto 10
Summation
Data:
i xi
1 -1
2 2
3 1
4 3
Enzo Exposyto 11
Summation
Data:
i xi
1 -1
2 2
3 1
4 3
Enzo Exposyto 12
Pi
(PRODUCT)
Enzo Exposyto 13
Pi (Product) - The Symbol


Enzo Exposyto 14
4 = the upper limit
of product
1 = the lower limit
of product
i = the index
of product
Π = the Greek
letter pi
this “i” represents
each factor
Pi (Product)
∏ say: pi
It represents product
For example:
The expression means:
multiply the values of i, starting at i = 1 and ending with i = 4.
This expression, which is equivalent to 4! (see page 22),
has the same meaning.

Enzo Exposyto 15
Pi (Product)
∏ This expression
means:
multiply the values of i, starting at i = 2 and ending with i = 5.
This expression
has the same meaning.

Enzo Exposyto 16
Pi (Product)
∏ This expression
means:
multiply the values of 2.i,
starting at i = 1 and ending with i = 3.
This expression
has the same meaning
Enzo Exposyto 17
Pi (Product)
∏ This expression (that is equivalent to 53)
means:
multiply the value 5,
starting at 1 and ending with 3.
The expression (which is equivalent to z5)
has a similar meaning.
Enzo Exposyto 18
Pi (Product)
Data:
i xi
1 -1
2 2
3 1
4 3
Enzo Exposyto 19
Pi (Product)
Data:
i xi
1 -1
2 2
3 1
4 3
Enzo Exposyto 20
FACTORIAL

Enzo Exposyto 21
Factorial - 1
! factorial
For example:
2! = 2x1 = 2
3! = 3x2x1 = 6
4! = 4x3x2x1 = 24
5! = 5x4x3x2x1 = 120
Of course:
4! = 4x3x2x1 = 1x2x3x4
6! Say: 6 factorial
6 shriek
6 bang
6 crit
Enzo Exposyto 22
Factorial - 2
! If we define:
0! = 1
then,
with n integer ≥ 0,
we get:
(n+1)! = (n+1) x n!
or
n! = n x (n-1)!
For example:
5! = 5x4! = 5x4x3x2x1 = 120
4! = 4x3! = 4x3x2x1 = 24
3! = 3x2! = 3x2x1 = 6
2! = 2x1! = 2x1 = 2
1! = 1x0! = 1x1 = 1

Enzo Exposyto 23
Factorial - 3
! If there are n distinct elements into a set,
the factorial n! gives the number of ways in which
the n elements can be permuted:
the permutations of those elements.
For example:
Let A = {a, b, c}
Since A has 3 elements,
there are 3! = 6 possible permutations
of the elements of A:
{a, b, c}, {a, c, b}, (1st element: a)
{b, a, c}, {b, c, a}, (1st element: b)
{c, a, b}, {c, b, a} (1st element: c)

Enzo Exposyto 24
Factorial - 4
! A remarkable example:
Let A = {}
Since A has 0 elements,
there is 0! = 1 possible permutation
of the 0 elements of A:
{}
This is the consequence
of the definition 0! = 1
and of the convention for which
the product of no numbers is 1:
there is only one permutation
if the number of elements is zero.
Enzo Exposyto 25
Factorial - 5
! Addition:
a) n = k
n! + n! = 2 x n!
5! + 5! = 2 x 5!
0! + 0! = 2 x 0!
b) n > k
n! + k! = [nx(n-1)x(n-2)x … x1] + [kx(k-1)x(k-2)x … x1]
= [nx(n-1)x … x(k+1)]x(k!) + (k!)
= {[nx(n-1)x … x(k+1)]+1}x(k!)
5! + 3! = (5x4x3x2x1) + (3x2x1) = 5x4x(3x2x1) + (3x2x1)
= 5x4x(3!) + (3!) = [(5x4)+1] x 3!
Enzo Exposyto 26
Factorial - 6
! Subtraction:
a) n = k
n! - n! = 0
5! - 5! = 0
0! - 0! = 0
b) n > k
n! - k! = [nx(n-1)x(n-2)x … x1] - [kx(k-1)x(k-2)x … x1]
= [nx(n-1)x … x(k+1)]x(k!) - (k!)
= {[nx(n-1)x … x(k+1)]-1}x(k!)
5! - 3! = (5x4x3x2x1) - (3x2x1) = 5x4x(3x2x1) - (3x2x1)
= 5x4x(3!) - (3!) = [(5x4)-1] x 3!

