SlideShare a Scribd company logo
1 of 25
Download to read offline
Precambrian Research 241 (2014) 104–128
Contents lists available at ScienceDirect
Precambrian Research
journal homepage: www.elsevier.com/locate/precamres
Metamorphic evolution of the Sa’al–Zaghra Complex in Sinai:
Evidence for Mesoproterozoic Rodinia break-up?
M. Hassana,e,f,∗
, T.S. Abu-Alama,b,e
, K. Stüwea
, A. Fowlerc
, I. Hassend
a
Institut für Erdwissenschaften, Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
b
Geology Department, Faculty of Science, Tanta University, Tanta, Egypt
c
Geology Department, Faculty of Science, United Arab Emirates University, United Arab Emirates
d
Sciences Department, College of Basic Education, PAAET, Kuwait
e
Egyptian Institute of Geodynamic, Cairo, Egypt
f
Geology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
a r t i c l e i n f o
Article history:
Received 14 March 2013
Received in revised form
25 November 2013
Accepted 28 November 2013
Available online 7 December 2013
Keywords:
Sa’al–Zaghra
Low-grade metamorphism
Sinai
Arabian-Nubian Shield
Gondwana collision
Rodinia
a b s t r a c t
Recently published age data indicate that the Sa’al–Zaghra metamorphic complex in Sinai, Egypt con-
tains the oldest rocks found in the northernmost Arabian-Nubian Shield, preserving evidence for a
1110–1030 Ma rift-related volcanic system formed during Rodinia break-up (Be’eri-Shlevin et al., 2012).
As such, its metamorphic evolution provides evidence for an important part of the geological history
of the shield. Here we use petrographic, mineral chemistry and thermodynamic modeling, in combi-
nation with structural data from the field, to derive a P–T–D–t path for the complex. It is shown that
the metamorphic rock of the complex equilibrated during an early deformation event that involves a
flat lying fabric and is interpreted as an extensional event. P–T conditions attained during this event
are between 370–420 ◦
C and around 3 kbar. These conditions correspond to a geothermal gradient of
38–41 ◦
C/km which is much higher than that documented elsewhere in the metamorphic complexes
of Sinai (i.e. 25–27 ◦
C/km). We suggest that this is because metamorphism in the Sa’al–Zaghra complex
records an earlier stage of metamorphism and deformation during breakup of Rodinia, whereas the lower
gradients documented elsewhere is related to the Gondwana collision. During the subsequent East-West-
Gondwana collision, the Sa’al–Zaghra complex remained at shallow crustal levels (<9 km), and therefore
it escaped the deep crustal metamorphism of the Pan-African event.
© 2013 Elsevier B.V. All rights reserved.
1. Introduction
The Arabian-Nubian Shield is considered to be one of the
largest exposures of Neoproterozoic juvenile continental crust on
Earth (Patchett and Chase, 2002; Stern et al., 2004). The shield
was cratonized during the collision between East- and West-
Gondwana following the closure of the Mozambique Ocean around
750–630 Ma (Stern, 1994; Cox et al., 2011; Abu-Alam et al., 2013).
However, there have been reports of older (Pre-Pan-African)
crustal material that exists as reworked fragments of an earlier
continent, namely Rodinia (Johnson and Woldehaimanot, 2003;
Hargrove et al., 2006). Today, the shield includes vast sequences
of oceanic rocks and is pervasively intruded by late stage gran-
ites, but metamorphic rocks of apparently continental origin do
occur. Typically, these metamorphic rocks are high-grade gneiss
complexes that are exhumed from underneath the oceanic rocks
along crustal scale shear zones (Abu-Alam et al., 2013), but some
∗ Corresponding author. Tel.: +43 3163805680.
E-mail address: mahmoud.ali-hassan@uni-graz.at (M. Hassan).
metamorphic complexes differ in that they are much lower grade
and potentially much older. The Sa’al–Zaghra complex in central
Sinai peninsula, Egypt is one of these.
This study investigates the metamorphic evolution of the
Sa’al–Zaghra complex of Sinai to constrain its metamorphic evolu-
tion. The complex is one of four metamorphic complexes exposed
in the Sinai Peninsula (Fig. 1). Be’eri-Shlevin et al. (2012) provided
U–Th–Pb data of 1.02–1.03 Ga for the metavolcanics and mafic
intrusions from the Sa’al–Zaghra complex. These data suggest that
the geology of the complex may bear information on the connec-
tion between the latest Mesoproterozoic fragmentation of Rodinia
and the later buildup of Gondwana. As such, the Sa’al–Zaghra com-
plex may hold a key position for the early stages of the tectonic
evolution of the Arabian-Nubian shield.
This study investigates the metamorphic evolution of the
Sa’al–Zaghra complex in order to constrain the metamorphic con-
ditions associated with what may prove to be the first deformation
event in the history of the Arabian-Nubian Shield. A mineral
equilibria approach is used with petrogenetic pseudosections. Our
derived metamorphic conditions are then correlated with indepen-
dent field evidence and existing geochronological ages from the
0301-9268/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.precamres.2013.11.013
M. Hassan et al. / Precambrian Research 241 (2014) 104–128 105
N
Zaghra
formation
El-Rayan formation
2km
28º 39´
(b)
34º 04´
El-Fringa
metagabbro
Agramyia formation
Syn- and post-
tectonic granitoids
39º
24º
28º
Red
Sea
Hafafit
Meatiq
Sibai
Kid
Taba
Sa'al
Feiran-Solaf
Qazaz
Hamadat
Wajiyah
Marsa
Alam
Hurghada
Quseir
Jiddah
Arabian-NubianShield
(a)
36º33º
Gneiss complex
Strike-slip
East-African
volcanic system
N
Arabian-NubianShield
Fig. 1. (a) Geometry of the Arabian-Nubian Shield showing the volcanic-arc system, the amphibolite facies gneiss complexes, Najd Fault system and sutures of the shield
(modified after Abu-Alam and Stüwe, 2009). Sinai is shown in white indicating it may not have been exclusively part of the Arabian-Nubian Shield during the formation. (b)
Simplified geological map of the Sa’al–Zaghra complex (modified after Shimron et al., 1993; Fowler, unpublished data).
Sa’al–Zaghra complex and other complexes elsewhere in the shield.
The results are discussed in the context of the tectonic evolution of
the Arabian-Nubian Shield.
2. Geological setting and lithologies
The Arabian-Nubian Shield is mostly composed of low-grade
volcano-sedimentary associations referred to as arc-assemblage
that contain some metamorphic complexes in between this arc-
assemblage (e.g. Meatiq and Migif-Hafafit; Fritz et al., 1996, 2000,
2002) (Fig. 1). In Sinai four such complexes are known: Kid,
Taba, Feiran–Solaf and Sa’al–Zaghra with the former three being
of amphibolite and granulite facies metamorphic grade and the
Sa’al–Zaghra being much lower grade. The arc-assemblage is char-
acterized by brittle-ductile deformation (Noweir et al., 2006; Abd
El-Wahed and Kamh, 2010; Johnson et al., 2011) that meta-
morphosed at lower greenschist facies metamorphic conditions
(Noweir et al., 2006; Abu-Alam et al., unpublished data).
The evolution of the Arabian-Nubian Shield probably involved
at least four main deformation events (Sultan, 2003; Hegazi
et al., 2004; Fowler and Hassen, 2008; Fowler et al., 2010a,b;
Moghazi et al., 2012). D1 deformation phase is synchronous with
the prograde metamorphism in both Kid and Taba metamorphic
complexes and D2 occurs during peak metamorphism in both
Taba and Kid complexes (Abu El-Enen et al., 2003a,b; Abu El-
Enen et al., 2004; Eliwa et al., 2004; Abu El-Enen, 2008). For
the Feiran–Solaf metamorphic complex, the deformation events
(D2–D4) have been correlated with other parts of the shield (Abu-
Alam and Stüwe, 2009; Abu-Alam et al., 2010), but the first
deformation event D1 and its relevance for the shield are not well
understood.
The Sa’al–Zaghra complex of southern Sinai (Fig. 1) includes
mainly low-grade metamorphosed volcano-sedimentary associa-
tions referred to as the “Sa’al Group” that are surrounded by large
volumes of syn- and post-tectonic granites. The Sa’al Group is
divided into three formations (Shimron et al., 1993) (Fig. 2). (a)
El-Rayan Formation occupies a rugged terrain extending ENE-WSW
in the northern part of the complex. The El-Rayan Formation in
the west consists of a thickly layered sequence of basaltic andesite
and andesite at its base, followed by layered felsic tuffs, rhyolite
lava flows, rhyolite crystal tuffs and ash tuffs. In the eastern part
of Wadi Sa’al, it is represented by layered felsic tuffs. In the cen-
tral upper part of the complex, around the junction of Wadi Sa’al
and Wadi El-Rayan, there were wide exposure of phyllite extending
northward (Fig. 3a).
(b) Agramyia Formation occupies the central part of the belt and
is dominated by volcano-sedimentary rocks (Fig. 2). It is composed
of a ∼2300 m thick interbedded sequence of tuffs and lapili tuffs
(Fig. 3b) succeeded by rhyolitic ignimbrite (Fig. 3c) intercalated
with fine tuffs, other pyroclastics and sedimentary beds of silt-
stone, sandstone, and conglomerates with some sheets and layers
of andesitic lava (Shimron et al., 1993). (c) Finally, Zaghra Forma-
tion in the south of the belt is composed of conglomerates (Fig. 3d),
sandstones, slates with minor calc-silicates bands, metamorphosed
volcanogenic litharenite and arkoses. There is a localized zone of
concordant, foliated red granite sheets intruded along the sand-
stone and slate bands of Zaghra Formation (Fig. 3e). These three
formations are separated by two steep ENE-WSW trending thrusts.
The Sa’al–Zaghra area has been intruded by intrusive rocks
ranging in the composition from gabbro, diorites, granodiorite
to alkali-granites that cross-cut the foliation. A NW–SE striking
gabbro-diorite complex “El-Fringa metagabbro” intruded the phyl-
lite and metavolcanics of El-Rayan Formation in the NW part of the
mapped area (Fig. 2). Minor gabbroic intrusions are also found else-
where in the complex. Quartz-diorites crop out at the eastern side of
the study area have crystallization age of 819 ± 4 Ma (Be’eri-Shlevin
et al., 2012). These rocks are rich in amphiboles, coarse-grained,
dark gray in color and enclose xenoliths (metasediments, metavol-
canics and metagabbro) up to 1 m long. Granodiorite which crops
out in the central and southwestern sectors of the area is light gray,
coarse-grained and has plagioclase with amphiboles and quartz and
encloses abundant ovoid enclaves and elongated xenoliths of older
rock types (Fig. 3f). Similar granodiorite to the east of Feiran–Solaf
complex gives a U–Pb zircon age of 782 ± 7 Ma (Stern and Manton,
1987). Alkali-granite is exposed in the central and the western
part of the map area and has a Pan-African age (635–580 Ma; Eyal
et al., 2010). Biotite granite intrudes and shares sharp contacts with
the quartz-diorite and the granodiorites. Weak deformation can be
106 M. Hassan et al. / Precambrian Research 241 (2014) 104–128
Fig. 2. Geological map of the Sa’al–Zaghra complex. Thick lines are faults and thrust planes. Samples locations are shown as circles, while dated samples of Be’eri-Shlevin
et al. (2012) are shown as stars. Dashed line outlines the region where higher grade metamorphic rocks were found.
observed in these intrusive only at their contact with the metavol-
canics and metasediments of the Sa’al–Zaghra complex.
Post-tectonic dykes and sills form local swarms of various
composition, grain-size, thickness, and trends. They dissect the
volcano-sedimentary succession and the intrusive rocks of the
Sa’al–Zaghra complex (Fig. 3g). Similar dykes in the Feiran–Solaf
complex yield Rb–Sr age of 591 ± 9 Ma (Stern and Manton, 1987)
and are affected by later NNE trending faults. Phanerozoic sed-
iments cover the metavolcanics and the phyllitic rocks in the
northern part of the Sa’al–Zaghra Complex.
3. Structural evolution
Structurally, the Sa’al–Zaghra complex shows evidence for three
phases of deformation (Fowler et al., unpublished data). The ear-
liest structures are locally well-developed foliations (S1) that lie
parallel to layering. The S1 foliation (well seen in Fig. 3e) is best
developed in El-Rayan Formation phyllites and schists but are also
evident in the volcanics of Agramiya Formation and the conglomer-
ates of Zaghra Formation. The foliation is accompanied by a NW–SE
oriented stretching lineation defined by stretched objects (lithic
particles and porphyroblasts) in the S1 foliation planes. The foli-
ation is overprinted by all later folding especially as kink folds
that pass directly into more rounded D2 and D3 mesoscopic folds.
The S1 foliations are clearly the earliest tectonic structures in the
Sa’al–Zaghra complex.
Measurements of strain using folded quartz veins on the meso-
scopic and microscopic scale show shortenings normal to S1 of
at least −50% in El-Rayan phyllites (Figs. 3h and 4a). This is also
reflected in the boudinage of quartz veins and dykes along the
S1 foliations. Even higher strains are associated with metamor-
phosed pyroclastics at Wadi Mughafa (see Fig. 2) where deformed
lapilli particles give RXZ values up to 15, which correspond to −75%
shortening normal to S1 and 285% extension in a NW–SE direc-
tion, assuming no dilatation. The fact that the S1 foliation is parallel
to bedding is interpreted that S1 formed while the beds were
originally horizontal. This means that the maximum shortening
strain was vertical and (together with the stretching lineation) the
maximum extension was NW–SE. Vertical shortening and horizon-
tal extension are consistent with D1 extensional tectonic setting.
These foliations clearly predated any significant folding in the
area.
M. Hassan et al. / Precambrian Research 241 (2014) 104–128 107
Fig. 3. Representative field photographs of the Sa’al–Zaghra complex. (a) Biotite phenocrysts in wide phyllite exposure at junction of Wadi Sa’al and Wadi El-Rayan. (b)
Pumicious agglomerate in thick interbedded sequence of tuffs and lapili tuffs. (c) Large extended rhyolitic ignimbrite sequence in Agramyia Formation. (d) Metaconglomerates
as representative beds of Zaghra Formation. (e) Primary bedding parallel to foliation invaded by thin sheets of red granites. (f) Metasedimentary enclaves of the Sa’al–Zaghra
complex in later intruded granodiorite. (g) Post-tectonic dykes swarms dissect intrusive rocks of the Sa’al–Zaghra complex. (h) Abundant folded quartz veins with the foliation
as axial plane as a result of vertical shortening.
108 M. Hassan et al. / Precambrian Research 241 (2014) 104–128
The existence of an earliest extensional deformation pre-dating
folding of beds is similar to that described by Fowler and Hassen
(2008) for the Feiran–Solaf metamorphic complex. In both cases
the bulk strain consisted of vertical shortening, with extension in
the plane of the foliation, principally in the NW–SE direction. In
the Feiran–Solaf metamorphic complex, Fowler and Hassen (2008)
argued for a continental rift setting for the Feiran gneisses, and
against other extensional tectonic settings, such as gravitational
collapse, core complex or mantled gneiss dome.
The second deformation event D2 is mainly represented by
ENE–WSW trending folds associates with thrusting. Discordances
between thrust planes and bedding planes are common. In El-
Rayan Formation, D2 is mainly recorded in folds with localized
SSE-ward thrusting contemporaneous with intrusion of the El-
Firinga metagabbro along the thrust planes. The D2 event is a
result of NW–SE shortening which was partitioned between folding
and thrusting. El-Rayan Formation phyllites show open ENE–WSW
trending F2 folds that pass into more common F2 kink fold geom-
etry. The thick volcanic units in the center of the Sa’al–Zaghra
complex (Agramiya Formation) show minimal D2 folding, whereas
the thinner layered units in the SE of the complex (Zaghra Forma-
tion) show common mesoscopic F2 folds. There are generally no
axial planar foliation associated with F2 folds.
The third deformation event D3 is represented mainly by N–S to
NW–SE trending steeply plunging open folds as a result of NE–SW
shortening. The F2 folds are overprinted by this phase, and have
their axial planes and hinges deformed by the D3 deformation. F3
kink folds are found in El-Rayan Formation phyllites. These kink
folds overprint the earlier F2 kink folds.
4. Petrography
The Sa’al metamorphic complex is generally known for being
largely composed of low-grade (greenschist facies) metavol-
canic and metasedimentary rocks. However, some rocks of
amphibolite facies are also present. Low-grade metamorphic
assemblages are found in both main types of metavolcanic rocks
(mafic-intermediate and felsic) and also in the majority of the
metasedimentary rocks. In contrast, rocks of amphibolite facies
grade are only found in felsic metapyroclastic rocks in a limited
area near Wadi Muqafa (Fig. 2).
The low-grade mafic-intermediate metavolcanics are character-
ized by uniform primary texture of interlocking plagioclase laths or
euhedral (0.8 mm in length) plagioclase phenocrysts (Figs. 4b and
5a). The groundmass is made up of fine-grained plagioclase, acti-
nolite needles, chlorite, biotite, opaques and/or sphene (Figs. 4c
and 5b). Clinozoisite granules concentrate at the plagioclase mar-
gins. There are amygdales filled by polycrystalline quartz. Quartz
and epidote veinlets may be found. The foliation, where present,
is defined by the preferred orientation of chlorite, biotite and in
places actinolite.
The felsic metavolcanics are represented as thinly banded low-
grade meta-tuffs or flow banded lava composed mainly of quartz
and plagioclase phenocrysts (up to 3 mm) with a groundmass
of finer quartz, fine lamellar-twinned plagioclase and K-feldspar.
Micas define a weak foliation in addition to specks of chlorite and
sericite. Granules of clinozoisite and small secondary plagioclase
grains are common. Ignimbrites have well preserved plagioclase
phenocrysts that are overgrown by microcline. There are also fine-
grained lithic particles rich in opaques.
Low-grade metasedimentary rocks are commonly metapsam-
mites that contain ellipsoidal, rather angular quartz grains with
variable grain size (less than 1 mm in diameter) and detrital
sericitized plagioclase and microcline grains in addition to mica
(Fig. 5c). Foliation is defined by substantial amounts of fine-grained
(less than 0.3 mm) biotite, white mica, clinozoisite, chlorite and
amphiboles (Fig. 4d). Important is the occurrence of up to 1 mm
sized aggregates of fine-grained mica are interpreted as alteration
products replacing former cordierite porphyroblasts (Fig. 5d).
Opaque granules are found as porphyroclasts or tiny grains along
grain boundaries. In some places, the metasedimentary rocks
contain minor impure carbonate interlayers within the metap-
sammites. In these metacarbonates, a calcsilicate assemblage of
epidote, garnet and diopside occurs (Fig. 5e).
Amphibolite facies assemblages were found only in some rocks
of Zaghra Formation, in particular near Wadi Muqafa (dashed line
in Fig. 2). In this area, rocks of pelitic bulk composition have a por-
phyroblastic texture with andalusite or garnet porphyroblasts. In
sample 215b (Figs. 4e and 5f), garnet porphyroblasts (up to 2 mm)
lie randomly within a foliated groundmass made of muscovite,
chlorite, albite, K-feldspar and quartz (0.1 mm). The porphyroblasts
contain inclusions of quartz and muscovite. These inclusions are
oriented parallel to the external foliation indicating post-tectonic
origin of the porphyroblasts. In sample 273a (Fig. 5g), anhedral
andalusite porphyroblasts (less than 1 mm) have grown over a foli-
ated matrix of biotite, muscovite, plagioclase, K-feldspar and quartz
(up to 0.2 mm) also indicating a post-tectonic origin for the porphy-
roblasts. It is worth mentioning that small euhedral to subhedral
sillimanite crystals (0.2 mm in length) grow obliquely to the foli-
ation and surrounding the andalusite porphyroblasts (Figs. 4f and
5h). A rim of muscovite surrounds the alumino silicates and sepa-
rates them from the biotite in the groundmass. K-feldspar grains in
contact with the muscovite and andalusite porphyroblasts are finer
than the feldspar and quartz grains of the groundmass. Muscovite
and quartz inclusions can be found in the porphyroblasts.
In summary, we conclude that there is low-grade equilibrium
assemblage of actinolite, chlorite, feldspar, clinozoisite, opaques
and quartz for the metavolcanic rocks, in addition to mica in the
metasedimentary rocks. Thin section studies show that the S1 foli-
ation is defined by metamorphic layer silicates chlorite, muscovite
and biotite. Pressure shadows adjacent to resistant lithic particles
and phenocrysts are also filled with these metamorphic phases.
Brittly segmented grains are healed by fibrous growths of these
metamorphic phases. The S1 foliation thus formed during the main
metamorphic event in the area that we term M1.
The apparently higher grade assemblages found in selected
locations inside Zaghra Formation are made up of either (a)
biotite, muscovite, feldspar and quartz forming a foliated (S1)
matrix around andalusite-sillimanite porphyroblasts or (b) mus-
covite, chlorite, feldspar and quartz foliated groundmass enclosing
garnet porphyroblasts. These porphyroblasts are not perceptibly
deformed and overgrow S1. The spatial association of these higher
temperature assemblages with S1 foliation-concordant red gran-
ite sheets that also show a tectonic gneissosity parallel to S1 is
interpreted to indicate a role of contact metamorphism in the for-
mation of the higher grade phase assemblage. This higher grade
metamorphism occurs either late in D1 or between D1 and D2.
5. Mineral chemistry
Mineral analyses were carried out for 27 rock samples
(total 866 spot analysis) at the Institute of Earth Science, Karl-
Franzens-Universität Graz, Austria, using a JEOL JSM-6310 scanning
electron microscope following standard procedures, operating in
EDS/WDS mode at 5 nA beam current, accelerating voltage of
15 kV and counting time of 100 s. Mineral formula were cal-
culated using AX program (http://www.esc.cam.ac.uk/research/
research-groups/holland/ax) and based on 8 oxygen atoms for the
feldspar, 12 oxygen atoms for the garnet, 11 oxygen atoms and
ignoring H2O for mica, 23 oxygen atoms and ignoring H2O for
amphiboles and 14 oxygen atoms and ignoring H2O for chlorite. The
