SlideShare a Scribd company logo
1 of 6
Download to read offline
International Journal of Engineering Science Invention
ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726
www.ijesi.org Volume 2 Issue 3 ǁ March. 2013 ǁ PP.54-59
www.ijesi.org 54 | P a g e
A reinvestigation of the prospects of using periwinkle shell as
partial replacement for granite in concrete
L. O. Ettu, O. M. Ibearugbulem, J. C. Ezeh, and U. C. Anya
Department of Civil Engineering, Federal University of Technology, Owerri, Nigeria
ABSTRACT: A large majority of civil engineering construction companies in Nigeria use granitic chippings
as coarse aggregate for making concrete. These chippings are frequently bought at distant quarries and hauled
at high cost to various construction sites across the country, thereby increasing the cost of construction
projects. Efforts to reduce construction costs in coastal communities have led some earlier researchers to
investigate the suitability of using periwinkle shells as replacement for granitic chippings in concrete-making.
This work seeks to strengthen or reject some of their findings with respect to whether concrete produced by
partially replacing granitic chippings with periwinkle shells meets minimum compressive strength requirements.
Saturated surface dry (SSD) bulk density and compressive cube strength (CCS) tests were carried out at 7 and
28 days for concrete produced using different percentage replacements of granitic chippings with periwinkle
shells, with a constant water: cement ratio of 0.65 and three sets of cement: sand: coarse aggregate mix ratios,
namely 1 : 1.5 : 3; 1 : 2 : 3; and 1 : 2.5 : 3. The results showed that the density of the concrete decreased with
increase in the percentage of periwinkle shells, from 2466.67 Kg/m3
for 25% periwinkle shell replacement at a
mix ratio of 1 : 1.5 : 3 to 2103.33 Kg/m3
for 75% periwinkle shell replacement at a mix ratio of 1 : 2.5 : 3.
Values of 28-day compressive strength ranged from 24.15 N/mm2
for 75% periwinkle shell replacement to 33.63
N/mm2
at 25% replacement. Most of these values satisfy the minimum 25 N/mm2
requirement of BS 8110 and
strongly confirm the findings of earlier researchers that, on the basis of required compressive strength,
periwinkle shells could be used as partial replacement of granitic chippings in making concrete for reinforced
concrete works.
Keywords: coarse aggregate, concrete, compressive strength, percentage replacement, periwinkle shells,
granitic chippings
I. INTRODUCTION
Granitic chippingsare commonly used as coarseaggregate for making concrete used in the construction
of load-bearing reinforced concrete members by a large majority of civil engineering construction companies in
Nigeria. These chippings are generally obtained by crushing deposits of granite at quarries. Unfortunately, the
quarries are found only in a few localities, from where the granitic chippings are bought and hauled at high cost
to various construction sites across the country.This greatly increases the cost of procuring concrete, especially
in communities that are distant from quarry locations, for which the cost of transporting the granitic chippings
could even be higher than their purchase price at the quarries. For example, a 5m3
truck load of granitic
chippings in Owerri, Imo State, Nigeria costs about N50,000.00whereas it is sold for about N20,000.00 at the
Abakaliki or Okigwe quarries, from where the chippings are obtained. As part of efforts to reduce construction
costs in order to provide low-cost housing for the teeming populace, the suitability of using locally-available
substitutes to granitic chippings in concrete-making has to be more seriously investigated. Possible materials in
this regard are the various natural coarse aggregates such as sandstone, river gravel, and local stones that are
plentifully available in different hinterland communities. Yet, that would still not solve the problem for coastal
communities where these natural aggregates are scarcely found. Thus, some earlier researchers have pioneered
investigation of the suitability of using periwinkle shell as coarse aggregate for making concrete in such coastal
communities. Periwinkle shell is an agricultural waste material commonly found in coastal communities. They
are relatively non-degradable, and, as such, constitute a great deal of environmental problems. Many of these
environmental problems could be solved by using the periwinkle shells as primary production materials,
especially in concrete making. Stow (1969), Balogun (1993),and Ibearugbulem (2009) have classified the shells
as lightweight coarse aggregates in accordance with ASTM specifications for concrete.Falade (1995) has also
studied the shells as possible coarse aggregates and discovered that concrete made with them falls in the range
of lightweight concrete. Orangun (1974) carried out a pilot study on the suitability of periwinkle shells as coarse
aggregate for structural concrete and reported that strengths of concrete made with periwinkle shells were
greater than 15.0 N/mm2
. Beredugo (1984) investigated the use of periwinkle shells as concrete aggregate and
A reinvestigation of the prospects of using periwinkle shell as partial replacement for…
www.ijesi.org 55 | P a g e
noted that the resultant lightweight concrete has density range of 1923-2050 kg/m3
. Adewuyi and Adegoke
(2008) carried out an exploratory study of periwinkle shells as coarse aggregates in concrete works and
concluded that up to 42.5% replacement of crushed granite with periwinkle shells by weight still gives concrete
with acceptable compressive strengths. Osarenmwinda and Awaro (2009) also investigated the potentials of
periwinkle shell as coarseaggregate for concrete and found that concrete produced with different
cement:sand:periwinkle mixes had compressive strength values ranging from 14.00 N/mm2
to 25.67 N/mm2
at
28 days of age.Agbede and Manasseh (2009) have specifically investigated the suitability of periwinkle shell as
partial replacement for river gravel in concrete. They found that the 28-day density and compressive strength of
periwinkle shell concrete were 1944 kg/m3
and 13.05 N/mm2
respectively. Falade, Ikponmwosa, and Ojediran
(2010) investigated the behaviour of lightweight concrete containing periwinkle shells at elevated temperature
and found that the compressive strength decreased with increase in water/cement ratio and temperature.Kamang
and Job (1997) tried to relate the strength of periwinkle shell concrete to its non-destructive parameters; Falade
and Tella (2002) examined the structural performance of reinforced beams containing periwinkle shells as
coarse aggregate; Ohimain, Bassey, and Bawo (2009) carried out a general study on the uses of sea shells for
civil construction works in coastal Bayelsa State; while Osadebe and Ibearugbulem (2009) applied Scheffe’s
simplex model in optimizing the compressive strength of periwinkle shell granite concrete. All of these
researches suggest a high potential of using periwinkle shells as coarse aggregate for making concrete. This
study aims at reinvestigating the suitability of using periwinkle shells instructural concrete works, with a view to
confirming or rejecting some of the critical findings of earlier researchers. It specifically seeks to determine
whether concrete produced by partially replacing granitic chippings with periwinkle shells would meet the BS
8110 minimum required compressive strength for reinforced concrete works, which is 25N/mm2
.
II. MATERIALS AND METHODS
The periwinkle shellsused for this study were obtained from Eleme, Port-Harcourt, Nigeria.
Theywerewashed and dried before use. Granitic chippings were obtained from a quarry at Umuchieze village in
Abia State. They were of 20mm nominal size. Clean sharp sandobtained from OtamiriRiver in Owerriwas used
as fine aggregate. Ibeto brand of Ordinary Portland Cement in conformity with BS 12 (1978) was used as
binder; while waterwas obtained from a public tap for potable water in Owerri.
Saturated surface dry (SSD) bulk density and compressive cube strength (CCS) tests of concrete at 7
and 28 days were conducted. Three sets of cement: sand: coarse aggregate mixes were used, namely1 : 1.5 : 3; 1
: 2 : 3; and1 : 2.5 : 3.For each mix ratio, graniticchippings were partially replaced with periwinkle shells at seven
levels, namely 25%, 35%, 45%, 50%, 55%, 65%, and 75%. This gives a total of twenty-one mix ratios with
partial periwinkle replacement. In addition, a control mix with 100% granitic chippingsas coarse aggregate was
used for each of the three mix ratios. Thus, the total number of concrete mixes used in this work was twenty-
four, twenty-one sets with periwinkle replacement and three control sets with no periwinkle replacement, as
shown in table 1. A constant water: cement ratio of 0.65 was used for all the mixes. Batching was by weight. Six
cubes were cast for each of the twenty-four mixes, making a total of 144 cubes. Three cubes for each mix were
cured for 7 days and the remaining three for 28 days, after which they were weighed and crushed to determine
their compressive strength.Both the Saturated Surface Dry (SSD) bulk density and the Compressive Cube
Strength (CCS) tests were in conformity with BS 1881: Part 115 (1986).
III. RESULTS AND DISCUSSIONS
Saturated Surface Dry (SSD) Bulk Density
The results of the SSD bulk density tests are presented in table 2. The values obtained indicate that for
the percentage replacements used in this work the concrete produced by partially replacing granitic chippings
with periwinkle shells is normal weight concrete. As would be expected, the density of the concrete decreases
with increase in the percentage of periwinkle shells. Thus, the lowest and maximum densities were recorded at
75% and 25% periwinkle shell replacement respectively. This was so for all the three sets of mix ratios, with
typical values for 28 days as follows: (i) First set of mix ratios (1 : 1.5 : 3) gave concrete density of 2103.33
Kg/m3
for 75% periwinkle shell replacement and 2410 Kg/m3
for 25% periwinkle shell replacement; (ii) Second
set of mix ratios (1 : 2 : 3) gave concrete density of 2106.68 Kg/m3
for 75% periwinkle shell replacement and
2406.67 Kg/m3
for 25% periwinkle shell replacement; (iii) Third set of mix ratios (1 : 2.5 : 3) gave concrete
density of 2130 Kg/m3
for 75% periwinkle shell replacement and 2466.67 Kg/m3
for 25% periwinkle shell
