SlideShare a Scribd company logo
1 of 4
Lecture 13
GAS TURBINE
Axial Flow Turbine
A gas turbine unit for power generation or a turbojet engine for production of thrust primarily
consists of a compressor, combustion chamber and a turbine. The air as it passes through the
compressor, experiences an increase in pressure. There after the air is fed to the combustion
chamber leading to an increase in temperature. This high pressure and temperature gas is then
passed through the turbine, where it is expanded and the required power is obtained.
Turbines, like compressors, can be classified into radial, axial and mixed flow machines. In the
axial machine the fluid moves essentially in the axial direction through the rotor. In the radial
type, the fluid motion is mostly radial. The mixed-flow machine is characterized by a
combination of axial and radial motion of the fluid relative to the rotor. The choice of turbine
type depends on the application, though it is not always clear that any one type is superior.
Comparing axial and radial turbines of the same overall diameter, we may say that the axial
machine, just as in the case of compressors, is capable of handling considerably greater mass
flow. On the other hand, for small mass flows the radial machine can be made more efficient
than the axial one. The radial turbine is capable of a higher pressure ratio per stage than the
axial one. However, multistaging is very much easier to arrange with the axial turbine, so that
large overall pressure ratios are not difficult to obtain with axial turbines. In this chapter, we will
focus on the axial flow turbine.
Generally the efficiency of a well-designed turbine is higher than the efficiency of a compressor.
Moreover, the design process is somewhat simpler. The principal reason for this fact is that the
fluid undergoes a pressure drop in the turbine and a pressure rise in the compressor.The
pressure drop in the turbine is sufficient to keep the boundary layer generally well behaved, and
the boundary layer separation which often occurs in compressors because of an adverse
pressure gradient, can be avoided in turbines. Offsetting this advantage is the much more
critical stress problem, since turbine rotors must operate in very high temperature gas. Actual
blade shape is often more dependent on stress and cooling considerations than on aerodynamic
considerations, beyond the satisfaction of the velocity-triangle requirements.
Because of the generally falling pressure in turbine flow passages, much more turning in a giving
blade row is possible without danger of flow separation than in an axial compressor blade row.
This means much more work, and considerably higher pressure ratio, per stage.
In recent years advances have been made in turbine blade cooling and in the metallurgy of
turbine blade materials. This means that turbines are able to operate successfully at increasingly
high inlet gas temperatures and that substantial improvements are being made in turbine
engine thrust, weight, and fuel consumption.
Lecture 16
A brief note on Gas Turbine Combustors
Over a period of five decades, the basic factors influencing the design of combustion systems for
gas turbines have not changed, although recently some new requirements have evolved. The
key issues may be summarized as follows.
• The temperature of the gases after combustion must be comparatively controlled to suit the
highly stressed turbine materials. Development of improved materials and methods of blade
cooling, however, has enabled permissible combustor outlet temperatures to rise from about
1100K to as much as 1850 K for aircraft applications.
• At the end of the combustion space the temperature distribution must be of known form if
the turbine blades are not to suffer from local overheating. In practice, the temperature can
increase with radius over the turbine annulus, because of the strong influence of temperature
on allowable stress and the decrease of blade centrifugal stress from root to tip.
• Combustion must be maintained in a stream of air moving with a high velocity in the region of
30-60 m/s, and stable operation is required over a wide range of air/fuel ratio from full load to
idling conditions. The air/fuel ratio might vary from about 60:1 to 120:1 for simple cycle gas
turbines and from 100:1 to 200:1 if a heat-exchanger is used. Considering that the
stoichiometric ratio is approximately 15:1, it is clear that a high dilution is required to maintain
the temperature level dictated by turbine stresses
• The formation of carbon deposits ('coking') must be avoided, particularly the hard brittle
variety. Small particles carried into the turbine in the high-velocity gas stream can erode the
blades and block cooling air passages; furthermore, aerodynamically excited vibration in the
combustion chamber might cause sizeable pieces of carbon to break free resulting in even
worse damage to the turbine.
• In aircraft gas turbines, combustion must be stable over a wide range of chamber pressure
because of the substantial change in this parameter with a altitude and forward speed. Another
important requirement is the capability of relighting at high altitude in the event of an engine
flame-out.
• Avoidance of smoke in the exhaust is of major importance for all types of gas turbine; early jet
engines had very smoky exhausts, and this became a serious problem around airports when jet
transport aircraft started to operate in large numbers. Smoke trails in flight were a problem for
military aircraft, permitting them to be seen from a great distance. Stationary gas turbines are
now found in urban locations, sometimes close to residential areas.
• Although gas turbine combustion systems operate at extremely high efficiencies, they
produce pollutants such as oxides of nitrogen , carbon monoxide (CO) and unburned
hydrocarbons (UHC) and these must be controlled to very low levels. Over the years, the
performance of the gas turbine has been improved mainly by increasing the compressor
pressure ratio and turbine inlet temperature (TIT). Unfortunately this results in increased
production of . Ever more stringent emissions legislation has led to significant changes in
combustor design to cope with the problem.
Probably the only feature of the gas turbine that eases the combustion designer's problem is the
peculiar interdependence of compressor delivery air density and mass flow which leads to the
velocity of the air at entry to the combustion system being reasonably constant over the
operating range.
For aircraft applications there are the additional limitations of small space and low weight,
which are, however, slightly offset by somewhat shorter endurance requirements. Aircraft
engine combustion chambers are normally constructed of light-gauge, heat-resisting alloy sheet
(approx. 0.8 mm thick), but are only expected to have a life of some 10000 hours. Combustion
chambers for industrial gas turbine plant may be constructed on much sturdier lines but, on the
other hand, a life of about 100000 hours is required. Refractory linings are sometimes used in
heavy chambers, although the remarks made above regarding the effects of hard carbon
deposits breaking free apply with even greater force to refractory material.