M. Hassan et al. / Precambrian Research 241 (2014) 104–128 109
Fig. 4. Photomicrographs of petrographic features in metavolcanic and metasedimentary rocks of the Sa’al–Zaghra complex. (a) Folded quartz veins as a result of vertical
shortening. (b) Subhedral plagioclase phenocryst surrounded by fine-grained groundmass contains plagioclase, chlorite, opaques. (c) Weak foliation in the low-grade mafic-
intermediate metavolcanics, defined by the preferred orientation of chlorite. The plagioclase phenocryst is slightly altered to epidote. (d) Micas define a weak foliation in
metasedimentary rocks. Note micas grow in the strain shadow of opaque porphyroclasts. (e) Garnet porphyroblast cutting the metamorphic foliation and contains inclusions
of quartz oriented parallel to the external foliation indicating post-tectonic origin. (f) Small euhedral to subhedral sillimanite crystals grow obliquely to the foliation.
mineral abbreviations, which will be used in the following sections,
are from Holland and Powell (1998).
Plagioclase is mostly andesine in the mafic-intermediate
metavolcanic showing a small range in composition with lim-
ited zonation and has Xan [Ca/(Ca + Na)] = 0.30–0.40 (Table 1).
Oligoclase is the dominant plagioclase in the felsic metavolcanic
showing a small range in composition and has Xan = 0.10–0.22.
In metasedimentary rocks, plagioclase composition is variable
and chemical compositions of albite, oligoclase and andesine
were analyzed (Tables 2–5). Potassium feldspar is absent in the
mafic metavolcanics, abundant in the intermediate and the felsic
metavolcanics, and is the dominant feldspar in the metasedimen-
tary rocks. Intrusive granitic rocks have andesine plagioclase with
a small range in composition Xan = 0.26–0.44.
110 M. Hassan et al. / Precambrian Research 241 (2014) 104–128
Fig. 5. Back-scattered electron images of petrographic features in metavolcanic and metasedimentary rocks of the Sa’al–Zaghra complex. (a) Uniform texture of plagioclase
phenocrysts with partially transformed amphibole to chlorite (intermediate metavolcanic). (b) Intermediate metavolcanic with plagioclase, actinolite needles, and chlorite,
in addition to opaques and clinoziosite as accessory minerals (intermediate metavolcanic). (c) Substantial amount of fine-grained biotite, white mica, and clinozoisite in
plagioclase and quartz (meta-sandstone). (d) Cordierite porphyroblasts (bounded with dashed line) that are completely altered to micas surrounded by epidote in quartz rich
groundmass (micaschist). (e) Calcsilicate assemblage of epidote, diopside and garnet (metacarbonate-sedimentary rocks). (f) Garnet porphyroblasts overprinting foliation
of chlorite, muscovite, albite, K-feldspar and quartz (garnet bearing metasedimentary rocks, sample 215b). (g) Muscovite rim separating andalusite porphyroblast from
surrounding biotite in quartz-rich groundmass (alumino silicates-bearing metasedimentary rocks, sample 273a). (h) Euhedral to subhedral sillimanite crystals grown up
oblique to the muscovite foliation surrounding the andalusite porphyroblasts (alumino silicates-bearing metasedimentary rocks, sample 273a).
M.Hassanetal./PrecambrianResearch241(2014)104–128111
Table 1
Representative electron microprobe analyses of mineral assemblages of the basic-intermediate metavolcanic rock samples (<0.01, calculated values less than 0.005; BDL, below detection limit).
Sample 1c1hb2a 1c1hb3 1c1hb4 1c1hb5 19s1hb2 19s2hb1 19s2hb3 19s3hb2 101hb2 101hb4a 101hb5 101hb6 199hb2 199hb1 70A2hb5 70A2hb6
SiO2 47.11 47.36 46.73 48.59 48.72 48.87 44.52 45.97 50.07 53.45 49.12 49.55 49.91 48.43 49.06 51.28
TiO2 0.35 0.38 0.57 0.34 0.22 0.17 0.32 0.26 0.62 0.11 0.75 0.51 0.39 0.56 0.24 0.17
Al2O3 6.23 6.94 7.02 5.27 7.03 7.06 10.60 9.85 5.43 3.59 6.33 6.00 5.97 6.94 7.73 5.10
Cr2O3 0.05 0.02 0.04 0.04 BDL 0.03 0.01 0.05 0.04 0.09 0.02 0.01 0.04 0.08 0.02 0.08
Fe2O3 7.02 6.84 6.85 6.07 2.45 1.48 3.82 3.99 3.46 2.55 3.44 3.17 3.31 3.43 3.61 3.15
FeO 10.88 11.43 11.75 11.19 12.17 13.09 12.90 12.32 9.13 8.30 9.85 9.26 9.01 9.73 9.52 10.03
MnO 0.63 0.52 0.62 0.57 0.31 0.25 0.38 0.35 0.34 0.21 0.30 0.37 0.64 0.48 0.44 0.99
MgO 12.59 12.46 11.98 13.42 12.98 12.68 10.36 11.51 15.37 17.17 14.69 15.03 15.02 14.12 14.18 16.14
CaO 11.48 11.34 11.34 11.36 12.43 12.53 12.54 12.11 12.05 12.64 12.11 12.25 11.94 12.38 11.73 9.34
Na2O 0.72 0.76 0.76 0.60 0.74 0.72 1.25 1.09 0.64 0.38 0.78 0.67 0.65 0.65 0.83 0.93
K2O 0.49 0.49 0.55 0.34 0.09 0.14 0.25 0.17 0.29 0.07 0.31 0.22 0.25 0.23 0.11 0.06
Totals 97.54 98.55 98.22 97.79 97.14 97.02 96.94 97.67 97.44 98.56 97.69 97.04 97.13 97.03 97.47 97.28
On basis of 23 oxygens
Si 6.97 6.93 6.89 7.13 7.15 7.18 6.65 6.77 7.24 7.54 7.12 7.19 7.23 7.07 7.09 7.38
Ti 0.04 0.04 0.06 0.04 0.02 0.02 0.04 0.03 0.07 0.01 0.08 0.06 0.04 0.06 0.03 0.02
Al 1.09 1.20 1.22 0.91 1.22 1.22 1.87 1.71 0.93 0.60 1.08 1.03 1.02 1.19 1.32 0.87
Cr 0.01 <0.01 0.01 0.01 – <0.01 <0.01 0.01 0.01 0.01 <0.01 <0.01 0.01 0.01 <0.01 0.01
Fe3+
0.78 0.75 0.76 0.67 0.27 0.16 0.43 0.44 0.38 0.27 0.38 0.35 0.36 0.38 0.39 0.34
Fe2+
1.35 1.40 1.45 1.37 1.49 1.619 1.61 1.52 1.10 0.98 1.19 1.12 1.09 1.19 1.15 1.21
Mn 0.08 0.06 0.08 0.07 0.04 0.03 0.05 0.04 0.04 0.03 0.04 0.05 0.09 0.06 0.05 0.12
Mg 2.78 2.72 2.63 2.94 2.84 2.78 2.31 2.53 3.31 3.61 3.17 3.25 3.24 3.07 3.05 3.46
Ca 1.82 1.78 1.79 1.79 1.95 1.97 2.01 1.91 1.87 1.91 1.88 1.91 1.85 1.94 1.82 1.44
Na 0.21 0.22 0.22 0.17 0.21 0.21 0.36 0.31 0.18 0.10 0.22 0.19 0.18 0.18 0.23 0.26
K 0.09 0.09 0.10 0.06 0.02 0.03 0.05 0.03 0.05 0.01 0.06 0.04 0.05 0.04 0.02 0.01
Tr 0.212 0.19 0.16 0.22 0.21 0.17 0.16 0.20 0.26 0.31 0.24 0.28 0.26 0.26 0.28 0.24
Fact <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Ts – <0.01 – – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Parg <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.01 <0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <0.01
Gl – <0.01 <0.01 – – – <0.01 <0.01 <0.01 – <0.01 <0.01 – <0.01 – –
Sample 1c1chl2 1c1chl3 1c1chl4 1c1chl5 19s1chl2 19s2chl1 19s2chl3 19s3chl2 101chl2 101chl4 101chl5 101chl6 199chl1 199chl2 70A1chl1 70A2chl7
SiO2 27.43 27.63 27.73 27.59 26.43 27.85 26.44 27.07 29.66 29.21 28.26 31.08 28.88 28.68 28.09 29.76
TiO2 0.02 BDL 0.19 0.07 0.06 0.04 0.09 0.01 0.35 0.08 0.16 0.55 BDL 0.21 0.04 0.02
Al2O3 17.13 16.65 17.23 16.86 19.24 19.24 19.74 18.73 17.99 17.1 17.97 17.21 17.48 16.88 18.99 19.26
Cr2O3 0.03 BDL 0.06 0.08 0.06 0.05 0.03 0.05 0.10 BDL 0.03 0.08 0.03 0.05 0.01 0.04
Fe2O3 2.12 0.78 0.48 1.88 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL
FeO 23.75 23.86 23.79 23.17 19.88 18.69 19.7 19.57 21.16 21.43 21.64 20.78 19.22 20.54 19.68 19.76
MnO 0.59 0.52 0.53 0.53 0.34 0.34 0.34 0.34 0.19 0.19 0.34 0.20 0.32 0.51 0.28 0.29
MgO 17.37 17.34 17.41 17.92 18.35 18.74 18.76 19.17 19.3 18.74 19.11 17.85 19.89 18.56 20.66 19.04
CaO 0.08 0.04 0.14 0.08 0.14 0.20 0.14 0.09 0.13 0.11 0.10 0.21 0.03 0.06 0.05 0.14
Na2O 0.02 0.01 BDL 0.01 BDL 0.08 0.03 0.01 0.01 BDL 0.01 0.06 0.01 0.03 0.01 0.28
K2O 0.07 0.06 0.19 0.05 0.03 0.07 0.01 0.03 0.83 0.14 0.08 0.95 0.07 BDL 0.03 0.21
Totals 88.61 86.89 87.75 88.24 84.53 85.30 85.28 85.07 89.72 87.00 87.70 88.97 85.93 85.52 87.84 88.80
On basis of 14 oxygens
Si 2.87 2.93 2.91 2.88 2.81 2.91 2.79 2.86 2.99 3.03 2.92 3.14 3.00 3.02 2.86 2.99
Ti <0.01 – 0.02 0.01 <0.01 <0.01 <0.01 <0.01 0.03 0.01 0.01 0.04 – 0.02 <0.01 <0.01
Al 2.11 2.08 2.13 2.08 2.42 2.37 2.45 2.33 2.14 2.09 2.19 2.05 2.14 2.10 2.28 2.28
Cr <0.01 – 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Fe3+
0.17 0.06 0.04 0.15 – – – – – – – – – – – –
Fe2+
2.08 2.12 2.09 2.03 1.77 1.63 1.74 1.73 1.78 1.86 1.87 1.76 1.67 1.81 1.68 1.66
Mn 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.02 0.02 0.03 0.02 0.03 0.05 0.02 0.03
112M.Hassanetal./PrecambrianResearch241(2014)104–128
Table 1 (Continued)
Sample 1c1chl2 1c1chl3 1c1chl4 1c1chl5 19s1chl2 19s2chl1 19s2chl3 19s3chl2 101chl2 101chl4 101chl5 101chl6 199chl1 199chl2 70A1chl1 70A2chl7
Mg 2.70 2.74 2.72 2.79 2.91 2.92 2.95 3.01 2.90 2.90 2.94 2.69 3.08 2.91 3.14 2.85
Ca 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 <0.01 0.01 0.01 0.02
Na <0.01 <0.01 – <0.01 – 0.02 0.01 <0.01 <0.01 – <0.01 0.01 <0.01 0.01 <0.01 0.06
K 0.01 0.01 0.05 0.01 <0.01 0.01 <0.01 <0.01 0.11 0.02 0.01 0.12 0.01 – <0.01 0.03
Clin 0.05 0.05 0.05 0.05 0.08 0.08 0.08 0.09 0.07 0.07 0.08 0.05 0.10 0.07 0.10 0.07
Daph 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Ames 0.02 0.01 0.02 0.02 0.06 0.05 0.06 0.06 0.03 0.03 0.04 0.02 0.04 0.03 0.06 0.04
Sample 1c1plg2 1c1plg3 1c1plg4 1c1plg5 19s1plg2 19s2plg1 19s2plg3 19s3plg2 101plg2 101plg4 101plg5 101plg6 199plag3 199plag1 70A1plg3 70A1plg4
SiO2 63.06 63.94 59.22 63.35 55.89 59.58 59.18 59.6 59.96 61.43 59.91 59.99 59.61 58.84 59.26 63.91
TiO2 BDL 0.03 0.02 BDL BDL 0.05 0.01 0.01 0.03 0.03 0.04 0.11 0.03 0.04 0.01 0.01
Al2O3 23.73 23.25 25.36 23.11 26.82 25.85 25.67 25.98 25.79 25.53 25.79 25.96 25.59 25.16 26.77 23.86
Cr2O3 0.06 0.01 0.04 0.02 0.06 BDL BDL 0.03 0.07 0.01 0.01 0.06 0.02 BDL 0.03 0.01
Fe2O3 0.14 0.22 0.33 0.43 0.32 0.21 0.13 0.44 0.25 0.38 0.32 0.36 0.12 0.68 0.28 0.50
MnO 0.04 0.04 0.01 0.01 0.03 0.01 0.02 BDL 0.06 0.05 0.10 0.01 BDL 0.05 0.01 0.02
MgO 0.20 0.18 0.03 0.03 0.20 0.01 0.05 0.05 0.21 0.13 0.04 0.09 0.09 0.51 0.05 0.05
CaO 5.02 4.73 7.44 4.57 10.68 8.15 8.17 8.23 6.59 6.11 6.56 6.91 7.95 8.30 8.92 4.61
Na2O 8.34 8.57 6.98 8.66 5.98 7.26 7.29 7.17 7.44 7.76 7.71 7.52 6.78 6.55 6.23 8.16
K2O 0.07 0.08 0.20 0.08 0.03 0.07 0.14 0.09 0.05 0.15 0.08 0.02 0.14 0.08 0.06 0.49
Totals 100.66 101.05 99.63 100.26 100.01 101.19 100.66 101.6 100.45 101.57 100.56 101.02 100.33 100.21 101.62 101.62
On basis of 8 oxygens
Si 2.77 2.80 2.65 2.79 2.52 2.63 2.63 2.63 2.66 2.69 2.65 2.65 2.65 2.63 2.61 2.78
Ti – <0.01 <0.01 – – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Al 1.23 1.20 1.34 1.20 1.43 1.35 1.35 1.35 1.35 1.32 1.35 1.35 1.34 1.33 1.39 1.22
Cr <0.01 <0.01 <0.01 <0.01 <0.01 – – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01
Fe3+
0.01 0.01 0.01 0.01 0.01 0.01 <0.01 0.02 0.01 0.01 0.01 0.01 <0.01 0.02 0.01 0.02
Mn <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01
Mg 0.01 0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 0.01 <0.01 0.01 0.01 0.03 <0.01 <0.01
Ca 0.24 0.22 0.36 0.22 0.52 0.39 0.39 0.39 0.31 0.29 0.31 0.33 0.38 0.40 0.42 0.22
Na 0.71 0.73 0.61 0.74 0.52 0.62 0.63 0.61 0.64 0.66 0.66 0.64 0.58 0.57 0.53 0.69
K <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 0.01 <0.01 0.01 <0.01 <0.01 0.01 0.01 <0.01 0.03
An 0.41 0.39 0.59 0.37 0.72 0.62 0.61 0.62 0.53 0.49 0.52 0.55 0.63 0.66 0.70 0.38
Ab 0.75 0.77 0.63 0.78 0.56 0.63 0.63 0.62 0.68 0.70 0.69 0.67 0.62 0.60 0.58 0.75
M.Hassanetal./PrecambrianResearch241(2014)104–128113
Table 2
Representative electron microprobe analyses of mineral assemblages of the studied amphibole-bearing metasedimentary rock samples.
Sample 122D!hb1 122D!hb2 122D!hb3 122D2hb1 140b1hb1 140b2hb4 140b2hb5 140b2hb6 188hb1 188hb3 188hb4 188hb5 189 × 4hb2 189 × 4hb3 189 × 2hb1 189 × 2hb7
SiO2 48.90 47.87 49.13 48.18 48.50 48.25 46.59 48.15 49.37 48.49 48.01 47.57 50.61 50.38 49.85 50.07
TiO2 0.42 0.65 0.53 0.61 0.68 0.79 3.84 0.86 0.44 0.80 0.45 1.03 0.40 0.60 0.68 0.44
Al2O3 3.49 4.36 3.76 4.32 7.09 7.17 6.57 8.02 5.56 5.95 6.36 6.77 5.27 5.53 5.56 5.82
Cr2O3 0.05 0.15 0.02 0.04 0.07 0.11 0.03 0.09 0.01 0.01 0.10 0.03 0.01 0.02 0.01 0.03
Fe2O3 2.09 2.77 2.20 2.58 3.92 4.49 12.28 4.65 3.30 4.32 3.75 3.33 1.04 2.42 3.47 2.24
FeO 9.23 9.60 9.33 9.91 9.20 8.77 BDL 9.17 10.24 9.97 10.26 11.35 11.44 9.71 8.36 10.51
MnO 0.97 0.81 0.90 0.96 0.63 0.50 0.50 0.59 0.46 0.49 0.44 0.50 0.56 0.66 0.68 0.70
MgO 14.76 14.7 14.82 14.34 14.63 14.67 13.37 14.33 14.61 14.45 14.09 13.58 14.47 15.04 15.6 14.34
CaO 10.85 10.78 10.88 10.94 12.16 12.16 14.23 11.97 12.61 12.33 12.51 12.32 12.73 12.51 12.42 12.45
Na2O 1.03 1.18 1.08 1.17 0.87 0.69 0.53 0.80 0.63 0.76 0.77 0.90 0.58 0.53 0.63 0.50
K2O 0.40 0.47 0.39 0.44 0.47 0.55 0.34 0.64 0.45 0.53 0.54 0.65 0.23 0.23 0.28 0.24
Totals 92.19 93.34 93.04 93.50 98.22 98.15 98.28 99.27 97.68 98.09 97.28 98.02 97.34 97.63 97.54 97.34
On basis of 23 oxygens
Si 7.48 7.28 7.44 7.32 7.00 6.97 6.66 6.89 7.18 7.05 7.05 6.97 7.35 7.27 7.19 7.27
Ti 0.05 0.07 0.06 0.07 0.08 0.09 0.41 0.09 0.05 0.09 0.05 0.11 0.04 0.07 0.07 0.05
Al 0.63 0.78 0.67 0.77 1.21 1.22 1.11 1.35 0.95 1.02 1.1 1.17 0.90 0.94 0.95 1.00
Cr 0.01 0.02 <0.01 0.01 0.01 0.01 <0.01 0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Fe3+
0.24 0.32 0.25 0.30 0.43 0.49 1.32 0.50 0.36 0.47 0.41 0.37 0.11 0.26 0.38 0.25
Fe2+
1.18 1.22 1.18 1.26 1.11 1.06 – 1.10 1.25 1.21 1.26 1.39 1.39 1.17 1.01 1.28
Mn 0.13 0.10 0.12 0.12 0.08 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.07 0.08 0.08 0.09
Mg 3.36 3.33 3.35 3.25 3.15 3.16 2.85 3.06 3.17 3.13 3.08 2.96 3.13 3.24 3.36 3.10
Ca 1.78 1.76 1.77 1.78 1.88 1.88 2.18 1.84 1.97 1.92 1.97 1.93 1.98 1.94 1.92 1.94
Na 0.31 0.35 0.32 0.34 0.24 0.19 0.15 0.22 0.18 0.21 0.22 0.26 0.16 0.15 0.18 0.14
K 0.08 0.09 0.08 0.09 0.09 0.10 0.06 0.12 0.08 0.10 0.10 0.12 0.04 0.04 0.05 0.04
Tr 0.20 0.19 0.20 0.19 0.26 0.25 0.21 0.22 0.23 0.23 0.23 0.16 0.02 0.23 0.30 0.20
Fact <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Ts <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Parg 0.02 0.01 0.02 0.01 0.01 0.01 – 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01
Gl – – – – <0.01 <0.01 – <0.01 – – – – – – <0.01 –
Sample 122D!chl1 122D!chl2 122D!chl3 122D2chl3 140b1chl1 140b1chl1a 140b1chl2 140b1chl2a 188 × 1chl1 188chl2 188chl3 188chl4 189 × 4chl9 189 × 2chl7 189chl2 189chl1
SiO2 27.4 26.08 26.53 28.42 31.88 33.03 25.98 29.42 26.66 28.42 28.07 28.42 27.81 29.61 29.86 30.07
TiO2 0.01 0.05 0.02 0.25 BDL 0.05 0.01 0.08 0.07 0.03 0.01 0.03 0.18 0.02 0.96 0.14
Al2O3 16.46 16.99 16.47 15.2 15.46 15.37 16.43 19.08 18.36 17.93 19.09 17.93 19.76 17.95 17.3 16.78
Cr2O3 0.04 0.09 0.09 0.02 0.05 0.09 0.05 0.01 0.06 0.23 0.23 0.23 0.07 0.08 0.01 0.07
Fe2O3 BDL BDL BDL BDL BDL BDL BDL BDL 0.16 BDL BDL BDL BDL BDL BDL BDL
FeO 16.96 19.39 18.67 16.50 1.41 1.45 17.93 19.50 18.37 18.04 19.00 18.04 18.32 18.38 18.67 18.62
MnO 1.89 1.71 1.80 1.56 0.32 0.25 0.75 0.65 0.58 0.52 0.68 0.52 0.72 1.12 0.96 0.85
MgO 18.30 17.54 17.42 18.85 27.73 29.02 17.85 19.90 19.58 21.11 20.35 21.11 19.88 20.25 19.37 20.72
CaO 0.07 0.05 0.07 0.19 0.50 0.79 0.18 0.11 0.39 0.43 0.28 0.43 0.25 0.16 1.27 0.10
Na2O 0.01 0.01 0.02 0.04 0.03 0.11 0.02 0.01 0.01 BDL 0.01 BDL 0.04 BDL 0.01 0.01
K2O 0.05 0.02 0.04 0.25 0.02 0.05 0.02 0.01 0.01 0.02 0.01 0.02 0.03 0.05 0.04 0.09
Totals 81.19 81.93 81.13 81.28 77.40 80.21 79.22 88.77 84.25 86.73 87.73 86.73 87.06 87.62 88.45 87.45
On basis of 14 oxygens
Si 3.02 2.89 2.96 3.12 3.32 3.33 2.94 2.96 2.84 2.92 2.86 2.92 2.85 3.01 3.02 3.06
Ti <0.01 <0.01 <0.01 0.02 – <0.01 <0.01 0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.07 0.01
Al 2.14 2.22 2.17 1.96 1.90 1.82 2.20 2.26 2.30 2.17 2.30 2.17 2.38 0.01 2.06 2.02
Cr <0.01 0.01 0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.01 0.02 0.02 0.02 0.01 0.01 <0.01 0.01
Fe3+
– – – – – – – – 0.013 – – – – – – –
Fe2+
1.56 1.80 1.74 1.51 0.12 0.12 1.70 1.64 1.63 1.55 1.62 1.55 1.57 1.56 1.58 1.59
Mn 0.18 0.16 0.17 0.15 0.03 0.02 0.07 0.06 0.05 0.05 0.06 0.05 0.06 0.10 0.08 0.07
114M.Hassanetal./PrecambrianResearch241(2014)104–128
Table 2 (Continued)
Sample 122D!chl1 122D!chl2 122D!chl3 122D2chl3 140b1chl1 140b1chl1a 140b1chl2 140b1chl2a 188 × 1chl1 188chl2 188chl3 188chl4 189 × 4chl9 189 × 2chl7 189chl2 189chl1
Mg 3.00 2.90 2.90 3.08 4.30 4.36 3.02 2.98 3.10 3.23 3.09 3.23 3.03 3.07 2.92 3.15
Ca 0.01 0.01 0.01 0.02 0.06 0.09 0.02 0.01 0.04 0.05 0.03 0.05 0.03 0.02 0.14 0.01
Na <0.01 <0.01 <0.01 0.01 0.01 0.02 <0.01 <0.01 <0.01 – <0.01 – 0.01 – <0.01 <0.01
K 0.01 <0.01 0.01 0.04 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.01
Clin 0.09 0.07 0.07 0.09 0.47 0.47 0.09 0.09 0.10 0.12 0.10 0.12 0.09 0.10 0.10 0.10
Daph <0.01 0.01 0.01 <0.01 – – 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Ames 0.04 0.04 0.03 0.02 0.08 0.07 0.04 0.05 0.06 0.05 0.06 0.05 0.06 0.04 0.03 0.03
Sample 122D!plg4 122D2plg2 122D2plag3 122D2plg4 140b2plg5 140b2plg6 142–2plg3 142plg4 188plg1 188plg2 188plg3 188plg4 189 × 2plag2 189 × 2plag3 189 × 3plag1 189 × 3plag2
SiO2 64.44 64.47 64.60 64.70 60.84 69.78 66.32 65.87 68.88 65.78 59.89 68.77 45.55 47.03 46.45 48.28
TiO2 0.09 0.07 0.02 0.03 0.03 BDL 0.01 0.02 0.03 BDL BDL 0.02 0.05 0.04 0.01 0.04
Al2O3 20.48 20.77 21.20 21.22 26.68 21.63 21.45 21.28 20.67 20.94 25.35 20.32 34.31 33.19 33.95 32.88
Cr2O3 0.04 0.04 0.01 0.01 0.05 BDL 0.04 0.08 0.04 0.01 BDL 0.05 0.03 0.02 0.04 BDL
Fe2O3 0.23 0.17 0.17 0.21 0.26 0.16 0.03 0.01 0.12 1.02 0.31 0.38 0.37 0.54 0.10 0.23
MnO 0.04 0.06 0.04 BDL 0.01 0.03 0.06 0.01 0.04 0.06 0.06 0.04 0.09 0.03 0.01 BDL
MgO 0.22 0.16 0.03 0.03 0.26 0.01 0.06 0.16 0.02 0.95 0.15 0.01 0.18 0.04 0.02 0.24
CaO 2.32 2.57 2.65 2.62 7.25 0.59 2.38 2.50 1.16 3.41 7.46 1.23 18.11 17.1 17.58 16.32
Na2O 10.11 9.54 10.13 10.39 7.34 10.14 9.13 8.84 10.70 9.47 7.86 11.35 1.11 1.68 1.39 2.00
K2O 0.25 0.19 0.36 0.16 0.14 0.61 0.22 0.21 0.03 0.04 0.11 0.72 BDL 0.01 0.03 BDL
Totals 98.22 98.04 99.21 99.37 102.86 102.95 99.70 98.98 101.69 101.68 101.19 102.89 99.80 99.68 99.58 99.99
On basis of 8 oxygens
Si 2.89 2.89 2.87 2.87 2.64 2.96 2.91 2.91 2.96 2.86 2.65 2.95 2.11 2.17 2.14 2.21
Ti <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 – – <0.01 <0.01 <0.01 <0.01 <0.01
Al 1.08 1.10 1.11 1.11 1.36 1.08 1.11 1.11 1.05 1.07 1.32 1.03 1.87 1.80 1.85 1.77
Cr <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 –
Fe3+
0.01 0.01 0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 0.03 0.01 0.01 0.01 0.02 <0.01 0.01
Mn <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 –
Mg 0.02 0.01 <0.01 <0.01 0.02 <0.01 <0.01 0.01 <0.01 0.06 0.01 <0.01 0.01 <0.01 <0.01 0.02
Ca 0.11 0.12 0.13 0.13 0.34 0.03 0.11 0.12 0.05 0.16 0.35 0.06 0.90 0.85 0.87 0.80
Na 0.88 0.83 0.87 0.89 0.62 0.83 0.78 0.76 0.89 0.80 0.67 0.94 0.10 0.15 0.12 0.18
K 0.01 0.01 0.02 0.01 0.01 0.03 0.01 0.01 <0.01 < 0.01 0.01 0.04 – < 0.01 < 0.01 –
An 0.19 0.22 0.21 0.21 0.57 0.05 0.21 0.23 0.10 0.28 0.56 0.10 0.91 0.88 0.89 0.86
Ab 0.88 0.86 0.86 0.87 0.65 0.93 0.86 0.86 0.94 0.84 0.66 0.91 0.27 0.34 0.3 0.38
M.Hassanetal./PrecambrianResearch241(2014)104–128115
Table 3
Representative electron microprobe analyses of mineral assemblages of the studied mica-bearing metasedimentary rock samples.
Sample 94 × 1bi2 94 × 1bi3 94 × 2bi4 94 × 2bi5 132bi1 132bi2 132bi3 132bi4 230Abi1 230Abi1a 230Abi5 230Abi6 240bi1 240bi2 240bi3 240bi6
SiO2 35.9 36.21 35.03 34.77 36.64 39.36 37.66 36.82 35.76 34.94 35.11 35.35 35.19 35.35 35.45 35.29
TiO2 1.96 1.73 1.99 1.74 1.76 1.64 1.62 1.67 2.58 2.36 2.58 2.78 2.09 2.89 2.28 2.76
Al2O3 16.99 16.55 15.79 15.77 18.38 18.04 17.97 18.19 16.02 15.92 16.68 16.25 16.76 16.71 16.70 16.63
Cr2O3 0.13 BDL BDL 0.04 0.05 0.08 0.05 0.03 0.02 0.02 0.06 0.07 0.02 BDL 0.06 0.06
Fe2O3 3.20 2.25 1.29 3.28 BDL BDL BDL 0.45 2.98 2.01 1.36 0.95 0.11 0.03 BDL BDL
FeO 16.29 16.58 17.04 16.74 13.6 14.2 13.51 13.67 15.18 16.53 16.19 17.13 16.66 18.69 18.31 18.05
MnO 0.35 0.37 0.32 0.29 0.31 0.32 0.26 0.37 0.53 0.55 0.48 0.60 1.01 0.68 0.56 1.26
MgO 12.84 12.58 11.74 12.09 14.35 13.61 13.43 14.48 12.07 11.61 11.7 11.27 11.87 11.15 11.12 10.98
CaO 0.07 0.02 0.04 0.03 0.06 0.01 0.06 0.02 0.29 0.07 0.14 0.14 0.01 0.10 0.01 0.01
Na2O 0.05 0.07 0.01 0.05 0.19 0.05 0.12 0.06 0.09 0.01 0.07 0.10 0.11 0.09 0.09 0.08
K2O 9.41 9.79 9.39 8.99 9.52 9.91 9.86 9.91 7.45 8.93 8.38 8.19 9.61 9.30 9.56 9.34
Totals 97.19 96.15 92.64 93.79 94.86 97.22 94.54 95.68 92.97 92.95 92.76 92.83 93.44 94.98 94.14 94.46
On basis of 11 oxygens
Si 2.67 2.73 2.74 2.70 2.73 2.85 2.81 2.73 2.74 2.72 2.72 2.74 2.73 2.71 2.74 2.72
Ti 0.11 0.10 0.12 0.10 0.10 0.09 0.09 0.09 0.15 0.14 0.15 0.16 0.12 0.17 0.13 0.16
Al 1.49 1.47 1.46 1.44 1.61 1.54 1.58 1.59 1.45 1.46 1.52 1.49 1.53 1.51 1.52 1.51
Cr 0.01 – – <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01
Fe3+
0.18 0.13 0.08 0.19 – – – 0.03 0.17 0.12 0.08 0.06 0.01 <0.01 – –
Fe2+
1.02 1.04 1.12 1.09 0.85 0.86 0.84 0.85 0.97 1.08 1.05 1.11 1.08 1.20 1.18 1.16
Mn 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.03 0.04 0.07 0.04 0.04 0.08
Mg 1.43 1.41 1.37 1.40 1.59 1.47 1.49 1.60 1.38 1.35 1.35 1.30 1.37 1.27 1.28 1.26
Ca 0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 <0.01 0.02 0.01 0.01 0.01 <0.01 0.01 <0.01 <0.01
Na 0.01 0.01 <0.01 0.01 0.03 0.01 0.02 0.01 0.01 <0.01 0.01 0.02 0.02 0.01 0.01 0.01
K 0.89 0.94 0.94 0.89 0.90 0.92 0.94 0.94 0.73 0.89 0.83 0.81 0.95 0.91 0.94 0.92
Phl 0.06 0.07 0.07 0.06 0.12 0.10 0.11 0.12 0.06 0.06 0.06 0.05 0.07 0.05 0.06 0.05
Ann 0.03 0.03 0.04 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.05
Aast 0.06 0.06 0.05 0.05 0.09 0.07 0.08 0.09 0.05 0.05 0.05 0.04 0.06 0.04 0.05 0.04
Sample 94 × 1mu2 94 × 1mu3 94 × 2mu4 94 × 2mu5 132mu1 132mu3 132mu4 132mu4a 230A1mu1a 230A2mu3 230A2mu4 230A2mu5 240mu1 240mu2a 240mu3 240mu5
SiO2 47.99 52.58 43.49 45.69 47.04 46.64 46.99 46.71 48.53 45.93 46.62 48.35 47.28 47.09 47.38 46.97
TiO2 1.01 0.82 1.12 0.64 0.25 0.26 0.04 0.04 0.29 1.28 1.20 1.38 0.03 0.19 1.48 1.48
Al2O3 29.93 28.91 31.36 32.19 34.62 34.04 34.59 34.39 29.68 29.99 29.59 31.15 34.69 32.89 32.38 32.95
Cr2O3 0.02 0.05 0.03 0.06 0.02 0.02 0.01 0.01 0.01 0.01 0.03 0.06 0.03 0.02 0.01 BDL
Fe2O3 2.97 BDL 2.05 0.60 2.64 2.64 2.81 2.91 3.08 4.15 3.70 3.36 2.49 2.78 2.11 1.87
FeO 1.90 3.64 1.50 2.84 1.02 1.02 1.11 1.12 1.19 1.60 1.43 1.69 0.96 1.07 1.78 1.89
MnO 0.06 0.08 0.03 0.04 BDL 0.01 0.09 0.08 0.07 0.06 0.03 0.01 0.01 0.09 0.14 0.08
MgO 1.50 1.19 1.07 0.97 0.95 0.87 0.78 0.87 1.73 1.02 1.28 1.53 0.68 1.03 1.05 0.74
CaO 0.02 0.03 0.12 BDL 0.04 0.05 BDL BDL 0.05 0.05 BDL 0.02 0.01 0.01 0.02 0.01
Na2O 0.14 0.29 0.52 0.20 0.83 0.75 0.68 0.69 0.14 0.18 0.15 0.24 0.38 0.16 0.27 0.14
K2O 9.54 9.57 9.27 10.65 9.13 8.92 9.85 8.85 8.95 8.28 8.90 9.87 8.96 9.65 9.63 9.66
Totals 95.08 97.16 90.55 93.88 96.54 95.22 95.79 95.67 93.72 92.56 92.93 97.67 95.52 94.98 96.25 95.79
On basis of 11 oxygens
Si 3.22 3.43 3.07 3.12 3.09 3.10 3.10 3.09 3.28 3.16 3.19 3.17 3.12 3.15 <0.01 3.12
Ti 0.05 0.04 0.06 0.03 0.01 0.01 0.01 <0.01 0.02 0.07 0.06 0.07 <0.01 0.01 0.07 0.07