replacement. All of these values are much lower than values obtained for 100% granitic chippings that came as
high as 3585.33 Kg/m3
for 1 : 2 : 3 mix ratio. This means the use of periwinkle shells as partial replacement for
granitic chippings results in concrete elements with much less self-weight than those made with 100% granitic
chippings.
A reinvestigation of the prospects of using periwinkle shell as partial replacement for…
www.ijesi.org 56 | P a g e
Table 1: Concrete mixes used for this work
Cement Sand Granite Periwinkle
First set of mix ratios—1 : 1.5 : 3
U1 1 1.5 0.75 2.25
U2 1 1.5 1.05 1.95
U3 1 1.5 1.35 1.65
U4 1 1.5 1.5 1.5
U5 1 1.5 1.65 1.35
U6 1 1.5 1.95 1.05
U7 1 1.5 2.25 0.75
Second set of mix ratios—1 : 2 : 3
U8 1 2 0.75 2.25
U9 1 2 1.05 1.95
U10 1 2 1.35 1.65
U11 1 2 1.5 1.5
U12 1 2 1.65 1.35
U13 1 2 1.95 1.05
U14 1 2 2.25 0.75
Third set of mix ratios—1 : 2.5 : 3
U15 1 2.5 0.75 2.25
U16 1 2.5 1.05 1.95
U17 1 2.5 1.35 1.65
U18 1 2.5 1.5 1.5
U19 1 2.5 1.65 1.35
U20 1 2.5 1.95 1.05
U21 1 2.5 2.25 0.75
Control mixes
U22 1 1.5 3
U23 1 2 3
U24 1 2.5 3
Compressive Cube Strength (CCS)
The results of the compressive cube strength (CCS) tests are presented in table 3. The results confirm
the theoretical expectation and findings of earlier researchers that values of compressive cube strength increase
with decrease in percentage of periwinkle shells. The lowest recorded 28-day CCS value was 24.15 N/mm2
for
75% periwinkle shell replacement of granite in a mix ratio of 1: 1.5: 3.The other 28-day compressive strength
values at 75% periwinkle shell replacement for the remaining two mix ratios were 28.44 N/mm2
and 27.55
N/mm2
. These lower range of values obtained for higher percentages of periwinkle shell replacement are still
greater than the 25 N/mm2
bench mark of BS 8110 (1997) for structural concrete. Much higher 28-day
compressive strength values were obtained for lower percentages of periwinkle shell replacement: 30.59
KN/mm2
at 50 percent replacement and 33.63 KN/mm2
at 25 percent replacement. These values compare
favourably with the highest average value of 39.56 KN/mm2
obtained for 100% granitic chippings at 1: 2: 3 mix
ratio. Moreover, values of cement content for the three sets of mix ratios used in this work are 16%, 15%, and
14%. These are all higher than the 250 Kg/m3
(approximately 10.2%) minimum requirement of BS 8110.
A reinvestigation of the prospects of using periwinkle shell as partial replacement for…
www.ijesi.org 57 | P a g e
Table 2: Saturated Surface Dry (SSD) density of concrete cubes
Sample %Periwinkle 7 days (Kg/m3
) 28 days (Kg/m3
)
1 2 3 Average 1 2 3 Average
First set of mix ratios– 1: 1.5 :3
U1 75 2100 2090 2160 2116.67 2110 2100 2100 2103.33
U2 65 2080 2080 2110 2090 2130 2100 2110 2118.33
U3 55 2160 2150 2150 2153.33 2110 2130 2130 2123.33
U4 50 2220 2230 2160 2203.33 2360 2290 2222 2290.67
U5 45 2250 2230 2300 2260 2380 2260 2320 2320
U6 35 2290 2350 2280 2306.67 2350 2880 2320 2350
U7 25 2420 2360 2130 2303.33 2330 2420 2480 2410
U22 0 (Control) 2440 3200 3111 2917 3556 3644 3556 3585.33
Second set of mix ratios–1:2:3
U8 75 2240 2070 2140 2150 2060 2060 2200 2106.68
U9 65 2240 2120 2210 2190 2190 2180 2120 2163.33
U10 55 2180 2220 2210 2203.33 2220 2310 2280 2270
U11 50 2320 2270 2260 2283.33 2330 2290 2310 2310
U12 45 2350 2270 2290 2303.33 2390 2360 2300 2350
U13 35 2310 2310 2470 2363.33 2390 2390 2330 2370
U14 25 2240 2410 2410 2420 2410 2390 2420 2406.67
U23 0 (Control) 2560 2410 2400 2460 2520 2460 2410 2450
Third set of mix ratios–1:2.5:3
U15 75 2190 2210 2180 2193.33 2190 2100 2100 2130
U16 65 2260 2170 2200 2210 2160 2210 2120 2183.33
U17 55 2210 2270 2290 2256.67 2190 2150 2200 2180
U18 50 2360 2240 2290 2296.67 2270 220 2260 2250
U19 45 2280 2300 2290 2290 2320 2310 2280 2303.33
U20 35 2320 2500 2410 2410 2330 2380 2400 2370
U21 25 2420 2420 2380 2406.67 2450 2450 2500 2466.67
U24 0 (Control) 1956 2400 2044 2133.33 2378 2398 2644 2473.33
IV. CONCLUSIONS AND RECOMMENDATIONS
This reinvestigation confirms some of the observations made by earlier researchers and particularly
strengthens the fact that on the basis of required compressive strength, periwinkle shells could be used as partial
replacement of granitic chippings in making concrete for reinforced concrete works.The use of periwinkle shells
for this purpose would greatly reduce the cost of concrete works in riverine communities with plentiful supply
of these shells. As much as 75% replacement could still produce concrete of satisfactory strength for structural
members under mild conditions of exposure, given good supervision of the concrete making process. Lower
percentage replacements would be suitable for worse conditions of exposure.For example, 50 percent
replacement would be satisfactory for moderate conditions of exposure that require a minimum concrete
compressive strength of 30N/mm2
; and 25 and lower percentage replacements could be suitable for severe
conditions that require strengths of 35N/mm2
or more. The reduced density of concrete produced when granitic
chippings are partially replaced with periwinkle shells also results in lower self-weight of structure. This is
particularly beneficial in coastal communities where the soils have relatively low bearing capacities.
A reinvestigation of the prospects of using periwinkle shell as partial replacement for…
www.ijesi.org 58 | P a g e
Table 3: Values of compressive cube strength for the mixes
Sample %Periwinkle 7 days (N/mm2
) 28 days (N/mm2)
1 2 3 Average 1 2 3 Average
First set of mix ratios– 1: 1.5 :3
U1 75 20.44 22.67 18.67 20.59 25.78 22.22 24.44 24.15
U2 65 24.00 20.44 24.59 23.11 27.56 26.60 28.00 27.39
U3 55 21.33 22.22 19.56 21.04 24.88 27.56 25.33 25.92
U4 50 25.78 21.44 20.00 22.41 26.67 30.22 28.00 27.41
U5 45 27.56 25.78 26.67 26.67 31.11 33.33 31.56 30.96
U6 35 25.78 30.22 26.80 27.60 30.66 33.33 33.51 32.50
U7 25 26.67 24.33 29.33 28.44 33.11 36.44 34.66 33.70
U22 0 (Control) 24.44 32.00 31.11 29.18 35.56 28.00 35.56 35.55
Second set of mix ratios–1:2:3
U8 75 21.33 22.22 23.11 24.74 28.88 27.11 28.44 28.44
U9 65 18.67 22.22 22.22 21.04 26.67 32.00 27.56 27.11
U10 55 25.78 26.67 28.44 26.96 30.22 28.66 32.44 31.55
U11 50 24.00 24.44 24.00 24.15 28.88 28.66 29.33 28.96
U12 45 30.22 28.89 27.11 28.74 33.33 31.11 32.00 32.15
U13 35 24.44 27.11 25.78 25.78 29.78 31.11 30.22 30.30
U14 25 30.60 30.5 30.1 30.4 32.00 33.33 35.56 33.63
U23 0 (Control) 32.15 33.1 32.15 32.4 40.89 39.11 38.67 39.56
Third set of mix ratios–1:2.5:3
U15 75 20.00 17.75 16.44 18.06 28.89 28.00 26.67 27.55
U16 65 17.78 16.00 16.00 16.59 25.78 26.67 26.22 26.22
U17 55 20.44 20.00 16.00 18.81 28.89 29.78 27.56 28.74
U18 50 20.44 20.00 20.44 20.29 30.22 30.67 30.89 30.59
U19 45 17.78 20.44 17.78 19.41 26.67 28.89 27.11 28.22
U20 35 27.50 24.44 25.75 25.91 35.56 31.11 32.00 32.89
U21 25 22.20 20.44 24.89 22.52 28.89 29.33 31.11 29.78
U24 0 (Control) 26.35 30.00 30.02 28.8 33.78 33.78 36.44 34.69
A reinvestigation of the prospects of using periwinkle shell as partial replacement for…
www.ijesi.org 59 | P a g e
REFERENCES
[1]. Adewuyi, A. P., and T. Adegoke (2008).Exploratory Study of Periwinkle Shells as Coarse Aggregates in Concrete Works.ARPN
Journal of Engineering and Applied Sciences, 3(6): 1-5.
[2]. Agbede, Olufemi Isaac and Joel Manasseh (2009).Suitability of Periwinkle Shell as Partial
[3]. Replacement for River Gravel in Concrete.Leonardo Electronic Journal of Practices and Technologies, Issue 15, July-December,
p. 59-66.
[4]. ASTM C127 – 04.Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption for coarse Aggregate.
[5]. ASTM C128 – 04.Standard test method for Density, Relative Density (Specific gravity) and Absorption of coarse Aggregate.
[6]. ASTM C129/129m.Standard test method for Bulk Density (Unit Weight) and voids in Aggregate.
[7]. Balogun, L. A. (1993). ―Periwinkle shells and palm kernel shells as concrete aggregates‖. In proceedings of the third
international conference on structural Engineering Analysis and modeling, Kumasi Ghana. pp. 533-543.
[8]. Beredugo, Y. O. (1984). Periwinkle shells as concrete aggregate. Nigeria Building and Road Research Institute Technical
Publication, 2:4 – 9.
[9]. BS 3681 (1973).Methods of sampling and testing of lightweight aggregates for concrete, Part 2. London: British Standards
Institution.
[10]. BS 8110 (1997).Structural use of concrete — Part 1: Code of practice for design and construction. London: British Standards
Institution.
[11]. Falade, F. (1995). An investigation of Periwinkle shells as coarse aggregate in concrete.Building and Environment, 30 (4): 573 –
577.
[12]. Falade, F., E. E. Ikponmwosa, and N. I. Ojediran (2010).Behaviour of lightweight concrete
[13]. containing periwinkle shells at elevated temperature. Journal of Engineering Science and Technology, 5(4): 379-390.
[14]. Falade, F., and F. Tella (2002). Structural performance of lightweight reinforced beams containing periwinkle shells as coarse
aggregate. Sustainable Concrete Construction—Proceedings of the international conference held at the University of Dundee,
Scotland, UK on 9-11 September 2002, 695-702.
[15]. Ibearugbulem, O. M. (2009). Characterization of periwinkle shell as aggregate material for concrete production.The Heartland
Engineer, Vol. 4 (1), 1 – 9.
[16]. Kamang, E. E. and O. F. Job (1997).The relationship between the strength and non-destructive parameters of periwinkle shell
concrete.African Journal of Natural Sciences, 1:96-100.
[17]. Ohimain, Elijah I., Sunday Bassey, and Dorcas D. S. Bawo (2009). Uses of seas shells for civil
[18]. construction works in coastal Bayelsa State, Nigeria: A waste management perspective. Research Journal of Biological Sciences,
4(9): 1025-1031.
[19]. Orangun, C. O. (1974). The suitability of periwinkle shells as coarse aggregate for structural concrete. Materials and Structures,
7(5): 341-346.
[20]. Osadebe, N. N., and O. M. Ibearugbulem (2009).Application of scheffe’s simplex model in optimizing compressive strength of
periwinkle shell granite concrete.The Heartland Engineer, 4 (1): 27 – 38.
[21]. Osarenmwinda, J. O. and A. O. Awaro (2009). The potential use of periwinkle shell as coarse
[22]. aggregate for concrete. Advanced Materials Research, 62-64:39-43.Doi: 10,4028/www.Scientificnet/AMR.62-64.39
[23]. Stow, E. (1969). Strength of concrete made with periwinkle shells. A B. Sc. Project submitted to department of Civil
Engineering, University of Lagos.

