SlideShare a Scribd company logo
1 of 6
Download to read offline
International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759
www.ijmsi.org Volume 4 Issue 5 || June. 2016 || PP-01-06
www.ijmsi.org 1 | Page
On Some Multiple Integral Formulas Involving Jacobi and
Laguerre Polynomials of Several Variables
1
Ahmed Ali Atash, 2
Salem Saleh Barahmah
1
Department of Mathematics, Faculty of Education-Shabwah, Aden University, Yemen
2
Department of Mathematics, Faculty of Education -Aden, Aden University, Yemen
ABSTRACT: The aim of the present paper is to derive some multiple integral formulas involving Jacobi and
Laguerre polynomials of several variables. These results are established with the help of a known and
interesting integrals given in Edwards [2].Furthermore, some special cases are also derived.
KEYWORDS: multiple integral formulas, Jacobi polynomials, Laguerre polynomials Kamp´e de F´eriet
function
I. INTRODUCTION
The Jacobi polynomials of several variables  rn
xxP rr
,,1
),;;,( 11

 
of Shrivastava [7]are defined as follows
:
  r
nrnn
rn
n
xxP rr
)!(
)1()1()1(
,,
21
1
),;;,( 11
 

















2
1
,,
2
1
;
;
1
1
;
;
;
;
1
1
:
: 1
1
11
1
1
;
;
;
;
1
1
:
:
0
1 r
r
rr xxnnn
F 








(1.1)
where  n
qqp
mml
xxF n
n
,,1
;;:
;;:
1
1



is the multivariable extension of the Kamp´e de F´eriet function [8], see also [9]
 








 nn
m
n
q
m
q
l
p
n
n
n
n
n
zz
d
b
d
b
c
a
mml
qqp
Fzz
mml
qqp
F
n
n
,,
;
;
)(
)(
;
;
;
;
)(
)(
:
:
)(
)(
;;:
;;:
,,
;;:
;;:
1)(
)(
'
'
1
1
1
1
1
1
1








  ,
!!
,,
0, 1
1
1
1
1




n
n
ss n
s
n
s
n
s
z
s
z
ss

 (1.2)
where
 









n
nn
n
nn
m
j
s
n
jsj
m
j
ssj
l
j
q
j
s
n
jsj
q
j
ssj
p
j
n
ddc
bba
ss
1
)(
11
1
)(
11
1
)()'()(
)()()(
,,
1
1
1
1
1
1





. (1.3)
And for convergence of the multivariable hypergeometric series in (1.3)
;,,1,01 nkqpml kk

The equality holds when, in addition, either
;1
11
1

 lplp
n
xxandlp 
or
1},,max{ 1
 n
xxandlp  .
The Laguerre polynomials of several variables  rn
xxL r
,,1
),,( 1

 
of khan and Shukla [3] are defined as
follows:
On Some Multiple Integral Formulas Involving Jacobi And Laguerre Polynomials Of Several…
www.ijmsi.org 2 | Page
   rr
r
r
nrn
rn
xxn
n
xxL r
,,;1,,1;
)!(
)1()1(
,, 11
)(
2
1
1
),,( 1






 

(1.4)
where
)(
2
r
 is the confluent hypergeometric function of r-variables [9]
 
!!)()(
)(
,,;,,;
1
1
0,, 1
11
)(
2
1
1 1
1
r
m
r
m
mm mrm
mm
rr
r
m
x
m
x
cc
a
xxcca
r
r r
r









 (1.5)
In our investigation we require the following integrals [2]:
),()1()1()1(
1
0
1
0
111
baBdxdyxyyxy
babaa
 

, (1.6)
Provided 0)Re( a and 0)Re( b .
),()1()1()1(
1
0
11
baBcxdxcxxx
ababa 
 (1.7)
Provided 0)Re(,0)Re(  ba and 1c , where
)(
)()(
),(
ba
ba
baB


 , is the well known Beta
function.
II. MAIN INTEGRAL FORMULAS
In this section ,we have proved the following integral formulas:
   

1
0
1
0
1
0
1
11
1
1
1
11
1
0
11111
)1()1()1( 
babaa
yxyxy
rrrrr ba
rr
b
r
a
r
a
r
yxyxy


111
)1()1()1(
  rryx
xy
yx
xydcdc
n
dydxdydxP
rr
rrrr


111
)1(2
1
)1(2),;;,(
1,,1
11
1111





r
rrnrn
n
baBbaBcc
)!(
),(),()1()1( 111
 













1,,1
;
;
,1
,1
;
;
;
;
,1
,1
:
:
2;;2
2;;2
:
:
0
1
111
111





rrr
rrr
bac
andc
bac
andcn
F (2.1)
   

