DIVISIONI PARZIALI
i VALORI di 1
9
a cura di Enzo Exposyto
A)
1
9
= 0,
n
1 +
1
9 ⋅ 1
n
0
∀n ∈ N = {0,1,2,3,...}
i VALORI di 1
a cura di Enzo Exposyto 9

Le DUE “n” -SULL’1 e SOPRA lo 0- INDICANO CHE

la CIFRA 1 è RIPETUTA “n” VOLTE,
la CIFRA 0 è RIPETUTA “n” VOLTE.

n è un QUALSIASI NUMERO INTERO, 

appartenente all’insieme N = {0,1,2,3,...}.

Ad esempio, con n = 5, la FORMULA A) diventa



5 volte 1 5 volte 0
A)
1
9
= 0,
n
1 +
1
9 ⋅ 1
n
0
A)
1
9
= 0,
5
1 +
1
9 ⋅ 1
5
0
= 0,11111 +
1
9 ⋅ 100000
∀n ∈ N = {0,1,2,3,...}
n = 5
FORMULA A)
1^ DIMOSTRAZIONE
a cura di Enzo Exposyto

A)
1
9
= 0,
n
1 +
1
9 ⋅ 1
n
0
∀n ∈ N = {0,1,2,3,...}
FORMULA A) - 1^ dimostrazione
QUINDI
1
9
=
1
3
⋅
1
3
=
1
3
⋅ 0,
n
3 +
1
3 ⋅ 3 ⋅ 1
n
0
=
1
3
⋅ {0,
n
3 +
1
3 ⋅ 1
n
0
}
= 0,
n
1 +
1
9 ⋅ 1
n
0
A)
1
9
=
1
3
⋅
1
3
= 0,
n
1 +
1
9 ⋅ 1
n
0
∀n ∈ N = {0,1,2,3,...}
∀n ∈ N = {0,1,2,3,...}
FORMULA A)
2^ DIMOSTRAZIONE
(MODUS PONES e PRINCIPIO d’INDUZIONE)
a cura di Enzo Exposyto
A)
1
9
= 0,
n
1 +
1
9 ⋅ 1
n
0
∀n ∈ N = {0,1,2,3,...}
Formula A) - 2^ dimostrazione sintetica
La formula A) è dimostrata visto che
P(0) = 0,
0
1 +
1
9 ⋅ 1
0
0
= 0 +
1
9 ⋅ 1
=
1
9
P(n) = 0,
n
1 +
1
9 ⋅ 1
n
0
=
9 ⋅ 1
n
0 ⋅ 0,
n
1 + 1
9 ⋅ 1
n
0
=
n
9 + 1
9 ⋅ 1
n
0
=
1
n
0
9 ⋅ 1
n
0
=
1
9
P(1) = 0,
1
1 +
1
9 ⋅ 1
1
0
= 0,1 +
1
9 ⋅ 10
=
9 ⋅ 10 ⋅ 0,1 + 1
9 ⋅ 10
=
9 + 1
9 ⋅ 10
=
10
90
=
1
9
A) 0,
n
1 +
1
9 ⋅ 1
n
0
=
1
9
∀n ∈ N = {0,1,2,3,...}
P(0) =
1
9
P(1) =
1
9
P(n) =
1
9
P(n + 1) =
1
9
P(n) =
1
9
→ P(n + 1) =
1
9
P(0) =
1
9
∧ P(1) =
1
9
∀n ∈ N = {0,1,2,3,...}
P(n + 1) = 0,
n + 1
1 +
1
9 ⋅ 1
n + 1
0
=
9 ⋅ 1
n + 1
0 ⋅ 0,
n + 1
1 + 1
9 ⋅ 1
n + 1
0
=
n + 1
9 + 1
9 ⋅ 1
n + 1
0
=
1
n + 1
0
9 ⋅ 1
n + 1
0
=
1
9
Formula A) - 2^ dimostrazione estesa
Qui, sarà dimostrata la forma
A) 0,
n
1 +
1
9 ⋅ 1
n
0
=
1
9
∀n ∈ N = {0,1,2,3,...}
A)
1
9
= 0,
n
1 +
1
9 ⋅ 1
n
0
∀n ∈ N = {0,1,2,3,...}
2a) Dimostrazione della Base
Quindi
Quindi
P(0) =
1
9
P(1) =
1
9
P(0) = 0,
0
1 +
1
9 ⋅ 1
0
0
= 0 +
1
9 ⋅ 1
=
1
9
P(1) = 0,
1
1 +
1
9 ⋅ 1
1
0
= 0,1 +
1
9 ⋅ 10
=
9 ⋅ 10 ⋅ 0,1 + 1
9 ⋅ 10
=
9 + 1
9 ⋅ 10
=
10
90
=
1
9
2b) Dimostrazione del Passo Induttivo
P(n) =
1
9
∀n ∈ N = {0,1,2,3,...}
P(n + 1) =
1
9
∀n ∈ N = {0,1,2,3,...}
P(n) = 0,
n
1 +
1
9 ⋅ 1
n
0
=
9 ⋅ 1
n
0 ⋅ 0,
n
1 + 1
9 ⋅ 1
n
0
=
n
9 + 1
9 ⋅ 1
n
0
=
1
n
0
9 ⋅ 1
n
0
=
1
9
P(n + 1) = 0,
n + 1
1 +
1
9 ⋅ 1
n + 1
0
=
9 ⋅ 1
n + 1
0 ⋅ 0,
n + 1
1 + 1
9 ⋅ 1
n + 1
0
=
n + 1
9 + 1
9 ⋅ 1
n + 1
0
=
1
n + 1
0
9 ⋅ 1
n + 1
0
=
1
9
Formula A) - Conclusioni da 2a) e 2b)
Poiché
e
ne deriva che
P(0) =
1
9
∧ P(1) =
1
9
P(n) =
1
9
→ P(n + 1) =
1
9
∀n ∈ N = {0,1,2,3,...}
A) 0,
n
1 +
1
9 ⋅ 1
n
0
=
1
9
∀n ∈ N = {0,1,2,3,...}
DIVISIONI PARZIALI
i VALORI di 1
9
a cura di Enzo Exposyto
∀n ∈ N+
= {1,2,3,...}
B)
1
9
= 0,
2n
1 +
1
9 ⋅ 1
2n
0
i VALORI di 1
a cura di Enzo Exposyto 9