Al 2.37 2.22 2.61 2.60 2.68 2.67 2.69 2.68 2.36 2.43 2.39 2.41 2.70 2.59 2.53 2.58
Cr <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 –
Fe3+
0.15 – 0.11 0.03 0.13 0.13 0.14 0.15 0.16 0.22 0.19 0.17 0.12 0.14 0.11 0.09
Fe2+
0.11 0.20 0.09 0.16 0.06 0.06 0.06 0.06 0.07 0.09 0.08 0.09 0.05 0.06 0.10 0.10
Mn <0.01 <0.01 <0.01 <0.01 – <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.01
Mg 0.15 0.12 0.11 0.10 0.09 0.09 0.08 0.09 0.17 0.11 0.13 0.15 0.07 0.10 0.10 0.07
Ca <0.01 <0.01 0.01 – <0.01 <0.01 – – <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01
116M.Hassanetal./PrecambrianResearch241(2014)104–128
Table 3 (Continued)
Sample 94 × 1mu2 94 × 1mu3 94 × 2mu4 94 × 2mu5 132mu1 132mu3 132mu4 132mu4a 230A1mu1a 230A2mu3 230A2mu4 230A2mu5 240mu1 240mu2a 240mu3 240mu5
Na 0.02 0.04 0.07 0.03 0.11 0.10 0.09 0.09 0.02 0.02 0.02 0.03 0.05 0.02 0.04 0.02
K 0.82 0.80 0.84 0.93 0.76 0.76 0.75 0.75 0.77 0.73 0.78 0.83 0.75 0.82 0.81 0.82
Mu 0.56 0.46 0.61 0.66 0.67 0.68 0.70 0.70 0.58 0.64 0.59 0.56 0.73 0.68 0.63 0.66
Cel 0.03 0.06 0.02 0.02 0.01 0.01 – – 0.04 0.01 0.02 0.03 – 0.01 0.02 0.01
Fcel 0.02 0.10 0.01 0.03 <0.01 <0.01 – – 0.01 0.01 0.01 0.02 – 0.01 0.02 0.01
Pa 0.06 0.27 0.19 0.13 0.21 0.19 0.15 0.15 0.05 0.04 0.04 0.08 0.09 0.05 0.10 0.05
Sample 94 × 1chl2 94 × 1chl3 94 × 2chl4 94 × 2chl5 132chl1 132chl2 132chl3 132chl5 230A1chl1 230A1chl1a 230A2chl3 230A2chl5 240chl1 240chl2 240chl4 240chl6
SiO2 32.81 29.04 26.79 29.57 29.48 27.72 27.06 28.53 26.86 27.11 29.75 34.27 28.66 32.70 31.43 28.04
TiO2 0.96 0.08 0.09 0.95 0.16 0.14 0.12 0.05 0.20 0.75 0.43 0.12 0.24 0.14 0.37 0.30
Al2O3 16.54 17.63 19.01 16.19 19.06 21.26 20.99 20.43 18.64 19.51 18.36 17.35 17.79 12.00 16.31 16.62
Cr2O3 0.01 0.09 0.05 0.06 0.14 0.02 0.06 0.08 0.06 0.02 0.01 0.04 0.03 0.08 0.02 0.06
Fe2O3 BDL BDL 1.57 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL
FeO 20.21 21.35 19.43 21.03 13.70 12.82 13.19 14.16 22.37 22.38 24.50 18.82 24.01 19.29 21.19 23.71
MnO 0.30 0.49 0.68 0.42 0.26 0.25 0.29 0.22 0.92 0.73 0.31 0.29 0.89 0.31 1.18 1.12
MgO 16.86 18.78 19.38 17.00 24.24 24.19 23.29 24.08 17.21 16.71 12.19 15.59 16.49 17.53 16.08 15.51
CaO 0.98 0.02 0.10 0.61 0.04 0.02 0.02 0.02 0.12 0.63 0.35 0.35 0.09 0.48 0.05 0.12
Na2O 0.02 0.01 0.06 0.03 0.02 0.01 0.02 0.04 0.01 0.01 BDL 0.03 0.01 0.24 0.02 0.03
K2O 1.04 0.39 0.04 0.88 0.10 0.02 BDL 0.20 0.20 0.25 0.39 0.52 0.39 0.30 1.92 0.98
Totals 89.73 87.88 87.21 86.74 87.20 86.45 85.04 87.81 86.59 88.10 86.29 87.38 88.60 83.07 88.57 86.49
On basis of 14 oxygens
Si 3.27 2.99 2.78 3.09 2.93 2.77 2.76 2.82 2.84 2.81 3.15 3.44 2.97 3.51 3.23 3.00
Ti 0.07 0.01 0.01 0.08 0.01 0.01 0.01 <0.01 0.02 0.06 0.03 0.01 0.02 0.01 0.03 0.02
Al 1.95 2.14 2.32 2.00 2.23 2.50 2.52 2.38 2.32 2.39 2.29 2.05 2.18 1.52 1.98 2.10
Cr <0.01 0.01 <0.01 0.01 0.01 <0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01
Fe3+
– – 0.12 – – – – – – – – – – – – –
Fe2+
1.69 1.84 1.69 1.84 1.14 1.07 1.12 1.17 1.98 1.94 2.17 1.58 2.08 1.73 1.82 2.13
Mn 0.03 0.04 0.06 0.04 0.02 0.02 0.03 0.02 0.08 0.06 0.03 0.03 0.08 0.03 0.10 0.10
Mg 2.51 2.88 2.99 2.65 3.59 3.60 3.53 3.55 2.71 2.58 1.92 2.33 2.55 2.81 2.46 2.48
Ca 0.11 <0.01 0.011 0.07 <0.01 <0.01 <0.01 <0.01 0.01 0.07 0.04 0.04 0.01 0.06 0.01 0.01
Na <0.01 <0.01 0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 – 0.01 <0.01 0.05 <0.01 0.01
K 0.13 0.05 0.01 0.12 0.01 <0.01 – 0.03 0.03 0.03 0.05 0.07 0.05 0.04 0.25 0.13
Clin 0.04 0.07 0.08 0.04 0.20 0.22 0.20 0.20 0.05 0.04 0.01 0.03 0.04 0.04 0.03 0.03
Daph 0.01 0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.03 0.01 0.02 <0.01 0.01 0.02
Ames 0.01 0.03 0.06 0.02 0.09 0.14 0.14 0.12 0.04 0.03 0.01 0.01 0.02 <0.01 0.01 0.02
M.Hassanetal./PrecambrianResearch241(2014)104–128117
Table 4
Representative electron microprobe analyses of mineral assemblages of the studied garnet-bearing samples.
Sample50A 1 × 1drk 1grt1 1grt2 1grt3 2grt4 1augt1 1agt2 1agt1in 2agt5i 3agt1 3agt2 1plg1in 2plg5i 3plg1 1epd1 1epd2 1kfs2i 1kfs3i 3kfs1 3ox1 3ox2
SiO2 37.79 38.49 38.40 37.93 38.10 51.65 52.61 56.12 54.96 54.20 54.20 70.82 69.42 66.24 36.07 35.64 67.22 65.38 66.55 0.49 0.35
TiO2 0.03 0.02 0.03 0.01 0.07 0.02 0.01 0.02 BDL 0.21 0.23 0.02 0.05 0.02 1.15 0.22 0.19 0.11 0.13 0.02 0.53
Al2O3 22.10 23.93 24.23 21.55 22.66 1.33 1.05 0.19 0.25 2.71 2.42 20.42 21.57 23.04 4.52 3.89 18.64 18.42 18.22 0.19 0.12
Cr2O3 0.07 0.01 0.01 0.04 0.04 0.07 0.05 0.01 0.08 0.06 0.07 0.04 0.02 0.01 0.06 0.07 0.09 0.02 0.04 0.11 0.09
Fe2O3 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 0.39 0.24 0.21 BDL BDL 0.11 0.46 0.17 97.65 98.22
FeO 12.96 10.67 10.07 13.26 11.73 10.22 10.52 3.74 3.48 11.27 10.16 BDL BDL BDL 21.24 23.57 BDL BDL BDL 0.89 0.89
MnO 0.17 0.12 0.62 0.16 0.07 0.70 0.52 0.98 0.71 0.35 0.35 0.01 0.03 0.03 0.71 0.49 0.05 0.08 0.01 0.05 0.02
MgO 0.06 0.08 0.10 0.06 0.07 11.36 11.50 16.51 16.29 17.50 17.97 0.35 0.17 0.26 0.23 0.2 0.23 0.20 0.13 0.08 0.11
CaO 22.32 22.54 22.18 22.10 22.15 22.27 22.74 24.50 24.30 12.04 11.77 0.74 1.86 3.68 31.37 30.31 0.04 0.20 0.01 0.06 0.25
Na2O 0.03 0.03 0.02 BDL 0.13 0.26 0.22 0.26 0.10 0.44 0.62 11.48 10.53 9.44 BDL 0.01 0.14 0.30 0.67 0.01 0.04
K2O 0.01 0.01 BDL 0.01 0.06 0.01 0.01 0.02 0.01 0.23 0.23 0.06 0.10 0.17 BDL 0.01 16.08 16.14 15.95 0.07 0.03
Totals 95.54 95.90 95.66 95.12 95.08 97.89 99.23 102.35 100.18 99.01 98.02 104.33 103.99 103.10 95.35 94.41 102.79 101.31 101.88 99.61 100.65
Oxygens 12 12 12 12 12 6 6 6 6 6 6 8 8 8 12.5 12.5 8 8 8 3 3
Si 3.03 3.03 3.02 3.05 3.04 1.99 2.00 2.01 2.01 2.00 2.01 2.97 2.92 2.83 3.36 3.39 3.01 2.99 3.01 0.01 0.01
Ti <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.00 <0.01 – 0.01 0.01 <0.01 <0.01 <0.01 0.08 0.02 0.01 <0.01 <0.01 0.00 0.01
Al 2.09 2.22 2.25 2.06 2.13 0.06 0.05 0.01 0.01 0.11 0.11 1.01 1.07 1.16 0.50 0.44 0.98 0.99 0.97 0.01 <0.01
Cr <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Fe3+
– – – – – – – – – – – 0.01 0.01 0.01 – – <0.01 0.02 0.01 1.956 1.95
Fe2+
0.87 0.70 0.66 0.89 0.78 0.33 0.33 0.11 0.11 0.35 0.32 – – – 1.65 1.87 – – – 0.02 0.02
Mn 0.01 0.01 0.04 0.01 0.01 0.02 0.02 0.03 0.02 0.01 0.01 0.00 <0.01 <0.01 0.06 0.04 <0.01 <0.01 <0.01 <0.01 <0.01
Mg 0.01 0.01 0.01 0.01 0.01 0.65 0.65 0.88 0.89 0.96 0.99 0.02 0.01 0.02 0.03 0.03 0.02 0.01 0.01 <0.01 <0.01
Ca 1.92 1.90 1.87 1.91 1.90 0.92 0.93 0.94 0.95 0.48 0.47 0.03 0.08 0.17 3.13 3.09 <0.01 0.01 <0.01 <0.01 0.01
Na 0.01 0.01 <0.01 – 0.02 0.02 0.02 0.02 0.01 0.03 0.05 0.93 0.86 0.78 – <0.01 0.01 0.03 0.06 <0.01 <0.01
K <0.01 <0.01 – <0.01 0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01 <0.01 0.01 0.01 – <0.01 0.92 0.94 0.92 <0.01 <0.01
py – – – – – di 0.66 0.66 0.85 0.86 – – an 0.06 0.15 0.30 Cz 1.00 1.00 san 0.99 0.96 0.94 ilm – <0.01
gr 0.26 0.25 0.24 0.26 0.25 hed 0.33 0.34 0.14 0.13 0.24 0.21 ab 0.96 0.91 0.82 ep – – ab 0.10 0.19 0.04 hem 0.96 0.95
alm 0.02 0.01 0.01 0.03 0.02 cats 0.08 0.08 0.02 0.02 0.18 0.16 prh – –
spss – – – – – jd – – – – – – gei – –
Sample215 b 1grt1 1agrt6 2grt4 2grt5 gar2 2mus1 2amus2 mu3 mu4 mu6 mu5 2chl1 chlin chl5 chl6 chl2 2fld1 kfsin ksp6 oxin ox6
SiO2 36.20 36.83 36.88 35.77 36.36 48.09 46.14 53.28 50.58 48.38 49.55 25.54 25.72 26.45 26.39 27.95 65.18 66.08 65.28 0.98 3.81
TiO2 0.35 0.25 1.04 0.40 0.53 0.72 0.65 0.20 0.43 0.08 1.03 0.13 0.07 0.07 0.25 0.09 0.05 0.19 0.17 0.25 0.10
Al2O3 20.57 20.18 19.26 19.86 18.83 30.59 28.80 27.28 29.76 30.27 27.36 19.95 18.63 18.96 18.75 18.93 19.02 18.58 18.19 0.22 0.37
Cr2O3 0.08 0.07 0.03 0.06 0.01 0.11 0.10 0.02 0.01 0.02 0.05 0.05 0.05 0.01 0.07 0.02 0.04 BDL 0.01 0.03 0.02
Fe2O3 1.76 0.10 0.35 3.36 2.47 0.36 5.45 BDL 1.35 4.05 2.03 BDL BDL BDL BDL BDL 1.22 0.36 0.47 93.35 89.38
FeO 6.53 8.48 7.28 2.75 4.59 3.57 2.10 3.92 2.77 1.56 3.30 27.38 26.75 26.2 26.59 26.29 BDL BDL BDL 0.85 3.17
MnO 30.76 30.03 30.05 32.15 30.73 0.11 0.20 0.19 0.18 0.12 0.38 2.68 2.89 2.39 2.34 2.21 0.03 0.41 0.06 0.36 0.05
MgO 0.56 0.10 0.37 0.52 0.17 1.54 2.36 1.31 1.69 1.54 1.65 11.80 11.87 11.97 12.05 11.73 0.11 0.09 0.05 0.16 0.38
CaO 3.78 3.93 5.14 5.21 6.10 0.18 0.08 0.19 0.07 0.02 0.01 BDL 0.07 0.06 0.09 0.10 0.05 0.06 0.09 0.11 0.15
Na2O 0.01 0.02 0.01 0.02 BDL BDL 0.15 0.14 0.09 0.11 0.04 0.02 0.01 BDL 0.01 0.03 0.38 0.34 0.23 BDL 0.06
K2O 0.01 0.02 0.01 0.04 0.04 10.89 10.63 11.26 9.64 9.82 9.55 BDL 0.08 0.21 0.35 0.15 15.58 15.83 16.3 0.05 0.09
Totals 100.61 100.01 100.41 100.14 99.83 96.17 96.66 97.79 96.58 95.97 94.95 87.55 86.14 86.32 86.89 87.5 101.66 101.94 100.85 96.36 97.58
Oxygens 12 12 12 12 12 11 11 11 11 11 11 14 14 14 14 14 8 8 8 3 3
Si 2.94 3.01 3.00 2.92 2.98 3.22 3.12 3.49 3.33 3.22 3.34 2.76 2.83 2.88 2.87 2.99 2.96 2.99 3.00 0.03 0.10
Ti 0.02 0.02 0.06 0.03 0.03 0.04 0.03 0.01 0.02 <0.01 0.05 0.01 0.01 0.01 0.02 0.01 <0.01 0.01 0.01 0.01 <0.01
Al 1.97 1.94 1.85 1.91 1.82 2.41 2.29 2.11 2.31 2.38 2.18 2.55 2.42 2.44 2.40 2.38 1.02 0.99 0.98 0.01 0.01
Cr 0.01 0.01 <0.01 <0.01 <0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 – <0.01 <0.01 <0.01
Fe3+
0.11 0.01 0.02 0.21 0.15 0.02 0.28 – 0.07 0.20 0.10 – – – – – 0.04 0.01 0.02 1.92 1.79
Fe2+
0.44 0.58 0.50 0.19 0.32 0.20 0.12 0.22 0.15 0.09 0.19 2.48 2.46 2.39 2.42 2.35 – – – 0.02 0.07
Mn 2.12 2.08 2.07 2.22 2.14 0.01 0.01 0.01 0.01 0.01 0.02 0.25 0.27 0.22 0.22 0.20 <0.01 0.02 <0.01 0.01 <0.01
Mg 0.07 0.01 0.05 0.06 0.02 0.15 0.24 0.13 0.17 0.15 0.17 1.90 1.95 1.94 1.95 1.87 0.01 0.01 <0.01 0.01 0.02
Ca 0.33 0.34 0.45 0.46 0.54 0.01 0.01 0.01 0.01 <0.01 <0.01 – 0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Na <0.01 <0.01 <0.01 <0.01 – – 0.02 0.02 0.01 0.01 0.01 <0.01 <0.01 – <0.01 0.01 0.03 0.03 0.02 – <0.01
K <0.01 <0.01 <0.01 <0.01 <0.01 0.93 0.92 0.94 0.81 0.84 0.82 – 0.01 0.03 0.05 0.02 0.90 0.91 0.95 <0.01 <0.01
py <0.01 – <0.01 <0.01 – mu 0.6 0.46 0.45 0.53 0.58 0.50 clin 0.01 0.01 0.01 0.01 0.01 san 0.96 0.97 0.98 ilm – <0.01
gr <0.01 <0.01 <0.01 <0.01 <0.01 cel 0.04 0.02 0.10 0.05 0.03 0.05 daph 0.04 0.04 0.03 0.03 0.03 ab 0.25 0.22 0.15 hem 0.92 0.79
alm <0.01 0.01 <0.01 <0.01 fcel 0.05 0.01 0.17 0.04 0.02 0.05 ames 0.01 0.01 0.01 0.01 0.01 prh – –
spss 0.34 0.31 0.28 0.38 0.33 pa – 0.04 0.24 0.06 0.04 – gei – –
andr – – – <0.01 0.02
118M.Hassanetal./PrecambrianResearch241(2014)104–128
Table 5
Representative electron microprobe analyses of mineral assemblages of the studied alumino silicates-bearing samples.
Sample123c 1bt1 1bt3 2bt2 3bt1 1mus3 2mus2 3mus2 3mus3 3mus5 1fld1 3fld1 3ill1 1and1 1and2 2and1 2and2
SiO2 38.00 38.73 37.99 37.85 46.98 46.51 51.28 46.90 46.92 66.12 66.12 0.47 37.33 37.37 37.22 37.17
TiO2 1.67 1.42 1.84 1.67 0.20 0.92 0.01 0.14 0.63 0.12 0.11 16.78 0.02 0.02 BDL BDL
Al2O3 17.82 20.03 17.23 17.41 33.47 33.39 31.33 36.24 33.49 19.01 18.69 0.37 60.46 60.46 60.75 60.43
Cr2O3 0.08 0.07 0.09 0.03 0.04 BDL 0.03 0.10 0.01 0.02 0.05 0.04 BDL 0.05 0.02 0.01
Fe2O3 0.00 0.00 0.00 0.00 0.00 1.12 0.00 0.95 0.00 0.01 0.07 63.93 BDL BDL BDL BDL
FeO 15.2 13.38 15.04 15.12 3.48 2.28 3.18 1.87 3.68 0.00 0.00 13.76 2.17 2.11 1.95 2.06
MnO 0.71 0.49 0.51 0.46 0.05 0.04 0.01 0.04 0.02 0.09 0.02 1.77 0.03 BDL 0.05 BDL
MgO 12.58 11.58 13.35 13.25 0.71 0.99 0.46 0.47 0.53 0.16 0.11 0.00 0.26 0.13 0.09 0.43
CaO 0.00 0.07 0.01 0.24 0.01 0.04 0.02 0.08 0.03 0.02 0.09 0.05 BDL 0.04 0.02 BDL
Na2O 0.14 0.14 0.09 0.12 0.49 0.59 0.50 0.46 0.47 1.11 0.62 0.00 BDL BDL BDL BDL
K2O 10.23 10.10 10.10 9.71 10.80 10.01 9.83 10.41 10.45 15.32 15.22 0.01 BDL BDL 0.01 0.01
Totals 96.44 96.01 96.25 95.86 96.23 95.89 96.65 97.65 96.23 101.98 101.10 97.18 100.09 100.17 100.11 100.07
Oxygens 11 11 11 11 11 11 11 11 11 8 8 3
Si 2.81 2.83 2.81 2.81 3.13 3.10 3.36 3.06 3.13 2.98 3.00 0.01
Ti 0.09 0.08 0.10 0.09 0.01 0.05 – 0.01 0.03 <0.01 <0.01 0.34
Al 1.55 1.73 1.50 1.52 2.63 2.62 2.42 2.79 2.63 1.01 1.00 0.01
Cr 0.01 <0.01 0.01 <0.01 <0.01 – <0.01 0.01 <0.01 <0.01 <0.01 <0.01
Fe3+
– – – – – 0.06 – 0.05 – – <0.01 1.29
Fe2+
0.94 0.82 0.93 0.94 0.19 0.13 0.17 0.10 0.21 – – 0.31
Mn 0.05 0.03 0.03 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.04
Mg 1.39 1.26 1.47 1.46 0.07 01.0 0.05 0.05 0.05 0.01 0.01 –
Ca – 0.01 <0.01 0.02 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01
Na 0.02 0.02 0.01 0.02 0.06 0.08 0.06 0.06 0.06 0.10 0.06 –
K 0.97 0.94 0.95 0.92 0.92 0.85 0.82 0.87 0.89 0.88 0.88 –
Phl 0.09 0.08 0.10 0.10 Mu 0.66 0.62 0.55 0.74 0.64 San 0.91 0.94 Ilm 0.10
Ann 0.03 0.02 0.02 0.02 Cel 0.02 0.02 0.03 <0.01 0.01 Ab 0.61 0.39 Hem 0.41
Aast 0.06 0.06 0.07 0.06 Fcel 0.05 0.03 0.10 0.00 0.05 Prh 0.01
Pa 0.34 0.26 0.46 0.19 0.29 Gei 0.00
Sample 142-1bi1 142-1bi2 142-2bi2 142-2bi3 142-1mu1 142-1mu2 142-1mu3 142-2mu1 142-2mu4 142-1kfs3 142-2kfs2 142-ilinc1 142-and1 142-and2 142-1and1 142-1and3
SiO2 37.03 36.87 37.37 36.85 47.88 47.03 48.48 46.99 47.01 64.47 64.55 0.44 36.82 36.50 36.50 36.80
TiO2 0.75 0.12 1.10 1.24 0.04 0 0.21 0.63 0.43 0.25 0.31 11.16 0.04 0.08 0.06 0.05
Al2O3 19.57 19.78 19.55 19.27 35.21 34.52 36.59 33.26 34.46 18.59 18.69 0.26 61.79 61.02 60.89 60.73
Cr2O3 0.01 0.02 0.01 0.03 0.04 0.04 0.03 0.05 0.04 0.02 0.06 0.07 0.02 0.05 BDL 0.01
Fe2O3 0.00 2.11 0.25 0.00 2.72 2.6 2.06 3.31 2.46 0.13 0.19 74.48 BDL BDL BDL BDL
FeO 15.55 13.72 16.24 16.63 1.05 1 0.8 1.28 0.95 0 0 8.78 1.47 1.68 1.89 2.28
MnO 0.34 0.30 0.38 0.38 0.03 0.08 0.04 0.02 0.01 0.03 0.03 1.45 0.04 0.01 0.03 0.02
MgO 12.62 13.49 12.35 11.97 0.85 0.85 0.44 1.13 0.92 0.12 0.09 0.03 0.15 0.10 BDL 0.18
CaO 0.01 0.02 0.03 0.04 0.02 0.01 0 0.06 0.06 0.02 0.05 0.02 0.03 0.02 0.03 0.05
Na2O 0.15 0.06 0.07 0.10 0.42 0.35 0.36 0.33 0.32 0.65 0.62 0.03 0.01 0.00 0.01 BDL
K2O 9.97 9.68 9.11 9.77 9.04 8.72 9.12 9.17 8.26 15.18 15.36 0.03 0.04 0.01 0.06 BDL
Totals 96.00 96.17 96.46 96.28 97.3 95.2 98.13 96.23 94.92 99.46 99.95 96.75 100.28 99.43 99.32 100.03
Oxygens 11 11 11 11 11 11 11 11 11 8 8 3
Si 2.74 2.72 2.75 2.74 3.11 3.11 3.10 3.10 3.11 2.98 2.98 0.01
Ti 0.04 0.01 0.06 0.07 <0.01 – 0.01 0.03 0.02 0.01 0.01 0.23
Al 1.71 1.72 1.70 1.69 2.69 2.69 2.76 2.59 2.69 1.01 1.02 0.01
Cr <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Fe3+
– 0.12 0.01 – 0.13 0.13 0.10 0.17 0.122 0.01 0.01 1.52
Fe2+
0.96 0.84 1.00 1.03 0.06 0.06 0.04 0.07 0.05 – – 0.20
Mn 0.02 0.02 0.02 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.03
Mg 1.39 1.48 1.36 1.33 0.08 0.08 0.04 0.11 0.09 0.01 0.01 <0.01
M.Hassanetal./PrecambrianResearch241(2014)104–128119
Table 5 (Continued)
Sample 142-1bi1 142-1bi2 142-2bi2 142-2bi3 142-1mu1 142-1mu2 142-1mu3 142-2mu1 142-2mu4 142-1kfs3 142-2kfs2 142-ilinc1 142-and1 142-and2 142-1and1 142-1and3
Ca <0.01 <0.01 – <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01
Na 0.02 0.01 0.01 0.02 0.05 0.05 0.05 0.04 0.04 0.06 0.06 <0.01
K 0.94 0.91 0.86 0.93 0.75 0.74 0.75 0.77 0.70 0.90 0.90 <0.01
Phl 0.10 0.10 0.08 0.08 Mu 0.73 0.75 0.78 0.66 0.77 San 0.94 0.94 Ilm 0.05
Ann 0.03 0.02 0.03 0.03 Cel – – – 0.01 – Ab 0.41 0.39 Hem 0.57
Aast 0.08 0.09 0.07 0.07 Fcel – – – <0.01 – Prh 0.01
Pa 0.09 0.07 0.09 0.07 0.06 Gei 0.00
Sample273A 2bt2 2bt4 3bt2 1bi3 1muin 1mu1 1mu2 1mu3 4mu2 1Xkfs3 4kfs3 1ill1 1and1 1and2 2and1 2and2
SiO2 37.60 36.49 36.39 40.17 46.26 47.22 49.12 48.58 47.15 65.88 65.63 0.43 36.50 36.75 36.90 36.66
TiO2 1.85 1.94 2.51 2.01 0.09 0.01 0.04 0.05 0.09 0.09 0.01 14.28 0.10 BDL BDL BDL
Al2O3 17.41 17.60 16.04 15.57 34.96 35.46 34.97 34.55 34.53 18.52 18.50 0.02 62.57 61.76 62.65 61.77
Cr2O3 0.02 0.02 0.01 0.07 0.05 0.01 0.02 0.02 0.04 0.07 0.07 0.05 BDL 0.09 0.07 BDL
Fe2O3 0.00 0.00 0.00 0.00 0.00 0.00 2.34 2.36 2.57 0.12 0.03 69.06 BDL BDL BDL BDL
FeO 16.37 16.91 16.42 18.59 2.94 1.83 0.90 0.98 0.99 BDL BDL 12.56 1.23 1.79 1.43 1.50
MnO 0.57 0.68 0.67 0.64 0.04 0.02 0.02 0.11 BDL 0.01 0.07 0.52 0.01 BDL 0.02 0.04
MgO 10.56 10.23 11.82 10.69 0.42 0.21 0.77 0.60 0.55 0.07 0.23 0.08 0.06 0.11 0.29 BDL
CaO 0.02 0.04 0.01 0.05 0.10 0.06 BDL BDL 0.06 BDL 0.04 0.00 0.06 0.04 BDL 0.09
Na2O 0.14 0.13 0.06 0.04 0.35 0.28 0.33 0.30 0.36 0.86 1.33 0.02 0.01 0.01 0.01 0.01
K2O 9.91 9.99 9.94 7.53 10.84 10.98 8.81 9.21 9.06 15.19 14.69 0.01 BDL 0.02 BDL 0.02
Totals 94.45 94.03 93.87 95.36 96.05 96.08 97.32 96.77 95.41 100.81 100.6 97.03 100.53 100.54 101.27 99.85
Oxygens 11 11 11 11 11 11 11 11 11 8 8 3
Si 2.85 2.80 2.79 2.99 3.08 3.12 3.17 3.16 3.12 3.00 3.00 0.01
Ti 0.11 0.11 0.15 0.11 0.01 0.00 <0.01 <0.01 <0.01 <0.01 0.00 0.29
Al 1.56 1.59 1.45 1.37 2.75 2.76 2.66 2.65 2.69 1.00 1.00 <0.01
Cr <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Fe3+
0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.12 0.13 <0.01 <0.01 1.40
Fe2+
1.04 1.08 1.05 1.16 0.16 0.10 0.05 0.05 0.06 0.00 0.00 0.28
Mn 0.04 0.04 0.04 0.04 <0.01 <0.01 <0.01 0.01 0.00 0.00 <0.01 0.01
Mg 1.19 1.17 1.35 1.19 0.04 0.02 0.07 0.06 0.05 0.01 0.02 <0.01
Ca <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.00 0.00 <0.01 0.00 <0.01 0.00
Na 0.02 0.02 0.01 0.01 0.05 0.04 0.04 0.04 0.05 0.08 0.12 <0.01
K 0.96 0.98 0.97 0.72 0.92 0.93 0.72 0.77 0.77 0.88 0.86 0.00
Phl 0.06 0.06 0.07 0.05 Mu 0.74 0.80 0.74 0.73 0.73 San 0.93 0.89 Ilm 0.08
Ann 0.04 0.04 0.04 0.04 Cel 0.01 0.01 – – – Ab 0.51 0.71 Hem 0.50
East 0.04 0.05 0.05 0.03 Fcel 0.03 0.03 – – – Prh <0.01
Pa 0.22 0.21 0.08 0.09 0.10 Gei <0.01
120 M. Hassan et al. / Precambrian Research 241 (2014) 104–128
Fig. 6. Mineral chemistry. (a) Si versus Mg/(Mg + Fe2+
) for the studied amphiboles. Classification is after Leake et al. (1997). (b) Chlorite chemistry of metavolcanics and
metasediments showing its distribution with respect to end members and XFe content. (c) Chlorite chemistry of metavolcanics and metasediments showing differences in
MnO, MgO and FeO contents. (d) Garnet chemistry of metasedimentary rocks and metacarbonates in terms of Mn, Ca and Fe2+
end members. (e) Profile illustrating the change
of garnet chemistry across a garnet crystal in metasedimentary rock. (f) Pressure–temperature plot with Si isopleths for white mica, Si content per formula unit. The gray
area represents the composition of the studied white micas.
The amphiboles of the studied samples are calcic amphiboles
with a homogenous composition of magnesio hornblende (Fig. 6a).
Amphiboles in all studied rocks have a total number of cations of
Na + K less than 0.50 and low Ti content (0.01–0.13). Total alu-
minum contents Alt of the amphiboles of metavolcanic rocks are
normally higher than those in metasedimentary rocks (Tables 1 and
2). There is no significant differences in Alt content of the amphibole
of the intrusive granitoids.
Chlorite is common to all rock types except the alumino
silicates-bearing metasedimentary rocks. The chlorite in the
metavolcanics has XFe = 0.31–0.54, while in the metasedimentary
rocks (Table 3), it has a wide range of XFe = 0.18–0.62 (Fig. 6b).
Large difference in composition of chlorite in the same sample is
distinguishable in some of the metasedimentary rocks. Mn-rich
chlorite is characteristic of the garnet-bearing metasedimentary
rocks (Fig. 6c).
M. Hassan et al. / Precambrian Research 241 (2014) 104–128 121
Fig. 7. Estimated pressure and temperature conditions of the low-grade metavolcanic and metasedimentary rocks based on the reactions between the mineral end-members.
Calculation done using THERMOCALC (Powell and Holland, 1988).
Garnet is observed just in two lithologies as grossular garnet
in metacarbonate sediments with end-members activity of Alm0.30
Grs0.70 (Fig. 6d) and as spessartine in the metapelitic rocks with
end-member activity of Sps0.67 Alm0.20 Grs0.12 Prp0.01 (Table 4). The
garnet of the metapelitic rocks exhibits chemical zonation as a Ca-
rich rim (Fig. 6e) with XCa = [Ca/(Fe + Mg + Mn + Ca)] in the range of
0.14–0.16. The XFe = [Fe/(Fe + Mg + Mn)] of the garnet is 0.12, 0.21
and 0.29 for the core, intermediate and rim zones, respectively
(Fig. 6e).
Biotite is absent in the mafic metavolcanics, abundant in
the intermediate and the felsic metavolcanics, while it is dom-
inant in the metasedimentary rocks. Biotite has low Ti content
122 M. Hassan et al. / Precambrian Research 241 (2014) 104–128
in all samples with 0.01–0.17 cations per formula unit. The
composition of biotite is relatively similar in all samples with
XFe = [Fe/(Fe + Mg)] = 0.27–0.51 with an average of 0.4 (Table 3).
Silica cations in the biotite of alumino silicates-bearing metasedi-
mentary rocks have a range of 2.80–2.85 atoms of Si per formula
unit.
Muscovite is compositionally variable. It has a XNa [Na/(Na + Ka)]
up to 0.16 and XFe [Fe/(Fe + Mg)] = 0.16–0.86. All muscovites have
low Fe and Mg content. In the alumino silicates-bearing rock, mus-
covite of the groundmass has silica cations in the range of 3.14–3.17,
while silica cations of the muscovite inclusions in the andalusite
porphyroblasts range between 3.06 and 3.08 (Table 5). The mus-
covite inclusions in the garnet porphyroblasts have Fe contents in
the range of XFe = 0.06–0.07, while a higher range (0.18–0.26 atom
of Fe per formula unit) was calculated from the muscovite of the
groundmass.
6. Pressure and temperature estimates
In order to estimate the metamorphic conditions, THERMOCALC
(Powell and Holland, 1988) was used to calculate independent sets
of reactions between the mineral end-members of the metavol-
canics and the metasediments using the internally consistent
dataset of Holland and Powell (1998). THERMOCALC was also used
to calculate P–T pseudosections for the garnet- and the alumino
silicates-bearing metasedimentary rocks. Al-in-amphibole was
used to calculate the pressure conditions of the granitic intrusions
based on the calibration of Schmidt (1992), while amphibole-
plagioclase exchange thermometer with the calibration of Holland
and Blundy (1994) was used to estimate the intrusion temperature.
For the low-grade metavolcanic and metasedimentary rocks inde-
pendent sets of reactions between the mineral end-members
were carried out on three metamorphic mineral assemblages.
The first mineral assemblage (actinolite + chlorite + plagioclase + K-
feldspar + clinozoisite + magnetite + quartz ± mica) indicates that
the metavolcanics and metasediments were metamorphosed
regionally in a greenschist facies conditions. For a quantitative
determination, three metavolcanic and one metasedimentary rock
were analyzed. Fig. 7 shows the calculated independent reactions
and the average pressures and temperatures derived from them. All
four samples give comparable metamorphic conditions that range