More Related Content

What's hot

2nd Revised FYP Reporting
2nd Revised FYP Reporting2nd Revised FYP Reporting
2nd Revised FYP ReportingBurhan Ahmed
 
Combustion chamber
Combustion chamberCombustion chamber
Combustion chamberShahu Sonu
 
Combustion Chamber 2/5
Combustion Chamber 2/5Combustion Chamber 2/5
Combustion Chamber 2/5Jio Gayon
 
Design of fin plate heat exchanger
Design of fin plate heat exchangerDesign of fin plate heat exchanger
Design of fin plate heat exchangerBhavesh Solanki
 
Industrial gas turbine (air cooling & sealing sys) 5th
Industrial gas turbine (air cooling & sealing sys)   5thIndustrial gas turbine (air cooling & sealing sys)   5th
Industrial gas turbine (air cooling & sealing sys) 5thNguyen Phuong Dong
 
turbine engine intake
 turbine engine intake turbine engine intake
turbine engine intakeradhebharvad
 
Ci engine combustion by Akhileshwar Nirala
Ci engine combustion by Akhileshwar NiralaCi engine combustion by Akhileshwar Nirala
Ci engine combustion by Akhileshwar NiralaAkhilesh Roy
 
Steam Generators - SNIST (M.Tech)
Steam Generators - SNIST (M.Tech)Steam Generators - SNIST (M.Tech)
Steam Generators - SNIST (M.Tech)S.Vijaya Bhaskar
 
Combustion Chamber 3/5
Combustion Chamber 3/5Combustion Chamber 3/5
Combustion Chamber 3/5Jio Gayon
 
SHELL & TUBE HEAT EXCHANGER
SHELL & TUBE HEAT EXCHANGERSHELL & TUBE HEAT EXCHANGER
SHELL & TUBE HEAT EXCHANGERClaire Canoy
 
Numerical simulation of gas turbine blade cooling for enhancement of heat tra...
Numerical simulation of gas turbine blade cooling for enhancement of heat tra...Numerical simulation of gas turbine blade cooling for enhancement of heat tra...
Numerical simulation of gas turbine blade cooling for enhancement of heat tra...eSAT Publishing House
 
Compact Heat Exchangers
Compact Heat ExchangersCompact Heat Exchangers
Compact Heat Exchangersadlinilda
 
Fans in thermal power plants
Fans in thermal power plantsFans in thermal power plants
Fans in thermal power plantsSHIVAJI CHOUDHURY
 
heat exchanger
heat exchangerheat exchanger
heat exchangerShanu Jp
 
Supersonic Combustion Instability
Supersonic Combustion InstabilitySupersonic Combustion Instability
Supersonic Combustion InstabilityROSHAN SAH
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Combustion Chamber 5/5
Combustion Chamber 5/5Combustion Chamber 5/5
Combustion Chamber 5/5Jio Gayon
 