Le “2n” -SULL’1 e SOPRA lo 0- INDICANO CHE

la CIFRA 1 è RIPETUTA “2n” VOLTE,
la CIFRA 0 è RIPETUTA “2n” VOLTE.

n è un QUALSIASI NUMERO INTERO, 

appartenente all’insieme N+ = {1,2,3,...}.

Ad esempio, con n = 3, la FORMULA B) diventa



2*3 volte 1 2*3 volte 0
B)
1
9
= 0,
2n
1 +
1
9 ⋅ 1
2n
0
∀n ∈ N+
= {1,2,3,...}
B)
1
9
= 0,
2 ⋅ 3
1 +
1
9 ⋅ 1
2 ⋅ 3
0
= 0,111111 +
1
9 ⋅ 1000000
n = 3
FORMULA B)
1^ DIMOSTRAZIONE
a cura di Enzo Exposyto
B)
1
9
= 0,
2n
1 +
1
9 ⋅ 1
2n
0
∀n ∈ N+
= {1,2,3,...}
FORMULA B) - 1^ dimostrazione
continua ...
1
9
= {
1
3
}2
= {0,
n
3 +
1
3 ⋅ 1
n
0
}2
= 0,
n
3 ⋅ 0,
n
3 + 2 ⋅ 0,
n
3 ⋅
1
3 ⋅ 1
n
0
+
1
3 ⋅ 1
n
0
⋅
1
3 ⋅ 1
n
0
∀n ∈ N = {0,1,2,3,...}
= {0,
n
3 ⋅ 0,
n
3 = 0,
n − 1
1 0
n − 1
8 9} ∀n ∈ N+
= {1,2,3,...}
continua ...
1
9
= 0,
n − 1
1 0
n − 1
8 9 + 2 ⋅
0,
n
3
3
⋅
1
1
n
0
+
1
9 ⋅ 1
n
0 ⋅ 1
n
0
= 0,
n − 1
1 0
n − 1
8 9 + 2 ⋅ 0,
n
1 ⋅
1
1
n
0
+
1
9 ⋅ 1
n
0
n
0
= 0,
n − 1
1 0
n − 1
8 9 +
0,
n
2
1
n
0
+
1
9 ⋅ 1
2n
0
= 0,
n − 1
1 0
n − 1
8 9 + 0,
n
0
n
2 +
1
9 ⋅ 1
2n
0
= {0,
n − 1
1 0
n − 1
8 9 + 0,
n
0
n
2 = 0,
n
1
n
1 = 0,
2n
1 }
Quindi
Notiamo che la formula B) è stata ricavata, a un certo punto della
dimostrazione, sotto la condizione: n elemento di N+ = {1,2,3,...}. Tuttavia,
vedremo che ESSA È VALIDA ANCHE con n = 0.
1
9
= 0,
2n
1 +
1
9 ⋅ 1
2n
0
B)
1
9
= {
1
3
}2
= 0,
2n
1 +
1
9 ⋅ 1
2n
0
∀n ∈ N+
= {1,2,3,...}
FORMULA B)
2^ DIMOSTRAZIONE
(MODUS PONES e PRINCIPIO d’INDUZIONE)
a cura di Enzo Exposyto
B)
1
9
= 0,
2n
1 +
1
9 ⋅ 1
2n
0
∀n ∈ N+
= {1,2,3,...}
Formula B) - 2^ dimostrazione sintetica - Numero di cifre PARI - Caso n = 0
La formula B) è dimostrata visto che, pur omettendo il caso n=0, si ha
B) 0,
2n
1 +
1
9 ⋅ 1
2n
0
=
1
9
∀n ∈ N+
= {1,2,3,...}
P(2 ⋅ 0) = 0,
2 ⋅ 0
1 +
1
9 ⋅ 1
2 ⋅ 0
0
= 0 +
1
9 ⋅ 1
=
1
9
P(2 ⋅ 0) =
1
9
P(2 ⋅ 1) = 0,
2 ⋅ 1
1 +
1
9 ⋅ 1
2 ⋅ 1
0
= 0,
2
1 +
1
9 ⋅ 1
2
0
= 0,11 +
1
9 ⋅ 100
=
9 ⋅ 100 ⋅ 0,11 + 1
9 ⋅ 100
=
99 + 1
9 ⋅ 100
=
100
900
=
1
9
P(2 ⋅ 1) =
1
9
P(2n) = 0,
2n
1 +
1
9 ⋅ 1
2n
0
=
9 ⋅ 1
2n
0 ⋅ 0,
2n
1 + 1
9 ⋅ 1
2n
0
=
2n
9 + 1
9 ⋅ 1
2n
0
=
1
2n
0
9 ⋅ 1
2n
0
=
1
9
P(2n) =
1
9
P[2(n + 1)] = 0,
2(n + 1)
1 +
1
9 ⋅ 1
2(n + 1)
0
=
9 ⋅ 1
2(n + 1)
0 ⋅ 0,
2(n + 1)
1 + 1
9 ⋅ 1
2(n + 1)
0
=
2(n + 1)
9 + 1
9 ⋅ 1
2(n + 1)
0
=
1
2(n + 1)
0
9 ⋅ 1
2(n + 1)
0
=
1
9
P[2(n + 1)] =
1
9
P(2 ⋅ 1) =
1
9
∀n ∈ N+
= {1,2,3,...}
P(2n) =
1
9
→ P[2(n + 1)] =
1
9
Formula B) - 2^ dimostrazione sintetica - Numero di cifre DISPARI, salvo 2n
La formula B) è dimostrata ancora, visto che, pur senza il caso n=0, si ha
P(2n + 1) = 0,
2n + 1
1 +
1
9 ⋅ 1
2n + 1
0
=
9 ⋅ 1
2n + 1
0 ⋅ 0,
2n + 1
1 + 1
9 ⋅ 1
2n + 1
0
=
2n + 1
9 + 1
9 ⋅ 1
2n + 1
0
=
1
2n + 1
0
9 ⋅ 1
2n + 1
0
=
1
9
P(2 ⋅ 0 + 1) = 0,
2 ⋅ 0 + 1
1 +
1
9 ⋅ 1
2 ⋅ 0 + 1
0
= 0,
1
1 +
1
9 ⋅ 1
1
0
= 0,1 +
1
9 ⋅ 10
=
9 ⋅ 10 ⋅ 0,1 + 1
9 ⋅ 10
=
9 + 1
9 ⋅ 10
=
10
90
=
1
9
P(2 ⋅ 1 + 1) = 0,
2 ⋅ 1 + 1
1 +
1
9 ⋅ 1
2 ⋅ 1 + 1
0
= 0,
3
1 +
1
9 ⋅ 1
3
0
= 0,111 +
1
9 ⋅ 1000
=
9 ⋅ 1000 ⋅ 0,111 + 1
9 ⋅ 1000
=
999 + 1
9 ⋅ 1000
=
1000
9000
=
1
9
P(2n) = 0,
2n
1 +
1
9 ⋅ 1
2n
0
=
9 ⋅ 1
2n
0 ⋅ 0,
2n
1 + 1
9 ⋅ 1
2n
0
=
2n
9 + 1
9 ⋅ 1
2n
0
=
1
2n
0
9 ⋅ 1
2n
0
=
1
9
P(2 ⋅ 1 + 1) =
1
9
P(2n) =
1
9
→ P(2n + 1) =
1
9
∀n ∈ N+
= {1,2,3,...}
B) 0,
2n
1 +
1
9 ⋅ 1
2n
0
=
1
9
∀n ∈ N+
= {1,2,3,...}
FORMULA C)
(CONTIENE NUMERO con 2 CIFRE RIPETUTE)
a cura di Enzo Exposyto
C)
1
9
=
9 ⋅
n − 1
1 0
n − 1
8 9 + 6 ⋅
n
3 + 1
9 ⋅ 1
2n
0
∀n ∈ N+
= {1,2,3,...}
FORMULA C)
La CIFRA 1 è RIPETUTA “n-1” VOLTE,
la CIFRA 8 è RIPETUTA “n-1” VOLTE,
la CIFRA 3 è RIPETUTA “n” VOLTE,
la CIFRA 0 è RIPETUTA “2n” VOLTE,