Enzo Exposyto 27
Factorial - 7
! Multiplication:
a) n = k
n! * n! = (n!)2
5! * 5! = (5!)2
0! * 0! = (0!)2 = (1)2
b) n > k
n! * k! = [nx(n-1)x(n-2)x … x1] * [kx(k-1)x(k-2)x … x1]
= [nx(n-1)x … x(k+1)]x(k!) * (k!)
= [nx(n-1)x … x(k+1)]x(k!)2
5! * 3! = (5x4x3x2x1) * (3x2x1) = 5x4x(3x2x1) * (3x2x1)
= 5x4x(3!) * (3!) = (5x4) x (3!)2
Enzo Exposyto 28
Factorial - 8
! Division:
a) n = k
n! = 1
n!
5! = 1
5!
0! = 1
0!
Enzo Exposyto 29
Factorial - 9
! Division:
b1) n > k
n! = [nx(n-1)x(n-2)x … x1]
k! [kx(k-1)x(k-2)x … x1]
= [nx(n-1)x … x(k+1)]x(k!)
(k!)
= [nx(n-1)x … x(k+1)]
5! = 5x4x3x2x1 = 5x4x(3x2x1) = 5 x 4 x 3! = 5 x 4
3! 3x2x1 (3x2x1) 3!
Enzo Exposyto 30
Factorial - 10
! Division:
b2) n > k
k! = [kx(k-1)x(k-2)x … x1]
n! [nx(n-1)x(n-2)x … x1]
= k!
[nx(n-1)x … x(k+1)]x(k!)
= 1
[nx(n-1)x … x(k+1)]
= [nx(n-1)x … x(k+1)]-1
3! = 3x2x1 = (3x2x1) = 3! = 1 = [5x4]-1
5! 5x4x3x2x1 5x4x(3x2x1) 5x4x3! 5x4
Enzo Exposyto 31
Factorial - 11
! Power:
(n!)2 = n! x n!
= [nx(n-1)x(n-2)x … x1] x [nx(n-1)x(n-2)x … x1]
= (nxn)x(n-1)x(n-1)x(n-2)x(n-2)x … x1x1
= n2x(n-1)2x(n-2)2x … x12
(n!)k = n! x n! x … x n! (k times n!)
= …
= nkx(n-1)kx(n-2)kx … x1k
3!2 = 3! x 3! = (3x2x1) x (3x2x1) = (3x3)(2x2)(1x1) = 32 x 22 x12
Enzo Exposyto 32
Factorial - 12
nk k-possibilities of combinations
Let A = {a, b, c}
We want count 

the subsets of 2 elements

which we can extract

from the set with 3 elements.

In other words, we want count

the 2-possibilities of combinations

(possible combinations with 2 elements)

which we can extract

from the set with 3 elements.

Enzo Exposyto 33
Factorial - 13

nk k-possibilities of combinations
The 6 possible subsets of 2 elements are:
{a, b}, {a, c}, (1st element: a)

{b, a}, {b, c}, (1st element: b)
{c, a}, {c, b} (1st element: c)
The 6 possible subsets of 2 elements
are named 2-possibilities of combinations.
The symbol of k-possibilities of combinationsis nk
and, in this example, nk = 32
The formula of nk, where n ≥ k > 0, with n = 3 and k = 2, is:
= 32 = 3(3-2+1) = 6nk
= n(n − 1)(n − 2)⋯(n − k + 1)
Enzo Exposyto 34
Factorial - 14

nk from k-possibilities of combinations to k-combinations
Note that some subsets
have the same elements:
{a, b} and {b, a}
{a, c} and {c, a}
{b, c} and {c, b}
and, then, any subset with its “mate”
represent an identical subset:
the not identical subsets are 3.
Therefore,
the possibilities of combinations of 2 elements are 6
the combinations of 2 elements are 3.

Enzo Exposyto 35
Factorial - 15

nk from k-possibilities of combinations to k-combinations
How can we calculate, by a formula,
the number of combinations of 2 elements?
If we note that any subset of 2 elements
has 2 possible permutations,
as the subset {a, b} and its “mate” {b, a},
and that the number of permutations,
for any subset of 2 elements, is given by k! = 2! (page 15),
we must divide the possibilities of combinations (nk = 6)
by the permutations (k! = 2) of a subset of 2 elements.
The result is 3,
that is the number of combinations of 2 elements.

Enzo Exposyto 36
Factorial - 16

nk from k-possibilities of combinations to k-combinations
What is the meaning of the number
of combinations of 2 elements?
It's the number of not identical subsets of 2 elements
which we can extract from the set of 3 elements.
In other words, from the set
A = {a, b, c}
we get 3 subsets:
{a, b}, {a, c}, {b, c}
Also, the 3 subsets are 3 combinations of 2 elements.
The number 3 is given by the formula, with n ≥ k > 0:
= = 3(3-2+1) = 6 = 3
k! k(k-1)(k-2)…(1) (2)(1) 2

nk
n(n − 1)(n − 2)⋯(n − k + 1)
Enzo Exposyto 37
BINOMIAL
COEFFICIENT

Enzo Exposyto 38
BINOMIAL COEFFICIENT - 1
binomial coefficient - 1st formula
It's given by the formula (see page 37)

= 

where n ≥ k > 0.
Note that, if k = 0, we can't calculate the numerator:

the last factor (n-k+1) becomes n+1 which is greater than n.

The binomial coefficient represents 

the number of distinct combinations with k elements

(or the number of not identical subsets with k elements)

which we can extract 

from a set with n elements.