What's hot (20)

2nd Revised FYP Reporting
2nd Revised FYP Reporting2nd Revised FYP Reporting
2nd Revised FYP Reporting
 
Unit 1 combustion chamber
Unit 1 combustion chamberUnit 1 combustion chamber
Unit 1 combustion chamber
 
Supersonic combustion
Supersonic combustionSupersonic combustion
Supersonic combustion
 
Combustion chamber
Combustion chamberCombustion chamber
Combustion chamber
 
Combustion Chamber 2/5
Combustion Chamber 2/5Combustion Chamber 2/5
Combustion Chamber 2/5
 
Design of fin plate heat exchanger
Design of fin plate heat exchangerDesign of fin plate heat exchanger
Design of fin plate heat exchanger
 
Industrial gas turbine (air cooling & sealing sys) 5th
Industrial gas turbine (air cooling & sealing sys)   5thIndustrial gas turbine (air cooling & sealing sys)   5th
Industrial gas turbine (air cooling & sealing sys) 5th
 
turbine engine intake
 turbine engine intake turbine engine intake
turbine engine intake
 
Ci engine combustion by Akhileshwar Nirala
Ci engine combustion by Akhileshwar NiralaCi engine combustion by Akhileshwar Nirala
Ci engine combustion by Akhileshwar Nirala
 
Steam Generators - SNIST (M.Tech)
Steam Generators - SNIST (M.Tech)Steam Generators - SNIST (M.Tech)
Steam Generators - SNIST (M.Tech)
 
Combustion Chamber 3/5
Combustion Chamber 3/5Combustion Chamber 3/5
Combustion Chamber 3/5
 
SHELL & TUBE HEAT EXCHANGER
SHELL & TUBE HEAT EXCHANGERSHELL & TUBE HEAT EXCHANGER
SHELL & TUBE HEAT EXCHANGER
 
Numerical simulation of gas turbine blade cooling for enhancement of heat tra...
Numerical simulation of gas turbine blade cooling for enhancement of heat tra...Numerical simulation of gas turbine blade cooling for enhancement of heat tra...
Numerical simulation of gas turbine blade cooling for enhancement of heat tra...
 
Compact Heat Exchangers
Compact Heat ExchangersCompact Heat Exchangers
Compact Heat Exchangers
 
Fans in thermal power plants
Fans in thermal power plantsFans in thermal power plants
Fans in thermal power plants
 
heat exchanger
heat exchangerheat exchanger
heat exchanger
 
Supersonic Combustion Instability
Supersonic Combustion InstabilitySupersonic Combustion Instability
Supersonic Combustion Instability
 
BOILER DRAUGHT
BOILER DRAUGHTBOILER DRAUGHT
BOILER DRAUGHT
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Combustion Chamber 5/5
Combustion Chamber 5/5Combustion Chamber 5/5
Combustion Chamber 5/5
 

Similar to Axial Flow Turbine Design and Operation

Improved efficiency of gas turbine by Razin Sazzad Molla
Improved efficiency of gas turbine by Razin Sazzad MollaImproved efficiency of gas turbine by Razin Sazzad Molla
Improved efficiency of gas turbine by Razin Sazzad MollaRazin Sazzad Molla
 
07 ii-gas combined-cycle
07 ii-gas combined-cycle07 ii-gas combined-cycle
07 ii-gas combined-cycleIIT Kanpur
 
9- palnt equipements final.pdf
9- palnt equipements final.pdf9- palnt equipements final.pdf
9- palnt equipements final.pdfelsayedAmer7
 
Basics of Gas Turbine Power Plant
Basics of Gas Turbine Power PlantBasics of Gas Turbine Power Plant
Basics of Gas Turbine Power PlantS.Vijaya Bhaskar
 
168 w1a0352 intern ppt
168 w1a0352 intern ppt168 w1a0352 intern ppt
168 w1a0352 intern pptAshok Mannava
 
Gas turbine lecture by kpm
Gas turbine lecture by kpmGas turbine lecture by kpm
Gas turbine lecture by kpmKrunal Mudafale
 