con n QUALSIASI appartenente all’insieme N+ = {1,2,3,...}.

Ad esempio, con n = 3, la FORMULA C) diventa





2 volte 1 e 8 3 volte 3

2*3 volte 0
n = 3
C)
1
9
=
9 ⋅
n − 1
1 0
n − 1
8 9 + 6 ⋅
n
3 + 1
9 ⋅ 1
2n
0
∀n ∈ N+
= {1,2,3,...}
C)
1
9
=
9 ⋅
3 − 1
1 0
3 − 1
8 9 + 6 ⋅
3
3 + 1
9 ⋅ 1
2 ⋅ 3
0
=
9 ⋅ 110889 + 6 ⋅ 333 + 1
9 ⋅ 1000000
FORMULA C)
DIMOSTRAZIONE
a cura di Enzo Exposyto

∀n ∈ N+
= {1,2,3,...}
C)
1
9
=
9 ⋅
n − 1
1 0
n − 1
8 9 + 6 ⋅
n
3 + 1
9 ⋅ 1
2n
0
FORMULA C) - Dimostrazione
continua ...
1
9
= {
1
3
}2
= {0,
n
3 +
1
3 ⋅ 1
n
0
}2 ∀n ∈ N = {0,1,2,3,...}
= 0,
n
3 ⋅ 0,
n
3 + 2 ⋅ 0,
n
3 ⋅
1
3 ⋅ 1
n
0
+
1
3 ⋅ 1
n
0
⋅
1
3 ⋅ 1
n
0
= 0,
n
3 ⋅ 0,
n
3 + 2 ⋅ 0,
n
3 ⋅
1
3 ⋅ 1
n
0
+
1
9 ⋅ 1
n
0 ⋅ 1
n
0
continua ...
= {
n
3 ⋅
n
3 =
n − 1
1 0
n − 1
8 9} ∀n ∈ N+
= {1,2,3,...}
1
9
=
9 ⋅ 1
n
0 ⋅ 1
n
0 ⋅ 0,
n
3 ⋅ 0,
n
3 + 3 ⋅ 1
n
0 ⋅ 2 ⋅ 0,
n
3 + 1
9 ⋅ 1
n
0 ⋅ 1
n
0
=
9 ⋅
n
3 ⋅
n
3 + 6 ⋅
n
3 + 1
9 ⋅ 1
2n
0
=
9 ⋅ 1
n
0 ⋅ 0,
n
3 ⋅ 1
n
0 ⋅ 0,
n
3 + 6 ⋅ 1
n
0 ⋅ 0,
n
3 + 1
9 ⋅ 1
n
0 ⋅ 1
n
0
Quindi
Notiamo che anche la formula C) è stata ricavata, a un certo punto della
dimostrazione, sotto la condizione: n elemento di N+ = {1,2,3,...}.
1
9
=
9 ⋅
n − 1
1 0
n − 1
8 9 + 6 ⋅
n
3 + 1
9 ⋅ 1
2n
0
∀n ∈ N+
= {1,2,3,...}
C)
1
9
=
9 ⋅
n − 1
1 0
n − 1
8 9 + 6 ⋅
n
3 + 1
9 ⋅ 1
2n
0
FORMULA C)
2 ESEMPI
(CONTENGONO NUMERI con 2 CIFRE RIPETUTE)
a cura di Enzo Exposyto