More Related Content

What's hot

Replacement of Natural Fine Aggregate With Air Cooled Blast Furnace Slag An I...
Replacement of Natural Fine Aggregate With Air Cooled Blast Furnace Slag An I...Replacement of Natural Fine Aggregate With Air Cooled Blast Furnace Slag An I...
Replacement of Natural Fine Aggregate With Air Cooled Blast Furnace Slag An I...IJERA Editor
 
Alternative Low Cost Building Materials on Beams
Alternative Low Cost Building Materials on BeamsAlternative Low Cost Building Materials on Beams
Alternative Low Cost Building Materials on Beamsijtsrd
 
Experimental study on strength properties of concrete using brick aggregates ...
Experimental study on strength properties of concrete using brick aggregates ...Experimental study on strength properties of concrete using brick aggregates ...
Experimental study on strength properties of concrete using brick aggregates ...EditorIJAERD
 
Partial Replacement of Cement by Saw Dust Ash in Concrete A Sustainable Approach
Partial Replacement of Cement by Saw Dust Ash in Concrete A Sustainable ApproachPartial Replacement of Cement by Saw Dust Ash in Concrete A Sustainable Approach
Partial Replacement of Cement by Saw Dust Ash in Concrete A Sustainable ApproachIJERD Editor
 
Experimental Study on Performance of Concrete M30 with Partial Replacement of...
Experimental Study on Performance of Concrete M30 with Partial Replacement of...Experimental Study on Performance of Concrete M30 with Partial Replacement of...
Experimental Study on Performance of Concrete M30 with Partial Replacement of...IJERA Editor
 
Comparison of Strength for Concrete with GGBS and Cement Using Accelerated Cu...
Comparison of Strength for Concrete with GGBS and Cement Using Accelerated Cu...Comparison of Strength for Concrete with GGBS and Cement Using Accelerated Cu...
Comparison of Strength for Concrete with GGBS and Cement Using Accelerated Cu...IJERA Editor
 
Mud concrete block using construction and demolition waste live
Mud concrete block using construction and demolition waste liveMud concrete block using construction and demolition waste live
Mud concrete block using construction and demolition waste liveaadesh dhoka
 
The Uses Of Ecocem GGBS In Concrete 2009
The Uses Of Ecocem GGBS In Concrete 2009The Uses Of Ecocem GGBS In Concrete 2009
The Uses Of Ecocem GGBS In Concrete 2009DavidOFlynn
 
Study of mechanical behaviour of partially replaced cement (2)
Study of mechanical behaviour of partially replaced cement (2)Study of mechanical behaviour of partially replaced cement (2)
Study of mechanical behaviour of partially replaced cement (2)Rajarshi Patty
 
Experimental Study on Concrete with Waste Granite Powder as an Admixture
Experimental Study on Concrete with Waste Granite Powder as an AdmixtureExperimental Study on Concrete with Waste Granite Powder as an Admixture
Experimental Study on Concrete with Waste Granite Powder as an AdmixtureIJERA Editor
 
BEHAVIOUR OF REINFORCED CONCRETE BEAMS WITH COCONUT SHELL AS COARSE AGGREGATES
 BEHAVIOUR OF REINFORCED CONCRETE BEAMS WITH COCONUT SHELL AS COARSE AGGREGATES  BEHAVIOUR OF REINFORCED CONCRETE BEAMS WITH COCONUT SHELL AS COARSE AGGREGATES
BEHAVIOUR OF REINFORCED CONCRETE BEAMS WITH COCONUT SHELL AS COARSE AGGREGATES Eswari Kasil
 
Suitabilty of palm kernel shell as coarse aggregate in
Suitabilty of palm kernel shell as coarse aggregate inSuitabilty of palm kernel shell as coarse aggregate in
Suitabilty of palm kernel shell as coarse aggregate inAlexander Decker
 
An Experimental Study on uses of Quarry Dust to Replace Sand in Concrete
An Experimental Study on uses of Quarry Dust to Replace Sand in ConcreteAn Experimental Study on uses of Quarry Dust to Replace Sand in Concrete
An Experimental Study on uses of Quarry Dust to Replace Sand in ConcreteIRJET Journal
 
Coconut shell as coarse aggregate in the concrete
Coconut shell as coarse aggregate in the concreteCoconut shell as coarse aggregate in the concrete
Coconut shell as coarse aggregate in the concreteAglaia Connect
 
IRJET- Performance of Coconut Shell as Coarse Aggregate in Cement Concrete
IRJET-  	  Performance of Coconut Shell as Coarse Aggregate in Cement ConcreteIRJET-  	  Performance of Coconut Shell as Coarse Aggregate in Cement Concrete
IRJET- Performance of Coconut Shell as Coarse Aggregate in Cement ConcreteIRJET Journal
 

What's hot (20)

Replacement of Natural Fine Aggregate With Air Cooled Blast Furnace Slag An I...
Replacement of Natural Fine Aggregate With Air Cooled Blast Furnace Slag An I...Replacement of Natural Fine Aggregate With Air Cooled Blast Furnace Slag An I...
Replacement of Natural Fine Aggregate With Air Cooled Blast Furnace Slag An I...
 