GAS TURBINE POWER PLANTS INLET AIR COOLING
GAS TURBINE POWER PLANTS INLET AIR COOLINGGAS TURBINE POWER PLANTS INLET AIR COOLING
GAS TURBINE POWER PLANTS INLET AIR COOLINGAhmed Abbas
 
Gas turbines working ppt
Gas turbines working pptGas turbines working ppt
Gas turbines working pptluckyvarsha
 
Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...
Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...
Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...Belilove Company-Engineers
 
A40076857 gas-turbine-engines
A40076857 gas-turbine-enginesA40076857 gas-turbine-engines
A40076857 gas-turbine-enginesmanojg1990
 

Similar to Axial Flow Turbine Design and Operation (20)

Improved efficiency of gas turbine by Razin Sazzad Molla
Improved efficiency of gas turbine by Razin Sazzad MollaImproved efficiency of gas turbine by Razin Sazzad Molla
Improved efficiency of gas turbine by Razin Sazzad Molla
 
07 ii-gas combined-cycle
07 ii-gas combined-cycle07 ii-gas combined-cycle
07 ii-gas combined-cycle
 
propulsion 1
propulsion 1propulsion 1
propulsion 1
 
9- palnt equipements final.pdf
9- palnt equipements final.pdf9- palnt equipements final.pdf
9- palnt equipements final.pdf
 
Turbine section module 15.6
Turbine section module 15.6Turbine section module 15.6
Turbine section module 15.6
 
Gas turbines
Gas turbinesGas turbines
Gas turbines
 
Basics of Gas Turbine Power Plant
Basics of Gas Turbine Power PlantBasics of Gas Turbine Power Plant
Basics of Gas Turbine Power Plant
 
168 w1a0352 intern ppt
168 w1a0352 intern ppt168 w1a0352 intern ppt
168 w1a0352 intern ppt
 
Unit 4 a
Unit 4 aUnit 4 a
Unit 4 a
 
Unit 4 a
Unit 4 aUnit 4 a
Unit 4 a
 
Gas turbine lecture by kpm
Gas turbine lecture by kpmGas turbine lecture by kpm
Gas turbine lecture by kpm
 
GAS TURBINE POWER PLANTS INLET AIR COOLING
GAS TURBINE POWER PLANTS INLET AIR COOLINGGAS TURBINE POWER PLANTS INLET AIR COOLING
GAS TURBINE POWER PLANTS INLET AIR COOLING
 
Gas turbines working ppt
Gas turbines working pptGas turbines working ppt
Gas turbines working ppt
 
Ec ii
Ec iiEc ii
Ec ii
 
Air heater
Air heaterAir heater
Air heater
 
Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...
Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...
Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...
 
Industrial compressor
Industrial compressorIndustrial compressor
Industrial compressor
 
Ppe (2)
Ppe (2)Ppe (2)
Ppe (2)
 
A40076857 gas-turbine-engines
A40076857 gas-turbine-enginesA40076857 gas-turbine-engines
A40076857 gas-turbine-engines
 
4_5967283185736747007.pptx
4_5967283185736747007.pptx4_5967283185736747007.pptx
4_5967283185736747007.pptx
 

More from manojg1990

Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanicsmanojg1990
 
Mech ug curriculum and syllabus
Mech ug curriculum and syllabusMech ug curriculum and syllabus
Mech ug curriculum and syllabusmanojg1990
 
203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)manojg1990
 
257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)manojg1990
 
98021616 fusion
98021616 fusion98021616 fusion
98021616 fusionmanojg1990
 
nuclear reactor98021616 fusion
nuclear reactor98021616 fusionnuclear reactor98021616 fusion
nuclear reactor98021616 fusionmanojg1990
 
Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)manojg1990
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modelingmanojg1990
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modelingmanojg1990
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modelingmanojg1990
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modelingmanojg1990
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modelingmanojg1990
 
78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts78307635 geometric-modeling-concepts
78307635 geometric-modeling-conceptsmanojg1990
 
29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniques29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniquesmanojg1990
 

More from manojg1990 (20)