C)
1
9
=
9 ⋅
n − 1
1 0
n − 1
8 9 + 6 ⋅
n
3 + 1
9 ⋅ 1
2n
0
∀n ∈ N+
= {1,2,3,...}
9 ⋅
3 − 1
1 0
3 − 1
8 9 + 6 ⋅
3
3 + 1
9 ⋅ 1
2 ⋅ 3
0
=
9 ⋅ 110.889 + 6 ⋅ 333 + 1
9 ⋅ 1.000.000
=
3 − 1
9 8
3 − 1
0 1 + 1
3 − 1
9 8 + 1
9 ⋅ 1.000.000
=
2 ⋅ 3
9 + 1
9 ⋅ 1.000.000
n = 3
n = 5
9 ⋅
5 − 1
1 0
5 − 1
8 9 + 6 ⋅
5
3 + 1
9 ⋅ 1
2 ⋅ 5
0
=
9 ⋅ 1.111.088.889 + 6 ⋅ 33.333 + 1
9 ⋅ 10.000.000.000
=
5 − 1
9 8
5 − 1
0 1 + 1
5 − 1
9 8 + 1
9 ⋅ 10.000.000.000
=
2 ⋅ 5
9 + 1
90.000.000.000
=
9.999.999.999 + 1
90.000.000.000
=
10.000.000.000
90.000.000.000
=
1
9
=
999.999 + 1
9.000.000
=
1.000.000
9.000.000
=
1
9
dalla C), la FORMULA D)
(CONTIENE NUMERO con 2 CIFRE RIPETUTE)
a cura di Enzo Exposyto
D)
9 ⋅
n − 1
1 0
n − 1
8 9 + 6 ⋅
n
3 + 1
1
2n
0
= 1
∀n ∈ N+
= {1,2,3,...}
FORMULA D)
La CIFRA 1 è RIPETUTA “n-1” VOLTE,
la CIFRA 8 è RIPETUTA “n-1” VOLTE,
la CIFRA 3 è RIPETUTA “n” VOLTE,
la CIFRA 0 è RIPETUTA “2n” VOLTE,

con n QUALSIASI appartenente all’insieme N+ = {1,2,3,...}.

Ad esempio, con n = 3, la FORMULA D) diventa





2 volte 1 e 8 3 volte 3

2*3 volte 0
D)
9 ⋅
n − 1
1 0
n − 1
8 9 + 6 ⋅
n
3 + 1
1
2n
0
= 1 ∀n ∈ N+
= {1,2,3,...}
D)
9 ⋅
3 − 1
1 0
3 − 1
8 9 + 6 ⋅
3
3 + 1
1
2 ⋅ 3
0
=
9 ⋅ 110889 + 6 ⋅ 333 + 1
1000000
= 1 n = 3
FORMULA D)
DIMOSTRAZIONE
a cura di Enzo Exposyto

∀n ∈ N+
= {1,2,3,...}
D)
9 ⋅
n − 1
1 0
n − 1
8 9 + 6 ⋅
n
3 + 1
1
2n
0
= 1
Quindi
1
9
=
9 ⋅
n − 1
1 0
n − 1
8 9 + 6 ⋅
n
3 + 1
9 ⋅ 1
2n
0
1
9
=
1
9
⋅
9 ⋅
n − 1
1 0
n − 1
8 9 + 6 ⋅
n
3 + 1
1
2n
0
9 ⋅
n − 1
1 0
n − 1
8 9 + 6 ⋅
n
3 + 1
1
2n
0
= 1
1
9
=
1
9
⋅ 1
∀n ∈ N+
= {1,2,3,...}
∀n ∈ N+
= {1,2,3,...}
FORMULA D)
2 ESEMPI
(CONTENGONO NUMERI con 2 CIFRE RIPETUTE)
a cura di Enzo Exposyto

D)
9 ⋅
n − 1
1 0
n − 1
8 9 + 6 ⋅
n
3 + 1
1
2n
0
= 1
∀n ∈ N+
= {1,2,3,...}
n = 3
9 ⋅
3 − 1
1 0
3 − 1
8 9 + 6 ⋅
3
3 + 1
1
2 ⋅ 3
0
=
9 ⋅ 110.889 + 6 ⋅ 333 + 1
1.000.000
=
3 − 1
9 8
3 − 1
0 1 + 1
3 − 1
9 8 + 1
1.000.000
=
2 ⋅ 3
9 + 1
1.000.000
=
999.999 + 1
1.000.000
=
1.000.000
1.000.000
= 1
n = 5
9 ⋅
5 − 1
1 0
5 − 1
8 9 + 6 ⋅
5
3 + 1
1
2 ⋅ 5
0
=
9 ⋅ 1.111.088.889 + 6 ⋅ 33.333 + 1
10.000.000.000
=
5 − 1
9 8
5 − 1
0 1 + 1
5 − 1
9 8 + 1
10.000.000.000
=
10.000.000.000
10.000.000.000
= 1
=
2 ⋅ 5
9 + 1
10.000.000.000
=
9.999.999.999 + 1
10.000.000.000

Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numeri con Due Cifre Ripetute - Dimostrazioni e Tanti Esempi - Divisioni Parziali