1
0
1
0
1
0
1
11
1
1
1
11
1
0
11111
)1()1()1( 
babaa
yxyxy
rrrrr ba
rr
b
r
a
r
a
r
yxyxy


111
)1()1()1(
  rryx
xy
yx
xycc
n
dydxdydxL
rr
rrr


111
)1(
1
)1(),,(
,,
11
111





r
rrnrn
n
baBbaBcc
)!(
),(),()1()1( 111
 









1,,1
;
;
,1;
;
;
;
,1:
:
2;;2
1;;1
:
:
0
1
111
1





rrr
r
bac
a
bac
an
F (2.2)
 


1
0
11
1
0
11
1
1
1
1
)1()1()1()1( 1111 rrrr ba
rr
b
r
a
r
baba
xexxxexx 
On Some Multiple Integral Formulas Involving Jacobi And Laguerre Polynomials Of Several…
www.ijmsi.org 3 | Page
  rxe
x
xe
xdcdc
n
dxdxP
rr
rrr


11
2
1
2),;;,(
1,,1
11
111


r
rrnrn
a
r
a
n
baBbaBccee r
)!(
),(),()1()1()1()1( 1111
1
 














rrrr
rrr
eebac
andc
bac
andcn
F
1
1
,,
1
1
;
;
,1
,1
;
;
;
;
,1
,1
:
:
2;;2
2;;2
:
:
0
1
1111
111





(2.3)
 


1
0
11
1
0
11
1
1
1
1
)1()1()1()1( 1111 rrrr ba
rr
b
r
a
r
baba
xexxxexx 
  rxe
x
xe
xcc
n
dxdxL
rr
rr


111
),,(
,,
11
11


r
rrnrn
a
r
a
n
baBbaBccee r
)!(
),(),()1()1()1()1( 1111
1
 










rrrr
r
eebac
a
bac
an
F
1
1
,,
1
1
;
;
,1;
;
;
;
,1:
:
2;;2
1;;1
:
:
0
1
1111
1





(2.4)
Further, if we take rr
caca  1,,1 11
 in (2.1), (2.2),(2.3) and (2.4) respectively we have
   

1
0
1
0
1
0
11
1
11
1
1
1
0
11111
)1()1()1( 
bcbcc
yxyxy
rrrrr bc
rr
b
r
c
r
c
r
yxyxy

 )1()1()1(
11
  rryx
xy
yx
xydcdc
n
dydxdydxP
rr
rrrr


111
)1(2
1
)1(2),;;,(
1,,1
11
1111





 1,,1),1(),1(
),;;,(
11
1111

 rrrr bdbcbdbc
nrr
PbncBbncB

 (2.5)
   

1
0
1
0
1
0
11
1
11
1
1
1
0
11111
)1()1()1( 
bcbcc
yxyxy
rrrrr bc
rr
b
r
c
r
c
r
yxyxy

 )1()1()1(
11
  rryx
xy
yx
xycc
n
dydxdydxL
rr
rrr


111
)1(
1
)1(),,(
,,
11
111





 1,,1),1(),1(
),,(
11
11

 rr bcbc
nrr
LbncBbncB

 (2.6)
 


1
0
11
1
0
1
11
1
11
)1()1()1()1( 1111 rrrr bc
rr
b
r
c
r
bcbc
xexxxexx 
  rxe
x
xe
xdcdc
n
dxdxP
rr
rrr


11
2
1
2),;;,(
1,,1
11
111


),1(),1()1()1( 11
11
1
1
rr
c
r
c
bncBbncBee r



 1
1
1
1),;;,(
,,
1
11111




r
rrrrr
e
e
e
ebdbcbdbc
n
P 

(2.7)
 


1
0
11
1
0
1
11
1
11
)1()1()1()1( 1111 rrrr bc
rr
b
r
c
r
bcbc
xexxxexx 
  rxe
x
xe
xcc
n
dxdxL
rr
rr


111
),,(
,,
11
11


 r
rrr
ee
bcbc
nrr
c
r
c
LbncBbncBee 

 1
1
1
1),,(
11
11
1
,,),1(),1()1()1(
1
111


(2.8)
On Some Multiple Integral Formulas Involving Jacobi And Laguerre Polynomials Of Several…
www.ijmsi.org 4 | Page
Proof of (2.1): Denoting the left hand side of (2.1) by I, using the definition (1.1), expanding
1
1
;
;
;
;
1
1
:
:
0
1


F in a
power series and changing the order of summation and integration, we get:
r
nrn
n
cc
I
)!(
)1()1( 1