Alternative Low Cost Building Materials on Beams
Alternative Low Cost Building Materials on BeamsAlternative Low Cost Building Materials on Beams
Alternative Low Cost Building Materials on Beams
 
Experimental study on strength properties of concrete using brick aggregates ...
Experimental study on strength properties of concrete using brick aggregates ...Experimental study on strength properties of concrete using brick aggregates ...
Experimental study on strength properties of concrete using brick aggregates ...
 
Partial Replacement of Cement by Saw Dust Ash in Concrete A Sustainable Approach
Partial Replacement of Cement by Saw Dust Ash in Concrete A Sustainable ApproachPartial Replacement of Cement by Saw Dust Ash in Concrete A Sustainable Approach
Partial Replacement of Cement by Saw Dust Ash in Concrete A Sustainable Approach
 
Experimental Study on Performance of Concrete M30 with Partial Replacement of...
Experimental Study on Performance of Concrete M30 with Partial Replacement of...Experimental Study on Performance of Concrete M30 with Partial Replacement of...
Experimental Study on Performance of Concrete M30 with Partial Replacement of...
 
T01226125131
T01226125131T01226125131
T01226125131
 
Comparison of Strength for Concrete with GGBS and Cement Using Accelerated Cu...
Comparison of Strength for Concrete with GGBS and Cement Using Accelerated Cu...Comparison of Strength for Concrete with GGBS and Cement Using Accelerated Cu...
Comparison of Strength for Concrete with GGBS and Cement Using Accelerated Cu...
 
Mud concrete block using construction and demolition waste live
Mud concrete block using construction and demolition waste liveMud concrete block using construction and demolition waste live
Mud concrete block using construction and demolition waste live
 
The Uses Of Ecocem GGBS In Concrete 2009
The Uses Of Ecocem GGBS In Concrete 2009The Uses Of Ecocem GGBS In Concrete 2009
The Uses Of Ecocem GGBS In Concrete 2009
 
20320130406009 2
20320130406009 220320130406009 2
20320130406009 2
 
Study of mechanical behaviour of partially replaced cement (2)
Study of mechanical behaviour of partially replaced cement (2)Study of mechanical behaviour of partially replaced cement (2)
Study of mechanical behaviour of partially replaced cement (2)
 
Experimental Study on Concrete with Waste Granite Powder as an Admixture
Experimental Study on Concrete with Waste Granite Powder as an AdmixtureExperimental Study on Concrete with Waste Granite Powder as an Admixture
Experimental Study on Concrete with Waste Granite Powder as an Admixture
 
A013150107
A013150107A013150107
A013150107
 
BEHAVIOUR OF REINFORCED CONCRETE BEAMS WITH COCONUT SHELL AS COARSE AGGREGATES
 BEHAVIOUR OF REINFORCED CONCRETE BEAMS WITH COCONUT SHELL AS COARSE AGGREGATES  BEHAVIOUR OF REINFORCED CONCRETE BEAMS WITH COCONUT SHELL AS COARSE AGGREGATES
BEHAVIOUR OF REINFORCED CONCRETE BEAMS WITH COCONUT SHELL AS COARSE AGGREGATES
 
Project data
Project dataProject data
Project data
 
Suitabilty of palm kernel shell as coarse aggregate in
Suitabilty of palm kernel shell as coarse aggregate inSuitabilty of palm kernel shell as coarse aggregate in
Suitabilty of palm kernel shell as coarse aggregate in
 
C41011521
C41011521C41011521
C41011521
 
An Experimental Study on uses of Quarry Dust to Replace Sand in Concrete
An Experimental Study on uses of Quarry Dust to Replace Sand in ConcreteAn Experimental Study on uses of Quarry Dust to Replace Sand in Concrete
An Experimental Study on uses of Quarry Dust to Replace Sand in Concrete
 
Coconut shell as coarse aggregate in the concrete
Coconut shell as coarse aggregate in the concreteCoconut shell as coarse aggregate in the concrete
Coconut shell as coarse aggregate in the concrete
 
IRJET- Performance of Coconut Shell as Coarse Aggregate in Cement Concrete
IRJET-  	  Performance of Coconut Shell as Coarse Aggregate in Cement ConcreteIRJET-  	  Performance of Coconut Shell as Coarse Aggregate in Cement Concrete
IRJET- Performance of Coconut Shell as Coarse Aggregate in Cement Concrete
 

Viewers also liked

Strategi monev sanitasi permukiman
Strategi monev sanitasi permukimanStrategi monev sanitasi permukiman
Strategi monev sanitasi permukimaninfosanitasi
 
Running form
Running formRunning form
Running forme066915
 
Tupoksi Bagan Pakem
Tupoksi Bagan PakemTupoksi Bagan Pakem
Tupoksi Bagan Pakempakem09
 
EduTICinnova 2012 ponente Berdaxagar,Stella ,Quemú Quemú,La Pampa ,Argentina.
EduTICinnova 2012   ponente Berdaxagar,Stella  ,Quemú Quemú,La Pampa ,Argentina.EduTICinnova 2012   ponente Berdaxagar,Stella  ,Quemú Quemú,La Pampa ,Argentina.
EduTICinnova 2012 ponente Berdaxagar,Stella ,Quemú Quemú,La Pampa ,Argentina.Enseñanza Inglés
 
Adapting my business - Guía práctica del conocimiento climático existente - A...
Adapting my business - Guía práctica del conocimiento climático existente - A...Adapting my business - Guía práctica del conocimiento climático existente - A...
Adapting my business - Guía práctica del conocimiento climático existente - A...Factor CO2
 
Japan Economic Future 2009
Japan Economic Future 2009Japan Economic Future 2009
Japan Economic Future 2009rpretet
 
Happystudy
Happystudy  Happystudy
Happystudy sangkom
 
My best effort
My best effortMy best effort
My best effortsujataray
 
Phonemic Awareness Final Project
Phonemic Awareness Final ProjectPhonemic Awareness Final Project
Phonemic Awareness Final ProjectMeaghan Geary
 
Paradigma Baru Sistem Perencanaan Pembangunan
Paradigma Baru Sistem Perencanaan Pembangunan Paradigma Baru Sistem Perencanaan Pembangunan
Paradigma Baru Sistem Perencanaan Pembangunan Dadang Solihin
 
Acs0002 Performance Measures In Surgical Practice
Acs0002 Performance Measures In Surgical PracticeAcs0002 Performance Measures In Surgical Practice
Acs0002 Performance Measures In Surgical Practicemedbookonline
 
Nordnet Q2 2011 report
Nordnet Q2 2011 reportNordnet Q2 2011 report
Nordnet Q2 2011 reportNordnet
 
Cronograma Formação "Percursos georeferenciados no contexto educativo e práti...
Cronograma Formação "Percursos georeferenciados no contexto educativo e práti...Cronograma Formação "Percursos georeferenciados no contexto educativo e práti...
Cronograma Formação "Percursos georeferenciados no contexto educativo e práti...Ministry of Education
 

Viewers also liked (20)

Strategi monev sanitasi permukiman
Strategi monev sanitasi permukimanStrategi monev sanitasi permukiman
Strategi monev sanitasi permukiman
 
Running form
Running formRunning form
Running form
 
PPT session 4 15042013
PPT session 4 15042013PPT session 4 15042013
PPT session 4 15042013
 
Tupoksi Bagan Pakem
Tupoksi Bagan PakemTupoksi Bagan Pakem
Tupoksi Bagan Pakem
 
EduTICinnova 2012 ponente Berdaxagar,Stella ,Quemú Quemú,La Pampa ,Argentina.
EduTICinnova 2012   ponente Berdaxagar,Stella  ,Quemú Quemú,La Pampa ,Argentina.EduTICinnova 2012   ponente Berdaxagar,Stella  ,Quemú Quemú,La Pampa ,Argentina.
EduTICinnova 2012 ponente Berdaxagar,Stella ,Quemú Quemú,La Pampa ,Argentina.
 
Tarea unidad 3 Congresoelearning
Tarea unidad 3 CongresoelearningTarea unidad 3 Congresoelearning
Tarea unidad 3 Congresoelearning
 
Adapting my business - Guía práctica del conocimiento climático existente - A...
Adapting my business - Guía práctica del conocimiento climático existente - A...Adapting my business - Guía práctica del conocimiento climático existente - A...
Adapting my business - Guía práctica del conocimiento climático existente - A...
 