  • 1.
    DIVISIONI PARZIALI i VALORIdi 1 9 a cura di Enzo Exposyto A) 1 9 = 0, n 1 + 1 9 ⋅ 1 n 0 ∀n ∈ N = {0,1,2,3,...}
  • 2.
    i VALORI di1 a cura di Enzo Exposyto 9 Le DUE “n” -SULL’1 e SOPRA lo 0- INDICANO CHE la CIFRA 1 è RIPETUTA “n” VOLTE, la CIFRA 0 è RIPETUTA “n” VOLTE. n è un QUALSIASI NUMERO INTERO, appartenente all’insieme N = {0,1,2,3,...}. Ad esempio, con n = 5, la FORMULA A) diventa 5 volte 1 5 volte 0 A) 1 9 = 0, n 1 + 1 9 ⋅ 1 n 0 A) 1 9 = 0, 5 1 + 1 9 ⋅ 1 5 0 = 0,11111 + 1 9 ⋅ 100000 ∀n ∈ N = {0,1,2,3,...} n = 5
  • 3.
    FORMULA A) 1^ DIMOSTRAZIONE acura di Enzo Exposyto A) 1 9 = 0, n 1 + 1 9 ⋅ 1 n 0 ∀n ∈ N = {0,1,2,3,...}
  • 4.
    FORMULA A) -1^ dimostrazione QUINDI 1 9 = 1 3 ⋅ 1 3 = 1 3 ⋅ 0, n 3 + 1 3 ⋅ 3 ⋅ 1 n 0 = 1 3 ⋅ {0, n 3 + 1 3 ⋅ 1 n 0 } = 0, n 1 + 1 9 ⋅ 1 n 0 A) 1 9 = 1 3 ⋅ 1 3 = 0, n 1 + 1 9 ⋅ 1 n 0 ∀n ∈ N = {0,1,2,3,...} ∀n ∈ N = {0,1,2,3,...}
  • 5.
    FORMULA A) 2^ DIMOSTRAZIONE (MODUSPONES e PRINCIPIO d’INDUZIONE) a cura di Enzo Exposyto A) 1 9 = 0, n 1 + 1 9 ⋅ 1 n 0 ∀n ∈ N = {0,1,2,3,...}
  • 6.
    Formula A) -2^ dimostrazione sintetica La formula A) è dimostrata visto che P(0) = 0, 0 1 + 1 9 ⋅ 1 0 0 = 0 + 1 9 ⋅ 1 = 1 9 P(n) = 0, n 1 + 1 9 ⋅ 1 n 0 = 9 ⋅ 1 n 0 ⋅ 0, n 1 + 1 9 ⋅ 1 n 0 = n 9 + 1 9 ⋅ 1 n 0 = 1 n 0 9 ⋅ 1 n 0 = 1 9 P(1) = 0, 1 1 + 1 9 ⋅ 1 1 0 = 0,1 + 1 9 ⋅ 10 = 9 ⋅ 10 ⋅ 0,1 + 1 9 ⋅ 10 = 9 + 1 9 ⋅ 10 = 10 90 = 1 9 A) 0, n 1 + 1 9 ⋅ 1 n 0 = 1 9 ∀n ∈ N = {0,1,2,3,...} P(0) = 1 9 P(1) = 1 9 P(n) = 1 9 P(n + 1) = 1 9 P(n) = 1 9 → P(n + 1) = 1 9 P(0) = 1 9 ∧ P(1) = 1 9 ∀n ∈ N = {0,1,2,3,...} P(n + 1) = 0, n + 1 1 + 1 9 ⋅ 1 n + 1 0 = 9 ⋅ 1 n + 1 0 ⋅ 0, n + 1 1 + 1 9 ⋅ 1 n + 1 0 = n + 1 9 + 1 9 ⋅ 1 n + 1 0 = 1 n + 1 0 9 ⋅ 1 n + 1 0 = 1 9
  • 7.
    Formula A) -2^ dimostrazione estesa Qui, sarà dimostrata la forma A) 0, n 1 + 1 9 ⋅ 1 n 0 = 1 9 ∀n ∈ N = {0,1,2,3,...} A) 1 9 = 0, n 1 + 1 9 ⋅ 1 n 0 ∀n ∈ N = {0,1,2,3,...}
  • 8.
    2a) Dimostrazione dellaBase Quindi Quindi P(0) = 1 9 P(1) = 1 9 P(0) = 0, 0 1 + 1 9 ⋅ 1 0 0 = 0 + 1 9 ⋅ 1 = 1 9 P(1) = 0, 1 1 + 1 9 ⋅ 1 1 0 = 0,1 + 1 9 ⋅ 10 = 9 ⋅ 10 ⋅ 0,1 + 1 9 ⋅ 10 = 9 + 1 9 ⋅ 10 = 10 90 = 1 9
  • 9.
    2b) Dimostrazione delPasso Induttivo P(n) = 1 9 ∀n ∈ N = {0,1,2,3,...} P(n + 1) = 1 9 ∀n ∈ N = {0,1,2,3,...} P(n) = 0, n 1 + 1 9 ⋅ 1 n 0 = 9 ⋅ 1 n 0 ⋅ 0, n 1 + 1 9 ⋅ 1 n 0 = n 9 + 1 9 ⋅ 1 n 0 = 1 n 0 9 ⋅ 1 n 0 = 1 9 P(n + 1) = 0, n + 1 1 + 1 9 ⋅ 1 n + 1 0 = 9 ⋅ 1 n + 1 0 ⋅ 0, n + 1 1 + 1 9 ⋅ 1 n + 1 0 = n + 1 9 + 1 9 ⋅ 1 n + 1 0 = 1 n + 1 0 9 ⋅ 1 n + 1 0 = 1 9
  • 10.