(
n
k)
(
n
k)
nk
k!
=
n(n − 1)(n − 2)⋯(n − k + 1)
k(k − 1)(k − 2)⋯(1)
Enzo Exposyto 39
BINOMIAL COEFFICIENT - 2
binomial coefficient - 1st formula - 1st example
= 



= 10
(
n
k)
(
n
k)
nk
k!
=
n(n − 1)(n − 2)⋯(n − k + 1)
k(k − 1)(k − 2)⋯(1)
(
5
3)
=
5(4)(5 − 3 + 1)
3!
=
5(4)(3)
6
=
60
6
Enzo Exposyto 40
BINOMIAL COEFFICIENT - 3
binomial coefficient - 1st formula - 2nd example
= 



= 35
(
n
k)
(
n
k)
nk
k!
=
n(n − 1)(n − 2)⋯(n − k + 1)
k(k − 1)(k − 2)⋯(1)
(
7
3)
=
7(6)(7 − 3 + 1)
3!
=
7(6)(5)
6
=
210
6
Enzo Exposyto 41
BINOMIAL COEFFICIENT - 4
binomial coefficient - 2nd formula
Because



then
(
n
k)
[nk
] ⋅ [(n − k)!] = [n(n − 1)⋯(n − k + 1)] ⋅ [(n − k)⋯(1)]
= n!
nk
⋅ (n − k)! = n!
Enzo Exposyto 42
BINOMIAL COEFFICIENT - 5
binomial coefficient - 2nd formula
Now, if we multiply numerator and denominator of
by (see previous page), we get:
and, then
with n ≥ k ≥ 0

(
n
k)
nk
k!
(n − k)!
nk
k!
=
nk
⋅ (n − k)!
k!(n − k)!
=
n!
k!(n − k)!
(
n
k)
=
n!
k!(n − k)!
Enzo Exposyto 43
BINOMIAL COEFFICIENT - 6
binomial coefficient - 2nd formula - 1st example
= 10

(
n
k)
(
n
k)
=
n!
k!(n − k)!
(
5
3)
=
5!
3!(5 − 3)!
=
5!
3!(2)!
=
120
6 ⋅ (2)
=
120
12
Enzo Exposyto 44
BINOMIAL COEFFICIENT - 7
binomial coefficient - 2nd formula - 2nd example
= 35

(
n
k)
(
n
k)
=
n!
k!(n − k)!
(
7
3)
=
7!
3!(7 − 3)!
=
7!
3!(4)!
=
5040
6 ⋅ (24)
=
5040
144
Enzo Exposyto 45
BINOMIAL COEFFICIENT - 8
binomial coefficient - 2nd formula - 3rd example
The binomial coefficient occurs in the binomial formula
where n ≥ k. This explains its name.
In this formula, we use the binomial coefficient given by
where n ≥ k ≥ 0
(
n
k)
(x + y)n
=
n
∑
k=0
(
n
k)
xn−k
yk
(
n
k)
=
n!
k!(n − k)!
Enzo Exposyto 46
BINOMIAL COEFFICIENT - 9
binomial coefficient - 2nd formula - 3rd example
For example (x ≠ 0 and y ≠ 0):
= + +
= 2! + 2! + 2!
0!2! 1!1! 2!0!

= 2 + 2 + 2 [ = 1 and = 1]
2 1 2

= + 2 + 

(
n
k)
(x + y)2
=
2
∑
k=0
(
2
k)
x2−k
yk
(
2
0)
x2−0
y0
(
2
1)
x2−1
y1
(
2
2)
x2−2
y2
x2
y0
x1
y1
x0
y2
x2
y0
x1
y1
x0
y2
y0
x0
x2
xy y2
Enzo Exposyto 47
BINOMIAL COEFFICIENT - 10
binomial coefficient - 3rd formula - 1st example










(
n
k)
(
n
k)
=
nk
k!
=
k
∏
i=1
n + 1 − i
i
(
5
3)
=
3
∏
i=1
5 + 1 − i
i
=
5 + 1 − 1
1
⋅
5 + 1 − 2
2
⋅
5 + 1 − 3
3
=
5
1
⋅
4
2
⋅
3
3
= 5 ⋅ 2 ⋅ 1 = 10
Enzo Exposyto 48
BINOMIAL COEFFICIENT - 11
binomial coefficient - 3rd formula - 2nd example










(
n
k)
(
n
k)
=
nk
k!
=
k
∏
i=1
n + 1 − i
i
(
7
3)
=
3
∏
i=1
7 + 1 − i
i
=
7 + 1 − 1
1
⋅
7 + 1 − 2
2
⋅
7 + 1 − 3
3
=
7
1
⋅
6
2
⋅
5
3
= 7 ⋅ 3 ⋅
5
3
= 35
Enzo Exposyto 49
TETRATION
Enzo Exposyto 50
TETRATION
example of tetration - Rucker notation
It means:
Exponentiation tower is builded by 4 same elements (base 2): on the base of tetration
there are 1 exponent and, above, 2 exponents of exponent. It must be evaluated from
top to bottom (or right to left) and it isn't equal to



4
2
4
2 = 2222
= 2[
2(22
)
]
= 2(24
) = 216
= 65,536
4
2
4
2 ≠ [(22
)
2
]
2
= 2(2⋅2⋅2)
= 28
= 256
Enzo Exposyto 51
TETRATION
example of tetration
It means:
Exponentiation tower is builded by 3 same elements (base 3): on the base of tetration
there are 1 exponent and, above, 1 exponent of exponent. It must be evaluated from top
to bottom (or right to left) and it isn't equal to
3
3
3
3 = 333
= 3(33
) = 327
3
3
3
3 ≠ (33
)
3
= 3(3⋅3)
= 39
Enzo Exposyto 52
TETRATION
tetration
It means:
Exponentiation tower is builded by n same elements (base b): 

on the base of tetration there are 1 exponent 

and, above, (n-2) exponents of exponent. 