  







n
p
pn
p
ppn
p rprp
prrppp
r
r r
rr
ppcc
ndcndcn
0 0 0 11
11
1
1
2
1
1
11
!!)1()1(
)1()1()(




  

1
0
1
0
11
1
11
1
1
1
11
11111111
)1()1()1( dydxyxyxy
bpabpapa
 


1
0
1
0
111
)1()1()1( rr
bpa
rr
b
r
pa
r
pa
r
dydxyxyxy rrrrrrrr

Finally, evaluating the double integral with the help of the result (1.6),we arrive after some simplification to the
right hand sideof (2.1).This completes the proof of (2.1).The result (2.2) can be established similarly .The two
results (2.3) and (2.4) can be established by applying the same method with the help of the result (1.7).
Remark 1.
Similar eight multiple integral formulas, involving Jacobi and Laguerre polynomials of several
variables    rr
rrr
rr
rrr
xe
x
xe
xdcdc
nyx
y
yx
ydcdc
n
PP 







 1
)1(2
1
)1(2),;;,(
1
)1(2
1
)1(2),;;,(
1,,1,1,,1
11
111
11
111


 rr
rr
yx
y
yx
ycc
n
L 



1
1
1
1),,(
,,
11
11


and  rr
rr
xc
x
xc
xdd
n
L 



1
1
1
1),,(
,,
11
11


,can be also obtained by applying the same method.
III. SPECIAL CASES AND APPLICATIONS
1. In (2.1) and if we take 2r , we get
    

1
0
1
0
1
0
1
0
1
11
1
1
1
11
11111
)1()1()1(
babaa
yxyxy
22222 1
22
1
2
1
22
)1()1()1(
babaa
yxyxy


  22111
)1(2
1
)1(2),;,(
22
22
11
112211
1,1 dydxdydxP yx
xy
yx
xydcdc
n 




 1,1,,,,),(),( 221121
),;,(
2211
2211
babaaaHbaBbaB
dcdc
n
 , (3.1)
where  rn
xxppH ,,,,, 12121
),;,( 2211


is the generalized Rice polynomials of two variables defined by
  2
21
12121
),;,(
)!(
)1()1(
,,,,,2211
n
xxppH
nn
rn


 













21
22
222
11
111
,
;
;
,1
,1
;
;
,1
,1
:
:
2;2
2;2
:
:
0
1
xx
p
n
p
nn
F




(3.2)
2. in (2.2), if we take 111
1,2 dcar  and 222
1 dca  , we get
   


1
0
1
0
1
0
1
0
11
1
11
1
1
11111111
)1()1()1(
bdcbdcdc
yxyxy
22222222
)1()1()1( 22
1
22
1
2
bdcbdcdc
yxyxy


On Some Multiple Integral Formulas Involving Jacobi And Laguerre Polynomials Of Several…
www.ijmsi.org 5 | Page
  22111
)1(
1
)1(),(
22
22
11
1121
, dydxdydxL yx
xy
yx
xycc
n 




2
22211121
)!(
),1(),1()1()1(
n
bdcBbdcBcc nn


 1,;1, 222111
),;;,( 2211
bdcbdcZ
ndcndc
n

 
(3.3)
where  2211
),;,(
,;,2211
xbxbZ n

is the generalized Batman’s polynomials of two variables [1]
  











 21
22
22
11
11
2211
),;,(
,
;
;
1,1
1
;
;
1,1
1
:
:
2;2
1;1
:
:
0
1
,;,2211
xx
b
n
b
nn
FxbxbZ n




. (3.4)
Remark 2.
Similar two other double integrals involving Jacobi and Laguerre polynomials of two
variables  22
2
11
12211
1
2
1
2),;,(
1,1 xe
x
xe
xdcdc
n
P 
 and  22
2
11
121
11
),(
, xe
x
xe
xcc
n
L 
can be also obtained as special cases of our
main results (2.3) and (2.4).
3. In (2.1), if we take 1r , we get
  dxdyPxyyxy xy
xydc
n
babaa


  1
)1(2),(
1
0
1
0
111
1)1()1()1(








 1
;
;
,1
,1,
!
),()1(
23
bac
andcn
F
n
baBc n
(3.5) .
where )(
),(
xPn

is the classical Jacobi polynomials [6]





 



2
1
;
;
1
1,
!
)1(
)( 12
),( xnn
F
n
xP
n
n


(3.6)
In view of the definition of the generalized Rice polynomials [4]
  







 x
p
nn
F
n
xpH
n
n
;
;
,1
,1,
!
)1(
,, 23
),(




, (3.7)
the integral (3.5) can be written in the following form:
  dxdyPxyyxy xy
xydc
n
babaa