    Formula A) -Conclusioni da 2a) e 2b) Poiché e ne deriva che P(0) = 1 9 ∧ P(1) = 1 9 P(n) = 1 9 → P(n + 1) = 1 9 ∀n ∈ N = {0,1,2,3,...} A) 0, n 1 + 1 9 ⋅ 1 n 0 = 1 9 ∀n ∈ N = {0,1,2,3,...}
  • 11.
    DIVISIONI PARZIALI i VALORIdi 1 9 a cura di Enzo Exposyto ∀n ∈ N+ = {1,2,3,...} B) 1 9 = 0, 2n 1 + 1 9 ⋅ 1 2n 0
  • 12.
    i VALORI di1 a cura di Enzo Exposyto 9 Le “2n” -SULL’1 e SOPRA lo 0- INDICANO CHE la CIFRA 1 è RIPETUTA “2n” VOLTE, la CIFRA 0 è RIPETUTA “2n” VOLTE. n è un QUALSIASI NUMERO INTERO, appartenente all’insieme N+ = {1,2,3,...}. Ad esempio, con n = 3, la FORMULA B) diventa 2*3 volte 1 2*3 volte 0 B) 1 9 = 0, 2n 1 + 1 9 ⋅ 1 2n 0 ∀n ∈ N+ = {1,2,3,...} B) 1 9 = 0, 2 ⋅ 3 1 + 1 9 ⋅ 1 2 ⋅ 3 0 = 0,111111 + 1 9 ⋅ 1000000 n = 3
  • 13.
    FORMULA B) 1^ DIMOSTRAZIONE acura di Enzo Exposyto B) 1 9 = 0, 2n 1 + 1 9 ⋅ 1 2n 0 ∀n ∈ N+ = {1,2,3,...}
  • 14.
    FORMULA B) -1^ dimostrazione continua ... 1 9 = { 1 3 }2 = {0, n 3 + 1 3 ⋅ 1 n 0 }2 = 0, n 3 ⋅ 0, n 3 + 2 ⋅ 0, n 3 ⋅ 1 3 ⋅ 1 n 0 + 1 3 ⋅ 1 n 0 ⋅ 1 3 ⋅ 1 n 0 ∀n ∈ N = {0,1,2,3,...} = {0, n 3 ⋅ 0, n 3 = 0, n − 1 1 0 n − 1 8 9} ∀n ∈ N+ = {1,2,3,...}
  • 15.
    continua ... 1 9 = 0, n− 1 1 0 n − 1 8 9 + 2 ⋅ 0, n 3 3 ⋅ 1 1 n 0 + 1 9 ⋅ 1 n 0 ⋅ 1 n 0 = 0, n − 1 1 0 n − 1 8 9 + 2 ⋅ 0, n 1 ⋅ 1 1 n 0 + 1 9 ⋅ 1 n 0 n 0 = 0, n − 1 1 0 n − 1 8 9 + 0, n 2 1 n 0 + 1 9 ⋅ 1 2n 0 = 0, n − 1 1 0 n − 1 8 9 + 0, n 0 n 2 + 1 9 ⋅ 1 2n 0 = {0, n − 1 1 0 n − 1 8 9 + 0, n 0 n 2 = 0, n 1 n 1 = 0, 2n 1 }
  • 16.
    Quindi Notiamo che laformula B) è stata ricavata, a un certo punto della dimostrazione, sotto la condizione: n elemento di N+ = {1,2,3,...}. Tuttavia, vedremo che ESSA È VALIDA ANCHE con n = 0. 1 9 = 0, 2n 1 + 1 9 ⋅ 1 2n 0 B) 1 9 = { 1 3 }2 = 0, 2n 1 + 1 9 ⋅ 1 2n 0 ∀n ∈ N+ = {1,2,3,...}
  • 17.
    FORMULA B) 2^ DIMOSTRAZIONE (MODUSPONES e PRINCIPIO d’INDUZIONE) a cura di Enzo Exposyto B) 1 9 = 0, 2n 1 + 1 9 ⋅ 1 2n 0 ∀n ∈ N+ = {1,2,3,...}
  • 18.
    Formula B) -2^ dimostrazione sintetica - Numero di cifre PARI - Caso n = 0 La formula B) è dimostrata visto che, pur omettendo il caso n=0, si ha B) 0, 2n 1 + 1 9 ⋅ 1 2n 0 = 1 9 ∀n ∈ N+ = {1,2,3,...} P(2 ⋅ 0) = 0, 2 ⋅ 0 1 + 1 9 ⋅ 1 2 ⋅ 0 0 = 0 + 1 9 ⋅ 1 = 1 9 P(2 ⋅ 0) = 1 9 P(2 ⋅ 1) = 0, 2 ⋅ 1 1 + 1 9 ⋅ 1 2 ⋅ 1 0 = 0, 2 1 + 1 9 ⋅ 1 2 0 = 0,11 + 1 9 ⋅ 100 = 9 ⋅ 100 ⋅ 0,11 + 1 9 ⋅ 100 = 99 + 1 9 ⋅ 100 = 100 900 = 1 9 P(2 ⋅ 1) = 1 9 P(2n) = 0, 2n 1 + 1 9 ⋅ 1 2n 0 = 9 ⋅ 1 2n 0 ⋅ 0, 2n 1 + 1 9 ⋅ 1 2n 0 = 2n 9 + 1 9 ⋅ 1 2n 0 = 1 2n 0 9 ⋅ 1 2n 0 = 1 9 P(2n) = 1 9 P[2(n + 1)] = 0, 2(n + 1) 1 + 1 9 ⋅ 1 2(n + 1) 0 = 9 ⋅ 1 2(n + 1) 0 ⋅ 0, 2(n + 1) 1 + 1 9 ⋅ 1 2(n + 1) 0 = 2(n + 1) 9 + 1 9 ⋅ 1 2(n + 1) 0 = 1 2(n + 1) 0 9 ⋅ 1 2(n + 1) 0 = 1 9 P[2(n + 1)] = 1 9 P(2 ⋅ 1) = 1 9 ∀n ∈ N+ = {1,2,3,...} P(2n) = 1 9 → P[2(n + 1)] = 1 9