It must be evaluated from top to bottom (or right to left).

n
b
n
b = bb⋅⋅⋅b
⏟
n
n
b
Enzo Exposyto 53
PENTATION

Enzo Exposyto 54
Pentation
is the operation of repeated tetration,
just as
Tetration
is the operation of repeated exponentiation.
Enzo Exposyto 55
PENTATION
example of pentation
It means:
a power tower of height 4 2-elements
It is because the exponents in parentheses,
on the left side, mean:


2
2
2
2
2
2 = (
2
2)2 = 4
2 = 2222
⏟
4
= 224
= 216
= 65,536
2
2 = 22
= 4
Enzo Exposyto 56
PENTATION
example of pentation
It means:
a power tower of height 7,625,597,484,987 3-elements
This is because the exponents in parentheses,
on the left side, mean:
3
3
3
3
3
3 = (
3
3)3 = 7,625,597,484,987
3 = 333⋅⋅⋅3
⏟
7,625,597,484,987
3
3 = 333
= 3(33
) = 327
Enzo Exposyto 57
PENTATION
example of pentation
It means:
a power tower of height b-elements

b
b
b
b
b
b = (
b
b)b = bb⋅⋅⋅b
⏟
b
b
b
b
Enzo Exposyto 58
SitoGraphy
Enzo Exposyto 59
https://mathmaine.wordpress.com/2010/04/01/sigma-and-pi-notation/
http://www.columbia.edu/itc/sipa/math/summation.html
http://en.m.wikipedia.org/wiki/Tetration
http://mathworld.wolfram.com/PowerTower.html
http://en.m.wikipedia.org/wiki/Pentation
Enzo Exposyto 60

More Related Content

Similar to MATHS SYMBOLS - OTHER OPERATIONS (2)

Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arraysKeigo Nitadori
 
101 math short cuts [www.onlinebcs.com]
101 math short cuts [www.onlinebcs.com]101 math short cuts [www.onlinebcs.com]
101 math short cuts [www.onlinebcs.com]Itmona
 
Introduction to Recursion (Python)
Introduction to Recursion (Python)Introduction to Recursion (Python)
Introduction to Recursion (Python)Thai Pangsakulyanont
 
101-maths short cut tips and tricks for apptitude
101-maths short cut tips and tricks for apptitude101-maths short cut tips and tricks for apptitude
101-maths short cut tips and tricks for apptitudePODILAPRAVALLIKA0576
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theoremitutor
 
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfFranciscoJavierCaedo
 
Analysis Of Algorithms Ii
Analysis Of Algorithms IiAnalysis Of Algorithms Ii
Analysis Of Algorithms IiSri Prasanna
 
Module 2 exponential functions
Module 2   exponential functionsModule 2   exponential functions
Module 2 exponential functionsdionesioable
 
Construction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic ResiduesConstruction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic Residuesiosrjce
 
Produccion escrita expresiones algebraicas
Produccion escrita   expresiones algebraicasProduccion escrita   expresiones algebraicas
Produccion escrita expresiones algebraicasJuinAndresDiaz
 

Similar to MATHS SYMBOLS - OTHER OPERATIONS (2) (20)

Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arrays
 
MATHS SYMBOLS - OTHER OPERATIONS (1)
MATHS SYMBOLS - OTHER OPERATIONS (1)MATHS SYMBOLS - OTHER OPERATIONS (1)
MATHS SYMBOLS - OTHER OPERATIONS (1)
 
MATHS SYMBOLS - EXPONENTIALS + LOGARITHMS and THEIR PROPERTIES
MATHS SYMBOLS - EXPONENTIALS + LOGARITHMS and THEIR PROPERTIESMATHS SYMBOLS - EXPONENTIALS + LOGARITHMS and THEIR PROPERTIES
MATHS SYMBOLS - EXPONENTIALS + LOGARITHMS and THEIR PROPERTIES
 
MATHS SYMBOLS - PROPERTIES of EXPONENTS
MATHS SYMBOLS - PROPERTIES of EXPONENTSMATHS SYMBOLS - PROPERTIES of EXPONENTS
MATHS SYMBOLS - PROPERTIES of EXPONENTS
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
MATHS SYMBOLS - PROPORTIONS and FIRST EQUATIONS
MATHS SYMBOLS - PROPORTIONS and FIRST EQUATIONSMATHS SYMBOLS - PROPORTIONS and FIRST EQUATIONS
MATHS SYMBOLS - PROPORTIONS and FIRST EQUATIONS
 
Quant Fomulae
Quant FomulaeQuant Fomulae
Quant Fomulae
 
101 math short cuts [www.onlinebcs.com]
101 math short cuts [www.onlinebcs.com]101 math short cuts [www.onlinebcs.com]
101 math short cuts [www.onlinebcs.com]
 