  1
)1(2),(
1
0
1
0
111
1)1()1()1(
 1,,),(
),(
baaHbaB
dc
n
 (3.8)
Further, in (3.5) replacing n by n2 , putting 2
1
2
1
,  hdcba and using the following special case of the
result given by [5]
nn
nn
ha
ah
ah
anhn
F
)()(
)()(
1
;
;
2),1(
,2,2
2
1
2
1
2
1
2
1
2
1
2
1
2
123










, (3.9)
we get
  dxdyPxyyxy xy
xyhh
n
aaaa


  1
)1(2),(
2
1
0
1
0
2111
1)1()1()1( 2
1
2
1
2
1
2
1
nn
nnn
han
ahaaBh
)()()!2(
)())(,()(
2
1
2
1
2
1
2
1
2
1
2
1
22
1
2
1


 (3.10)
On Some Multiple Integral Formulas Involving Jacobi And Laguerre Polynomials Of Several…
www.ijmsi.org 6 | Page
Again, in (3.5) replacing n by 12 n , putting 2
1
2
1
,1  hdcab and using the result [5]
nn
nn
haa
ah
ah
anhn
F
)()(12
)()(
1
;
;
12),1(
,12,12
2
1
2
1
2
3
2
1
2
1
2
3
2
123










, (3.11)
we get
  dxdyPxyyxy xy
xyhh
n
aaaa




  1
)1(2),(
12
1
0
1
0
21
1)1()1()1( 2
1
2
1
2
1
2
1
nn
nnn
haan
ahaaBh
)())(12()!12(
)())(1,()(
2
1
2
1
2
3
2
1
2
1
2
3
122
1
2
1




. (3.12)
In a similar way, a number of double integrals involving Jacobi polynomials )(
),(
xPn

can be also obtained,
we mention here the following examples :
  dxdyPxyyxy xy
xyhh
n
aaaa


  1
)1(2),1(
2
1
0
1
0
2221
1)1()1()1( 2
1
2
1
nn
nnn
hahan
hanhaaaBh
)())(22()!2(
)1()()422)(1,()(
2
1
2
1
2
1
2
1
22
1


 (3.13)
  dxdyPxyyxy xy
xyhh
n
aaaa




  1
)1(2),1(
12
1
0
1
0
2221
1)1()1()1( 2
1
2
1
nn
nnn
hanaa
ahnhaaaBh
)1()()!12)(12(
)2()()42)(1,()(
2
1
2
1
2
1
2
3
122
1




. (3.14)
REFERENCES
[1]. S.M.Abbas, M.A.Khan and A.H. Khan, On some generating functions of Gener alized Bateman’s and Pasternak’s polynomials of
two variables, Commun. Korean Math. Soc.28 (2013), 87-105.
[2]. J.Edward, A Treatise on the Integral Calculus, Vol. II, Chelsea publishing Company, New York, 1922.
[3]. M. A. Khan and A. K. Shukla, On Laguerre polynomials of several variables, Bull Cal. Math. Soc. 89 (1997),155-164.
[4]. P.R. Khandekar, On generalization of Rice’s polynomials, I. Proc. Nat. Acad. Sci. India Sect., A 34(1964),157-162.
[5]. J. L. Lavoie, F. Grondin and A. K. Rathie,Generalizations of Watson’s theorem on the sum of a 23
F , Indian J. Math.,
34(1992),23-32.
[6]. E. D. Rainville, Special Functions. The Macmillan Company, New York,1960.
[7]. H.S.P. Shrivastava, On Jacobi polynomials of several variables, Integral Trans. Spec. Func. 10 (2000), 61-70.
[8]. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, New York, 1985.
[9]. H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press,New York,1984.

More Related Content

Similar to On Some Multiple Integral Formulas Involving Jacobi and Laguerre Polynomials of Several Variables

The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple PoleThe Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
ijtsrd
 

Similar to On Some Multiple Integral Formulas Involving Jacobi and Laguerre Polynomials of Several Variables (20)

Decomposition formulas for H B - hypergeometric functions of three variables
Decomposition formulas for H B - hypergeometric functions of three variablesDecomposition formulas for H B - hypergeometric functions of three variables
Decomposition formulas for H B - hypergeometric functions of three variables
 
On Some Integrals of Products of H -Functions
On Some Integrals of Products of  H -FunctionsOn Some Integrals of Products of  H -Functions
On Some Integrals of Products of H -Functions
 
Some Operation Equation and Applications
Some Operation Equation and ApplicationsSome Operation Equation and Applications
Some Operation Equation and Applications
 