between 370 ◦C and 420 ◦C and around 3 kbar (Fig. 7).
For the apparently higher grade assemblage similar calculations
were done. Calculations of independent end member reactions
showed that the assemblage and + bi + mu + plag + ksp + q equil-
ibrated at conditions around 3.0–3.5 kbar and 610–630 ◦C. The
same pressure range (3.0–3.5 kbar) was calculated for the garnet-
bearing rock (sample 215b) with the assemblage garnet, muscovite,
chlorite, plagioclase, K-feldspar and quartz. Curiously, the garnet-
bearing sample gave a lower temperature range (450–470 ◦C)
than that of the alumino silicate-bearing rock (sample 273a),
and this can be related to the distance from the locally intruded
sheets of red granite as a heat source for the contact meta-
morphism. The garnet-muscovite and garnet-chlorite exchange
thermometers confirm that the garnet-bearing sample record peak
metamorphism temperature condition around 470 ± 30 ◦C (Hynes
and Forest, 1988; Grambling, 1990). However, in general it may be
said that the temperatures derived for the andalusite and garnet
bearing assemblages is higher than that for the low-grade rocks,
but that the pressure of equilibration is comparable for all rocks.
This was confirmed by applying the muscovite thermobarometer of
Massonne and Schreyer (1987), which gave a pressure range around
3–4.5 kbar (Fig. 6f).
In order to test out hypothesis that contact metamorphism is
responsible for the higher grade assemblage, we also derived the
Fig. 8. Estimated pressure and temperature conditions of the undeformed gran-
ites samples by amphibole-plagioclase exchange thermometer (Holland and Blundy,
1994) and Al content in amphibole barometer (Schmidt, 1992). Calculation done by
PET 1.1 (Dachs, 2004). Numbers are sample numbers and refer to: 51 = late intruded
granodiorite; 82 and 89 = syntectonic diorite and quartz-diorite.
depth of intrusion for the granites. Three granitic samples were
investigated for estimation of pressure and temperature condi-
tions during magmatic crystallization. The amphibole-plagioclase
exchange thermometer confirms that the granitic samples record
the crystallization temperature around 650–730 ◦C (Fig. 8). These
depth estimates are largely consistent with those discussed above.
Sample 51 is a later intruded granodiorite records lower pres-
sure conditions (range 1.2–2.1 kbar) than other earlier intruded
diorite and quartz-diorite (samples 82 and 89) which record a pres-
sure range of (2–3.4 kbar, Fig. 8). It is worth mentioning that the
differences in pressure estimates may therefore reflect different
intrusion cycles at different crustal levels.
7. Pseudosection modeling
Pseudosections were constructed for several bulk compositions
to constrain the metamorphic evolution. For this purpose, we have
selected two samples from the high-grade rocks because they are
(1) reasonably well equilibrated thus justifying the use of pseudo-
sections and (2) they are characterized by a high-grade assemblage
interpreted to have formed from a lower grade assemblage which is
in turn partly retrogressed so that an entire PT path may be derived
from them. Sample 215b represents garnet-bearing metasediments
and was collected around 500 m away from the granitic intrusions
(28◦40 12 N and 34◦08 53 E). Sample 273a is an alumino silicates-
bearing metasedimentary rock which was collected around 100 m
away from the granitic intrusions (28◦40 06 N and 34◦09 50 E)
(Fig. 2).
For bulk rock chemical analysis a Bruker Pioneer S4 X-ray flu-
orescence spectrometer was used at the Institute of Earth Science,
Karl-Franzens-Universität, Graz, Austria. Samples were prepared as
fused pellets using Li2B4O7 flux (Table 6). The pseudosections were
constructed using PerPleX (Connolly and Kerrick, 1987; Connolly,
1990, 2005) and the internally consistent dataset of Holland and
Powell (1998). The following activity composition models were
used: muscovite (Holland and Powell, 1998); biotite (Tajcmanová
et al., 2009); chlorite (Holland et al., 1998); melt (Holland and
Powell, 2001; White et al., 2001); garnet (White et al., 2000); chlo-
ritoid (White et al., 2000); staurolite (Holland and Powell, 1998);
M. Hassan et al. / Precambrian Research 241 (2014) 104–128 123
Table 6
Bulk rock chemical analysis of studied garnet- or alumino silicates-bearing
metasedimentary rocks of Sa’al–Zaghra metamorphic complex (major oxides are
represented in wt.% and trace elements in ppm; LOI, loss of ignition; BDL, below
detection limit).
Sample 215b 273a 142 123c
SiO2 (wt%) 54.20 69.99 72.77 77.65
TiO2 1.41 0.17 0.30 0.14
Al2O3 17.81 14.73 14.54 11.43
Fe2O3 11.37 3.15 2.20 1.84
MnO 2.32 0.04 0.04 0.04
MgO 2.16 0.26 0.86 0.25
CaO 1.09 0.40 0.52 0.99
Na2O 0.19 3.04 3.26 3.37
K2O 5.60 5.97 3.12 2.75
P2O3 0.45 0.01 0.03 0.02
LOI 3.35 0.56 1.46 0.54
Totals 99.95 98.62 99.48 99.33
Ba (ppm) 416 104 802 326
Ce 41 133 66 102
Co 43 159 177 209
Cr 75 BDL BDL BDL
Cs BDL BDL BDL BDL
Cu 843 62 132 56
Ga 39 25 20 16
La 96 72 43 52
Nb 25 27 15 21
Nd 107 53 37 49
Ni BDL BDL BDL BDL
Pb 48 BDL BDL BDL
Pr BDL BDL BDL BDL
Rb 277 174 77 86
Sc 20 BDL BDL BDL
Sr 39 29 118 70
Th BDL 20 BDL BDL
U BDL BDL BDL BDL
V 158 BDL BDL BDL
Y 103 37 28 46
Zn 1794 41 83 50
Zr 204 664 271 169
plagioclase (Newton et al., 1980); and K-feldspar (Thompson and
Hovis, 1979). For cordierite we assumed ideal mixing. In addi-
tion, the following phases were used without solution models:
andalusite, kyanite, sillimanite, kaolinite, pyrophyllite, diaspora,
pumpellyite, lawsonite, prehnite, wairakite, analcite, laumontite,
quartz and H2O.
7.1. Garnet-bearing sample
The P–T pseudosection for this sample was calculated in the sys-
tem MnNCKFMASH since these components represent 98.12% of
the XRF-derived bulk composition of sample 215b (Table 6). Quartz
and H2O are assumed to be in excess. The P–T pseudosection of
sample 215b is characterized by a series of mineral assemblage
fields with steep boundaries (Fig. 9). Garnet is a stable phase over a
wide P–T range. The garnet-in reactions occur as isothermal bound-
aries in a temperature range of 250–270 ◦C. Chlorite is stable below
460 ◦C.
The stable minerals of sample 215b are chlorite, muscovite, gar-
net, albite, K-feldspar and quartz. This mineral assemblage appears
in Fig. 9 in a quadrivariant field in the region (280–355 ◦C and pres-
sure is <3.2 kbar). However the garnet chemistry and that of the
muscovite inclusions in garnet show that part of the rock equil-
ibrated at higher temperatures. The muscovite inclusions in the
garnet crystals have XFe in the range of 0.06–0.07 (pfu) and most of
the garnet has an XFe between 0.12 and 0.19. The Fe isopleths of the
muscovite intersect the XFe contours for the garnet roughly in the
same PT range in Fig. 9 as derived from the average PT calculations,
i.e. roughly around 450 ◦C and 3 kbar. This indicates that plagioclase
was a stable mineral during garnet nucleation process. The garnet
crystals have Ca-rich rims (i.e. XCa is in the range of 0.14–0.16).
These rims are in equilibrium with the muscovite of the external
foliation thus intersections between the XCa isopleths and the Fe
content (0.18–0.26 pfu) of the muscovite may be used to constrain
a point along the retrograde path of this sample, consistent with an
isobaric cooling path.
In summary, the easiest interpretation of the compositional
variations is to suggest that the rock equilibrated at about 300 ◦C
and 3 kbar with a limited excursion (and partial re-equilibration) to
450–480 ◦C and similar pressure, followed by cooling to 300–350 ◦C
at the same crustal level. This interpretation is consistent with both
the thermobarometric calculations and the pseudosection in Fig. 9
and suggests contact metamorphic heating and subsequent cooling
to a low-grade regional metamorphic event.
7.2. Alumino silicates-bearing sample
In contrast to sample 215b, the MnO content of sample
273a is only 0.038 wt.% (Table 6). Therefore the thermo-
dynamic system was reduced to be NCKFMASH (Fig. 10).
The P–T pseudosection is characterized by a relative sim-
ple topology at temperature conditions 660 ◦C. Four
sillimanite-bearing assemblages (sill + bi + pl + ksp + q + H2O;
sill + bi + pl + ksp + q + H2O + liq; sill + cd + bi + pl + ksp + q + H2O + liq;
sill + bi + pl + ksp + H2O + liq) and four andalusite-
bearing assemblages (and + cd + bi + pl + ksp + q + H2O;
and + bi + mu + pl + ksp + q + H2O; and + bi + pl + ksp + q + H2O;
and + cd + bi + pl + ksp + q + H2O + liq) are stable below
3.9 kbar and in a temperature range of 560–660 ◦C.
Three univariant reactions appear in the pseudosection,
two of them (bi + mu + chl + ab + ksp + lmt + pre + q + H2O;
bi + mu + chl + ab + ksp + wrk + pre + q + H2O) at low tempera-
ture (290–340 ◦C), while an alumino silicate-bearing univariant
reaction appears at higher temperature (650–655 ◦C). Clinozoisite
is stable over a wide range of pressure (1.3–6 kbar) but in a narrow
temperature window (345–460 ◦C).
The inferred equilibrium mineral assemblage of sample 273a
is alumino silicate–biotite–plagioclase–K-feldspar and quartz with
both andalusite and sillimanite occurring as alumino silicates
phases and pervasive late muscovite replacing most of it (see
petrography section). This assemblage is stable between 2.9 and
3.5 kbar and in a temperature range of 630–650 ◦C (Fig. 10). The
post-peak conditions can be identified using the Si content of the
mica in the groundmass surrounding the porphyroblasts. The Si
isopleths of biotite and muscovite intersect in a temperature range
of 425–500 ◦C and in a pressure range of 2.3–4.4 kbar. Muscovite
thermobarometer (Fig. 6f) indicates that the post-peak micas are
stable in a P–T range of 3–4.5 kbar and 440–510 ◦C (P and T range
bars of Fig. 10). Muscovite inclusions may be used to get some infor-
mation about the pre-peak conditions. The two black bold lines of
Fig. 10 show the limiting content of the Si in the chemical formula
of the muscovite inclusions. The Si contents indicate that the pre-
peak assemblage can be at any condition between 450 and 630 ◦C
and in a pressure range below 4 kbar. All of this evidence confirms
the interpretation of the garnet-bearing sample discussed in Fig. 9.
It shows that the rock equilibrated between 400 and 450 ◦C and
around 3 kbar and that it also partially equilibrated at higher tem-
peratures and comparable pressures. As for sample 215b, both is
consistent with an interpretation of low-grade regional metamor-
phism overprinted by a contact metamorphic event.
8. Discussion
The majority of the metavolcanic-metasedimentary associa-
tions of the Sa’al–Zaghra Complex show good preservation of
124 M. Hassan et al. / Precambrian Research 241 (2014) 104–128
Fig. 9. P–T pseudosection for the garnet-bearing sample number 215b. The two white dashed lines represent the garnet composition of the intermediate zone. The red
polygons indicate conditions constrained by mineral isopleths. (For interpretation of the reference to color in this figure legend, the reader is referred to the web version of
the article.)
primary volcanic and sedimentary microstructures (e.g. porphyritic
texture; Fig. 4b) and have been affected by only low-strain typically
involving a weakly developed foliation parallel to layering and bed-
ding planes. The P–T history of the Sa’al–Zaghra Complex shows
that most of the rocks equilibrated at similar temperature condi-
tions around 370–420 ◦C and pressures around 2.5–3.2 kbar. This is
equivalent to a crustal depth variation of 9–11.5 km (for an overbur-
den density 2850 kg m−3 and assuming lithostatic conditions). The
Sa’al–Zaghra area was later intruded by granitoids, which cut across
the foliations. The pressure conditions for the granodiorite and
the diorite intrusions (earlier) are 2.5–3.4 kbar, whereas the later
granitic intrusions have pressures of 1.4–2 kbar attending mag-
matic crystallization. These differences in the pressure conditions
may reflect distinct crustal levels of intrusion relating to differ-
ent intrusion phases. The early syntectonic intrusions (in particular
the red gneissic granite sheets, Fig. 3g) caused local contact meta-
morphism, resulting in partial equilibration of the assemblages at
630–650 ◦C.
For the Sa’al–Zaghra complex we suggest that the flat lying
D1 fabric in association with the metamorphic conditions around
400 ◦C and 3 kbar indicate metamorphism during a crustal thin-
ning event that occurred during an extension regime. The peak
metamorphism of the M1 in the study area occurred at a depth of
9–11.5 km corresponding to a geothermal gradient of 38–41 ◦C/km.
This is much higher than the geothermal gradients for the subse-
quent event as derived for the Feiran–Solaf region (25–27 ◦C/km
for the Pan-African event at ca. 632 Ma; Abu-Alam and Stüwe,
2009) or the Gabal Samra metapelites from the same general region
(27 ◦C/km; Abu El-Enen, 2011). Although the local remarked higher
geothermal gradient in Sinai (43–50 ◦C/Km) which is related to
heat flow transferred from nearby granite intrusions (Eliwa et al.,
2008; Abu El-Enen, 2011), we suggest that the higher geother-
mal gradients during the earlier M1 event in the Sa’al–Zaghra
complex may be interpreted as additional evidence for an exten-
sional setting and crustal thinning during D1. In the remainder of
this paper an attempt is made to derive a metamorphic evolution
for the Sa’al–Zaghra complex and compare this with metamor-
phic histories of other complexes of Sinai. The implications of
these discussions for the tectonic evolution of the Arabia-Nubian
Shield at the stage between Rodinia rifting and East- and West-
Gondwanaland collision will then be considered.
8.1. Age and origin of the Sa’al–Zaghra complex
Recently published zircon U–Pb analyses of volcanic ash-flow
yielded concordia ages of 1030 ± 5 Ma interpreted to represent
crystallization ages of their magma chambers, while calc-alkaline
volcanic and intrusive rocks of Wadi Sa’al area yielded ages of ca.
1030–1020 Ma (Be’eri-Shlevin et al., 2012). Nevertheless, timing
of volcanic activity, sedimentation, deformation and metamor-
phism of the metavolcanics and metasedimentary associations in
the Sa’al–Zaghra complex are unclear. Abu Anbar et al. (2009)
M. Hassan et al. / Precambrian Research 241 (2014) 104–128 125
Fig. 10. P–T pseudosection for the alumino silicates-bearing sample for the phases that cited in the text.
concluded that the age of the rhyolitic-dacitic parents that later
became deformed and metamorphosed to form the schists of Sa’al
area was 873 ± 16 Ma, while the metavolcanics unconformably
above the schists were dated at 736 ± 22 Ma. Bielski (1982) gave
an average Rb–Sr age of 734 ± 17 Ma for the metavolcanic rocks.
Abu Anbar et al. (2009) noted that schists were associated only
with the metasediments, but the schists found to be associated also
with the metavolcanics, and no evidence of unconformity between
the schists (El-Rayan phyllites) and the metavolcanics (Agramiya
Fm). This casts some doubt on the idea that the schistosity and
metamorphism formed before the metavolcanics, and therefore the
significant age difference between schists (873 Ma) and metavol-
canics (736 Ma) may reflect isotopic disturbance rather than real
age differences.
Sa’al Conglomerate pebble ages by Priem et al. (1984) apparently
placed a maximum age of 757 ± 28 Ma on conglomerate deposition,
and may be revised to 672 Ma according to recent data (Andresen,
pers. commun.). A zircon population dated by Stern et al. (2010) at
606 ± 10 Ma was also found to accompany a second zircon pop-
ulation dated at 931 ± 14 Ma in diorite boulders from the Wadi
Zaghra conglomerates. Stern et al. (2010) offered two possible
explanations for the ∼605 Ma zircons. The first was that they dated
the diorite magma, and that the older population (∼930 Ma) was
xenocrysts in the diorite magma. The second explanation was that
both populations define a discordia giving a magmatic age for the
diorite of 1045 ± 55 Ma (upper intercept) and a Pb-loss event affect-
ing the zircons at about 569 ± 55 Ma. These data do not conclusively
show either an old (∼1 Ga) or young (∼600 Ma) age for the Wadi
Zaghra conglomerates.
El-Gaby et al. (2002) concluded that the Sa’al–Zaghra complex
is a relatively undeformed, unmetamorphosed succession related
to the younger Dokhan volcanics and can also be correlated to
Hammamat molasse sediments of the Eastern Desert of Egypt. In
contrast to this, detrital zircon from the Sa’al andalusite-bearing
schist gave concordant ages of 1029 ± 7 Ma and 1110 ± 8 Ma (Be’eri-
Shlevin et al., 2012). In addition, El-Rayan pelitic sedimentary
rocks yielded a bimodal age pattern of 1003 and 1110 Ma (Be’eri-
Shlevin et al., 2009). Moreover, whole-rock εNd (t = 1.0 Ga) value
of +2 is significantly lower than found for juvenile Neoprotero-
zoic rocks in the Arabian-Nubian Shield which led Be’eri-Shlevin
et al. (2009) to interpret the Sa’al schist to represent Kibaran
(Grenville) age crust incorporated into the northernmost part of
the Arabian-Nubian Shield. The volcanic activity that formed most
of the Sa’al–Zaghra complex appears to have occurred in the time
interval of 1110–1030 Ma (Stern et al., 2010; Be’eri-Shlevin et al.,
2012).
The single dynamothermal metamorphic event (M1) in the
study area began during the development of layering-parallel
126 M. Hassan et al. / Precambrian Research 241 (2014) 104–128
Fig. 11. The relation of metamorphism and deformation in the study area in the content of the evolution of the Arabian Nubian Shield.
foliation (D1) and may have reached peak temperatures in the
last stages of this foliation-forming event. This event is believed
to have involved horizontal NW–SE tectonic extension. The exten-
sion event was followed by two compressional deformations. The
NW–SE compressive D2 event may overlap with the intrusion of
the El-Fringa metagabbro. The foliation of the complex is cut by
gabbro with an intrusion age of 1017 ± 5 Ma (Be’eri-Shlevin et al.,
2009), consequently the metamorphism and the crustal exten-
sional in the Sa’al–Zaghra area practicably occurred in the interval
1030–1017 Ma. These observations are consistent with the vol-
canic rocks of the complex being formed and metamorphosed in
an extensional setting older than 1017 ± 5 Ma, and therefore pos-
sibly occurring during the early stages of breakup of the Rodinia
supercontinent.
Based on sediment composition and volcanic rock geochem-
istry, Shimron et al. (1993) and El-Gaby et al. (2002) interpreted the
Sa’al–Zaghra rocks as a volcano-sedimentary succession of island
arc to active continental margin affinities, though heterogene-
ity and magma mixing may have occurred, according to Soliman
(1986), Mehanna (2000) and Abu Anbar et al. (2009). However,
our preferred interpretation is that the Sa’al–Zaghra complex was
a rift-related volcano-sedimentary assemblage that formed dur-
ing the early stages of the break-up of Rodinia, according to the
lithological characteristics of the volcanic-sedimentary assemblage
of the complex. The amount of felsic volcanism in the complex is
not compatible with island arc volcanism. Also, volcanic rocks of
the Agramiya Formation are bimodal, typical of rift volcanism. The
conglomerates of Zaghra Formation could have been deposited on
alluvium fans close to the border faults of the rifted margins.
8.2. Sa’al–Zaghra complex in the context of Sinai tectonism
Abu-Alam and Stüwe (2009) found remnants of an earlier fab-
ric as inclusion trails in garnet porphyroblasts of the Feiran–Solaf
metamorphic complex (west of the Sa’al–Zaghra area). They
concluded that these early fabric represented an early metamor-
phic phase (M1) of the Feiran–Solaf area. Fowler and Hassen
(2008) showed that the principal shortening strain during the M1
metamorphic event in the Feiran–Solaf area was a vertical flatten-
ing with stretching had occurred in the NW–SE direction and, to
a lesser degree, the NE–SW direction. This early extensional event
reflected a larger-scale extension related to the breakup of Rodinia
(Fowler and Hassen, 2008) and that may correlate with the first
deformation phase in the Sa’al–Zaghra metamorphic complex.
Ali et al. (2009) concluded that the presence of inherited zir-
cons with ages of ∼1790 Ma in syenogranite from Sinai indicates
that older material is present within the basement. Rock fragments
of age ca. 900–1100 Ma were found in the volcano-sedimentary
succession at Wadi Rutig, Sinai (Samuel et al., 2011). In addition
to these late mesoproterozoic fragments, other rock fragments
with a Pan-African age 629–615 Ma can be found. Abu El-Enen
and Whitehouse (2013) found that the metapsammitic gneiss in
Solaf area of the Feiran–Solaf complex has a Mesoproterozoic
age (1.0 Ga). These age data can be interpreted in the context of
Be’eri-Shlevin et al.’s (2012) data from the Sa’al–Zaghra complex
(1110–1030 Ma) to indicate a possibility of that the Sa’al–Zaghra
and the Solaf complexes together represent the oldest rocks in the
northernmost segment of the Arabian-Nubian Shield in having a
Mesoproterozoic age. If so, the Pan-African Rb/Sr whole rock age of
c. 610 Ma reported by Stern and Manton (1987) for the Feiran–Solaf
complex may have been a result of isotopic disturbances during the
Pan-African metamorphism (610–615 Ma); or during the exhuma-
tion (594 Ma; Eliwa et al., 2008).
The existence of a single metamorphic event (M1) in the
Sa’al–Zaghra complex in time interval 1030–1017 Ma demon-
strates that the complex escaped later metamorphism during the
East- and West-Gondwana collision (Pan-African age), but not the
deformation associated with this event, which is represented by
the D3 deformation as open folding with axial planes trending
NW–SE (Fig. 11). This phase of deformation also correlates with
the NE–SW tectonic shortening event in the Feiran–Solaf complex
which is characterized by NW–SE close folding. These facts are con-
sistent with the Sa’al–Zaghra complex having been at a shallow
crustal level (<9 km) during the East- and West-Gondwana colli-
sion, and thus the complex was not affected by the deep crustal
level Pan-African metamorphism.
2- Metamorphic evolution of the Sa’al–Zaghra Complex in Sinai
2- Metamorphic evolution of the Sa’al–Zaghra Complex in Sinai