Introduction to Recursion (Python)
Introduction to Recursion (Python)Introduction to Recursion (Python)
Introduction to Recursion (Python)
 
Appt and reasoning
Appt and reasoningAppt and reasoning
Appt and reasoning
 
101-maths short cut tips and tricks for apptitude
101-maths short cut tips and tricks for apptitude101-maths short cut tips and tricks for apptitude
101-maths short cut tips and tricks for apptitude
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
 
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
 
Analysis Of Algorithms Ii
Analysis Of Algorithms IiAnalysis Of Algorithms Ii
Analysis Of Algorithms Ii
 
Module 2 exponential functions
Module 2   exponential functionsModule 2   exponential functions
Module 2 exponential functions
 
A05330107
A05330107A05330107
A05330107
 
Binomial theorem
Binomial theorem Binomial theorem
Binomial theorem
 
Construction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic ResiduesConstruction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic Residues
 
Produccion escrita expresiones algebraicas
Produccion escrita   expresiones algebraicasProduccion escrita   expresiones algebraicas
Produccion escrita expresiones algebraicas
 

More from Ist. Superiore Marini-Gioia - Enzo Exposyto

Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...Ist. Superiore Marini-Gioia - Enzo Exposyto
 
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...Ist. Superiore Marini-Gioia - Enzo Exposyto
 
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...Ist. Superiore Marini-Gioia - Enzo Exposyto
 
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...Ist. Superiore Marini-Gioia - Enzo Exposyto
 
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...Ist. Superiore Marini-Gioia - Enzo Exposyto
 
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...Ist. Superiore Marini-Gioia - Enzo Exposyto
 

More from Ist. Superiore Marini-Gioia - Enzo Exposyto (20)

Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...
 
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
 
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...
 
Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti E...
Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti  E...Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti  E...
Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti E...
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
 
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
 
ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 2 MET...
ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - 2 MET...ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - 2 MET...
ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 2 MET...
 
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO  - METODO ...ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO  - METODO ...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ...
 
EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ANALITICO - ...
EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO  - METODO ANALITICO - ...EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO  - METODO ANALITICO - ...
EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ANALITICO - ...
 
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - METODO...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - METODO...ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - METODO...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - METODO...
 
EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 3 METODI ANALITICI...
EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - 3 METODI ANALITICI...EQUAZIONI e DISEQUAZIONI ESPONENZIALI  - METODO GRAFICO  - 3 METODI ANALITICI...
EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 3 METODI ANALITICI...
 
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...
 
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...
 
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...
 
ESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSO
ESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSOESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSO
ESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSO
 

Recently uploaded

The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 

Recently uploaded (20)

The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 

MATHS SYMBOLS - OTHER OPERATIONS (2)