The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
 
A0750105
A0750105A0750105
A0750105
 
Jordan-Lie algebra of single-spin chiral fields
Jordan-Lie algebra of single-spin chiral fieldsJordan-Lie algebra of single-spin chiral fields
Jordan-Lie algebra of single-spin chiral fields
 
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple PoleThe Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
 
He laplace method for special nonlinear partial differential equations
He laplace method for special nonlinear partial differential equationsHe laplace method for special nonlinear partial differential equations
He laplace method for special nonlinear partial differential equations
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariable
 
The Bifurcation of Stage Structured Prey-Predator Food Chain Model with Refuge
The Bifurcation of Stage Structured Prey-Predator Food Chain Model with RefugeThe Bifurcation of Stage Structured Prey-Predator Food Chain Model with Refuge
The Bifurcation of Stage Structured Prey-Predator Food Chain Model with Refuge
 
The Finite Difference Methods And Its Stability For Glycolysis Model In Two D...
The Finite Difference Methods And Its Stability For Glycolysis Model In Two D...The Finite Difference Methods And Its Stability For Glycolysis Model In Two D...
The Finite Difference Methods And Its Stability For Glycolysis Model In Two D...
 
Some Dynamical Behaviours of a Two Dimensional Nonlinear Map
Some Dynamical Behaviours of a Two Dimensional Nonlinear MapSome Dynamical Behaviours of a Two Dimensional Nonlinear Map
Some Dynamical Behaviours of a Two Dimensional Nonlinear Map
 
Point symmetries of lagrangians
Point symmetries of lagrangiansPoint symmetries of lagrangians
Point symmetries of lagrangians
 
Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...
Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...
Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...
 
Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...
Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...
Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
C5-Logarithms.pdf
C5-Logarithms.pdfC5-Logarithms.pdf
C5-Logarithms.pdf
 
Bound- State Solution of Schrodinger Equation with Hulthen Plus Generalized E...
Bound- State Solution of Schrodinger Equation with Hulthen Plus Generalized E...Bound- State Solution of Schrodinger Equation with Hulthen Plus Generalized E...
Bound- State Solution of Schrodinger Equation with Hulthen Plus Generalized E...
 
Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transp...
Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transp...Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transp...
Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transp...
 
chapter3.ppt
chapter3.pptchapter3.ppt
chapter3.ppt
 

Recently uploaded

Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Christo Ananth
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Recently uploaded (20)

Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spain
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 

On Some Multiple Integral Formulas Involving Jacobi and Laguerre Polynomials of Several Variables