Qb103355
Qb103355Qb103355
Qb103355
 
Qb103353
Qb103353Qb103353
Qb103353
 
Qb103352
Qb103352Qb103352
Qb103352
 
Qb103351
Qb103351Qb103351
Qb103351
 
Qb103354
Qb103354Qb103354
Qb103354
 
Aptitude
AptitudeAptitude
Aptitude
 
Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanics
 
Mech ug curriculum and syllabus
Mech ug curriculum and syllabusMech ug curriculum and syllabus
Mech ug curriculum and syllabus
 
203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)
 
257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)
 
98021616 fusion
98021616 fusion98021616 fusion
98021616 fusion
 
nuclear reactor98021616 fusion
nuclear reactor98021616 fusionnuclear reactor98021616 fusion
nuclear reactor98021616 fusion
 
Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modeling
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modeling
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modeling
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modeling
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modeling
 
78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts
 
29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniques29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniques
 

Recently uploaded

Govindpuri Call Girls : ☎ 8527673949, Low rate Call Girls
Govindpuri Call Girls : ☎ 8527673949, Low rate Call GirlsGovindpuri Call Girls : ☎ 8527673949, Low rate Call Girls
Govindpuri Call Girls : ☎ 8527673949, Low rate Call Girlsashishs7044
 
Retail Store Scavanger Hunt - Foundation College Park
Retail Store Scavanger Hunt - Foundation College ParkRetail Store Scavanger Hunt - Foundation College Park
Retail Store Scavanger Hunt - Foundation College Parkjosebenzaquen
 
FULL ENJOY - 9953040155 Call Girls in Dwarka Mor | Delhi
FULL ENJOY - 9953040155 Call Girls in Dwarka Mor | DelhiFULL ENJOY - 9953040155 Call Girls in Dwarka Mor | Delhi
FULL ENJOY - 9953040155 Call Girls in Dwarka Mor | DelhiMalviyaNagarCallGirl
 
How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?
How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?
How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?kexey39068
 
Greater Noida Call Girls : ☎ 8527673949, Low rate Call Girls
Greater Noida Call Girls : ☎ 8527673949, Low rate Call GirlsGreater Noida Call Girls : ☎ 8527673949, Low rate Call Girls
Greater Noida Call Girls : ☎ 8527673949, Low rate Call Girlsashishs7044
 
Mandi House Call Girls : ☎ 8527673949, Low rate Call Girls
Mandi House Call Girls : ☎ 8527673949, Low rate Call GirlsMandi House Call Girls : ☎ 8527673949, Low rate Call Girls
Mandi House Call Girls : ☎ 8527673949, Low rate Call Girlsashishs7044
 
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | DelhiFULL ENJOY - 9953040155 Call Girls in Mahipalpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | DelhiMalviyaNagarCallGirl
 
Turn Lock Take Key Storyboard Daniel Johnson
Turn Lock Take Key Storyboard Daniel JohnsonTurn Lock Take Key Storyboard Daniel Johnson
Turn Lock Take Key Storyboard Daniel Johnsonthephillipta
 
FULL ENJOY - 9953040155 Call Girls in Uttam Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Uttam Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in Uttam Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Uttam Nagar | DelhiMalviyaNagarCallGirl
 
Burari Call Girls : ☎ 8527673949, Low rate Call Girls
Burari Call Girls : ☎ 8527673949, Low rate Call GirlsBurari Call Girls : ☎ 8527673949, Low rate Call Girls
Burari Call Girls : ☎ 8527673949, Low rate Call Girlsashishs7044
 
Pragati Maidan Call Girls : ☎ 8527673949, Low rate Call Girls
Pragati Maidan Call Girls : ☎ 8527673949, Low rate Call GirlsPragati Maidan Call Girls : ☎ 8527673949, Low rate Call Girls
Pragati Maidan Call Girls : ☎ 8527673949, Low rate Call Girlsashishs7044
 
Patrakarpuram ) Cheap Call Girls In Lucknow (Adult Only) 🧈 8923113531 𓀓 Esco...
Patrakarpuram ) Cheap Call Girls In Lucknow  (Adult Only) 🧈 8923113531 𓀓 Esco...Patrakarpuram ) Cheap Call Girls In Lucknow  (Adult Only) 🧈 8923113531 𓀓 Esco...
Patrakarpuram ) Cheap Call Girls In Lucknow (Adult Only) 🧈 8923113531 𓀓 Esco...akbard9823
 