Permendikbud tahun2014 nomor088
Permendikbud tahun2014 nomor088Permendikbud tahun2014 nomor088
Permendikbud tahun2014 nomor088
 
CAADP Toolkit
CAADP Toolkit CAADP Toolkit
CAADP Toolkit
 
Japan Economic Future 2009
Japan Economic Future 2009Japan Economic Future 2009
Japan Economic Future 2009
 
Corporate compliance
Corporate complianceCorporate compliance
Corporate compliance
 
Happystudy
Happystudy  Happystudy
Happystudy
 
My best effort
My best effortMy best effort
My best effort
 
Phonemic Awareness Final Project
Phonemic Awareness Final ProjectPhonemic Awareness Final Project
Phonemic Awareness Final Project
 
Paradigma Baru Sistem Perencanaan Pembangunan
Paradigma Baru Sistem Perencanaan Pembangunan Paradigma Baru Sistem Perencanaan Pembangunan
Paradigma Baru Sistem Perencanaan Pembangunan
 
Acs0002 Performance Measures In Surgical Practice
Acs0002 Performance Measures In Surgical PracticeAcs0002 Performance Measures In Surgical Practice
Acs0002 Performance Measures In Surgical Practice
 
Nordnet Q2 2011 report
Nordnet Q2 2011 reportNordnet Q2 2011 report
Nordnet Q2 2011 report
 
Prática 3 - Sérgio Leal
Prática 3 - Sérgio LealPrática 3 - Sérgio Leal
Prática 3 - Sérgio Leal
 
Cronograma Formação "Percursos georeferenciados no contexto educativo e práti...
Cronograma Formação "Percursos georeferenciados no contexto educativo e práti...Cronograma Formação "Percursos georeferenciados no contexto educativo e práti...
Cronograma Formação "Percursos georeferenciados no contexto educativo e práti...
 
Daniel Aldrich - Building Resilience
Daniel Aldrich - Building ResilienceDaniel Aldrich - Building Resilience
Daniel Aldrich - Building Resilience
 

Similar to PERIWINKLE SHELL CONCRETE

Experimental Characterization of Mortar Made From Local Fine Aggregate Used F...
Experimental Characterization of Mortar Made From Local Fine Aggregate Used F...Experimental Characterization of Mortar Made From Local Fine Aggregate Used F...
Experimental Characterization of Mortar Made From Local Fine Aggregate Used F...ijceronline
 
Structural Properties of Laterite - Quarry Dust Cement Blocks
Structural Properties of Laterite - Quarry Dust Cement BlocksStructural Properties of Laterite - Quarry Dust Cement Blocks
Structural Properties of Laterite - Quarry Dust Cement BlocksQUESTJOURNAL
 
F03401035041
F03401035041F03401035041
F03401035041theijes
 
Potential use of iron ore tailings in sandcrete block making
Potential use of iron ore tailings in sandcrete block makingPotential use of iron ore tailings in sandcrete block making
Potential use of iron ore tailings in sandcrete block makingeSAT Journals
 
EXPERIMENTAL STUDY ON THE BEHAVIOR OF CONCRETE BY PARTIAL REPLACEMENT OF CEME...
EXPERIMENTAL STUDY ON THE BEHAVIOR OF CONCRETE BY PARTIAL REPLACEMENT OF CEME...EXPERIMENTAL STUDY ON THE BEHAVIOR OF CONCRETE BY PARTIAL REPLACEMENT OF CEME...
EXPERIMENTAL STUDY ON THE BEHAVIOR OF CONCRETE BY PARTIAL REPLACEMENT OF CEME...IRJET Journal
 
Study on Partial replacement of CAnewFA.pptx
Study on Partial replacement of CAnewFA.pptxStudy on Partial replacement of CAnewFA.pptx
Study on Partial replacement of CAnewFA.pptxGokulS229289
 
Study on Partial replacement of CAnewFA.pptx
Study on Partial replacement of CAnewFA.pptxStudy on Partial replacement of CAnewFA.pptx
Study on Partial replacement of CAnewFA.pptxharishg6783
 
Durability Studies on Concrete with Hypo Sludge as Partial Replacement of Cement
Durability Studies on Concrete with Hypo Sludge as Partial Replacement of CementDurability Studies on Concrete with Hypo Sludge as Partial Replacement of Cement
Durability Studies on Concrete with Hypo Sludge as Partial Replacement of CementIJERA Editor
 
Investigations on Properties of Light Weight Cinder Aggregate Concrete
Investigations on Properties of Light Weight Cinder Aggregate ConcreteInvestigations on Properties of Light Weight Cinder Aggregate Concrete
Investigations on Properties of Light Weight Cinder Aggregate ConcreteIJERD Editor
 
Strength Study of copper slag & Fly Ash With Replacement Of Aggregate's In Co...
Strength Study of copper slag & Fly Ash With Replacement Of Aggregate's In Co...Strength Study of copper slag & Fly Ash With Replacement Of Aggregate's In Co...
Strength Study of copper slag & Fly Ash With Replacement Of Aggregate's In Co...IRJET Journal
 
Development of mix design for high strength Concrete with Admixtures
Development of mix design for high strength Concrete with AdmixturesDevelopment of mix design for high strength Concrete with Admixtures
Development of mix design for high strength Concrete with AdmixturesIOSR Journals
 
An Experimental Study on Compressive Strength of Fiber Reinforced High Streng...
An Experimental Study on Compressive Strength of Fiber Reinforced High Streng...An Experimental Study on Compressive Strength of Fiber Reinforced High Streng...
An Experimental Study on Compressive Strength of Fiber Reinforced High Streng...IJERD Editor
 
REPLACEMENT OF COARSE AGGREGATE WITH WASTE CERAMIC TILE AND COCONUT SHELL IN ...
REPLACEMENT OF COARSE AGGREGATE WITH WASTE CERAMIC TILE AND COCONUT SHELL IN ...REPLACEMENT OF COARSE AGGREGATE WITH WASTE CERAMIC TILE AND COCONUT SHELL IN ...
REPLACEMENT OF COARSE AGGREGATE WITH WASTE CERAMIC TILE AND COCONUT SHELL IN ...LokeshShirbhate2
 
Use of Saw Dust Ash as Partial Replacement for Cement In Concrete
Use of Saw Dust Ash as Partial Replacement for Cement In ConcreteUse of Saw Dust Ash as Partial Replacement for Cement In Concrete
Use of Saw Dust Ash as Partial Replacement for Cement In Concreteinventionjournals
 
An Experimental Investigation on Strength Behavior of Concrete by Replacing N...
An Experimental Investigation on Strength Behavior of Concrete by Replacing N...An Experimental Investigation on Strength Behavior of Concrete by Replacing N...
An Experimental Investigation on Strength Behavior of Concrete by Replacing N...ijsrd.com
 
Constructing low budget house using recycled concrete.pptx
Constructing low budget house using recycled concrete.pptxConstructing low budget house using recycled concrete.pptx
Constructing low budget house using recycled concrete.pptxJonSnow618412
 

Similar to PERIWINKLE SHELL CONCRETE (20)

A REVIEW PAPER ON PROPERTIES OF CONCRETE WITH FRACTIONAL REPLACEMENT OF RECYC...
A REVIEW PAPER ON PROPERTIES OF CONCRETE WITH FRACTIONAL REPLACEMENT OF RECYC...A REVIEW PAPER ON PROPERTIES OF CONCRETE WITH FRACTIONAL REPLACEMENT OF RECYC...
A REVIEW PAPER ON PROPERTIES OF CONCRETE WITH FRACTIONAL REPLACEMENT OF RECYC...
 
Experimental Characterization of Mortar Made From Local Fine Aggregate Used F...
Experimental Characterization of Mortar Made From Local Fine Aggregate Used F...Experimental Characterization of Mortar Made From Local Fine Aggregate Used F...
Experimental Characterization of Mortar Made From Local Fine Aggregate Used F...
 
Structural Properties of Laterite - Quarry Dust Cement Blocks
Structural Properties of Laterite - Quarry Dust Cement BlocksStructural Properties of Laterite - Quarry Dust Cement Blocks
Structural Properties of Laterite - Quarry Dust Cement Blocks
 
F03401035041
F03401035041F03401035041
F03401035041
 
Potential use of iron ore tailings in sandcrete block making
Potential use of iron ore tailings in sandcrete block makingPotential use of iron ore tailings in sandcrete block making
Potential use of iron ore tailings in sandcrete block making
 
EXPERIMENTAL STUDY ON THE BEHAVIOR OF CONCRETE BY PARTIAL REPLACEMENT OF CEME...
EXPERIMENTAL STUDY ON THE BEHAVIOR OF CONCRETE BY PARTIAL REPLACEMENT OF CEME...EXPERIMENTAL STUDY ON THE BEHAVIOR OF CONCRETE BY PARTIAL REPLACEMENT OF CEME...
EXPERIMENTAL STUDY ON THE BEHAVIOR OF CONCRETE BY PARTIAL REPLACEMENT OF CEME...
 