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 www.ijmsi.org Volume 4 Issue 5 || June. 2016 || PP-01-06 www.ijmsi.org 1 | Page On Some Multiple Integral Formulas Involving Jacobi and Laguerre Polynomials of Several Variables 1 Ahmed Ali Atash, 2 Salem Saleh Barahmah 1 Department of Mathematics, Faculty of Education-Shabwah, Aden University, Yemen 2 Department of Mathematics, Faculty of Education -Aden, Aden University, Yemen ABSTRACT: The aim of the present paper is to derive some multiple integral formulas involving Jacobi and Laguerre polynomials of several variables. These results are established with the help of a known and interesting integrals given in Edwards [2].Furthermore, some special cases are also derived. KEYWORDS: multiple integral formulas, Jacobi polynomials, Laguerre polynomials Kamp´e de F´eriet function I. INTRODUCTION The Jacobi polynomials of several variables  rn xxP rr ,,1 ),;;,( 11    of Shrivastava [7]are defined as follows :   r nrnn rn n xxP rr )!( )1()1()1( ,, 21 1 ),;;,( 11                    2 1 ,, 2 1 ; ; 1 1 ; ; ; ; 1 1 : : 1 1 11 1 1 ; ; ; ; 1 1 : : 0 1 r r rr xxnnn F          (1.1) where  n qqp mml xxF n n ,,1 ;;: ;;: 1 1    is the multivariable extension of the Kamp´e de F´eriet function [8], see also [9]            nn m n q m q l p n n n n n zz d b d b c a mml qqp Fzz mml qqp F n n ,, ; ; )( )( ; ; ; ; )( )( : : )( )( ;;: ;;: ,, ;;: ;;: 1)( )( ' ' 1 1 1 1 1 1 1           , !! ,, 0, 1 1 1 1 1     n n ss n s n s n s z s z ss   (1.2) where            n nn n nn m j s n jsj m j ssj l j q j s n jsj q j ssj p j n ddc bba ss 1 )( 11 1 )( 11 1 )()'()( )()()( ,, 1 1 1 1 1 1      . (1.3) And for convergence of the multivariable hypergeometric series in (1.3) ;,,1,01 nkqpml kk  The equality holds when, in addition, either ;1 11 1   lplp n xxandlp  or 1},,max{ 1  n xxandlp  . The Laguerre polynomials of several variables  rn xxL r ,,1 ),,( 1    of khan and Shukla [3] are defined as follows:
  • 2. On Some Multiple Integral Formulas Involving Jacobi And Laguerre Polynomials Of Several… www.ijmsi.org 2 | Page    rr r r nrn rn xxn n xxL r ,,;1,,1; )!( )1()1( ,, 11 )( 2 1 1 ),,( 1          (1.4) where )( 2 r  is the confluent hypergeometric function of r-variables [9]   !!)()( )( ,,;,,; 1 1 0,, 1 11 )( 2 1 1 1 1 r m r m mm mrm mm rr r m x m x cc a xxcca r r r r           (1.5) In our investigation we require the following integrals [2]: ),()1()1()1( 1 0 1 0 111 baBdxdyxyyxy babaa    , (1.6) Provided 0)Re( a and 0)Re( b . ),()1()1()1( 1 0 11 baBcxdxcxxx ababa   (1.7) Provided 0)Re(,0)Re(  ba and 1c , where )( )()( ),( ba ba baB    , is the well known Beta function. II. MAIN INTEGRAL FORMULAS In this section ,we have proved the following integral formulas:      1 0 1 0 1 0 1 11 1 1 1 11 1 0 11111 )1()1()1(  babaa yxyxy rrrrr ba rr b r a r a r yxyxy   111 )1()1()1(   rryx xy yx xydcdc n dydxdydxP rr rrrr   111 )1(2 1 )1(2),;;,( 1,,1 11 1111      r rrnrn n baBbaBcc )!( ),(),()1()1( 111                1,,1 ; ; ,1 ,1 ; ; ; ; ,1 ,1 : : 2;;2 2;;2 : : 0 1 111 111      rrr rrr bac andc bac andcn F (2.1)      1 0 1 0 1 0 1 11 1 1 1 11 1 0 11111 )1()1()1(  babaa yxyxy rrrrr ba rr b r a r a r yxyxy   111 )1()1()1(   rryx xy yx xycc n dydxdydxL rr rrr   111 )1( 1 )1(),,( ,, 11 111      r rrnrn n baBbaBcc )!( ),(),()1()1( 111            1,,1 ; ; ,1; ; ; ; ,1: : 2;;2 1;;1 : : 0 1 111 1      rrr r bac a bac an F (2.2)     1 0 11 1 0 11 1 1 1 1 )1()1()1()1( 1111 rrrr ba rr b r a r baba xexxxexx 