More Related Content

What's hot

Geochemistry of lamprophyre dykes in the Eastern Desert of Egypt
Geochemistry of lamprophyre dykes in the Eastern Desert of EgyptGeochemistry of lamprophyre dykes in the Eastern Desert of Egypt
Geochemistry of lamprophyre dykes in the Eastern Desert of EgyptDr. Ibr@him
 
WIUGC 2010 - Pegmatite and Leucogranite-Hosted U-Th Mineralization In norther...
WIUGC 2010 - Pegmatite and Leucogranite-Hosted U-Th Mineralization In norther...WIUGC 2010 - Pegmatite and Leucogranite-Hosted U-Th Mineralization In norther...
WIUGC 2010 - Pegmatite and Leucogranite-Hosted U-Th Mineralization In norther...Christine McKechnie
 
GEOLOGICAL MAPPING, PETROGRAPHIC STUDY and FIELD RELATION OF KARIGHATTA SCHIS...
GEOLOGICAL MAPPING, PETROGRAPHIC STUDY and FIELD RELATION OF KARIGHATTA SCHIS...GEOLOGICAL MAPPING, PETROGRAPHIC STUDY and FIELD RELATION OF KARIGHATTA SCHIS...
GEOLOGICAL MAPPING, PETROGRAPHIC STUDY and FIELD RELATION OF KARIGHATTA SCHIS...Pramoda Raj
 
Comparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, Egypt
Comparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, EgyptComparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, Egypt
Comparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, EgyptDr. Ibr@him
 
San Juan Volcanic Field - Nested Caldera Study
San Juan Volcanic Field - Nested Caldera StudySan Juan Volcanic Field - Nested Caldera Study
San Juan Volcanic Field - Nested Caldera StudyJohanna Vaughan
 
Cenozoic Geodynamic Evolution of the Burma-Andaman Platelet* by Claude Rangin
Cenozoic Geodynamic Evolution of the Burma-Andaman Platelet*  by Claude RanginCenozoic Geodynamic Evolution of the Burma-Andaman Platelet*  by Claude Rangin
Cenozoic Geodynamic Evolution of the Burma-Andaman Platelet* by Claude RanginMYO AUNG Myanmar
 
Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...
Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...
Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...Alexander Decker
 
Campbell_Craig_Thesis_Final
Campbell_Craig_Thesis_FinalCampbell_Craig_Thesis_Final
Campbell_Craig_Thesis_FinalCampbell Craig
 
Geotectonic setting of Singapore and SE Asia
Geotectonic setting of Singapore and SE AsiaGeotectonic setting of Singapore and SE Asia
Geotectonic setting of Singapore and SE AsiaKYI KHIN
 
pp387 416 Journ Petroleum Geology 14 1991 lithostrat cns. Crittenden (sen aut...
pp387 416 Journ Petroleum Geology 14 1991 lithostrat cns. Crittenden (sen aut...pp387 416 Journ Petroleum Geology 14 1991 lithostrat cns. Crittenden (sen aut...
pp387 416 Journ Petroleum Geology 14 1991 lithostrat cns. Crittenden (sen aut...Stephen Crittenden
 
Marrs depositional history
Marrs depositional historyMarrs depositional history
Marrs depositional historyIan Marrs
 
Thakkhola –mustang garben sediments
Thakkhola –mustang garben sedimentsThakkhola –mustang garben sediments
Thakkhola –mustang garben sedimentsJyoti Khatiwada
 

What's hot (19)

Geochemistry of lamprophyre dykes in the Eastern Desert of Egypt
Geochemistry of lamprophyre dykes in the Eastern Desert of EgyptGeochemistry of lamprophyre dykes in the Eastern Desert of Egypt
Geochemistry of lamprophyre dykes in the Eastern Desert of Egypt
 
WIUGC 2010 - Pegmatite and Leucogranite-Hosted U-Th Mineralization In norther...
WIUGC 2010 - Pegmatite and Leucogranite-Hosted U-Th Mineralization In norther...WIUGC 2010 - Pegmatite and Leucogranite-Hosted U-Th Mineralization In norther...
WIUGC 2010 - Pegmatite and Leucogranite-Hosted U-Th Mineralization In norther...
 
GEOLOGICAL MAPPING, PETROGRAPHIC STUDY and FIELD RELATION OF KARIGHATTA SCHIS...
GEOLOGICAL MAPPING, PETROGRAPHIC STUDY and FIELD RELATION OF KARIGHATTA SCHIS...GEOLOGICAL MAPPING, PETROGRAPHIC STUDY and FIELD RELATION OF KARIGHATTA SCHIS...
GEOLOGICAL MAPPING, PETROGRAPHIC STUDY and FIELD RELATION OF KARIGHATTA SCHIS...
 
Comparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, Egypt
Comparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, EgyptComparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, Egypt
Comparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, Egypt
 
San Juan Volcanic Field - Nested Caldera Study
San Juan Volcanic Field - Nested Caldera StudySan Juan Volcanic Field - Nested Caldera Study
San Juan Volcanic Field - Nested Caldera Study
 
Cenozoic Geodynamic Evolution of the Burma-Andaman Platelet* by Claude Rangin
Cenozoic Geodynamic Evolution of the Burma-Andaman Platelet*  by Claude RanginCenozoic Geodynamic Evolution of the Burma-Andaman Platelet*  by Claude Rangin
Cenozoic Geodynamic Evolution of the Burma-Andaman Platelet* by Claude Rangin
 
Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...
Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...
Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...
 
The richat structure
The richat structureThe richat structure
The richat structure
 
Campbell_Craig_Thesis_Final
Campbell_Craig_Thesis_FinalCampbell_Craig_Thesis_Final
Campbell_Craig_Thesis_Final
 
Geotectonic setting of Singapore and SE Asia
Geotectonic setting of Singapore and SE AsiaGeotectonic setting of Singapore and SE Asia
Geotectonic setting of Singapore and SE Asia
 
LundSnee_Miller_of2015-2_text
LundSnee_Miller_of2015-2_textLundSnee_Miller_of2015-2_text
LundSnee_Miller_of2015-2_text
 
Morley alvey 2015 final
Morley alvey 2015 finalMorley alvey 2015 final
Morley alvey 2015 final
 
Donaldson-2015
Donaldson-2015Donaldson-2015
Donaldson-2015
 
GSA Poster 10.26.15
GSA Poster 10.26.15GSA Poster 10.26.15
GSA Poster 10.26.15
 
pp387 416 Journ Petroleum Geology 14 1991 lithostrat cns. Crittenden (sen aut...
pp387 416 Journ Petroleum Geology 14 1991 lithostrat cns. Crittenden (sen aut...pp387 416 Journ Petroleum Geology 14 1991 lithostrat cns. Crittenden (sen aut...
pp387 416 Journ Petroleum Geology 14 1991 lithostrat cns. Crittenden (sen aut...
 
Marrs depositional history
Marrs depositional historyMarrs depositional history
Marrs depositional history
 
Wilson terby lpsc_06
Wilson terby lpsc_06Wilson terby lpsc_06
Wilson terby lpsc_06
 
Thakkhola –mustang garben sediments
Thakkhola –mustang garben sedimentsThakkhola –mustang garben sediments
Thakkhola –mustang garben sediments
 
I05425964
I05425964I05425964
I05425964
 

Viewers also liked

The Field of Instructional Technology Explained
The Field of Instructional Technology ExplainedThe Field of Instructional Technology Explained
The Field of Instructional Technology Explainedlbozeman
 
Moduł 1.3 szkolenie bilansowe zamkniecie roku 2014_rezerwy na zobowiązania i ...
Moduł 1.3 szkolenie bilansowe zamkniecie roku 2014_rezerwy na zobowiązania i ...Moduł 1.3 szkolenie bilansowe zamkniecie roku 2014_rezerwy na zobowiązania i ...
Moduł 1.3 szkolenie bilansowe zamkniecie roku 2014_rezerwy na zobowiązania i ...24iValue
 
Black saturday bushfires slideshow
Black saturday bushfires slideshowBlack saturday bushfires slideshow
Black saturday bushfires slideshowdgilligan
 

Viewers also liked (8)

The Field of Instructional Technology Explained
The Field of Instructional Technology ExplainedThe Field of Instructional Technology Explained
The Field of Instructional Technology Explained
 
Moduł 1.3 szkolenie bilansowe zamkniecie roku 2014_rezerwy na zobowiązania i ...
Moduł 1.3 szkolenie bilansowe zamkniecie roku 2014_rezerwy na zobowiązania i ...Moduł 1.3 szkolenie bilansowe zamkniecie roku 2014_rezerwy na zobowiązania i ...
Moduł 1.3 szkolenie bilansowe zamkniecie roku 2014_rezerwy na zobowiązania i ...
 