  • 4. 1 - Summation 5 2 - Pi (Product) 13 3 - Factorial 21 4 - Binomial Coefficient 38 5 - Tetration 50 6 - Pentation 54 7 - SitoGraphy 59 Enzo Exposyto 4
  • 6. Summation - The Symbol 
 Enzo Exposyto 6 5 = the upper limit of summation this “i” represents each addend Σ = the Greek letter sigma i = the index of summation 1 = the lower limit of summation
  • 7. Summation ∑ say: sigma It represents summation For example: The expression means: sum the values of i, starting at i = 1 and ending with i = 5. This expression has the same meaning.
 Enzo Exposyto 7
  • 8. Summation ∑ This expression means: sum the values of k, starting at k = 5 and ending with k = 8. This expression has the same meaning. 
 Enzo Exposyto 8
  • 9. Summation ∑ This expression means: sum the values of 2.k, starting at k = 1 and ending with k = 3. This expression has the same meaning
 Enzo Exposyto 9
  • 10. Summation ∑ This expression (that is equivalent to 3 x 5) means: sum the value 5, starting at 1 and ending with 3. The expression (that is equivalent to 4.y) has a similar meaning.
 Enzo Exposyto 10
  • 11. Summation Data: i xi 1 -1 2 2 3 1 4 3 Enzo Exposyto 11
  • 12. Summation Data: i xi 1 -1 2 2 3 1 4 3 Enzo Exposyto 12
  • 14. Pi (Product) - The Symbol 
 Enzo Exposyto 14 4 = the upper limit of product 1 = the lower limit of product i = the index of product Π = the Greek letter pi this “i” represents each factor
  • 15. Pi (Product) ∏ say: pi It represents product For example: The expression means: multiply the values of i, starting at i = 1 and ending with i = 4. This expression, which is equivalent to 4! (see page 22), has the same meaning.
 Enzo Exposyto 15
  • 16. Pi (Product) ∏ This expression means: multiply the values of i, starting at i = 2 and ending with i = 5. This expression has the same meaning.
 Enzo Exposyto 16
  • 17. Pi (Product) ∏ This expression means: multiply the values of 2.i, starting at i = 1 and ending with i = 3. This expression has the same meaning Enzo Exposyto 17
  • 18. Pi (Product) ∏ This expression (that is equivalent to 53) means: multiply the value 5, starting at 1 and ending with 3. The expression (which is equivalent to z5) has a similar meaning. Enzo Exposyto 18
  • 19. Pi (Product) Data: i xi 1 -1 2 2 3 1 4 3 Enzo Exposyto 19
  • 20. Pi (Product) Data: i xi 1 -1 2 2 3 1 4 3 Enzo Exposyto 20
  • 22. Factorial - 1 ! factorial For example: 2! = 2x1 = 2 3! = 3x2x1 = 6 4! = 4x3x2x1 = 24 5! = 5x4x3x2x1 = 120 Of course: 4! = 4x3x2x1 = 1x2x3x4 6! Say: 6 factorial 6 shriek 6 bang 6 crit Enzo Exposyto 22
  • 23. Factorial - 2 ! If we define: 0! = 1 then, with n integer ≥ 0, we get: (n+1)! = (n+1) x n! or n! = n x (n-1)! For example: 5! = 5x4! = 5x4x3x2x1 = 120 4! = 4x3! = 4x3x2x1 = 24 3! = 3x2! = 3x2x1 = 6 2! = 2x1! = 2x1 = 2 1! = 1x0! = 1x1 = 1
 Enzo Exposyto 23
  • 24. Factorial - 3 ! If there are n distinct elements into a set, the factorial n! gives the number of ways in which the n elements can be permuted: the permutations of those elements. For example: Let A = {a, b, c} Since A has 3 elements, there are 3! = 6 possible permutations of the elements of A: {a, b, c}, {a, c, b}, (1st element: a) {b, a, c}, {b, c, a}, (1st element: b) {c, a, b}, {c, b, a} (1st element: c)
 Enzo Exposyto 24
  • 25. Factorial - 4 ! A remarkable example: Let A = {} Since A has 0 elements, there is 0! = 1 possible permutation of the 0 elements of A: {} This is the consequence of the definition 0! = 1 and of the convention for which the product of no numbers is 1: there is only one permutation if the number of elements is zero. Enzo Exposyto 25
  • 26. Factorial - 5 ! Addition: a) n = k n! + n! = 2 x n! 5! + 5! = 2 x 5! 0! + 0! = 2 x 0! b) n > k n! + k! = [nx(n-1)x(n-2)x … x1] + [kx(k-1)x(k-2)x … x1] = [nx(n-1)x … x(k+1)]x(k!) + (k!) = {[nx(n-1)x … x(k+1)]+1}x(k!) 5! + 3! = (5x4x3x2x1) + (3x2x1) = 5x4x(3x2x1) + (3x2x1) = 5x4x(3!) + (3!) = [(5x4)+1] x 3! Enzo Exposyto 26
  • 27. Factorial - 6 ! Subtraction: a) n = k n! - n! = 0 5! - 5! = 0 0! - 0! = 0 b) n > k n! - k! = [nx(n-1)x(n-2)x … x1] - [kx(k-1)x(k-2)x … x1] = [nx(n-1)x … x(k+1)]x(k!) - (k!) = {[nx(n-1)x … x(k+1)]-1}x(k!) 5! - 3! = (5x4x3x2x1) - (3x2x1) = 5x4x(3x2x1) - (3x2x1) = 5x4x(3!) - (3!) = [(5x4)-1] x 3!
 Enzo Exposyto 27