  • 3. On Some Multiple Integral Formulas Involving Jacobi And Laguerre Polynomials Of Several… www.ijmsi.org 3 | Page   rxe x xe xdcdc n dxdxP rr rrr   11 2 1 2),;;,( 1,,1 11 111   r rrnrn a r a n baBbaBccee r )!( ),(),()1()1()1()1( 1111 1                 rrrr rrr eebac andc bac andcn F 1 1 ,, 1 1 ; ; ,1 ,1 ; ; ; ; ,1 ,1 : : 2;;2 2;;2 : : 0 1 1111 111      (2.3)     1 0 11 1 0 11 1 1 1 1 )1()1()1()1( 1111 rrrr ba rr b r a r baba xexxxexx    rxe x xe xcc n dxdxL rr rr   111 ),,( ,, 11 11   r rrnrn a r a n baBbaBccee r )!( ),(),()1()1()1()1( 1111 1             rrrr r eebac a bac an F 1 1 ,, 1 1 ; ; ,1; ; ; ; ,1: : 2;;2 1;;1 : : 0 1 1111 1      (2.4) Further, if we take rr caca  1,,1 11  in (2.1), (2.2),(2.3) and (2.4) respectively we have      1 0 1 0 1 0 11 1 11 1 1 1 0 11111 )1()1()1(  bcbcc yxyxy rrrrr bc rr b r c r c r yxyxy   )1()1()1( 11   rryx xy yx xydcdc n dydxdydxP rr rrrr   111 )1(2 1 )1(2),;;,( 1,,1 11 1111       1,,1),1(),1( ),;;,( 11 1111   rrrr bdbcbdbc nrr PbncBbncB   (2.5)      1 0 1 0 1 0 11 1 11 1 1 1 0 11111 )1()1()1(  bcbcc yxyxy rrrrr bc rr b r c r c r yxyxy   )1()1()1( 11   rryx xy yx xycc n dydxdydxL rr rrr   111 )1( 1 )1(),,( ,, 11 111       1,,1),1(),1( ),,( 11 11   rr bcbc nrr LbncBbncB   (2.6)     1 0 11 1 0 1 11 1 11 )1()1()1()1( 1111 rrrr bc rr b r c r bcbc xexxxexx    rxe x xe xdcdc n dxdxP rr rrr   11 2 1 2),;;,( 1,,1 11 111   ),1(),1()1()1( 11 11 1 1 rr c r c bncBbncBee r     1 1 1 1),;;,( ,, 1 11111     r rrrrr e e e ebdbcbdbc n P   (2.7)     1 0 11 1 0 1 11 1 11 )1()1()1()1( 1111 rrrr bc rr b r c r bcbc xexxxexx    rxe x xe xcc n dxdxL rr rr   111 ),,( ,, 11 11    r rrr ee bcbc nrr c r c LbncBbncBee    1 1 1 1),,( 11 11 1 ,,),1(),1()1()1( 1 111   (2.8)
  • 4. On Some Multiple Integral Formulas Involving Jacobi And Laguerre Polynomials Of Several… www.ijmsi.org 4 | Page Proof of (2.1): Denoting the left hand side of (2.1) by I, using the definition (1.1), expanding 1 1 ; ; ; ; 1 1 : : 0 1   F in a power series and changing the order of summation and integration, we get: r nrn n cc I )!( )1()1( 1              n p pn p ppn p rprp prrppp r r r rr ppcc ndcndcn 0 0 0 11 11 1 1 2 1 1 11 !!)1()1( )1()1()(         1 0 1 0 11 1 11 1 1 1 11 11111111 )1()1()1( dydxyxyxy bpabpapa     1 0 1 0 111 )1()1()1( rr bpa rr b r pa r pa r dydxyxyxy rrrrrrrr  Finally, evaluating the double integral with the help of the result (1.6),we arrive after some simplification to the right hand sideof (2.1).This completes the proof of (2.1).The result (2.2) can be established similarly .The two results (2.3) and (2.4) can be established by applying the same method with the help of the result (1.7). Remark 1. Similar eight multiple integral formulas, involving Jacobi and Laguerre polynomials of several variables    rr rrr rr rrr xe x xe xdcdc nyx y yx ydcdc n PP          1 )1(2 1 )1(2),;;,( 1 )1(2 1 )1(2),;;,( 1,,1,1,,1 11 111 11 111    rr rr yx y yx ycc n L     1 1 1 1),,( ,, 11 11   and  rr rr xc x xc xdd n L     1 1 1 1),,( ,, 11 11   ,can be also obtained by applying the same method. III. SPECIAL CASES AND APPLICATIONS 1. In (2.1) and if we take 2r , we get       1 0 1 0 1 0 1 0 1 11 1 1 1 11 11111 )1()1()1( babaa yxyxy 22222 1 22 1 2 1 22 )1()1()1( babaa yxyxy     22111 )1(2 1 )1(2),;,( 22 22 11 112211 1,1 dydxdydxP yx xy yx xydcdc n       1,1,,,,),(),( 221121 ),;,( 2211 2211 babaaaHbaBbaB dcdc n  , (3.1) where  rn xxppH ,,,,, 12121 ),;,( 2211   is the generalized Rice polynomials of two variables defined by   2 21 12121 ),;,( )!( )1()1( ,,,,,2211 n xxppH nn rn                  21 22 222 11 111 , ; ; ,1 ,1 ; ; ,1 ,1 : : 2;2 2;2 : : 0 1 xx p n p nn F     (3.2) 2. in (2.2), if we take 111 1,2 dcar  and 222 1 dca  , we get       1 0 1 0 1 0 1 0 11 1 11 1 1 11111111 )1()1()1( bdcbdcdc yxyxy 22222222 )1()1()1( 22 1 22 1 2 bdcbdcdc yxyxy  