Black saturday bushfires slideshow
Black saturday bushfires slideshowBlack saturday bushfires slideshow
Black saturday bushfires slideshow
 
Slide 1
Slide 1Slide 1
Slide 1
 
Kinematika
KinematikaKinematika
Kinematika
 
Gatto con fatine
Gatto con fatineGatto con fatine
Gatto con fatine
 
Conejito de pascua
Conejito de pascuaConejito de pascua
Conejito de pascua
 
bordado livre
bordado livrebordado livre
bordado livre
 

Similar to 2- Metamorphic evolution of the Sa’al–Zaghra Complex in Sinai

Petrology and geochemistry of ourika gneissic rocks (high atlas, morocco)- im...
Petrology and geochemistry of ourika gneissic rocks (high atlas, morocco)- im...Petrology and geochemistry of ourika gneissic rocks (high atlas, morocco)- im...
Petrology and geochemistry of ourika gneissic rocks (high atlas, morocco)- im...Alexander Decker
 
Edge Detectionand Depth Estimation from Magnetic DataofWadi Araba,Eastern Des...
Edge Detectionand Depth Estimation from Magnetic DataofWadi Araba,Eastern Des...Edge Detectionand Depth Estimation from Magnetic DataofWadi Araba,Eastern Des...
Edge Detectionand Depth Estimation from Magnetic DataofWadi Araba,Eastern Des...iosrjce
 
The cu mo±au mineralizations associated to the high-k calc-alkaline granitoi...
The cu mo±au mineralizations associated to the  high-k calc-alkaline granitoi...The cu mo±au mineralizations associated to the  high-k calc-alkaline granitoi...
The cu mo±au mineralizations associated to the high-k calc-alkaline granitoi...Alexander Decker
 
San Juan Volcanic Field - Nested Caldera Study
San Juan Volcanic Field - Nested Caldera StudySan Juan Volcanic Field - Nested Caldera Study
San Juan Volcanic Field - Nested Caldera StudyJohanna Vaughan
 
Paper = geochemical signatures of potassic to sodic adang volcanics, western ...
Paper = geochemical signatures of potassic to sodic adang volcanics, western ...Paper = geochemical signatures of potassic to sodic adang volcanics, western ...
Paper = geochemical signatures of potassic to sodic adang volcanics, western ...Godang Shaban
 
Geochemistry and mineralogy of the campanian sandstone of
Geochemistry and mineralogy of the campanian sandstone ofGeochemistry and mineralogy of the campanian sandstone of
Geochemistry and mineralogy of the campanian sandstone ofAlexander Decker
 
Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...
Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...
Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...Carlos Bella
 
Najd Fault System
Najd Fault SystemNajd Fault System
Najd Fault SystemOmar Radwan
 
Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...
Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...
Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...MYO AUNG Myanmar
 
An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...
An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...
An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...iosrjce
 
Measurement of Pan-African Strain in Zaria Precambrian Granite Batholith, Nor...
Measurement of Pan-African Strain in Zaria Precambrian Granite Batholith, Nor...Measurement of Pan-African Strain in Zaria Precambrian Granite Batholith, Nor...
Measurement of Pan-African Strain in Zaria Precambrian Granite Batholith, Nor...iosrjce
 
Mineralization controlled by Tectonics & structures.ppt
Mineralization controlled by Tectonics & structures.pptMineralization controlled by Tectonics & structures.ppt
Mineralization controlled by Tectonics & structures.pptssuser0a15d1
 
Evidences of metasomatic processes during the emplacement of pan african gran...
Evidences of metasomatic processes during the emplacement of pan african gran...Evidences of metasomatic processes during the emplacement of pan african gran...
Evidences of metasomatic processes during the emplacement of pan african gran...Alexander Decker
 

Similar to 2- Metamorphic evolution of the Sa’al–Zaghra Complex in Sinai (20)

Petrology and geochemistry of ourika gneissic rocks (high atlas, morocco)- im...
Petrology and geochemistry of ourika gneissic rocks (high atlas, morocco)- im...Petrology and geochemistry of ourika gneissic rocks (high atlas, morocco)- im...
Petrology and geochemistry of ourika gneissic rocks (high atlas, morocco)- im...
 
Paper sarulla
Paper sarullaPaper sarulla
Paper sarulla
 
Alvarenga et al. 2008
Alvarenga et al. 2008Alvarenga et al. 2008
Alvarenga et al. 2008
 
Edge Detectionand Depth Estimation from Magnetic DataofWadi Araba,Eastern Des...
Edge Detectionand Depth Estimation from Magnetic DataofWadi Araba,Eastern Des...Edge Detectionand Depth Estimation from Magnetic DataofWadi Araba,Eastern Des...
Edge Detectionand Depth Estimation from Magnetic DataofWadi Araba,Eastern Des...
 
The cu mo±au mineralizations associated to the high-k calc-alkaline granitoi...
The cu mo±au mineralizations associated to the  high-k calc-alkaline granitoi...The cu mo±au mineralizations associated to the  high-k calc-alkaline granitoi...
The cu mo±au mineralizations associated to the high-k calc-alkaline granitoi...
 
San Juan Volcanic Field - Nested Caldera Study
San Juan Volcanic Field - Nested Caldera StudySan Juan Volcanic Field - Nested Caldera Study
San Juan Volcanic Field - Nested Caldera Study
 
GEOLOGY OF SURINAME
GEOLOGY OF SURINAMEGEOLOGY OF SURINAME
GEOLOGY OF SURINAME
 
Absar y Sreenivas, 2015.pdf
Absar y Sreenivas, 2015.pdfAbsar y Sreenivas, 2015.pdf
Absar y Sreenivas, 2015.pdf
 
Paper = geochemical signatures of potassic to sodic adang volcanics, western ...
Paper = geochemical signatures of potassic to sodic adang volcanics, western ...Paper = geochemical signatures of potassic to sodic adang volcanics, western ...
Paper = geochemical signatures of potassic to sodic adang volcanics, western ...
 
GPS Slip Rates
GPS Slip RatesGPS Slip Rates
GPS Slip Rates
 
Geochemistry and mineralogy of the campanian sandstone of
Geochemistry and mineralogy of the campanian sandstone ofGeochemistry and mineralogy of the campanian sandstone of
Geochemistry and mineralogy of the campanian sandstone of
 
Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...
Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...
Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...
 
Najd Fault System
Najd Fault SystemNajd Fault System
Najd Fault System
 
Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...
Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...
Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...
 
An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...
An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...
An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Stru...
 
Measurement of Pan-African Strain in Zaria Precambrian Granite Batholith, Nor...
Measurement of Pan-African Strain in Zaria Precambrian Granite Batholith, Nor...Measurement of Pan-African Strain in Zaria Precambrian Granite Batholith, Nor...
Measurement of Pan-African Strain in Zaria Precambrian Granite Batholith, Nor...
 
The Wadi Sikait Complex: A Fertile- Post-Collisionl Granite-Pegmatite Suite, ...
The Wadi Sikait Complex: A Fertile- Post-Collisionl Granite-Pegmatite Suite, ...The Wadi Sikait Complex: A Fertile- Post-Collisionl Granite-Pegmatite Suite, ...
The Wadi Sikait Complex: A Fertile- Post-Collisionl Granite-Pegmatite Suite, ...
 
4296
42964296
4296
 
Mineralization controlled by Tectonics & structures.ppt
Mineralization controlled by Tectonics & structures.pptMineralization controlled by Tectonics & structures.ppt
Mineralization controlled by Tectonics & structures.ppt
 
Evidences of metasomatic processes during the emplacement of pan african gran...
Evidences of metasomatic processes during the emplacement of pan african gran...Evidences of metasomatic processes during the emplacement of pan african gran...
Evidences of metasomatic processes during the emplacement of pan african gran...
 