  • 28. Factorial - 7 ! Multiplication: a) n = k n! * n! = (n!)2 5! * 5! = (5!)2 0! * 0! = (0!)2 = (1)2 b) n > k n! * k! = [nx(n-1)x(n-2)x … x1] * [kx(k-1)x(k-2)x … x1] = [nx(n-1)x … x(k+1)]x(k!) * (k!) = [nx(n-1)x … x(k+1)]x(k!)2 5! * 3! = (5x4x3x2x1) * (3x2x1) = 5x4x(3x2x1) * (3x2x1) = 5x4x(3!) * (3!) = (5x4) x (3!)2 Enzo Exposyto 28
  • 29. Factorial - 8 ! Division: a) n = k n! = 1 n! 5! = 1 5! 0! = 1 0! Enzo Exposyto 29
  • 30. Factorial - 9 ! Division: b1) n > k n! = [nx(n-1)x(n-2)x … x1] k! [kx(k-1)x(k-2)x … x1] = [nx(n-1)x … x(k+1)]x(k!) (k!) = [nx(n-1)x … x(k+1)] 5! = 5x4x3x2x1 = 5x4x(3x2x1) = 5 x 4 x 3! = 5 x 4 3! 3x2x1 (3x2x1) 3! Enzo Exposyto 30
  • 31. Factorial - 10 ! Division: b2) n > k k! = [kx(k-1)x(k-2)x … x1] n! [nx(n-1)x(n-2)x … x1] = k! [nx(n-1)x … x(k+1)]x(k!) = 1 [nx(n-1)x … x(k+1)] = [nx(n-1)x … x(k+1)]-1 3! = 3x2x1 = (3x2x1) = 3! = 1 = [5x4]-1 5! 5x4x3x2x1 5x4x(3x2x1) 5x4x3! 5x4 Enzo Exposyto 31
  • 32. Factorial - 11 ! Power: (n!)2 = n! x n! = [nx(n-1)x(n-2)x … x1] x [nx(n-1)x(n-2)x … x1] = (nxn)x(n-1)x(n-1)x(n-2)x(n-2)x … x1x1 = n2x(n-1)2x(n-2)2x … x12 (n!)k = n! x n! x … x n! (k times n!) = … = nkx(n-1)kx(n-2)kx … x1k 3!2 = 3! x 3! = (3x2x1) x (3x2x1) = (3x3)(2x2)(1x1) = 32 x 22 x12 Enzo Exposyto 32
  • 33. Factorial - 12 nk k-possibilities of combinations Let A = {a, b, c} We want count the subsets of 2 elements which we can extract from the set with 3 elements. In other words, we want count the 2-possibilities of combinations (possible combinations with 2 elements) which we can extract from the set with 3 elements. Enzo Exposyto 33
  • 34. Factorial - 13 nk k-possibilities of combinations The 6 possible subsets of 2 elements are: {a, b}, {a, c}, (1st element: a) {b, a}, {b, c}, (1st element: b) {c, a}, {c, b} (1st element: c) The 6 possible subsets of 2 elements are named 2-possibilities of combinations. The symbol of k-possibilities of combinationsis nk and, in this example, nk = 32 The formula of nk, where n ≥ k > 0, with n = 3 and k = 2, is: = 32 = 3(3-2+1) = 6nk = n(n − 1)(n − 2)⋯(n − k + 1) Enzo Exposyto 34
  • 35. Factorial - 14 nk from k-possibilities of combinations to k-combinations Note that some subsets have the same elements: {a, b} and {b, a} {a, c} and {c, a} {b, c} and {c, b} and, then, any subset with its “mate” represent an identical subset: the not identical subsets are 3. Therefore, the possibilities of combinations of 2 elements are 6 the combinations of 2 elements are 3.
 Enzo Exposyto 35
  • 36. Factorial - 15 nk from k-possibilities of combinations to k-combinations How can we calculate, by a formula, the number of combinations of 2 elements? If we note that any subset of 2 elements has 2 possible permutations, as the subset {a, b} and its “mate” {b, a}, and that the number of permutations, for any subset of 2 elements, is given by k! = 2! (page 15), we must divide the possibilities of combinations (nk = 6) by the permutations (k! = 2) of a subset of 2 elements. The result is 3, that is the number of combinations of 2 elements.
 Enzo Exposyto 36
  • 37. Factorial - 16 nk from k-possibilities of combinations to k-combinations What is the meaning of the number of combinations of 2 elements? It's the number of not identical subsets of 2 elements which we can extract from the set of 3 elements. In other words, from the set A = {a, b, c} we get 3 subsets: {a, b}, {a, c}, {b, c} Also, the 3 subsets are 3 combinations of 2 elements. The number 3 is given by the formula, with n ≥ k > 0: = = 3(3-2+1) = 6 = 3 k! k(k-1)(k-2)…(1) (2)(1) 2
 nk n(n − 1)(n − 2)⋯(n − k + 1) Enzo Exposyto 37
  • 39. BINOMIAL COEFFICIENT - 1 binomial coefficient - 1st formula It's given by the formula (see page 37) = where n ≥ k > 0. Note that, if k = 0, we can't calculate the numerator: the last factor (n-k+1) becomes n+1 which is greater than n. The binomial coefficient represents the number of distinct combinations with k elements (or the number of not identical subsets with k elements) which we can extract from a set with n elements.
 ( n k) ( n k) nk k! = n(n − 1)(n − 2)⋯(n − k + 1) k(k − 1)(k − 2)⋯(1) Enzo Exposyto 39
  • 40. BINOMIAL COEFFICIENT - 2 binomial coefficient - 1st formula - 1st example = = 10 ( n k) ( n k) nk k! = n(n − 1)(n − 2)⋯(n − k + 1) k(k − 1)(k − 2)⋯(1) ( 5 3) = 5(4)(5 − 3 + 1) 3! = 5(4)(3) 6 = 60 6 Enzo Exposyto 40