FULL ENJOY - 9953040155 Call Girls in Shahdara | Delhi
FULL ENJOY - 9953040155 Call Girls in Shahdara | DelhiFULL ENJOY - 9953040155 Call Girls in Shahdara | Delhi
FULL ENJOY - 9953040155 Call Girls in Shahdara | DelhiMalviyaNagarCallGirl
 
FULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | DelhiMalviyaNagarCallGirl
 
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | DelhiMalviyaNagarCallGirl
 
Call Girls in Islamabad | 03274100048 | Call Girl Service
Call Girls in Islamabad | 03274100048 | Call Girl ServiceCall Girls in Islamabad | 03274100048 | Call Girl Service
Call Girls in Islamabad | 03274100048 | Call Girl ServiceAyesha Khan
 
Kishangarh Call Girls : ☎ 8527673949, Low rate Call Girls
Kishangarh Call Girls : ☎ 8527673949, Low rate Call GirlsKishangarh Call Girls : ☎ 8527673949, Low rate Call Girls
Kishangarh Call Girls : ☎ 8527673949, Low rate Call Girlsashishs7044
 
FULL ENJOY - 9953040155 Call Girls in Noida | Delhi
FULL ENJOY - 9953040155 Call Girls in Noida | DelhiFULL ENJOY - 9953040155 Call Girls in Noida | Delhi
FULL ENJOY - 9953040155 Call Girls in Noida | DelhiMalviyaNagarCallGirl
 
Akola Call Girls #9907093804 Contact Number Escorts Service Akola
Akola Call Girls #9907093804 Contact Number Escorts Service AkolaAkola Call Girls #9907093804 Contact Number Escorts Service Akola
Akola Call Girls #9907093804 Contact Number Escorts Service Akolasrsj9000
 

Recently uploaded (20)

Govindpuri Call Girls : ☎ 8527673949, Low rate Call Girls
Govindpuri Call Girls : ☎ 8527673949, Low rate Call GirlsGovindpuri Call Girls : ☎ 8527673949, Low rate Call Girls
Govindpuri Call Girls : ☎ 8527673949, Low rate Call Girls
 
Retail Store Scavanger Hunt - Foundation College Park
Retail Store Scavanger Hunt - Foundation College ParkRetail Store Scavanger Hunt - Foundation College Park
Retail Store Scavanger Hunt - Foundation College Park
 
FULL ENJOY - 9953040155 Call Girls in Dwarka Mor | Delhi
FULL ENJOY - 9953040155 Call Girls in Dwarka Mor | DelhiFULL ENJOY - 9953040155 Call Girls in Dwarka Mor | Delhi
FULL ENJOY - 9953040155 Call Girls in Dwarka Mor | Delhi
 
How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?
How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?
How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?
 
Greater Noida Call Girls : ☎ 8527673949, Low rate Call Girls
Greater Noida Call Girls : ☎ 8527673949, Low rate Call GirlsGreater Noida Call Girls : ☎ 8527673949, Low rate Call Girls
Greater Noida Call Girls : ☎ 8527673949, Low rate Call Girls
 
Mandi House Call Girls : ☎ 8527673949, Low rate Call Girls
Mandi House Call Girls : ☎ 8527673949, Low rate Call GirlsMandi House Call Girls : ☎ 8527673949, Low rate Call Girls
Mandi House Call Girls : ☎ 8527673949, Low rate Call Girls
 
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | DelhiFULL ENJOY - 9953040155 Call Girls in Mahipalpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | Delhi
 
Turn Lock Take Key Storyboard Daniel Johnson
Turn Lock Take Key Storyboard Daniel JohnsonTurn Lock Take Key Storyboard Daniel Johnson
Turn Lock Take Key Storyboard Daniel Johnson
 
FULL ENJOY - 9953040155 Call Girls in Uttam Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Uttam Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in Uttam Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Uttam Nagar | Delhi
 
Burari Call Girls : ☎ 8527673949, Low rate Call Girls
Burari Call Girls : ☎ 8527673949, Low rate Call GirlsBurari Call Girls : ☎ 8527673949, Low rate Call Girls
Burari Call Girls : ☎ 8527673949, Low rate Call Girls
 