  • 5. On Some Multiple Integral Formulas Involving Jacobi And Laguerre Polynomials Of Several… www.ijmsi.org 5 | Page   22111 )1( 1 )1(),( 22 22 11 1121 , dydxdydxL yx xy yx xycc n      2 22211121 )!( ),1(),1()1()1( n bdcBbdcBcc nn    1,;1, 222111 ),;;,( 2211 bdcbdcZ ndcndc n    (3.3) where  2211 ),;,( ,;,2211 xbxbZ n  is the generalized Batman’s polynomials of two variables [1]                21 22 22 11 11 2211 ),;,( , ; ; 1,1 1 ; ; 1,1 1 : : 2;2 1;1 : : 0 1 ,;,2211 xx b n b nn FxbxbZ n     . (3.4) Remark 2. Similar two other double integrals involving Jacobi and Laguerre polynomials of two variables  22 2 11 12211 1 2 1 2),;,( 1,1 xe x xe xdcdc n P   and  22 2 11 121 11 ),( , xe x xe xcc n L  can be also obtained as special cases of our main results (2.3) and (2.4). 3. In (2.1), if we take 1r , we get   dxdyPxyyxy xy xydc n babaa     1 )1(2),( 1 0 1 0 111 1)1()1()1(          1 ; ; ,1 ,1, ! ),()1( 23 bac andcn F n baBc n (3.5) . where )( ),( xPn  is the classical Jacobi polynomials [6]           2 1 ; ; 1 1, ! )1( )( 12 ),( xnn F n xP n n   (3.6) In view of the definition of the generalized Rice polynomials [4]            x p nn F n xpH n n ; ; ,1 ,1, ! )1( ,, 23 ),(     , (3.7) the integral (3.5) can be written in the following form:   dxdyPxyyxy xy xydc n babaa     1 )1(2),( 1 0 1 0 111 1)1()1()1(  1,,),( ),( baaHbaB dc n  (3.8) Further, in (3.5) replacing n by n2 , putting 2 1 2 1 ,  hdcba and using the following special case of the result given by [5] nn nn ha ah ah anhn F )()( )()( 1 ; ; 2),1( ,2,2 2 1 2 1 2 1 2 1 2 1 2 1 2 123           , (3.9) we get   dxdyPxyyxy xy xyhh n aaaa     1 )1(2),( 2 1 0 1 0 2111 1)1()1()1( 2 1 2 1 2 1 2 1 nn nnn han ahaaBh )()()!2( )())(,()( 2 1 2 1 2 1 2 1 2 1 2 1 22 1 2 1    (3.10)
  • 6. On Some Multiple Integral Formulas Involving Jacobi And Laguerre Polynomials Of Several… www.ijmsi.org 6 | Page Again, in (3.5) replacing n by 12 n , putting 2 1 2 1 ,1  hdcab and using the result [5] nn nn haa ah ah anhn F )()(12 )()( 1 ; ; 12),1( ,12,12 2 1 2 1 2 3 2 1 2 1 2 3 2 123           , (3.11) we get   dxdyPxyyxy xy xyhh n aaaa       1 )1(2),( 12 1 0 1 0 21 1)1()1()1( 2 1 2 1 2 1 2 1 nn nnn haan ahaaBh )())(12()!12( )())(1,()( 2 1 2 1 2 3 2 1 2 1 2 3 122 1 2 1     . (3.12) In a similar way, a number of double integrals involving Jacobi polynomials )( ),( xPn  can be also obtained, we mention here the following examples :   dxdyPxyyxy xy xyhh n aaaa     1 )1(2),1( 2 1 0 1 0 2221 1)1()1()1( 2 1 2 1 nn nnn hahan hanhaaaBh )())(22()!2( )1()()422)(1,()( 2 1 2 1 2 1 2 1 22 1    (3.13)   dxdyPxyyxy xy xyhh n aaaa       1 )1(2),1( 12 1 0 1 0 2221 1)1()1()1( 2 1 2 1 nn nnn hanaa ahnhaaaBh )1()()!12)(12( )2()()42)(1,()( 2 1 2 1 2 1 2 3 122 1     . (3.14) REFERENCES [1]. S.M.Abbas, M.A.Khan and A.H. Khan, On some generating functions of Gener alized Bateman’s and Pasternak’s polynomials of two variables, Commun. Korean Math. Soc.28 (2013), 87-105. [2]. J.Edward, A Treatise on the Integral Calculus, Vol. II, Chelsea publishing Company, New York, 1922. [3]. M. A. Khan and A. K. Shukla, On Laguerre polynomials of several variables, Bull Cal. Math. Soc. 89 (1997),155-164. [4]. P.R. Khandekar, On generalization of Rice’s polynomials, I. Proc. Nat. Acad. Sci. India Sect., A 34(1964),157-162. [5]. J. L. Lavoie, F. Grondin and A. K. Rathie,Generalizations of Watson’s theorem on the sum of a 23 F , Indian J. Math., 34(1992),23-32. [6]. E. D. Rainville, Special Functions. The Macmillan Company, New York,1960. [7]. H.S.P. Shrivastava, On Jacobi polynomials of several variables, Integral Trans. Spec. Func. 10 (2000), 61-70. [8]. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, New York, 1985. [9]. H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press,New York,1984.