Study on Partial replacement of CAnewFA.pptx
Study on Partial replacement of CAnewFA.pptxStudy on Partial replacement of CAnewFA.pptx
Study on Partial replacement of CAnewFA.pptx
 
Study on Partial replacement of CAnewFA.pptx
Study on Partial replacement of CAnewFA.pptxStudy on Partial replacement of CAnewFA.pptx
Study on Partial replacement of CAnewFA.pptx
 
Durability Studies on Concrete with Hypo Sludge as Partial Replacement of Cement
Durability Studies on Concrete with Hypo Sludge as Partial Replacement of CementDurability Studies on Concrete with Hypo Sludge as Partial Replacement of Cement
Durability Studies on Concrete with Hypo Sludge as Partial Replacement of Cement
 
Investigations on Properties of Light Weight Cinder Aggregate Concrete
Investigations on Properties of Light Weight Cinder Aggregate ConcreteInvestigations on Properties of Light Weight Cinder Aggregate Concrete
Investigations on Properties of Light Weight Cinder Aggregate Concrete
 
Strength Study of copper slag & Fly Ash With Replacement Of Aggregate's In Co...
Strength Study of copper slag & Fly Ash With Replacement Of Aggregate's In Co...Strength Study of copper slag & Fly Ash With Replacement Of Aggregate's In Co...
Strength Study of copper slag & Fly Ash With Replacement Of Aggregate's In Co...
 
Development of mix design for high strength Concrete with Admixtures
Development of mix design for high strength Concrete with AdmixturesDevelopment of mix design for high strength Concrete with Admixtures
Development of mix design for high strength Concrete with Admixtures
 
An Experimental Study on Compressive Strength of Fiber Reinforced High Streng...
An Experimental Study on Compressive Strength of Fiber Reinforced High Streng...An Experimental Study on Compressive Strength of Fiber Reinforced High Streng...
An Experimental Study on Compressive Strength of Fiber Reinforced High Streng...
 
REPLACEMENT OF COARSE AGGREGATE WITH WASTE CERAMIC TILE AND COCONUT SHELL IN ...
REPLACEMENT OF COARSE AGGREGATE WITH WASTE CERAMIC TILE AND COCONUT SHELL IN ...REPLACEMENT OF COARSE AGGREGATE WITH WASTE CERAMIC TILE AND COCONUT SHELL IN ...
REPLACEMENT OF COARSE AGGREGATE WITH WASTE CERAMIC TILE AND COCONUT SHELL IN ...
 
Use of Saw Dust Ash as Partial Replacement for Cement In Concrete
Use of Saw Dust Ash as Partial Replacement for Cement In ConcreteUse of Saw Dust Ash as Partial Replacement for Cement In Concrete
Use of Saw Dust Ash as Partial Replacement for Cement In Concrete
 
An Experimental Investigation on Strength Behavior of Concrete by Replacing N...
An Experimental Investigation on Strength Behavior of Concrete by Replacing N...An Experimental Investigation on Strength Behavior of Concrete by Replacing N...
An Experimental Investigation on Strength Behavior of Concrete by Replacing N...
 
SKR PROJECT PPT.pptx
SKR PROJECT PPT.pptxSKR PROJECT PPT.pptx
SKR PROJECT PPT.pptx
 
D05911621
D05911621D05911621
D05911621
 
Constructing low budget house using recycled concrete.pptx
Constructing low budget house using recycled concrete.pptxConstructing low budget house using recycled concrete.pptx
Constructing low budget house using recycled concrete.pptx
 
H012477175
H012477175H012477175
H012477175
 

Recently uploaded

Sales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessSales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessAggregage
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communicationskarancommunications
 
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurSuhani Kapoor
 
Tech Startup Growth Hacking 101 - Basics on Growth Marketing
Tech Startup Growth Hacking 101  - Basics on Growth MarketingTech Startup Growth Hacking 101  - Basics on Growth Marketing
Tech Startup Growth Hacking 101 - Basics on Growth MarketingShawn Pang
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMANIlamathiKannappan
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayNZSG
 
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Howrah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Roomdivyansh0kumar0
 
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...Any kyc Account
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst SummitHolger Mueller
 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Roland Driesen
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdfRenandantas16
 
HONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael HawkinsHONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael HawkinsMichael W. Hawkins
 
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageMatteo Carbone
 
Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Neil Kimberley
 
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Delhi Call girls
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...Paul Menig
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Serviceritikaroy0888
 

Recently uploaded (20)

Sales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessSales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for Success
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communications
 
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
 
Tech Startup Growth Hacking 101 - Basics on Growth Marketing
Tech Startup Growth Hacking 101  - Basics on Growth MarketingTech Startup Growth Hacking 101  - Basics on Growth Marketing
Tech Startup Growth Hacking 101 - Basics on Growth Marketing
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMAN
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 May
 
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Howrah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
 
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst Summit
 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...
 
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
 
HONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael HawkinsHONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael Hawkins
 
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usage
 
Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023
 
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...
 
Forklift Operations: Safety through Cartoons
Forklift Operations: Safety through CartoonsForklift Operations: Safety through Cartoons
Forklift Operations: Safety through Cartoons
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Service
 