  • 19.
    Formula B) -2^ dimostrazione sintetica - Numero di cifre DISPARI, salvo 2n La formula B) è dimostrata ancora, visto che, pur senza il caso n=0, si ha P(2n + 1) = 0, 2n + 1 1 + 1 9 ⋅ 1 2n + 1 0 = 9 ⋅ 1 2n + 1 0 ⋅ 0, 2n + 1 1 + 1 9 ⋅ 1 2n + 1 0 = 2n + 1 9 + 1 9 ⋅ 1 2n + 1 0 = 1 2n + 1 0 9 ⋅ 1 2n + 1 0 = 1 9 P(2 ⋅ 0 + 1) = 0, 2 ⋅ 0 + 1 1 + 1 9 ⋅ 1 2 ⋅ 0 + 1 0 = 0, 1 1 + 1 9 ⋅ 1 1 0 = 0,1 + 1 9 ⋅ 10 = 9 ⋅ 10 ⋅ 0,1 + 1 9 ⋅ 10 = 9 + 1 9 ⋅ 10 = 10 90 = 1 9 P(2 ⋅ 1 + 1) = 0, 2 ⋅ 1 + 1 1 + 1 9 ⋅ 1 2 ⋅ 1 + 1 0 = 0, 3 1 + 1 9 ⋅ 1 3 0 = 0,111 + 1 9 ⋅ 1000 = 9 ⋅ 1000 ⋅ 0,111 + 1 9 ⋅ 1000 = 999 + 1 9 ⋅ 1000 = 1000 9000 = 1 9 P(2n) = 0, 2n 1 + 1 9 ⋅ 1 2n 0 = 9 ⋅ 1 2n 0 ⋅ 0, 2n 1 + 1 9 ⋅ 1 2n 0 = 2n 9 + 1 9 ⋅ 1 2n 0 = 1 2n 0 9 ⋅ 1 2n 0 = 1 9 P(2 ⋅ 1 + 1) = 1 9 P(2n) = 1 9 → P(2n + 1) = 1 9 ∀n ∈ N+ = {1,2,3,...} B) 0, 2n 1 + 1 9 ⋅ 1 2n 0 = 1 9 ∀n ∈ N+ = {1,2,3,...}
  • 20.
    FORMULA C) (CONTIENE NUMEROcon 2 CIFRE RIPETUTE) a cura di Enzo Exposyto C) 1 9 = 9 ⋅ n − 1 1 0 n − 1 8 9 + 6 ⋅ n 3 + 1 9 ⋅ 1 2n 0 ∀n ∈ N+ = {1,2,3,...}
  • 21.
    FORMULA C) La CIFRA1 è RIPETUTA “n-1” VOLTE, la CIFRA 8 è RIPETUTA “n-1” VOLTE, la CIFRA 3 è RIPETUTA “n” VOLTE, la CIFRA 0 è RIPETUTA “2n” VOLTE, con n QUALSIASI appartenente all’insieme N+ = {1,2,3,...}. Ad esempio, con n = 3, la FORMULA C) diventa 2 volte 1 e 8 3 volte 3 2*3 volte 0 n = 3 C) 1 9 = 9 ⋅ n − 1 1 0 n − 1 8 9 + 6 ⋅ n 3 + 1 9 ⋅ 1 2n 0 ∀n ∈ N+ = {1,2,3,...} C) 1 9 = 9 ⋅ 3 − 1 1 0 3 − 1 8 9 + 6 ⋅ 3 3 + 1 9 ⋅ 1 2 ⋅ 3 0 = 9 ⋅ 110889 + 6 ⋅ 333 + 1 9 ⋅ 1000000
  • 22.
    FORMULA C) DIMOSTRAZIONE a curadi Enzo Exposyto ∀n ∈ N+ = {1,2,3,...} C) 1 9 = 9 ⋅ n − 1 1 0 n − 1 8 9 + 6 ⋅ n 3 + 1 9 ⋅ 1 2n 0
  • 23.
    FORMULA C) -Dimostrazione continua ... 1 9 = { 1 3 }2 = {0, n 3 + 1 3 ⋅ 1 n 0 }2 ∀n ∈ N = {0,1,2,3,...} = 0, n 3 ⋅ 0, n 3 + 2 ⋅ 0, n 3 ⋅ 1 3 ⋅ 1 n 0 + 1 3 ⋅ 1 n 0 ⋅ 1 3 ⋅ 1 n 0 = 0, n 3 ⋅ 0, n 3 + 2 ⋅ 0, n 3 ⋅ 1 3 ⋅ 1 n 0 + 1 9 ⋅ 1 n 0 ⋅ 1 n 0
  • 24.
    continua ... = { n 3⋅ n 3 = n − 1 1 0 n − 1 8 9} ∀n ∈ N+ = {1,2,3,...} 1 9 = 9 ⋅ 1 n 0 ⋅ 1 n 0 ⋅ 0, n 3 ⋅ 0, n 3 + 3 ⋅ 1 n 0 ⋅ 2 ⋅ 0, n 3 + 1 9 ⋅ 1 n 0 ⋅ 1 n 0 = 9 ⋅ n 3 ⋅ n 3 + 6 ⋅ n 3 + 1 9 ⋅ 1 2n 0 = 9 ⋅ 1 n 0 ⋅ 0, n 3 ⋅ 1 n 0 ⋅ 0, n 3 + 6 ⋅ 1 n 0 ⋅ 0, n 3 + 1 9 ⋅ 1 n 0 ⋅ 1 n 0
  • 25.