2- Metamorphic evolution of the Sa’al–Zaghra Complex in Sinai

  • 1. Precambrian Research 241 (2014) 104–128 Contents lists available at ScienceDirect Precambrian Research journal homepage: www.elsevier.com/locate/precamres Metamorphic evolution of the Sa’al–Zaghra Complex in Sinai: Evidence for Mesoproterozoic Rodinia break-up? M. Hassana,e,f,∗ , T.S. Abu-Alama,b,e , K. Stüwea , A. Fowlerc , I. Hassend a Institut für Erdwissenschaften, Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria b Geology Department, Faculty of Science, Tanta University, Tanta, Egypt c Geology Department, Faculty of Science, United Arab Emirates University, United Arab Emirates d Sciences Department, College of Basic Education, PAAET, Kuwait e Egyptian Institute of Geodynamic, Cairo, Egypt f Geology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt a r t i c l e i n f o Article history: Received 14 March 2013 Received in revised form 25 November 2013 Accepted 28 November 2013 Available online 7 December 2013 Keywords: Sa’al–Zaghra Low-grade metamorphism Sinai Arabian-Nubian Shield Gondwana collision Rodinia a b s t r a c t Recently published age data indicate that the Sa’al–Zaghra metamorphic complex in Sinai, Egypt con- tains the oldest rocks found in the northernmost Arabian-Nubian Shield, preserving evidence for a 1110–1030 Ma rift-related volcanic system formed during Rodinia break-up (Be’eri-Shlevin et al., 2012). As such, its metamorphic evolution provides evidence for an important part of the geological history of the shield. Here we use petrographic, mineral chemistry and thermodynamic modeling, in combi- nation with structural data from the field, to derive a P–T–D–t path for the complex. It is shown that the metamorphic rock of the complex equilibrated during an early deformation event that involves a flat lying fabric and is interpreted as an extensional event. P–T conditions attained during this event are between 370–420 ◦ C and around 3 kbar. These conditions correspond to a geothermal gradient of 38–41 ◦ C/km which is much higher than that documented elsewhere in the metamorphic complexes of Sinai (i.e. 25–27 ◦ C/km). We suggest that this is because metamorphism in the Sa’al–Zaghra complex records an earlier stage of metamorphism and deformation during breakup of Rodinia, whereas the lower gradients documented elsewhere is related to the Gondwana collision. During the subsequent East-West- Gondwana collision, the Sa’al–Zaghra complex remained at shallow crustal levels (<9 km), and therefore it escaped the deep crustal metamorphism of the Pan-African event. © 2013 Elsevier B.V. All rights reserved. 1. Introduction The Arabian-Nubian Shield is considered to be one of the largest exposures of Neoproterozoic juvenile continental crust on Earth (Patchett and Chase, 2002; Stern et al., 2004). The shield was cratonized during the collision between East- and West- Gondwana following the closure of the Mozambique Ocean around 750–630 Ma (Stern, 1994; Cox et al., 2011; Abu-Alam et al., 2013). However, there have been reports of older (Pre-Pan-African) crustal material that exists as reworked fragments of an earlier continent, namely Rodinia (Johnson and Woldehaimanot, 2003; Hargrove et al., 2006). Today, the shield includes vast sequences of oceanic rocks and is pervasively intruded by late stage gran- ites, but metamorphic rocks of apparently continental origin do occur. Typically, these metamorphic rocks are high-grade gneiss complexes that are exhumed from underneath the oceanic rocks along crustal scale shear zones (Abu-Alam et al., 2013), but some ∗ Corresponding author. Tel.: +43 3163805680. E-mail address: mahmoud.ali-hassan@uni-graz.at (M. Hassan). metamorphic complexes differ in that they are much lower grade and potentially much older. The Sa’al–Zaghra complex in central Sinai peninsula, Egypt is one of these. This study investigates the metamorphic evolution of the Sa’al–Zaghra complex of Sinai to constrain its metamorphic evolu- tion. The complex is one of four metamorphic complexes exposed in the Sinai Peninsula (Fig. 1). Be’eri-Shlevin et al. (2012) provided U–Th–Pb data of 1.02–1.03 Ga for the metavolcanics and mafic intrusions from the Sa’al–Zaghra complex. These data suggest that the geology of the complex may bear information on the connec- tion between the latest Mesoproterozoic fragmentation of Rodinia and the later buildup of Gondwana. As such, the Sa’al–Zaghra com- plex may hold a key position for the early stages of the tectonic evolution of the Arabian-Nubian shield. This study investigates the metamorphic evolution of the Sa’al–Zaghra complex in order to constrain the metamorphic con- ditions associated with what may prove to be the first deformation event in the history of the Arabian-Nubian Shield. A mineral equilibria approach is used with petrogenetic pseudosections. Our derived metamorphic conditions are then correlated with indepen- dent field evidence and existing geochronological ages from the 0301-9268/$ – see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.precamres.2013.11.013
  • 2. M. Hassan et al. / Precambrian Research 241 (2014) 104–128 105 N Zaghra formation El-Rayan formation 2km 28º 39´ (b) 34º 04´ El-Fringa metagabbro Agramyia formation Syn- and post- tectonic granitoids 39º 24º 28º Red Sea Hafafit Meatiq Sibai Kid Taba Sa'al Feiran-Solaf Qazaz Hamadat Wajiyah Marsa Alam Hurghada Quseir Jiddah Arabian-NubianShield (a) 36º33º Gneiss complex Strike-slip East-African volcanic system N Arabian-NubianShield Fig. 1. (a) Geometry of the Arabian-Nubian Shield showing the volcanic-arc system, the amphibolite facies gneiss complexes, Najd Fault system and sutures of the shield (modified after Abu-Alam and Stüwe, 2009). Sinai is shown in white indicating it may not have been exclusively part of the Arabian-Nubian Shield during the formation. (b) Simplified geological map of the Sa’al–Zaghra complex (modified after Shimron et al., 1993; Fowler, unpublished data). Sa’al–Zaghra complex and other complexes elsewhere in the shield. The results are discussed in the context of the tectonic evolution of the Arabian-Nubian Shield. 2. Geological setting and lithologies The Arabian-Nubian Shield is mostly composed of low-grade volcano-sedimentary associations referred to as arc-assemblage that contain some metamorphic complexes in between this arc- assemblage (e.g. Meatiq and Migif-Hafafit; Fritz et al., 1996, 2000, 2002) (Fig. 1). In Sinai four such complexes are known: Kid, Taba, Feiran–Solaf and Sa’al–Zaghra with the former three being of amphibolite and granulite facies metamorphic grade and the Sa’al–Zaghra being much lower grade. The arc-assemblage is char- acterized by brittle-ductile deformation (Noweir et al., 2006; Abd El-Wahed and Kamh, 2010; Johnson et al., 2011) that meta- morphosed at lower greenschist facies metamorphic conditions (Noweir et al., 2006; Abu-Alam et al., unpublished data). The evolution of the Arabian-Nubian Shield probably involved at least four main deformation events (Sultan, 2003; Hegazi et al., 2004; Fowler and Hassen, 2008; Fowler et al., 2010a,b; Moghazi et al., 2012). D1 deformation phase is synchronous with the prograde metamorphism in both Kid and Taba metamorphic complexes and D2 occurs during peak metamorphism in both Taba and Kid complexes (Abu El-Enen et al., 2003a,b; Abu El- Enen et al., 2004; Eliwa et al., 2004; Abu El-Enen, 2008). For the Feiran–Solaf metamorphic complex, the deformation events (D2–D4) have been correlated with other parts of the shield (Abu- Alam and Stüwe, 2009; Abu-Alam et al., 2010), but the first deformation event D1 and its relevance for the shield are not well understood. The Sa’al–Zaghra complex of southern Sinai (Fig. 1) includes mainly low-grade metamorphosed volcano-sedimentary associa- tions referred to as the “Sa’al Group” that are surrounded by large volumes of syn- and post-tectonic granites. The Sa’al Group is divided into three formations (Shimron et al., 1993) (Fig. 2). (a) El-Rayan Formation occupies a rugged terrain extending ENE-WSW in the northern part of the complex. The El-Rayan Formation in the west consists of a thickly layered sequence of basaltic andesite and andesite at its base, followed by layered felsic tuffs, rhyolite lava flows, rhyolite crystal tuffs and ash tuffs. In the eastern part of Wadi Sa’al, it is represented by layered felsic tuffs. In the cen- tral upper part of the complex, around the junction of Wadi Sa’al and Wadi El-Rayan, there were wide exposure of phyllite extending northward (Fig. 3a). (b) Agramyia Formation occupies the central part of the belt and is dominated by volcano-sedimentary rocks (Fig. 2). It is composed of a ∼2300 m thick interbedded sequence of tuffs and lapili tuffs (Fig. 3b) succeeded by rhyolitic ignimbrite (Fig. 3c) intercalated with fine tuffs, other pyroclastics and sedimentary beds of silt- stone, sandstone, and conglomerates with some sheets and layers of andesitic lava (Shimron et al., 1993). (c) Finally, Zaghra Forma- tion in the south of the belt is composed of conglomerates (Fig. 3d), sandstones, slates with minor calc-silicates bands, metamorphosed volcanogenic litharenite and arkoses. There is a localized zone of concordant, foliated red granite sheets intruded along the sand- stone and slate bands of Zaghra Formation (Fig. 3e). These three formations are separated by two steep ENE-WSW trending thrusts. The Sa’al–Zaghra area has been intruded by intrusive rocks ranging in the composition from gabbro, diorites, granodiorite to alkali-granites that cross-cut the foliation. A NW–SE striking gabbro-diorite complex “El-Fringa metagabbro” intruded the phyl- lite and metavolcanics of El-Rayan Formation in the NW part of the mapped area (Fig. 2). Minor gabbroic intrusions are also found else- where in the complex. Quartz-diorites crop out at the eastern side of the study area have crystallization age of 819 ± 4 Ma (Be’eri-Shlevin et al., 2012). These rocks are rich in amphiboles, coarse-grained, dark gray in color and enclose xenoliths (metasediments, metavol- canics and metagabbro) up to 1 m long. Granodiorite which crops out in the central and southwestern sectors of the area is light gray, coarse-grained and has plagioclase with amphiboles and quartz and encloses abundant ovoid enclaves and elongated xenoliths of older rock types (Fig. 3f). Similar granodiorite to the east of Feiran–Solaf complex gives a U–Pb zircon age of 782 ± 7 Ma (Stern and Manton, 1987). Alkali-granite is exposed in the central and the western part of the map area and has a Pan-African age (635–580 Ma; Eyal et al., 2010). Biotite granite intrudes and shares sharp contacts with the quartz-diorite and the granodiorites. Weak deformation can be
  • 3. 106 M. Hassan et al. / Precambrian Research 241 (2014) 104–128 Fig. 2. Geological map of the Sa’al–Zaghra complex. Thick lines are faults and thrust planes. Samples locations are shown as circles, while dated samples of Be’eri-Shlevin et al. (2012) are shown as stars. Dashed line outlines the region where higher grade metamorphic rocks were found. observed in these intrusive only at their contact with the metavol- canics and metasediments of the Sa’al–Zaghra complex. Post-tectonic dykes and sills form local swarms of various composition, grain-size, thickness, and trends. They dissect the volcano-sedimentary succession and the intrusive rocks of the Sa’al–Zaghra complex (Fig. 3g). Similar dykes in the Feiran–Solaf complex yield Rb–Sr age of 591 ± 9 Ma (Stern and Manton, 1987) and are affected by later NNE trending faults. Phanerozoic sed- iments cover the metavolcanics and the phyllitic rocks in the northern part of the Sa’al–Zaghra Complex. 3. Structural evolution Structurally, the Sa’al–Zaghra complex shows evidence for three phases of deformation (Fowler et al., unpublished data). The ear- liest structures are locally well-developed foliations (S1) that lie parallel to layering. The S1 foliation (well seen in Fig. 3e) is best developed in El-Rayan Formation phyllites and schists but are also evident in the volcanics of Agramiya Formation and the conglomer- ates of Zaghra Formation. The foliation is accompanied by a NW–SE oriented stretching lineation defined by stretched objects (lithic particles and porphyroblasts) in the S1 foliation planes. The foli- ation is overprinted by all later folding especially as kink folds that pass directly into more rounded D2 and D3 mesoscopic folds. The S1 foliations are clearly the earliest tectonic structures in the Sa’al–Zaghra complex. Measurements of strain using folded quartz veins on the meso- scopic and microscopic scale show shortenings normal to S1 of at least −50% in El-Rayan phyllites (Figs. 3h and 4a). This is also reflected in the boudinage of quartz veins and dykes along the S1 foliations. Even higher strains are associated with metamor- phosed pyroclastics at Wadi Mughafa (see Fig. 2) where deformed lapilli particles give RXZ values up to 15, which correspond to −75% shortening normal to S1 and 285% extension in a NW–SE direc- tion, assuming no dilatation. The fact that the S1 foliation is parallel to bedding is interpreted that S1 formed while the beds were originally horizontal. This means that the maximum shortening strain was vertical and (together with the stretching lineation) the maximum extension was NW–SE. Vertical shortening and horizon- tal extension are consistent with D1 extensional tectonic setting. These foliations clearly predated any significant folding in the area.
  • 4. M. Hassan et al. / Precambrian Research 241 (2014) 104–128 107 Fig. 3. Representative field photographs of the Sa’al–Zaghra complex. (a) Biotite phenocrysts in wide phyllite exposure at junction of Wadi Sa’al and Wadi El-Rayan. (b) Pumicious agglomerate in thick interbedded sequence of tuffs and lapili tuffs. (c) Large extended rhyolitic ignimbrite sequence in Agramyia Formation. (d) Metaconglomerates as representative beds of Zaghra Formation. (e) Primary bedding parallel to foliation invaded by thin sheets of red granites. (f) Metasedimentary enclaves of the Sa’al–Zaghra complex in later intruded granodiorite. (g) Post-tectonic dykes swarms dissect intrusive rocks of the Sa’al–Zaghra complex. (h) Abundant folded quartz veins with the foliation as axial plane as a result of vertical shortening.
  • 5. 108 M. Hassan et al. / Precambrian Research 241 (2014) 104–128 The existence of an earliest extensional deformation pre-dating folding of beds is similar to that described by Fowler and Hassen (2008) for the Feiran–Solaf metamorphic complex. In both cases the bulk strain consisted of vertical shortening, with extension in the plane of the foliation, principally in the NW–SE direction. In the Feiran–Solaf metamorphic complex, Fowler and Hassen (2008) argued for a continental rift setting for the Feiran gneisses, and against other extensional tectonic settings, such as gravitational collapse, core complex or mantled gneiss dome. The second deformation event D2 is mainly represented by ENE–WSW trending folds associates with thrusting. Discordances between thrust planes and bedding planes are common. In El- Rayan Formation, D2 is mainly recorded in folds with localized SSE-ward thrusting contemporaneous with intrusion of the El- Firinga metagabbro along the thrust planes. The D2 event is a result of NW–SE shortening which was partitioned between folding and thrusting. El-Rayan Formation phyllites show open ENE–WSW trending F2 folds that pass into more common F2 kink fold geom- etry. The thick volcanic units in the center of the Sa’al–Zaghra complex (Agramiya Formation) show minimal D2 folding, whereas the thinner layered units in the SE of the complex (Zaghra Forma- tion) show common mesoscopic F2 folds. There are generally no axial planar foliation associated with F2 folds. The third deformation event D3 is represented mainly by N–S to NW–SE trending steeply plunging open folds as a result of NE–SW shortening. The F2 folds are overprinted by this phase, and have their axial planes and hinges deformed by the D3 deformation. F3 kink folds are found in El-Rayan Formation phyllites. These kink folds overprint the earlier F2 kink folds. 4. Petrography The Sa’al metamorphic complex is generally known for being largely composed of low-grade (greenschist facies) metavol- canic and metasedimentary rocks. However, some rocks of amphibolite facies are also present. Low-grade metamorphic assemblages are found in both main types of metavolcanic rocks (mafic-intermediate and felsic) and also in the majority of the metasedimentary rocks. In contrast, rocks of amphibolite facies grade are only found in felsic metapyroclastic rocks in a limited area near Wadi Muqafa (Fig. 2). The low-grade mafic-intermediate metavolcanics are character- ized by uniform primary texture of interlocking plagioclase laths or euhedral (0.8 mm in length) plagioclase phenocrysts (Figs. 4b and 5a). The groundmass is made up of fine-grained plagioclase, acti- nolite needles, chlorite, biotite, opaques and/or sphene (Figs. 4c and 5b). Clinozoisite granules concentrate at the plagioclase mar- gins. There are amygdales filled by polycrystalline quartz. Quartz and epidote veinlets may be found. The foliation, where present, is defined by the preferred orientation of chlorite, biotite and in places actinolite. The felsic metavolcanics are represented as thinly banded low- grade meta-tuffs or flow banded lava composed mainly of quartz and plagioclase phenocrysts (up to 3 mm) with a groundmass of finer quartz, fine lamellar-twinned plagioclase and K-feldspar. Micas define a weak foliation in addition to specks of chlorite and sericite. Granules of clinozoisite and small secondary plagioclase grains are common. Ignimbrites have well preserved plagioclase phenocrysts that are overgrown by microcline. There are also fine- grained lithic particles rich in opaques. Low-grade metasedimentary rocks are commonly metapsam- mites that contain ellipsoidal, rather angular quartz grains with variable grain size (less than 1 mm in diameter) and detrital sericitized plagioclase and microcline grains in addition to mica (Fig. 5c). Foliation is defined by substantial amounts of fine-grained (less than 0.3 mm) biotite, white mica, clinozoisite, chlorite and amphiboles (Fig. 4d). Important is the occurrence of up to 1 mm sized aggregates of fine-grained mica are interpreted as alteration products replacing former cordierite porphyroblasts (Fig. 5d). Opaque granules are found as porphyroclasts or tiny grains along grain boundaries. In some places, the metasedimentary rocks contain minor impure carbonate interlayers within the metap- sammites. In these metacarbonates, a calcsilicate assemblage of epidote, garnet and diopside occurs (Fig. 5e). Amphibolite facies assemblages were found only in some rocks of Zaghra Formation, in particular near Wadi Muqafa (dashed line in Fig. 2). In this area, rocks of pelitic bulk composition have a por- phyroblastic texture with andalusite or garnet porphyroblasts. In sample 215b (Figs. 4e and 5f), garnet porphyroblasts (up to 2 mm) lie randomly within a foliated groundmass made of muscovite, chlorite, albite, K-feldspar and quartz (0.1 mm). The porphyroblasts contain inclusions of quartz and muscovite. These inclusions are oriented parallel to the external foliation indicating post-tectonic origin of the porphyroblasts. In sample 273a (Fig. 5g), anhedral andalusite porphyroblasts (less than 1 mm) have grown over a foli- ated matrix of biotite, muscovite, plagioclase, K-feldspar and quartz (up to 0.2 mm) also indicating a post-tectonic origin for the porphy- roblasts. It is worth mentioning that small euhedral to subhedral sillimanite crystals (0.2 mm in length) grow obliquely to the foli- ation and surrounding the andalusite porphyroblasts (Figs. 4f and 5h). A rim of muscovite surrounds the alumino silicates and sepa- rates them from the biotite in the groundmass. K-feldspar grains in contact with the muscovite and andalusite porphyroblasts are finer than the feldspar and quartz grains of the groundmass. Muscovite and quartz inclusions can be found in the porphyroblasts. In summary, we conclude that there is low-grade equilibrium assemblage of actinolite, chlorite, feldspar, clinozoisite, opaques and quartz for the metavolcanic rocks, in addition to mica in the metasedimentary rocks. Thin section studies show that the S1 foli- ation is defined by metamorphic layer silicates chlorite, muscovite and biotite. Pressure shadows adjacent to resistant lithic particles and phenocrysts are also filled with these metamorphic phases. Brittly segmented grains are healed by fibrous growths of these metamorphic phases. The S1 foliation thus formed during the main metamorphic event in the area that we term M1. The apparently higher grade assemblages found in selected locations inside Zaghra Formation are made up of either (a) biotite, muscovite, feldspar and quartz forming a foliated (S1) matrix around andalusite-sillimanite porphyroblasts or (b) mus- covite, chlorite, feldspar and quartz foliated groundmass enclosing garnet porphyroblasts. These porphyroblasts are not perceptibly deformed and overgrow S1. The spatial association of these higher temperature assemblages with S1 foliation-concordant red gran- ite sheets that also show a tectonic gneissosity parallel to S1 is interpreted to indicate a role of contact metamorphism in the for- mation of the higher grade phase assemblage. This higher grade metamorphism occurs either late in D1 or between D1 and D2. 5. Mineral chemistry Mineral analyses were carried out for 27 rock samples (total 866 spot analysis) at the Institute of Earth Science, Karl- Franzens-Universität Graz, Austria, using a JEOL JSM-6310 scanning electron microscope following standard procedures, operating in EDS/WDS mode at 5 nA beam current, accelerating voltage of 15 kV and counting time of 100 s. Mineral formula were cal- culated using AX program (http://www.esc.cam.ac.uk/research/ research-groups/holland/ax) and based on 8 oxygen atoms for the feldspar, 12 oxygen atoms for the garnet, 11 oxygen atoms and ignoring H2O for mica, 23 oxygen atoms and ignoring H2O for amphiboles and 14 oxygen atoms and ignoring H2O for chlorite. The
  • 6. M. Hassan et al. / Precambrian Research 241 (2014) 104–128 109 Fig. 4. Photomicrographs of petrographic features in metavolcanic and metasedimentary rocks of the Sa’al–Zaghra complex. (a) Folded quartz veins as a result of vertical shortening. (b) Subhedral plagioclase phenocryst surrounded by fine-grained groundmass contains plagioclase, chlorite, opaques. (c) Weak foliation in the low-grade mafic- intermediate metavolcanics, defined by the preferred orientation of chlorite. The plagioclase phenocryst is slightly altered to epidote. (d) Micas define a weak foliation in metasedimentary rocks. Note micas grow in the strain shadow of opaque porphyroclasts. (e) Garnet porphyroblast cutting the metamorphic foliation and contains inclusions of quartz oriented parallel to the external foliation indicating post-tectonic origin. (f) Small euhedral to subhedral sillimanite crystals grow obliquely to the foliation. mineral abbreviations, which will be used in the following sections, are from Holland and Powell (1998). Plagioclase is mostly andesine in the mafic-intermediate metavolcanic showing a small range in composition with lim- ited zonation and has Xan [Ca/(Ca + Na)] = 0.30–0.40 (Table 1). Oligoclase is the dominant plagioclase in the felsic metavolcanic showing a small range in composition and has Xan = 0.10–0.22. In metasedimentary rocks, plagioclase composition is variable and chemical compositions of albite, oligoclase and andesine were analyzed (Tables 2–5). Potassium feldspar is absent in the mafic metavolcanics, abundant in the intermediate and the felsic metavolcanics, and is the dominant feldspar in the metasedimen- tary rocks. Intrusive granitic rocks have andesine plagioclase with a small range in composition Xan = 0.26–0.44.
  • 7. 110 M. Hassan et al. / Precambrian Research 241 (2014) 104–128 Fig. 5. Back-scattered electron images of petrographic features in metavolcanic and metasedimentary rocks of the Sa’al–Zaghra complex. (a) Uniform texture of plagioclase phenocrysts with partially transformed amphibole to chlorite (intermediate metavolcanic). (b) Intermediate metavolcanic with plagioclase, actinolite needles, and chlorite, in addition to opaques and clinoziosite as accessory minerals (intermediate metavolcanic). (c) Substantial amount of fine-grained biotite, white mica, and clinozoisite in plagioclase and quartz (meta-sandstone). (d) Cordierite porphyroblasts (bounded with dashed line) that are completely altered to micas surrounded by epidote in quartz rich groundmass (micaschist). (e) Calcsilicate assemblage of epidote, diopside and garnet (metacarbonate-sedimentary rocks). (f) Garnet porphyroblasts overprinting foliation of chlorite, muscovite, albite, K-feldspar and quartz (garnet bearing metasedimentary rocks, sample 215b). (g) Muscovite rim separating andalusite porphyroblast from surrounding biotite in quartz-rich groundmass (alumino silicates-bearing metasedimentary rocks, sample 273a). (h) Euhedral to subhedral sillimanite crystals grown up oblique to the muscovite foliation surrounding the andalusite porphyroblasts (alumino silicates-bearing metasedimentary rocks, sample 273a).