PERIWINKLE SHELL CONCRETE

  • 1. International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org Volume 2 Issue 3 ǁ March. 2013 ǁ PP.54-59 www.ijesi.org 54 | P a g e A reinvestigation of the prospects of using periwinkle shell as partial replacement for granite in concrete L. O. Ettu, O. M. Ibearugbulem, J. C. Ezeh, and U. C. Anya Department of Civil Engineering, Federal University of Technology, Owerri, Nigeria ABSTRACT: A large majority of civil engineering construction companies in Nigeria use granitic chippings as coarse aggregate for making concrete. These chippings are frequently bought at distant quarries and hauled at high cost to various construction sites across the country, thereby increasing the cost of construction projects. Efforts to reduce construction costs in coastal communities have led some earlier researchers to investigate the suitability of using periwinkle shells as replacement for granitic chippings in concrete-making. This work seeks to strengthen or reject some of their findings with respect to whether concrete produced by partially replacing granitic chippings with periwinkle shells meets minimum compressive strength requirements. Saturated surface dry (SSD) bulk density and compressive cube strength (CCS) tests were carried out at 7 and 28 days for concrete produced using different percentage replacements of granitic chippings with periwinkle shells, with a constant water: cement ratio of 0.65 and three sets of cement: sand: coarse aggregate mix ratios, namely 1 : 1.5 : 3; 1 : 2 : 3; and 1 : 2.5 : 3. The results showed that the density of the concrete decreased with increase in the percentage of periwinkle shells, from 2466.67 Kg/m3 for 25% periwinkle shell replacement at a mix ratio of 1 : 1.5 : 3 to 2103.33 Kg/m3 for 75% periwinkle shell replacement at a mix ratio of 1 : 2.5 : 3. Values of 28-day compressive strength ranged from 24.15 N/mm2 for 75% periwinkle shell replacement to 33.63 N/mm2 at 25% replacement. Most of these values satisfy the minimum 25 N/mm2 requirement of BS 8110 and strongly confirm the findings of earlier researchers that, on the basis of required compressive strength, periwinkle shells could be used as partial replacement of granitic chippings in making concrete for reinforced concrete works. Keywords: coarse aggregate, concrete, compressive strength, percentage replacement, periwinkle shells, granitic chippings I. INTRODUCTION Granitic chippingsare commonly used as coarseaggregate for making concrete used in the construction of load-bearing reinforced concrete members by a large majority of civil engineering construction companies in Nigeria. These chippings are generally obtained by crushing deposits of granite at quarries. Unfortunately, the quarries are found only in a few localities, from where the granitic chippings are bought and hauled at high cost to various construction sites across the country.This greatly increases the cost of procuring concrete, especially in communities that are distant from quarry locations, for which the cost of transporting the granitic chippings could even be higher than their purchase price at the quarries. For example, a 5m3 truck load of granitic chippings in Owerri, Imo State, Nigeria costs about N50,000.00whereas it is sold for about N20,000.00 at the Abakaliki or Okigwe quarries, from where the chippings are obtained. As part of efforts to reduce construction costs in order to provide low-cost housing for the teeming populace, the suitability of using locally-available substitutes to granitic chippings in concrete-making has to be more seriously investigated. Possible materials in this regard are the various natural coarse aggregates such as sandstone, river gravel, and local stones that are plentifully available in different hinterland communities. Yet, that would still not solve the problem for coastal communities where these natural aggregates are scarcely found. Thus, some earlier researchers have pioneered investigation of the suitability of using periwinkle shell as coarse aggregate for making concrete in such coastal communities. Periwinkle shell is an agricultural waste material commonly found in coastal communities. They are relatively non-degradable, and, as such, constitute a great deal of environmental problems. Many of these environmental problems could be solved by using the periwinkle shells as primary production materials, especially in concrete making. Stow (1969), Balogun (1993),and Ibearugbulem (2009) have classified the shells as lightweight coarse aggregates in accordance with ASTM specifications for concrete.Falade (1995) has also studied the shells as possible coarse aggregates and discovered that concrete made with them falls in the range of lightweight concrete. Orangun (1974) carried out a pilot study on the suitability of periwinkle shells as coarse aggregate for structural concrete and reported that strengths of concrete made with periwinkle shells were greater than 15.0 N/mm2 . Beredugo (1984) investigated the use of periwinkle shells as concrete aggregate and
  • 2. A reinvestigation of the prospects of using periwinkle shell as partial replacement for… www.ijesi.org 55 | P a g e noted that the resultant lightweight concrete has density range of 1923-2050 kg/m3 . Adewuyi and Adegoke (2008) carried out an exploratory study of periwinkle shells as coarse aggregates in concrete works and concluded that up to 42.5% replacement of crushed granite with periwinkle shells by weight still gives concrete with acceptable compressive strengths. Osarenmwinda and Awaro (2009) also investigated the potentials of periwinkle shell as coarseaggregate for concrete and found that concrete produced with different cement:sand:periwinkle mixes had compressive strength values ranging from 14.00 N/mm2 to 25.67 N/mm2 at 28 days of age.Agbede and Manasseh (2009) have specifically investigated the suitability of periwinkle shell as partial replacement for river gravel in concrete. They found that the 28-day density and compressive strength of periwinkle shell concrete were 1944 kg/m3 and 13.05 N/mm2 respectively. Falade, Ikponmwosa, and Ojediran (2010) investigated the behaviour of lightweight concrete containing periwinkle shells at elevated temperature and found that the compressive strength decreased with increase in water/cement ratio and temperature.Kamang and Job (1997) tried to relate the strength of periwinkle shell concrete to its non-destructive parameters; Falade and Tella (2002) examined the structural performance of reinforced beams containing periwinkle shells as coarse aggregate; Ohimain, Bassey, and Bawo (2009) carried out a general study on the uses of sea shells for civil construction works in coastal Bayelsa State; while Osadebe and Ibearugbulem (2009) applied Scheffe’s simplex model in optimizing the compressive strength of periwinkle shell granite concrete. All of these researches suggest a high potential of using periwinkle shells as coarse aggregate for making concrete. This study aims at reinvestigating the suitability of using periwinkle shells instructural concrete works, with a view to confirming or rejecting some of the critical findings of earlier researchers. It specifically seeks to determine whether concrete produced by partially replacing granitic chippings with periwinkle shells would meet the BS 8110 minimum required compressive strength for reinforced concrete works, which is 25N/mm2 . II. MATERIALS AND METHODS The periwinkle shellsused for this study were obtained from Eleme, Port-Harcourt, Nigeria. Theywerewashed and dried before use. Granitic chippings were obtained from a quarry at Umuchieze village in Abia State. They were of 20mm nominal size. Clean sharp sandobtained from OtamiriRiver in Owerriwas used as fine aggregate. Ibeto brand of Ordinary Portland Cement in conformity with BS 12 (1978) was used as binder; while waterwas obtained from a public tap for potable water in Owerri. Saturated surface dry (SSD) bulk density and compressive cube strength (CCS) tests of concrete at 7 and 28 days were conducted. Three sets of cement: sand: coarse aggregate mixes were used, namely1 : 1.5 : 3; 1 : 2 : 3; and1 : 2.5 : 3.For each mix ratio, graniticchippings were partially replaced with periwinkle shells at seven levels, namely 25%, 35%, 45%, 50%, 55%, 65%, and 75%. This gives a total of twenty-one mix ratios with partial periwinkle replacement. In addition, a control mix with 100% granitic chippingsas coarse aggregate was used for each of the three mix ratios. Thus, the total number of concrete mixes used in this work was twenty- four, twenty-one sets with periwinkle replacement and three control sets with no periwinkle replacement, as shown in table 1. A constant water: cement ratio of 0.65 was used for all the mixes. Batching was by weight. Six cubes were cast for each of the twenty-four mixes, making a total of 144 cubes. Three cubes for each mix were cured for 7 days and the remaining three for 28 days, after which they were weighed and crushed to determine their compressive strength.Both the Saturated Surface Dry (SSD) bulk density and the Compressive Cube Strength (CCS) tests were in conformity with BS 1881: Part 115 (1986). III. RESULTS AND DISCUSSIONS Saturated Surface Dry (SSD) Bulk Density The results of the SSD bulk density tests are presented in table 2. The values obtained indicate that for the percentage replacements used in this work the concrete produced by partially replacing granitic chippings with periwinkle shells is normal weight concrete. As would be expected, the density of the concrete decreases with increase in the percentage of periwinkle shells. Thus, the lowest and maximum densities were recorded at 75% and 25% periwinkle shell replacement respectively. This was so for all the three sets of mix ratios, with typical values for 28 days as follows: (i) First set of mix ratios (1 : 1.5 : 3) gave concrete density of 2103.33 Kg/m3 for 75% periwinkle shell replacement and 2410 Kg/m3 for 25% periwinkle shell replacement; (ii) Second set of mix ratios (1 : 2 : 3) gave concrete density of 2106.68 Kg/m3 for 75% periwinkle shell replacement and 2406.67 Kg/m3 for 25% periwinkle shell replacement; (iii) Third set of mix ratios (1 : 2.5 : 3) gave concrete density of 2130 Kg/m3 for 75% periwinkle shell replacement and 2466.67 Kg/m3 for 25% periwinkle shell replacement. All of these values are much lower than values obtained for 100% granitic chippings that came as high as 3585.33 Kg/m3 for 1 : 2 : 3 mix ratio. This means the use of periwinkle shells as partial replacement for granitic chippings results in concrete elements with much less self-weight than those made with 100% granitic chippings.