    Quindi Notiamo che anchela formula C) è stata ricavata, a un certo punto della dimostrazione, sotto la condizione: n elemento di N+ = {1,2,3,...}. 1 9 = 9 ⋅ n − 1 1 0 n − 1 8 9 + 6 ⋅ n 3 + 1 9 ⋅ 1 2n 0 ∀n ∈ N+ = {1,2,3,...} C) 1 9 = 9 ⋅ n − 1 1 0 n − 1 8 9 + 6 ⋅ n 3 + 1 9 ⋅ 1 2n 0
  • 26.
    FORMULA C) 2 ESEMPI (CONTENGONONUMERI con 2 CIFRE RIPETUTE) a cura di Enzo Exposyto C) 1 9 = 9 ⋅ n − 1 1 0 n − 1 8 9 + 6 ⋅ n 3 + 1 9 ⋅ 1 2n 0 ∀n ∈ N+ = {1,2,3,...}
  • 27.
    9 ⋅ 3 −1 1 0 3 − 1 8 9 + 6 ⋅ 3 3 + 1 9 ⋅ 1 2 ⋅ 3 0 = 9 ⋅ 110.889 + 6 ⋅ 333 + 1 9 ⋅ 1.000.000 = 3 − 1 9 8 3 − 1 0 1 + 1 3 − 1 9 8 + 1 9 ⋅ 1.000.000 = 2 ⋅ 3 9 + 1 9 ⋅ 1.000.000 n = 3 n = 5 9 ⋅ 5 − 1 1 0 5 − 1 8 9 + 6 ⋅ 5 3 + 1 9 ⋅ 1 2 ⋅ 5 0 = 9 ⋅ 1.111.088.889 + 6 ⋅ 33.333 + 1 9 ⋅ 10.000.000.000 = 5 − 1 9 8 5 − 1 0 1 + 1 5 − 1 9 8 + 1 9 ⋅ 10.000.000.000 = 2 ⋅ 5 9 + 1 90.000.000.000 = 9.999.999.999 + 1 90.000.000.000 = 10.000.000.000 90.000.000.000 = 1 9 = 999.999 + 1 9.000.000 = 1.000.000 9.000.000 = 1 9
  • 28.
    dalla C), laFORMULA D) (CONTIENE NUMERO con 2 CIFRE RIPETUTE) a cura di Enzo Exposyto D) 9 ⋅ n − 1 1 0 n − 1 8 9 + 6 ⋅ n 3 + 1 1 2n 0 = 1 ∀n ∈ N+ = {1,2,3,...}
  • 29.
    FORMULA D) La CIFRA1 è RIPETUTA “n-1” VOLTE, la CIFRA 8 è RIPETUTA “n-1” VOLTE, la CIFRA 3 è RIPETUTA “n” VOLTE, la CIFRA 0 è RIPETUTA “2n” VOLTE, con n QUALSIASI appartenente all’insieme N+ = {1,2,3,...}. Ad esempio, con n = 3, la FORMULA D) diventa 2 volte 1 e 8 3 volte 3 2*3 volte 0 D) 9 ⋅ n − 1 1 0 n − 1 8 9 + 6 ⋅ n 3 + 1 1 2n 0 = 1 ∀n ∈ N+ = {1,2,3,...} D) 9 ⋅ 3 − 1 1 0 3 − 1 8 9 + 6 ⋅ 3 3 + 1 1 2 ⋅ 3 0 = 9 ⋅ 110889 + 6 ⋅ 333 + 1 1000000 = 1 n = 3
  • 30.
    FORMULA D) DIMOSTRAZIONE a curadi Enzo Exposyto ∀n ∈ N+ = {1,2,3,...} D) 9 ⋅ n − 1 1 0 n − 1 8 9 + 6 ⋅ n 3 + 1 1 2n 0 = 1
  • 31.
    Quindi 1 9 = 9 ⋅ n −1 1 0 n − 1 8 9 + 6 ⋅ n 3 + 1 9 ⋅ 1 2n 0 1 9 = 1 9 ⋅ 9 ⋅ n − 1 1 0 n − 1 8 9 + 6 ⋅ n 3 + 1 1 2n 0 9 ⋅ n − 1 1 0 n − 1 8 9 + 6 ⋅ n 3 + 1 1 2n 0 = 1 1 9 = 1 9 ⋅ 1 ∀n ∈ N+ = {1,2,3,...} ∀n ∈ N+ = {1,2,3,...}
  • 32.
    FORMULA D) 2 ESEMPI (CONTENGONONUMERI con 2 CIFRE RIPETUTE) a cura di Enzo Exposyto D) 9 ⋅ n − 1 1 0 n − 1 8 9 + 6 ⋅ n 3 + 1 1 2n 0 = 1 ∀n ∈ N+ = {1,2,3,...}
  • 33.
    n = 3 9⋅ 3 − 1 1 0 3 − 1 8 9 + 6 ⋅ 3 3 + 1 1 2 ⋅ 3 0 = 9 ⋅ 110.889 + 6 ⋅ 333 + 1 1.000.000 = 3 − 1 9 8 3 − 1 0 1 + 1 3 − 1 9 8 + 1 1.000.000 = 2 ⋅ 3 9 + 1 1.000.000 = 999.999 + 1 1.000.000 = 1.000.000 1.000.000 = 1 n = 5 9 ⋅ 5 − 1 1 0 5 − 1 8 9 + 6 ⋅ 5 3 + 1 1 2 ⋅ 5 0 = 9 ⋅ 1.111.088.889 + 6 ⋅ 33.333 + 1 10.000.000.000 = 5 − 1 9 8 5 − 1 0 1 + 1 5 − 1 9 8 + 1 10.000.000.000 = 10.000.000.000 10.000.000.000 = 1 = 2 ⋅ 5 9 + 1 10.000.000.000 = 9.999.999.999 + 1 10.000.000.000