Pragati Maidan Call Girls : ☎ 8527673949, Low rate Call Girls
Pragati Maidan Call Girls : ☎ 8527673949, Low rate Call GirlsPragati Maidan Call Girls : ☎ 8527673949, Low rate Call Girls
Pragati Maidan Call Girls : ☎ 8527673949, Low rate Call Girls
 
Patrakarpuram ) Cheap Call Girls In Lucknow (Adult Only) 🧈 8923113531 𓀓 Esco...
Patrakarpuram ) Cheap Call Girls In Lucknow  (Adult Only) 🧈 8923113531 𓀓 Esco...Patrakarpuram ) Cheap Call Girls In Lucknow  (Adult Only) 🧈 8923113531 𓀓 Esco...
Patrakarpuram ) Cheap Call Girls In Lucknow (Adult Only) 🧈 8923113531 𓀓 Esco...
 
FULL ENJOY - 9953040155 Call Girls in Shahdara | Delhi
FULL ENJOY - 9953040155 Call Girls in Shahdara | DelhiFULL ENJOY - 9953040155 Call Girls in Shahdara | Delhi
FULL ENJOY - 9953040155 Call Girls in Shahdara | Delhi
 
FULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | Delhi
 
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
 
Dxb Call Girls # +971529501107 # Call Girls In Dxb Dubai || (UAE)
Dxb Call Girls # +971529501107 # Call Girls In Dxb Dubai || (UAE)Dxb Call Girls # +971529501107 # Call Girls In Dxb Dubai || (UAE)
Dxb Call Girls # +971529501107 # Call Girls In Dxb Dubai || (UAE)
 
Call Girls in Islamabad | 03274100048 | Call Girl Service
Call Girls in Islamabad | 03274100048 | Call Girl ServiceCall Girls in Islamabad | 03274100048 | Call Girl Service
Call Girls in Islamabad | 03274100048 | Call Girl Service
 
Kishangarh Call Girls : ☎ 8527673949, Low rate Call Girls
Kishangarh Call Girls : ☎ 8527673949, Low rate Call GirlsKishangarh Call Girls : ☎ 8527673949, Low rate Call Girls
Kishangarh Call Girls : ☎ 8527673949, Low rate Call Girls
 
FULL ENJOY - 9953040155 Call Girls in Noida | Delhi
FULL ENJOY - 9953040155 Call Girls in Noida | DelhiFULL ENJOY - 9953040155 Call Girls in Noida | Delhi
FULL ENJOY - 9953040155 Call Girls in Noida | Delhi
 
Akola Call Girls #9907093804 Contact Number Escorts Service Akola
Akola Call Girls #9907093804 Contact Number Escorts Service AkolaAkola Call Girls #9907093804 Contact Number Escorts Service Akola
Akola Call Girls #9907093804 Contact Number Escorts Service Akola
 