  • 3. A reinvestigation of the prospects of using periwinkle shell as partial replacement for… www.ijesi.org 56 | P a g e Table 1: Concrete mixes used for this work Cement Sand Granite Periwinkle First set of mix ratios—1 : 1.5 : 3 U1 1 1.5 0.75 2.25 U2 1 1.5 1.05 1.95 U3 1 1.5 1.35 1.65 U4 1 1.5 1.5 1.5 U5 1 1.5 1.65 1.35 U6 1 1.5 1.95 1.05 U7 1 1.5 2.25 0.75 Second set of mix ratios—1 : 2 : 3 U8 1 2 0.75 2.25 U9 1 2 1.05 1.95 U10 1 2 1.35 1.65 U11 1 2 1.5 1.5 U12 1 2 1.65 1.35 U13 1 2 1.95 1.05 U14 1 2 2.25 0.75 Third set of mix ratios—1 : 2.5 : 3 U15 1 2.5 0.75 2.25 U16 1 2.5 1.05 1.95 U17 1 2.5 1.35 1.65 U18 1 2.5 1.5 1.5 U19 1 2.5 1.65 1.35 U20 1 2.5 1.95 1.05 U21 1 2.5 2.25 0.75 Control mixes U22 1 1.5 3 U23 1 2 3 U24 1 2.5 3 Compressive Cube Strength (CCS) The results of the compressive cube strength (CCS) tests are presented in table 3. The results confirm the theoretical expectation and findings of earlier researchers that values of compressive cube strength increase with decrease in percentage of periwinkle shells. The lowest recorded 28-day CCS value was 24.15 N/mm2 for 75% periwinkle shell replacement of granite in a mix ratio of 1: 1.5: 3.The other 28-day compressive strength values at 75% periwinkle shell replacement for the remaining two mix ratios were 28.44 N/mm2 and 27.55 N/mm2 . These lower range of values obtained for higher percentages of periwinkle shell replacement are still greater than the 25 N/mm2 bench mark of BS 8110 (1997) for structural concrete. Much higher 28-day compressive strength values were obtained for lower percentages of periwinkle shell replacement: 30.59 KN/mm2 at 50 percent replacement and 33.63 KN/mm2 at 25 percent replacement. These values compare favourably with the highest average value of 39.56 KN/mm2 obtained for 100% granitic chippings at 1: 2: 3 mix ratio. Moreover, values of cement content for the three sets of mix ratios used in this work are 16%, 15%, and 14%. These are all higher than the 250 Kg/m3 (approximately 10.2%) minimum requirement of BS 8110.
  • 4. A reinvestigation of the prospects of using periwinkle shell as partial replacement for… www.ijesi.org 57 | P a g e Table 2: Saturated Surface Dry (SSD) density of concrete cubes Sample %Periwinkle 7 days (Kg/m3 ) 28 days (Kg/m3 ) 1 2 3 Average 1 2 3 Average First set of mix ratios– 1: 1.5 :3 U1 75 2100 2090 2160 2116.67 2110 2100 2100 2103.33 U2 65 2080 2080 2110 2090 2130 2100 2110 2118.33 U3 55 2160 2150 2150 2153.33 2110 2130 2130 2123.33 U4 50 2220 2230 2160 2203.33 2360 2290 2222 2290.67 U5 45 2250 2230 2300 2260 2380 2260 2320 2320 U6 35 2290 2350 2280 2306.67 2350 2880 2320 2350 U7 25 2420 2360 2130 2303.33 2330 2420 2480 2410 U22 0 (Control) 2440 3200 3111 2917 3556 3644 3556 3585.33 Second set of mix ratios–1:2:3 U8 75 2240 2070 2140 2150 2060 2060 2200 2106.68 U9 65 2240 2120 2210 2190 2190 2180 2120 2163.33 U10 55 2180 2220 2210 2203.33 2220 2310 2280 2270 U11 50 2320 2270 2260 2283.33 2330 2290 2310 2310 U12 45 2350 2270 2290 2303.33 2390 2360 2300 2350 U13 35 2310 2310 2470 2363.33 2390 2390 2330 2370 U14 25 2240 2410 2410 2420 2410 2390 2420 2406.67 U23 0 (Control) 2560 2410 2400 2460 2520 2460 2410 2450 Third set of mix ratios–1:2.5:3 U15 75 2190 2210 2180 2193.33 2190 2100 2100 2130 U16 65 2260 2170 2200 2210 2160 2210 2120 2183.33 U17 55 2210 2270 2290 2256.67 2190 2150 2200 2180 U18 50 2360 2240 2290 2296.67 2270 220 2260 2250 U19 45 2280 2300 2290 2290 2320 2310 2280 2303.33 U20 35 2320 2500 2410 2410 2330 2380 2400 2370 U21 25 2420 2420 2380 2406.67 2450 2450 2500 2466.67 U24 0 (Control) 1956 2400 2044 2133.33 2378 2398 2644 2473.33 IV. CONCLUSIONS AND RECOMMENDATIONS This reinvestigation confirms some of the observations made by earlier researchers and particularly strengthens the fact that on the basis of required compressive strength, periwinkle shells could be used as partial replacement of granitic chippings in making concrete for reinforced concrete works.The use of periwinkle shells for this purpose would greatly reduce the cost of concrete works in riverine communities with plentiful supply of these shells. As much as 75% replacement could still produce concrete of satisfactory strength for structural members under mild conditions of exposure, given good supervision of the concrete making process. Lower percentage replacements would be suitable for worse conditions of exposure.For example, 50 percent replacement would be satisfactory for moderate conditions of exposure that require a minimum concrete compressive strength of 30N/mm2 ; and 25 and lower percentage replacements could be suitable for severe conditions that require strengths of 35N/mm2 or more. The reduced density of concrete produced when granitic chippings are partially replaced with periwinkle shells also results in lower self-weight of structure. This is particularly beneficial in coastal communities where the soils have relatively low bearing capacities.
  • 5. A reinvestigation of the prospects of using periwinkle shell as partial replacement for… www.ijesi.org 58 | P a g e Table 3: Values of compressive cube strength for the mixes Sample %Periwinkle 7 days (N/mm2 ) 28 days (N/mm2) 1 2 3 Average 1 2 3 Average First set of mix ratios– 1: 1.5 :3 U1 75 20.44 22.67 18.67 20.59 25.78 22.22 24.44 24.15 U2 65 24.00 20.44 24.59 23.11 27.56 26.60 28.00 27.39 U3 55 21.33 22.22 19.56 21.04 24.88 27.56 25.33 25.92 U4 50 25.78 21.44 20.00 22.41 26.67 30.22 28.00 27.41 U5 45 27.56 25.78 26.67 26.67 31.11 33.33 31.56 30.96 U6 35 25.78 30.22 26.80 27.60 30.66 33.33 33.51 32.50 U7 25 26.67 24.33 29.33 28.44 33.11 36.44 34.66 33.70 U22 0 (Control) 24.44 32.00 31.11 29.18 35.56 28.00 35.56 35.55 Second set of mix ratios–1:2:3 U8 75 21.33 22.22 23.11 24.74 28.88 27.11 28.44 28.44 U9 65 18.67 22.22 22.22 21.04 26.67 32.00 27.56 27.11 U10 55 25.78 26.67 28.44 26.96 30.22 28.66 32.44 31.55 U11 50 24.00 24.44 24.00 24.15 28.88 28.66 29.33 28.96 U12 45 30.22 28.89 27.11 28.74 33.33 31.11 32.00 32.15 U13 35 24.44 27.11 25.78 25.78 29.78 31.11 30.22 30.30 U14 25 30.60 30.5 30.1 30.4 32.00 33.33 35.56 33.63 U23 0 (Control) 32.15 33.1 32.15 32.4 40.89 39.11 38.67 39.56 Third set of mix ratios–1:2.5:3 U15 75 20.00 17.75 16.44 18.06 28.89 28.00 26.67 27.55 U16 65 17.78 16.00 16.00 16.59 25.78 26.67 26.22 26.22 U17 55 20.44 20.00 16.00 18.81 28.89 29.78 27.56 28.74 U18 50 20.44 20.00 20.44 20.29 30.22 30.67 30.89 30.59 U19 45 17.78 20.44 17.78 19.41 26.67 28.89 27.11 28.22 U20 35 27.50 24.44 25.75 25.91 35.56 31.11 32.00 32.89 U21 25 22.20 20.44 24.89 22.52 28.89 29.33 31.11 29.78 U24 0 (Control) 26.35 30.00 30.02 28.8 33.78 33.78 36.44 34.69
  • 6. A reinvestigation of the prospects of using periwinkle shell as partial replacement for… www.ijesi.org 59 | P a g e REFERENCES [1]. Adewuyi, A. P., and T. Adegoke (2008).Exploratory Study of Periwinkle Shells as Coarse Aggregates in Concrete Works.ARPN Journal of Engineering and Applied Sciences, 3(6): 1-5. [2]. Agbede, Olufemi Isaac and Joel Manasseh (2009).Suitability of Periwinkle Shell as Partial [3]. Replacement for River Gravel in Concrete.Leonardo Electronic Journal of Practices and Technologies, Issue 15, July-December, p. 59-66. [4]. ASTM C127 – 04.Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption for coarse Aggregate. [5]. ASTM C128 – 04.Standard test method for Density, Relative Density (Specific gravity) and Absorption of coarse Aggregate. [6]. ASTM C129/129m.Standard test method for Bulk Density (Unit Weight) and voids in Aggregate. [7]. Balogun, L. A. (1993). ―Periwinkle shells and palm kernel shells as concrete aggregates‖. In proceedings of the third international conference on structural Engineering Analysis and modeling, Kumasi Ghana. pp. 533-543. [8]. Beredugo, Y. O. (1984). Periwinkle shells as concrete aggregate. Nigeria Building and Road Research Institute Technical Publication, 2:4 – 9. [9]. BS 3681 (1973).Methods of sampling and testing of lightweight aggregates for concrete, Part 2. London: British Standards Institution. [10]. BS 8110 (1997).Structural use of concrete — Part 1: Code of practice for design and construction. London: British Standards Institution. [11]. Falade, F. (1995). An investigation of Periwinkle shells as coarse aggregate in concrete.Building and Environment, 30 (4): 573 – 577. [12]. Falade, F., E. E. Ikponmwosa, and N. I. Ojediran (2010).Behaviour of lightweight concrete [13]. containing periwinkle shells at elevated temperature. Journal of Engineering Science and Technology, 5(4): 379-390. [14]. Falade, F., and F. Tella (2002). Structural performance of lightweight reinforced beams containing periwinkle shells as coarse aggregate. Sustainable Concrete Construction—Proceedings of the international conference held at the University of Dundee, Scotland, UK on 9-11 September 2002, 695-702. [15]. Ibearugbulem, O. M. (2009). Characterization of periwinkle shell as aggregate material for concrete production.The Heartland Engineer, Vol. 4 (1), 1 – 9. [16]. Kamang, E. E. and O. F. Job (1997).The relationship between the strength and non-destructive parameters of periwinkle shell concrete.African Journal of Natural Sciences, 1:96-100. [17]. Ohimain, Elijah I., Sunday Bassey, and Dorcas D. S. Bawo (2009). Uses of seas shells for civil [18]. construction works in coastal Bayelsa State, Nigeria: A waste management perspective. Research Journal of Biological Sciences, 4(9): 1025-1031. [19]. Orangun, C. O. (1974). The suitability of periwinkle shells as coarse aggregate for structural concrete. Materials and Structures, 7(5): 341-346. [20]. Osadebe, N. N., and O. M. Ibearugbulem (2009).Application of scheffe’s simplex model in optimizing compressive strength of periwinkle shell granite concrete.The Heartland Engineer, 4 (1): 27 – 38. [21]. Osarenmwinda, J. O. and A. O. Awaro (2009). The potential use of periwinkle shell as coarse [22]. aggregate for concrete. Advanced Materials Research, 62-64:39-43.Doi: 10,4028/www.Scientificnet/AMR.62-64.39 [23]. Stow, E. (1969). Strength of concrete made with periwinkle shells. A B. Sc. Project submitted to department of Civil Engineering, University of Lagos.