  • 41. BINOMIAL COEFFICIENT - 3 binomial coefficient - 1st formula - 2nd example = = 35 ( n k) ( n k) nk k! = n(n − 1)(n − 2)⋯(n − k + 1) k(k − 1)(k − 2)⋯(1) ( 7 3) = 7(6)(7 − 3 + 1) 3! = 7(6)(5) 6 = 210 6 Enzo Exposyto 41
  • 42. BINOMIAL COEFFICIENT - 4 binomial coefficient - 2nd formula Because then ( n k) [nk ] ⋅ [(n − k)!] = [n(n − 1)⋯(n − k + 1)] ⋅ [(n − k)⋯(1)] = n! nk ⋅ (n − k)! = n! Enzo Exposyto 42
  • 43. BINOMIAL COEFFICIENT - 5 binomial coefficient - 2nd formula Now, if we multiply numerator and denominator of by (see previous page), we get: and, then with n ≥ k ≥ 0
 ( n k) nk k! (n − k)! nk k! = nk ⋅ (n − k)! k!(n − k)! = n! k!(n − k)! ( n k) = n! k!(n − k)! Enzo Exposyto 43
  • 44. BINOMIAL COEFFICIENT - 6 binomial coefficient - 2nd formula - 1st example = 10
 ( n k) ( n k) = n! k!(n − k)! ( 5 3) = 5! 3!(5 − 3)! = 5! 3!(2)! = 120 6 ⋅ (2) = 120 12 Enzo Exposyto 44
  • 45. BINOMIAL COEFFICIENT - 7 binomial coefficient - 2nd formula - 2nd example = 35
 ( n k) ( n k) = n! k!(n − k)! ( 7 3) = 7! 3!(7 − 3)! = 7! 3!(4)! = 5040 6 ⋅ (24) = 5040 144 Enzo Exposyto 45
  • 46. BINOMIAL COEFFICIENT - 8 binomial coefficient - 2nd formula - 3rd example The binomial coefficient occurs in the binomial formula where n ≥ k. This explains its name. In this formula, we use the binomial coefficient given by where n ≥ k ≥ 0 ( n k) (x + y)n = n ∑ k=0 ( n k) xn−k yk ( n k) = n! k!(n − k)! Enzo Exposyto 46
  • 47. BINOMIAL COEFFICIENT - 9 binomial coefficient - 2nd formula - 3rd example For example (x ≠ 0 and y ≠ 0): = + + = 2! + 2! + 2! 0!2! 1!1! 2!0! = 2 + 2 + 2 [ = 1 and = 1] 2 1 2 = + 2 + 
 ( n k) (x + y)2 = 2 ∑ k=0 ( 2 k) x2−k yk ( 2 0) x2−0 y0 ( 2 1) x2−1 y1 ( 2 2) x2−2 y2 x2 y0 x1 y1 x0 y2 x2 y0 x1 y1 x0 y2 y0 x0 x2 xy y2 Enzo Exposyto 47
  • 48. BINOMIAL COEFFICIENT - 10 binomial coefficient - 3rd formula - 1st example 
 ( n k) ( n k) = nk k! = k ∏ i=1 n + 1 − i i ( 5 3) = 3 ∏ i=1 5 + 1 − i i = 5 + 1 − 1 1 ⋅ 5 + 1 − 2 2 ⋅ 5 + 1 − 3 3 = 5 1 ⋅ 4 2 ⋅ 3 3 = 5 ⋅ 2 ⋅ 1 = 10 Enzo Exposyto 48
  • 49. BINOMIAL COEFFICIENT - 11 binomial coefficient - 3rd formula - 2nd example ( n k) ( n k) = nk k! = k ∏ i=1 n + 1 − i i ( 7 3) = 3 ∏ i=1 7 + 1 − i i = 7 + 1 − 1 1 ⋅ 7 + 1 − 2 2 ⋅ 7 + 1 − 3 3 = 7 1 ⋅ 6 2 ⋅ 5 3 = 7 ⋅ 3 ⋅ 5 3 = 35 Enzo Exposyto 49
  • 51. TETRATION example of tetration - Rucker notation It means: Exponentiation tower is builded by 4 same elements (base 2): on the base of tetration there are 1 exponent and, above, 2 exponents of exponent. It must be evaluated from top to bottom (or right to left) and it isn't equal to 
 4 2 4 2 = 2222 = 2[ 2(22 ) ] = 2(24 ) = 216 = 65,536 4 2 4 2 ≠ [(22 ) 2 ] 2 = 2(2⋅2⋅2) = 28 = 256 Enzo Exposyto 51
  • 52. TETRATION example of tetration It means: Exponentiation tower is builded by 3 same elements (base 3): on the base of tetration there are 1 exponent and, above, 1 exponent of exponent. It must be evaluated from top to bottom (or right to left) and it isn't equal to 3 3 3 3 = 333 = 3(33 ) = 327 3 3 3 3 ≠ (33 ) 3 = 3(3⋅3) = 39 Enzo Exposyto 52
  • 53. TETRATION tetration It means: Exponentiation tower is builded by n same elements (base b): on the base of tetration there are 1 exponent and, above, (n-2) exponents of exponent. It must be evaluated from top to bottom (or right to left).
 n b n b = bb⋅⋅⋅b ⏟ n n b Enzo Exposyto 53
  • 55. Pentation is the operation of repeated tetration, just as Tetration is the operation of repeated exponentiation. Enzo Exposyto 55
  • 56. PENTATION example of pentation It means: a power tower of height 4 2-elements It is because the exponents in parentheses, on the left side, mean: 
 2 2 2 2 2 2 = ( 2 2)2 = 4 2 = 2222 ⏟ 4 = 224 = 216 = 65,536 2 2 = 22 = 4 Enzo Exposyto 56
  • 57. PENTATION example of pentation It means: a power tower of height 7,625,597,484,987 3-elements This is because the exponents in parentheses, on the left side, mean: 3 3 3 3 3 3 = ( 3 3)3 = 7,625,597,484,987 3 = 333⋅⋅⋅3 ⏟ 7,625,597,484,987 3 3 = 333 = 3(33 ) = 327 Enzo Exposyto 57
  • 58. PENTATION example of pentation It means: a power tower of height b-elements
 b b b b b b = ( b b)b = bb⋅⋅⋅b ⏟ b b b b Enzo Exposyto 58