Axial Flow Turbine Design and Operation

  • 1. Lecture 13 GAS TURBINE Axial Flow Turbine A gas turbine unit for power generation or a turbojet engine for production of thrust primarily consists of a compressor, combustion chamber and a turbine. The air as it passes through the compressor, experiences an increase in pressure. There after the air is fed to the combustion chamber leading to an increase in temperature. This high pressure and temperature gas is then passed through the turbine, where it is expanded and the required power is obtained. Turbines, like compressors, can be classified into radial, axial and mixed flow machines. In the axial machine the fluid moves essentially in the axial direction through the rotor. In the radial type, the fluid motion is mostly radial. The mixed-flow machine is characterized by a combination of axial and radial motion of the fluid relative to the rotor. The choice of turbine type depends on the application, though it is not always clear that any one type is superior. Comparing axial and radial turbines of the same overall diameter, we may say that the axial machine, just as in the case of compressors, is capable of handling considerably greater mass flow. On the other hand, for small mass flows the radial machine can be made more efficient than the axial one. The radial turbine is capable of a higher pressure ratio per stage than the axial one. However, multistaging is very much easier to arrange with the axial turbine, so that large overall pressure ratios are not difficult to obtain with axial turbines. In this chapter, we will focus on the axial flow turbine. Generally the efficiency of a well-designed turbine is higher than the efficiency of a compressor. Moreover, the design process is somewhat simpler. The principal reason for this fact is that the fluid undergoes a pressure drop in the turbine and a pressure rise in the compressor.The pressure drop in the turbine is sufficient to keep the boundary layer generally well behaved, and the boundary layer separation which often occurs in compressors because of an adverse pressure gradient, can be avoided in turbines. Offsetting this advantage is the much more
  • 2. critical stress problem, since turbine rotors must operate in very high temperature gas. Actual blade shape is often more dependent on stress and cooling considerations than on aerodynamic considerations, beyond the satisfaction of the velocity-triangle requirements. Because of the generally falling pressure in turbine flow passages, much more turning in a giving blade row is possible without danger of flow separation than in an axial compressor blade row. This means much more work, and considerably higher pressure ratio, per stage. In recent years advances have been made in turbine blade cooling and in the metallurgy of turbine blade materials. This means that turbines are able to operate successfully at increasingly high inlet gas temperatures and that substantial improvements are being made in turbine engine thrust, weight, and fuel consumption. Lecture 16 A brief note on Gas Turbine Combustors Over a period of five decades, the basic factors influencing the design of combustion systems for gas turbines have not changed, although recently some new requirements have evolved. The key issues may be summarized as follows. • The temperature of the gases after combustion must be comparatively controlled to suit the highly stressed turbine materials. Development of improved materials and methods of blade cooling, however, has enabled permissible combustor outlet temperatures to rise from about
  • 3. 1100K to as much as 1850 K for aircraft applications. • At the end of the combustion space the temperature distribution must be of known form if the turbine blades are not to suffer from local overheating. In practice, the temperature can increase with radius over the turbine annulus, because of the strong influence of temperature on allowable stress and the decrease of blade centrifugal stress from root to tip. • Combustion must be maintained in a stream of air moving with a high velocity in the region of 30-60 m/s, and stable operation is required over a wide range of air/fuel ratio from full load to idling conditions. The air/fuel ratio might vary from about 60:1 to 120:1 for simple cycle gas turbines and from 100:1 to 200:1 if a heat-exchanger is used. Considering that the stoichiometric ratio is approximately 15:1, it is clear that a high dilution is required to maintain the temperature level dictated by turbine stresses • The formation of carbon deposits ('coking') must be avoided, particularly the hard brittle variety. Small particles carried into the turbine in the high-velocity gas stream can erode the blades and block cooling air passages; furthermore, aerodynamically excited vibration in the combustion chamber might cause sizeable pieces of carbon to break free resulting in even worse damage to the turbine. • In aircraft gas turbines, combustion must be stable over a wide range of chamber pressure because of the substantial change in this parameter with a altitude and forward speed. Another important requirement is the capability of relighting at high altitude in the event of an engine flame-out. • Avoidance of smoke in the exhaust is of major importance for all types of gas turbine; early jet engines had very smoky exhausts, and this became a serious problem around airports when jet transport aircraft started to operate in large numbers. Smoke trails in flight were a problem for military aircraft, permitting them to be seen from a great distance. Stationary gas turbines are now found in urban locations, sometimes close to residential areas. • Although gas turbine combustion systems operate at extremely high efficiencies, they produce pollutants such as oxides of nitrogen , carbon monoxide (CO) and unburned hydrocarbons (UHC) and these must be controlled to very low levels. Over the years, the
  • 4. performance of the gas turbine has been improved mainly by increasing the compressor pressure ratio and turbine inlet temperature (TIT). Unfortunately this results in increased production of . Ever more stringent emissions legislation has led to significant changes in combustor design to cope with the problem. Probably the only feature of the gas turbine that eases the combustion designer's problem is the peculiar interdependence of compressor delivery air density and mass flow which leads to the velocity of the air at entry to the combustion system being reasonably constant over the operating range. For aircraft applications there are the additional limitations of small space and low weight, which are, however, slightly offset by somewhat shorter endurance requirements. Aircraft engine combustion chambers are normally constructed of light-gauge, heat-resisting alloy sheet (approx. 0.8 mm thick), but are only expected to have a life of some 10000 hours. Combustion chambers for industrial gas turbine plant may be constructed on much sturdier lines but, on the other hand, a life of about 100000 hours is required. Refractory linings are sometimes used in heavy chambers, although the remarks made above regarding the effects of hard carbon deposits breaking free apply with even greater force to refractory material.