  • 8. M.Hassanetal./PrecambrianResearch241(2014)104–128111 Table 1 Representative electron microprobe analyses of mineral assemblages of the basic-intermediate metavolcanic rock samples (<0.01, calculated values less than 0.005; BDL, below detection limit). Sample 1c1hb2a 1c1hb3 1c1hb4 1c1hb5 19s1hb2 19s2hb1 19s2hb3 19s3hb2 101hb2 101hb4a 101hb5 101hb6 199hb2 199hb1 70A2hb5 70A2hb6 SiO2 47.11 47.36 46.73 48.59 48.72 48.87 44.52 45.97 50.07 53.45 49.12 49.55 49.91 48.43 49.06 51.28 TiO2 0.35 0.38 0.57 0.34 0.22 0.17 0.32 0.26 0.62 0.11 0.75 0.51 0.39 0.56 0.24 0.17 Al2O3 6.23 6.94 7.02 5.27 7.03 7.06 10.60 9.85 5.43 3.59 6.33 6.00 5.97 6.94 7.73 5.10 Cr2O3 0.05 0.02 0.04 0.04 BDL 0.03 0.01 0.05 0.04 0.09 0.02 0.01 0.04 0.08 0.02 0.08 Fe2O3 7.02 6.84 6.85 6.07 2.45 1.48 3.82 3.99 3.46 2.55 3.44 3.17 3.31 3.43 3.61 3.15 FeO 10.88 11.43 11.75 11.19 12.17 13.09 12.90 12.32 9.13 8.30 9.85 9.26 9.01 9.73 9.52 10.03 MnO 0.63 0.52 0.62 0.57 0.31 0.25 0.38 0.35 0.34 0.21 0.30 0.37 0.64 0.48 0.44 0.99 MgO 12.59 12.46 11.98 13.42 12.98 12.68 10.36 11.51 15.37 17.17 14.69 15.03 15.02 14.12 14.18 16.14 CaO 11.48 11.34 11.34 11.36 12.43 12.53 12.54 12.11 12.05 12.64 12.11 12.25 11.94 12.38 11.73 9.34 Na2O 0.72 0.76 0.76 0.60 0.74 0.72 1.25 1.09 0.64 0.38 0.78 0.67 0.65 0.65 0.83 0.93 K2O 0.49 0.49 0.55 0.34 0.09 0.14 0.25 0.17 0.29 0.07 0.31 0.22 0.25 0.23 0.11 0.06 Totals 97.54 98.55 98.22 97.79 97.14 97.02 96.94 97.67 97.44 98.56 97.69 97.04 97.13 97.03 97.47 97.28 On basis of 23 oxygens Si 6.97 6.93 6.89 7.13 7.15 7.18 6.65 6.77 7.24 7.54 7.12 7.19 7.23 7.07 7.09 7.38 Ti 0.04 0.04 0.06 0.04 0.02 0.02 0.04 0.03 0.07 0.01 0.08 0.06 0.04 0.06 0.03 0.02 Al 1.09 1.20 1.22 0.91 1.22 1.22 1.87 1.71 0.93 0.60 1.08 1.03 1.02 1.19 1.32 0.87 Cr 0.01 <0.01 0.01 0.01 – <0.01 <0.01 0.01 0.01 0.01 <0.01 <0.01 0.01 0.01 <0.01 0.01 Fe3+ 0.78 0.75 0.76 0.67 0.27 0.16 0.43 0.44 0.38 0.27 0.38 0.35 0.36 0.38 0.39 0.34 Fe2+ 1.35 1.40 1.45 1.37 1.49 1.619 1.61 1.52 1.10 0.98 1.19 1.12 1.09 1.19 1.15 1.21 Mn 0.08 0.06 0.08 0.07 0.04 0.03 0.05 0.04 0.04 0.03 0.04 0.05 0.09 0.06 0.05 0.12 Mg 2.78 2.72 2.63 2.94 2.84 2.78 2.31 2.53 3.31 3.61 3.17 3.25 3.24 3.07 3.05 3.46 Ca 1.82 1.78 1.79 1.79 1.95 1.97 2.01 1.91 1.87 1.91 1.88 1.91 1.85 1.94 1.82 1.44 Na 0.21 0.22 0.22 0.17 0.21 0.21 0.36 0.31 0.18 0.10 0.22 0.19 0.18 0.18 0.23 0.26 K 0.09 0.09 0.10 0.06 0.02 0.03 0.05 0.03 0.05 0.01 0.06 0.04 0.05 0.04 0.02 0.01 Tr 0.212 0.19 0.16 0.22 0.21 0.17 0.16 0.20 0.26 0.31 0.24 0.28 0.26 0.26 0.28 0.24 Fact <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Ts – <0.01 – – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Parg <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.01 <0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <0.01 Gl – <0.01 <0.01 – – – <0.01 <0.01 <0.01 – <0.01 <0.01 – <0.01 – – Sample 1c1chl2 1c1chl3 1c1chl4 1c1chl5 19s1chl2 19s2chl1 19s2chl3 19s3chl2 101chl2 101chl4 101chl5 101chl6 199chl1 199chl2 70A1chl1 70A2chl7 SiO2 27.43 27.63 27.73 27.59 26.43 27.85 26.44 27.07 29.66 29.21 28.26 31.08 28.88 28.68 28.09 29.76 TiO2 0.02 BDL 0.19 0.07 0.06 0.04 0.09 0.01 0.35 0.08 0.16 0.55 BDL 0.21 0.04 0.02 Al2O3 17.13 16.65 17.23 16.86 19.24 19.24 19.74 18.73 17.99 17.1 17.97 17.21 17.48 16.88 18.99 19.26 Cr2O3 0.03 BDL 0.06 0.08 0.06 0.05 0.03 0.05 0.10 BDL 0.03 0.08 0.03 0.05 0.01 0.04 Fe2O3 2.12 0.78 0.48 1.88 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL FeO 23.75 23.86 23.79 23.17 19.88 18.69 19.7 19.57 21.16 21.43 21.64 20.78 19.22 20.54 19.68 19.76 MnO 0.59 0.52 0.53 0.53 0.34 0.34 0.34 0.34 0.19 0.19 0.34 0.20 0.32 0.51 0.28 0.29 MgO 17.37 17.34 17.41 17.92 18.35 18.74 18.76 19.17 19.3 18.74 19.11 17.85 19.89 18.56 20.66 19.04 CaO 0.08 0.04 0.14 0.08 0.14 0.20 0.14 0.09 0.13 0.11 0.10 0.21 0.03 0.06 0.05 0.14 Na2O 0.02 0.01 BDL 0.01 BDL 0.08 0.03 0.01 0.01 BDL 0.01 0.06 0.01 0.03 0.01 0.28 K2O 0.07 0.06 0.19 0.05 0.03 0.07 0.01 0.03 0.83 0.14 0.08 0.95 0.07 BDL 0.03 0.21 Totals 88.61 86.89 87.75 88.24 84.53 85.30 85.28 85.07 89.72 87.00 87.70 88.97 85.93 85.52 87.84 88.80 On basis of 14 oxygens Si 2.87 2.93 2.91 2.88 2.81 2.91 2.79 2.86 2.99 3.03 2.92 3.14 3.00 3.02 2.86 2.99 Ti <0.01 – 0.02 0.01 <0.01 <0.01 <0.01 <0.01 0.03 0.01 0.01 0.04 – 0.02 <0.01 <0.01 Al 2.11 2.08 2.13 2.08 2.42 2.37 2.45 2.33 2.14 2.09 2.19 2.05 2.14 2.10 2.28 2.28 Cr <0.01 – 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Fe3+ 0.17 0.06 0.04 0.15 – – – – – – – – – – – – Fe2+ 2.08 2.12 2.09 2.03 1.77 1.63 1.74 1.73 1.78 1.86 1.87 1.76 1.67 1.81 1.68 1.66 Mn 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.02 0.02 0.03 0.02 0.03 0.05 0.02 0.03
  • 9. 112M.Hassanetal./PrecambrianResearch241(2014)104–128 Table 1 (Continued) Sample 1c1chl2 1c1chl3 1c1chl4 1c1chl5 19s1chl2 19s2chl1 19s2chl3 19s3chl2 101chl2 101chl4 101chl5 101chl6 199chl1 199chl2 70A1chl1 70A2chl7 Mg 2.70 2.74 2.72 2.79 2.91 2.92 2.95 3.01 2.90 2.90 2.94 2.69 3.08 2.91 3.14 2.85 Ca 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 <0.01 0.01 0.01 0.02 Na <0.01 <0.01 – <0.01 – 0.02 0.01 <0.01 <0.01 – <0.01 0.01 <0.01 0.01 <0.01 0.06 K 0.01 0.01 0.05 0.01 <0.01 0.01 <0.01 <0.01 0.11 0.02 0.01 0.12 0.01 – <0.01 0.03 Clin 0.05 0.05 0.05 0.05 0.08 0.08 0.08 0.09 0.07 0.07 0.08 0.05 0.10 0.07 0.10 0.07 Daph 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Ames 0.02 0.01 0.02 0.02 0.06 0.05 0.06 0.06 0.03 0.03 0.04 0.02 0.04 0.03 0.06 0.04 Sample 1c1plg2 1c1plg3 1c1plg4 1c1plg5 19s1plg2 19s2plg1 19s2plg3 19s3plg2 101plg2 101plg4 101plg5 101plg6 199plag3 199plag1 70A1plg3 70A1plg4 SiO2 63.06 63.94 59.22 63.35 55.89 59.58 59.18 59.6 59.96 61.43 59.91 59.99 59.61 58.84 59.26 63.91 TiO2 BDL 0.03 0.02 BDL BDL 0.05 0.01 0.01 0.03 0.03 0.04 0.11 0.03 0.04 0.01 0.01 Al2O3 23.73 23.25 25.36 23.11 26.82 25.85 25.67 25.98 25.79 25.53 25.79 25.96 25.59 25.16 26.77 23.86 Cr2O3 0.06 0.01 0.04 0.02 0.06 BDL BDL 0.03 0.07 0.01 0.01 0.06 0.02 BDL 0.03 0.01 Fe2O3 0.14 0.22 0.33 0.43 0.32 0.21 0.13 0.44 0.25 0.38 0.32 0.36 0.12 0.68 0.28 0.50 MnO 0.04 0.04 0.01 0.01 0.03 0.01 0.02 BDL 0.06 0.05 0.10 0.01 BDL 0.05 0.01 0.02 MgO 0.20 0.18 0.03 0.03 0.20 0.01 0.05 0.05 0.21 0.13 0.04 0.09 0.09 0.51 0.05 0.05 CaO 5.02 4.73 7.44 4.57 10.68 8.15 8.17 8.23 6.59 6.11 6.56 6.91 7.95 8.30 8.92 4.61 Na2O 8.34 8.57 6.98 8.66 5.98 7.26 7.29 7.17 7.44 7.76 7.71 7.52 6.78 6.55 6.23 8.16 K2O 0.07 0.08 0.20 0.08 0.03 0.07 0.14 0.09 0.05 0.15 0.08 0.02 0.14 0.08 0.06 0.49 Totals 100.66 101.05 99.63 100.26 100.01 101.19 100.66 101.6 100.45 101.57 100.56 101.02 100.33 100.21 101.62 101.62 On basis of 8 oxygens Si 2.77 2.80 2.65 2.79 2.52 2.63 2.63 2.63 2.66 2.69 2.65 2.65 2.65 2.63 2.61 2.78 Ti – <0.01 <0.01 – – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Al 1.23 1.20 1.34 1.20 1.43 1.35 1.35 1.35 1.35 1.32 1.35 1.35 1.34 1.33 1.39 1.22 Cr <0.01 <0.01 <0.01 <0.01 <0.01 – – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 Fe3+ 0.01 0.01 0.01 0.01 0.01 0.01 <0.01 0.02 0.01 0.01 0.01 0.01 <0.01 0.02 0.01 0.02 Mn <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 Mg 0.01 0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 0.01 <0.01 0.01 0.01 0.03 <0.01 <0.01 Ca 0.24 0.22 0.36 0.22 0.52 0.39 0.39 0.39 0.31 0.29 0.31 0.33 0.38 0.40 0.42 0.22 Na 0.71 0.73 0.61 0.74 0.52 0.62 0.63 0.61 0.64 0.66 0.66 0.64 0.58 0.57 0.53 0.69 K <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 0.01 <0.01 0.01 <0.01 <0.01 0.01 0.01 <0.01 0.03 An 0.41 0.39 0.59 0.37 0.72 0.62 0.61 0.62 0.53 0.49 0.52 0.55 0.63 0.66 0.70 0.38 Ab 0.75 0.77 0.63 0.78 0.56 0.63 0.63 0.62 0.68 0.70 0.69 0.67 0.62 0.60 0.58 0.75
  • 10. M.Hassanetal./PrecambrianResearch241(2014)104–128113 Table 2 Representative electron microprobe analyses of mineral assemblages of the studied amphibole-bearing metasedimentary rock samples. Sample 122D!hb1 122D!hb2 122D!hb3 122D2hb1 140b1hb1 140b2hb4 140b2hb5 140b2hb6 188hb1 188hb3 188hb4 188hb5 189 × 4hb2 189 × 4hb3 189 × 2hb1 189 × 2hb7 SiO2 48.90 47.87 49.13 48.18 48.50 48.25 46.59 48.15 49.37 48.49 48.01 47.57 50.61 50.38 49.85 50.07 TiO2 0.42 0.65 0.53 0.61 0.68 0.79 3.84 0.86 0.44 0.80 0.45 1.03 0.40 0.60 0.68 0.44 Al2O3 3.49 4.36 3.76 4.32 7.09 7.17 6.57 8.02 5.56 5.95 6.36 6.77 5.27 5.53 5.56 5.82 Cr2O3 0.05 0.15 0.02 0.04 0.07 0.11 0.03 0.09 0.01 0.01 0.10 0.03 0.01 0.02 0.01 0.03 Fe2O3 2.09 2.77 2.20 2.58 3.92 4.49 12.28 4.65 3.30 4.32 3.75 3.33 1.04 2.42 3.47 2.24 FeO 9.23 9.60 9.33 9.91 9.20 8.77 BDL 9.17 10.24 9.97 10.26 11.35 11.44 9.71 8.36 10.51 MnO 0.97 0.81 0.90 0.96 0.63 0.50 0.50 0.59 0.46 0.49 0.44 0.50 0.56 0.66 0.68 0.70 MgO 14.76 14.7 14.82 14.34 14.63 14.67 13.37 14.33 14.61 14.45 14.09 13.58 14.47 15.04 15.6 14.34 CaO 10.85 10.78 10.88 10.94 12.16 12.16 14.23 11.97 12.61 12.33 12.51 12.32 12.73 12.51 12.42 12.45 Na2O 1.03 1.18 1.08 1.17 0.87 0.69 0.53 0.80 0.63 0.76 0.77 0.90 0.58 0.53 0.63 0.50 K2O 0.40 0.47 0.39 0.44 0.47 0.55 0.34 0.64 0.45 0.53 0.54 0.65 0.23 0.23 0.28 0.24 Totals 92.19 93.34 93.04 93.50 98.22 98.15 98.28 99.27 97.68 98.09 97.28 98.02 97.34 97.63 97.54 97.34 On basis of 23 oxygens Si 7.48 7.28 7.44 7.32 7.00 6.97 6.66 6.89 7.18 7.05 7.05 6.97 7.35 7.27 7.19 7.27 Ti 0.05 0.07 0.06 0.07 0.08 0.09 0.41 0.09 0.05 0.09 0.05 0.11 0.04 0.07 0.07 0.05 Al 0.63 0.78 0.67 0.77 1.21 1.22 1.11 1.35 0.95 1.02 1.1 1.17 0.90 0.94 0.95 1.00 Cr 0.01 0.02 <0.01 0.01 0.01 0.01 <0.01 0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Fe3+ 0.24 0.32 0.25 0.30 0.43 0.49 1.32 0.50 0.36 0.47 0.41 0.37 0.11 0.26 0.38 0.25 Fe2+ 1.18 1.22 1.18 1.26 1.11 1.06 – 1.10 1.25 1.21 1.26 1.39 1.39 1.17 1.01 1.28 Mn 0.13 0.10 0.12 0.12 0.08 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.07 0.08 0.08 0.09 Mg 3.36 3.33 3.35 3.25 3.15 3.16 2.85 3.06 3.17 3.13 3.08 2.96 3.13 3.24 3.36 3.10 Ca 1.78 1.76 1.77 1.78 1.88 1.88 2.18 1.84 1.97 1.92 1.97 1.93 1.98 1.94 1.92 1.94 Na 0.31 0.35 0.32 0.34 0.24 0.19 0.15 0.22 0.18 0.21 0.22 0.26 0.16 0.15 0.18 0.14 K 0.08 0.09 0.08 0.09 0.09 0.10 0.06 0.12 0.08 0.10 0.10 0.12 0.04 0.04 0.05 0.04 Tr 0.20 0.19 0.20 0.19 0.26 0.25 0.21 0.22 0.23 0.23 0.23 0.16 0.02 0.23 0.30 0.20 Fact <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Ts <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Parg 0.02 0.01 0.02 0.01 0.01 0.01 – 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 Gl – – – – <0.01 <0.01 – <0.01 – – – – – – <0.01 – Sample 122D!chl1 122D!chl2 122D!chl3 122D2chl3 140b1chl1 140b1chl1a 140b1chl2 140b1chl2a 188 × 1chl1 188chl2 188chl3 188chl4 189 × 4chl9 189 × 2chl7 189chl2 189chl1 SiO2 27.4 26.08 26.53 28.42 31.88 33.03 25.98 29.42 26.66 28.42 28.07 28.42 27.81 29.61 29.86 30.07 TiO2 0.01 0.05 0.02 0.25 BDL 0.05 0.01 0.08 0.07 0.03 0.01 0.03 0.18 0.02 0.96 0.14 Al2O3 16.46 16.99 16.47 15.2 15.46 15.37 16.43 19.08 18.36 17.93 19.09 17.93 19.76 17.95 17.3 16.78 Cr2O3 0.04 0.09 0.09 0.02 0.05 0.09 0.05 0.01 0.06 0.23 0.23 0.23 0.07 0.08 0.01 0.07 Fe2O3 BDL BDL BDL BDL BDL BDL BDL BDL 0.16 BDL BDL BDL BDL BDL BDL BDL FeO 16.96 19.39 18.67 16.50 1.41 1.45 17.93 19.50 18.37 18.04 19.00 18.04 18.32 18.38 18.67 18.62 MnO 1.89 1.71 1.80 1.56 0.32 0.25 0.75 0.65 0.58 0.52 0.68 0.52 0.72 1.12 0.96 0.85 MgO 18.30 17.54 17.42 18.85 27.73 29.02 17.85 19.90 19.58 21.11 20.35 21.11 19.88 20.25 19.37 20.72 CaO 0.07 0.05 0.07 0.19 0.50 0.79 0.18 0.11 0.39 0.43 0.28 0.43 0.25 0.16 1.27 0.10 Na2O 0.01 0.01 0.02 0.04 0.03 0.11 0.02 0.01 0.01 BDL 0.01 BDL 0.04 BDL 0.01 0.01 K2O 0.05 0.02 0.04 0.25 0.02 0.05 0.02 0.01 0.01 0.02 0.01 0.02 0.03 0.05 0.04 0.09 Totals 81.19 81.93 81.13 81.28 77.40 80.21 79.22 88.77 84.25 86.73 87.73 86.73 87.06 87.62 88.45 87.45 On basis of 14 oxygens Si 3.02 2.89 2.96 3.12 3.32 3.33 2.94 2.96 2.84 2.92 2.86 2.92 2.85 3.01 3.02 3.06 Ti <0.01 <0.01 <0.01 0.02 – <0.01 <0.01 0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.07 0.01 Al 2.14 2.22 2.17 1.96 1.90 1.82 2.20 2.26 2.30 2.17 2.30 2.17 2.38 0.01 2.06 2.02 Cr <0.01 0.01 0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.01 0.02 0.02 0.02 0.01 0.01 <0.01 0.01 Fe3+ – – – – – – – – 0.013 – – – – – – – Fe2+ 1.56 1.80 1.74 1.51 0.12 0.12 1.70 1.64 1.63 1.55 1.62 1.55 1.57 1.56 1.58 1.59 Mn 0.18 0.16 0.17 0.15 0.03 0.02 0.07 0.06 0.05 0.05 0.06 0.05 0.06 0.10 0.08 0.07
  • 11. 114M.Hassanetal./PrecambrianResearch241(2014)104–128 Table 2 (Continued) Sample 122D!chl1 122D!chl2 122D!chl3 122D2chl3 140b1chl1 140b1chl1a 140b1chl2 140b1chl2a 188 × 1chl1 188chl2 188chl3 188chl4 189 × 4chl9 189 × 2chl7 189chl2 189chl1 Mg 3.00 2.90 2.90 3.08 4.30 4.36 3.02 2.98 3.10 3.23 3.09 3.23 3.03 3.07 2.92 3.15 Ca 0.01 0.01 0.01 0.02 0.06 0.09 0.02 0.01 0.04 0.05 0.03 0.05 0.03 0.02 0.14 0.01 Na <0.01 <0.01 <0.01 0.01 0.01 0.02 <0.01 <0.01 <0.01 – <0.01 – 0.01 – <0.01 <0.01 K 0.01 <0.01 0.01 0.04 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.01 Clin 0.09 0.07 0.07 0.09 0.47 0.47 0.09 0.09 0.10 0.12 0.10 0.12 0.09 0.10 0.10 0.10 Daph <0.01 0.01 0.01 <0.01 – – 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Ames 0.04 0.04 0.03 0.02 0.08 0.07 0.04 0.05 0.06 0.05 0.06 0.05 0.06 0.04 0.03 0.03 Sample 122D!plg4 122D2plg2 122D2plag3 122D2plg4 140b2plg5 140b2plg6 142–2plg3 142plg4 188plg1 188plg2 188plg3 188plg4 189 × 2plag2 189 × 2plag3 189 × 3plag1 189 × 3plag2 SiO2 64.44 64.47 64.60 64.70 60.84 69.78 66.32 65.87 68.88 65.78 59.89 68.77 45.55 47.03 46.45 48.28 TiO2 0.09 0.07 0.02 0.03 0.03 BDL 0.01 0.02 0.03 BDL BDL 0.02 0.05 0.04 0.01 0.04 Al2O3 20.48 20.77 21.20 21.22 26.68 21.63 21.45 21.28 20.67 20.94 25.35 20.32 34.31 33.19 33.95 32.88 Cr2O3 0.04 0.04 0.01 0.01 0.05 BDL 0.04 0.08 0.04 0.01 BDL 0.05 0.03 0.02 0.04 BDL Fe2O3 0.23 0.17 0.17 0.21 0.26 0.16 0.03 0.01 0.12 1.02 0.31 0.38 0.37 0.54 0.10 0.23 MnO 0.04 0.06 0.04 BDL 0.01 0.03 0.06 0.01 0.04 0.06 0.06 0.04 0.09 0.03 0.01 BDL MgO 0.22 0.16 0.03 0.03 0.26 0.01 0.06 0.16 0.02 0.95 0.15 0.01 0.18 0.04 0.02 0.24 CaO 2.32 2.57 2.65 2.62 7.25 0.59 2.38 2.50 1.16 3.41 7.46 1.23 18.11 17.1 17.58 16.32 Na2O 10.11 9.54 10.13 10.39 7.34 10.14 9.13 8.84 10.70 9.47 7.86 11.35 1.11 1.68 1.39 2.00 K2O 0.25 0.19 0.36 0.16 0.14 0.61 0.22 0.21 0.03 0.04 0.11 0.72 BDL 0.01 0.03 BDL Totals 98.22 98.04 99.21 99.37 102.86 102.95 99.70 98.98 101.69 101.68 101.19 102.89 99.80 99.68 99.58 99.99 On basis of 8 oxygens Si 2.89 2.89 2.87 2.87 2.64 2.96 2.91 2.91 2.96 2.86 2.65 2.95 2.11 2.17 2.14 2.21 Ti <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 – – <0.01 <0.01 <0.01 <0.01 <0.01 Al 1.08 1.10 1.11 1.11 1.36 1.08 1.11 1.11 1.05 1.07 1.32 1.03 1.87 1.80 1.85 1.77 Cr <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 – Fe3+ 0.01 0.01 0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 0.03 0.01 0.01 0.01 0.02 <0.01 0.01 Mn <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – Mg 0.02 0.01 <0.01 <0.01 0.02 <0.01 <0.01 0.01 <0.01 0.06 0.01 <0.01 0.01 <0.01 <0.01 0.02 Ca 0.11 0.12 0.13 0.13 0.34 0.03 0.11 0.12 0.05 0.16 0.35 0.06 0.90 0.85 0.87 0.80 Na 0.88 0.83 0.87 0.89 0.62 0.83 0.78 0.76 0.89 0.80 0.67 0.94 0.10 0.15 0.12 0.18 K 0.01 0.01 0.02 0.01 0.01 0.03 0.01 0.01 <0.01 < 0.01 0.01 0.04 – < 0.01 < 0.01 – An 0.19 0.22 0.21 0.21 0.57 0.05 0.21 0.23 0.10 0.28 0.56 0.10 0.91 0.88 0.89 0.86 Ab 0.88 0.86 0.86 0.87 0.65 0.93 0.86 0.86 0.94 0.84 0.66 0.91 0.27 0.34 0.3 0.38
  • 12. M.Hassanetal./PrecambrianResearch241(2014)104–128115 Table 3 Representative electron microprobe analyses of mineral assemblages of the studied mica-bearing metasedimentary rock samples. Sample 94 × 1bi2 94 × 1bi3 94 × 2bi4 94 × 2bi5 132bi1 132bi2 132bi3 132bi4 230Abi1 230Abi1a 230Abi5 230Abi6 240bi1 240bi2 240bi3 240bi6 SiO2 35.9 36.21 35.03 34.77 36.64 39.36 37.66 36.82 35.76 34.94 35.11 35.35 35.19 35.35 35.45 35.29 TiO2 1.96 1.73 1.99 1.74 1.76 1.64 1.62 1.67 2.58 2.36 2.58 2.78 2.09 2.89 2.28 2.76 Al2O3 16.99 16.55 15.79 15.77 18.38 18.04 17.97 18.19 16.02 15.92 16.68 16.25 16.76 16.71 16.70 16.63 Cr2O3 0.13 BDL BDL 0.04 0.05 0.08 0.05 0.03 0.02 0.02 0.06 0.07 0.02 BDL 0.06 0.06 Fe2O3 3.20 2.25 1.29 3.28 BDL BDL BDL 0.45 2.98 2.01 1.36 0.95 0.11 0.03 BDL BDL FeO 16.29 16.58 17.04 16.74 13.6 14.2 13.51 13.67 15.18 16.53 16.19 17.13 16.66 18.69 18.31 18.05 MnO 0.35 0.37 0.32 0.29 0.31 0.32 0.26 0.37 0.53 0.55 0.48 0.60 1.01 0.68 0.56 1.26 MgO 12.84 12.58 11.74 12.09 14.35 13.61 13.43 14.48 12.07 11.61 11.7 11.27 11.87 11.15 11.12 10.98 CaO 0.07 0.02 0.04 0.03 0.06 0.01 0.06 0.02 0.29 0.07 0.14 0.14 0.01 0.10 0.01 0.01 Na2O 0.05 0.07 0.01 0.05 0.19 0.05 0.12 0.06 0.09 0.01 0.07 0.10 0.11 0.09 0.09 0.08 K2O 9.41 9.79 9.39 8.99 9.52 9.91 9.86 9.91 7.45 8.93 8.38 8.19 9.61 9.30 9.56 9.34 Totals 97.19 96.15 92.64 93.79 94.86 97.22 94.54 95.68 92.97 92.95 92.76 92.83 93.44 94.98 94.14 94.46 On basis of 11 oxygens Si 2.67 2.73 2.74 2.70 2.73 2.85 2.81 2.73 2.74 2.72 2.72 2.74 2.73 2.71 2.74 2.72 Ti 0.11 0.10 0.12 0.10 0.10 0.09 0.09 0.09 0.15 0.14 0.15 0.16 0.12 0.17 0.13 0.16 Al 1.49 1.47 1.46 1.44 1.61 1.54 1.58 1.59 1.45 1.46 1.52 1.49 1.53 1.51 1.52 1.51 Cr 0.01 – – <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – <0.01 <0.01 Fe3+ 0.18 0.13 0.08 0.19 – – – 0.03 0.17 0.12 0.08 0.06 0.01 <0.01 – – Fe2+ 1.02 1.04 1.12 1.09 0.85 0.86 0.84 0.85 0.97 1.08 1.05 1.11 1.08 1.20 1.18 1.16 Mn 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.03 0.04 0.07 0.04 0.04 0.08 Mg 1.43 1.41 1.37 1.40 1.59 1.47 1.49 1.60 1.38 1.35 1.35 1.30 1.37 1.27 1.28 1.26 Ca 0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 <0.01 0.02 0.01 0.01 0.01 <0.01 0.01 <0.01 <0.01 Na 0.01 0.01 <0.01 0.01 0.03 0.01 0.02 0.01 0.01 <0.01 0.01 0.02 0.02 0.01 0.01 0.01 K 0.89 0.94 0.94 0.89 0.90 0.92 0.94 0.94 0.73 0.89 0.83 0.81 0.95 0.91 0.94 0.92 Phl 0.06 0.07 0.07 0.06 0.12 0.10 0.11 0.12 0.06 0.06 0.06 0.05 0.07 0.05 0.06 0.05 Ann 0.03 0.03 0.04 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.05 Aast 0.06 0.06 0.05 0.05 0.09 0.07 0.08 0.09 0.05 0.05 0.05 0.04 0.06 0.04 0.05 0.04 Sample 94 × 1mu2 94 × 1mu3 94 × 2mu4 94 × 2mu5 132mu1 132mu3 132mu4 132mu4a 230A1mu1a 230A2mu3 230A2mu4 230A2mu5 240mu1 240mu2a 240mu3 240mu5 SiO2 47.99 52.58 43.49 45.69 47.04 46.64 46.99 46.71 48.53 45.93 46.62 48.35 47.28 47.09 47.38 46.97 TiO2 1.01 0.82 1.12 0.64 0.25 0.26 0.04 0.04 0.29 1.28 1.20 1.38 0.03 0.19 1.48 1.48 Al2O3 29.93 28.91 31.36 32.19 34.62 34.04 34.59 34.39 29.68 29.99 29.59 31.15 34.69 32.89 32.38 32.95 Cr2O3 0.02 0.05 0.03 0.06 0.02 0.02 0.01 0.01 0.01 0.01 0.03 0.06 0.03 0.02 0.01 BDL Fe2O3 2.97 BDL 2.05 0.60 2.64 2.64 2.81 2.91 3.08 4.15 3.70 3.36 2.49 2.78 2.11 1.87 FeO 1.90 3.64 1.50 2.84 1.02 1.02 1.11 1.12 1.19 1.60 1.43 1.69 0.96 1.07 1.78 1.89 MnO 0.06 0.08 0.03 0.04 BDL 0.01 0.09 0.08 0.07 0.06 0.03 0.01 0.01 0.09 0.14 0.08 MgO 1.50 1.19 1.07 0.97 0.95 0.87 0.78 0.87 1.73 1.02 1.28 1.53 0.68 1.03 1.05 0.74 CaO 0.02 0.03 0.12 BDL 0.04 0.05 BDL BDL 0.05 0.05 BDL 0.02 0.01 0.01 0.02 0.01 Na2O 0.14 0.29 0.52 0.20 0.83 0.75 0.68 0.69 0.14 0.18 0.15 0.24 0.38 0.16 0.27 0.14 K2O 9.54 9.57 9.27 10.65 9.13 8.92 9.85 8.85 8.95 8.28 8.90 9.87 8.96 9.65 9.63 9.66 Totals 95.08 97.16 90.55 93.88 96.54 95.22 95.79 95.67 93.72 92.56 92.93 97.67 95.52 94.98 96.25 95.79 On basis of 11 oxygens Si 3.22 3.43 3.07 3.12 3.09 3.10 3.10 3.09 3.28 3.16 3.19 3.17 3.12 3.15 <0.01 3.12 Ti 0.05 0.04 0.06 0.03 0.01 0.01 0.01 <0.01 0.02 0.07 0.06 0.07 <0.01 0.01 0.07 0.07 Al 2.37 2.22 2.61 2.60 2.68 2.67 2.69 2.68 2.36 2.43 2.39 2.41 2.70 2.59 2.53 2.58 Cr <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – Fe3+ 0.15 – 0.11 0.03 0.13 0.13 0.14 0.15 0.16 0.22 0.19 0.17 0.12 0.14 0.11 0.09 Fe2+ 0.11 0.20 0.09 0.16 0.06 0.06 0.06 0.06 0.07 0.09 0.08 0.09 0.05 0.06 0.10 0.10 Mn <0.01 <0.01 <0.01 <0.01 – <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.01 Mg 0.15 0.12 0.11 0.10 0.09 0.09 0.08 0.09 0.17 0.11 0.13 0.15 0.07 0.10 0.10 0.07 Ca <0.01 <0.01 0.01 – <0.01 <0.01 – – <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01
  • 13. 116M.Hassanetal./PrecambrianResearch241(2014)104–128 Table 3 (Continued) Sample 94 × 1mu2 94 × 1mu3 94 × 2mu4 94 × 2mu5 132mu1 132mu3 132mu4 132mu4a 230A1mu1a 230A2mu3 230A2mu4 230A2mu5 240mu1 240mu2a 240mu3 240mu5 Na 0.02 0.04 0.07 0.03 0.11 0.10 0.09 0.09 0.02 0.02 0.02 0.03 0.05 0.02 0.04 0.02 K 0.82 0.80 0.84 0.93 0.76 0.76 0.75 0.75 0.77 0.73 0.78 0.83 0.75 0.82 0.81 0.82 Mu 0.56 0.46 0.61 0.66 0.67 0.68 0.70 0.70 0.58 0.64 0.59 0.56 0.73 0.68 0.63 0.66 Cel 0.03 0.06 0.02 0.02 0.01 0.01 – – 0.04 0.01 0.02 0.03 – 0.01 0.02 0.01 Fcel 0.02 0.10 0.01 0.03 <0.01 <0.01 – – 0.01 0.01 0.01 0.02 – 0.01 0.02 0.01 Pa 0.06 0.27 0.19 0.13 0.21 0.19 0.15 0.15 0.05 0.04 0.04 0.08 0.09 0.05 0.10 0.05 Sample 94 × 1chl2 94 × 1chl3 94 × 2chl4 94 × 2chl5 132chl1 132chl2 132chl3 132chl5 230A1chl1 230A1chl1a 230A2chl3 230A2chl5 240chl1 240chl2 240chl4 240chl6 SiO2 32.81 29.04 26.79 29.57 29.48 27.72 27.06 28.53 26.86 27.11 29.75 34.27 28.66 32.70 31.43 28.04 TiO2 0.96 0.08 0.09 0.95 0.16 0.14 0.12 0.05 0.20 0.75 0.43 0.12 0.24 0.14 0.37 0.30 Al2O3 16.54 17.63 19.01 16.19 19.06 21.26 20.99 20.43 18.64 19.51 18.36 17.35 17.79 12.00 16.31 16.62 Cr2O3 0.01 0.09 0.05 0.06 0.14 0.02 0.06 0.08 0.06 0.02 0.01 0.04 0.03 0.08 0.02 0.06 Fe2O3 BDL BDL 1.57 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL FeO 20.21 21.35 19.43 21.03 13.70 12.82 13.19 14.16 22.37 22.38 24.50 18.82 24.01 19.29 21.19 23.71 MnO 0.30 0.49 0.68 0.42 0.26 0.25 0.29 0.22 0.92 0.73 0.31 0.29 0.89 0.31 1.18 1.12 MgO 16.86 18.78 19.38 17.00 24.24 24.19 23.29 24.08 17.21 16.71 12.19 15.59 16.49 17.53 16.08 15.51 CaO 0.98 0.02 0.10 0.61 0.04 0.02 0.02 0.02 0.12 0.63 0.35 0.35 0.09 0.48 0.05 0.12 Na2O 0.02 0.01 0.06 0.03 0.02 0.01 0.02 0.04 0.01 0.01 BDL 0.03 0.01 0.24 0.02 0.03 K2O 1.04 0.39 0.04 0.88 0.10 0.02 BDL 0.20 0.20 0.25 0.39 0.52 0.39 0.30 1.92 0.98 Totals 89.73 87.88 87.21 86.74 87.20 86.45 85.04 87.81 86.59 88.10 86.29 87.38 88.60 83.07 88.57 86.49 On basis of 14 oxygens Si 3.27 2.99 2.78 3.09 2.93 2.77 2.76 2.82 2.84 2.81 3.15 3.44 2.97 3.51 3.23 3.00 Ti 0.07 0.01 0.01 0.08 0.01 0.01 0.01 <0.01 0.02 0.06 0.03 0.01 0.02 0.01 0.03 0.02 Al 1.95 2.14 2.32 2.00 2.23 2.50 2.52 2.38 2.32 2.39 2.29 2.05 2.18 1.52 1.98 2.10 Cr <0.01 0.01 <0.01 0.01 0.01 <0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 Fe3+ – – 0.12 – – – – – – – – – – – – – Fe2+ 1.69 1.84 1.69 1.84 1.14 1.07 1.12 1.17 1.98 1.94 2.17 1.58 2.08 1.73 1.82 2.13 Mn 0.03 0.04 0.06 0.04 0.02 0.02 0.03 0.02 0.08 0.06 0.03 0.03 0.08 0.03 0.10 0.10 Mg 2.51 2.88 2.99 2.65 3.59 3.60 3.53 3.55 2.71 2.58 1.92 2.33 2.55 2.81 2.46 2.48 Ca 0.11 <0.01 0.011 0.07 <0.01 <0.01 <0.01 <0.01 0.01 0.07 0.04 0.04 0.01 0.06 0.01 0.01 Na <0.01 <0.01 0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 – 0.01 <0.01 0.05 <0.01 0.01 K 0.13 0.05 0.01 0.12 0.01 <0.01 – 0.03 0.03 0.03 0.05 0.07 0.05 0.04 0.25 0.13 Clin 0.04 0.07 0.08 0.04 0.20 0.22 0.20 0.20 0.05 0.04 0.01 0.03 0.04 0.04 0.03 0.03 Daph 0.01 0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.03 0.01 0.02 <0.01 0.01 0.02 Ames 0.01 0.03 0.06 0.02 0.09 0.14 0.14 0.12 0.04 0.03 0.01 0.01 0.02 <0.01 0.01 0.02
  • 14. M.Hassanetal./PrecambrianResearch241(2014)104–128117 Table 4 Representative electron microprobe analyses of mineral assemblages of the studied garnet-bearing samples. Sample50A 1 × 1drk 1grt1 1grt2 1grt3 2grt4 1augt1 1agt2 1agt1in 2agt5i 3agt1 3agt2 1plg1in 2plg5i 3plg1 1epd1 1epd2 1kfs2i 1kfs3i 3kfs1 3ox1 3ox2 SiO2 37.79 38.49 38.40 37.93 38.10 51.65 52.61 56.12 54.96 54.20 54.20 70.82 69.42 66.24 36.07 35.64 67.22 65.38 66.55 0.49 0.35 TiO2 0.03 0.02 0.03 0.01 0.07 0.02 0.01 0.02 BDL 0.21 0.23 0.02 0.05 0.02 1.15 0.22 0.19 0.11 0.13 0.02 0.53 Al2O3 22.10 23.93 24.23 21.55 22.66 1.33 1.05 0.19 0.25 2.71 2.42 20.42 21.57 23.04 4.52 3.89 18.64 18.42 18.22 0.19 0.12 Cr2O3 0.07 0.01 0.01 0.04 0.04 0.07 0.05 0.01 0.08 0.06 0.07 0.04 0.02 0.01 0.06 0.07 0.09 0.02 0.04 0.11 0.09 Fe2O3 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 0.39 0.24 0.21 BDL BDL 0.11 0.46 0.17 97.65 98.22 FeO 12.96 10.67 10.07 13.26 11.73 10.22 10.52 3.74 3.48 11.27 10.16 BDL BDL BDL 21.24 23.57 BDL BDL BDL 0.89 0.89 MnO 0.17 0.12 0.62 0.16 0.07 0.70 0.52 0.98 0.71 0.35 0.35 0.01 0.03 0.03 0.71 0.49 0.05 0.08 0.01 0.05 0.02 MgO 0.06 0.08 0.10 0.06 0.07 11.36 11.50 16.51 16.29 17.50 17.97 0.35 0.17 0.26 0.23 0.2 0.23 0.20 0.13 0.08 0.11 CaO 22.32 22.54 22.18 22.10 22.15 22.27 22.74 24.50 24.30 12.04 11.77 0.74 1.86 3.68 31.37 30.31 0.04 0.20 0.01 0.06 0.25 Na2O 0.03 0.03 0.02 BDL 0.13 0.26 0.22 0.26 0.10 0.44 0.62 11.48 10.53 9.44 BDL 0.01 0.14 0.30 0.67 0.01 0.04 K2O 0.01 0.01 BDL 0.01 0.06 0.01 0.01 0.02 0.01 0.23 0.23 0.06 0.10 0.17 BDL 0.01 16.08 16.14 15.95 0.07 0.03 Totals 95.54 95.90 95.66 95.12 95.08 97.89 99.23 102.35 100.18 99.01 98.02 104.33 103.99 103.10 95.35 94.41 102.79 101.31 101.88 99.61 100.65 Oxygens 12 12 12 12 12 6 6 6 6 6 6 8 8 8 12.5 12.5 8 8 8 3 3 Si 3.03 3.03 3.02 3.05 3.04 1.99 2.00 2.01 2.01 2.00 2.01 2.97 2.92 2.83 3.36 3.39 3.01 2.99 3.01 0.01 0.01 Ti <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.00 <0.01 – 0.01 0.01 <0.01 <0.01 <0.01 0.08 0.02 0.01 <0.01 <0.01 0.00 0.01 Al 2.09 2.22 2.25 2.06 2.13 0.06 0.05 0.01 0.01 0.11 0.11 1.01 1.07 1.16 0.50 0.44 0.98 0.99 0.97 0.01 <0.01 Cr <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Fe3+ – – – – – – – – – – – 0.01 0.01 0.01 – – <0.01 0.02 0.01 1.956 1.95 Fe2+ 0.87 0.70 0.66 0.89 0.78 0.33 0.33 0.11 0.11 0.35 0.32 – – – 1.65 1.87 – – – 0.02 0.02 Mn 0.01 0.01 0.04 0.01 0.01 0.02 0.02 0.03 0.02 0.01 0.01 0.00 <0.01 <0.01 0.06 0.04 <0.01 <0.01 <0.01 <0.01 <0.01 Mg 0.01 0.01 0.01 0.01 0.01 0.65 0.65 0.88 0.89 0.96 0.99 0.02 0.01 0.02 0.03 0.03 0.02 0.01 0.01 <0.01 <0.01 Ca 1.92 1.90 1.87 1.91 1.90 0.92 0.93 0.94 0.95 0.48 0.47 0.03 0.08 0.17 3.13 3.09 <0.01 0.01 <0.01 <0.01 0.01 Na 0.01 0.01 <0.01 – 0.02 0.02 0.02 0.02 0.01 0.03 0.05 0.93 0.86 0.78 – <0.01 0.01 0.03 0.06 <0.01 <0.01 K <0.01 <0.01 – <0.01 0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01 <0.01 0.01 0.01 – <0.01 0.92 0.94 0.92 <0.01 <0.01 py – – – – – di 0.66 0.66 0.85 0.86 – – an 0.06 0.15 0.30 Cz 1.00 1.00 san 0.99 0.96 0.94 ilm – <0.01 gr 0.26 0.25 0.24 0.26 0.25 hed 0.33 0.34 0.14 0.13 0.24 0.21 ab 0.96 0.91 0.82 ep – – ab 0.10 0.19 0.04 hem 0.96 0.95 alm 0.02 0.01 0.01 0.03 0.02 cats 0.08 0.08 0.02 0.02 0.18 0.16 prh – – spss – – – – – jd – – – – – – gei – – Sample215 b 1grt1 1agrt6 2grt4 2grt5 gar2 2mus1 2amus2 mu3 mu4 mu6 mu5 2chl1 chlin chl5 chl6 chl2 2fld1 kfsin ksp6 oxin ox6 SiO2 36.20 36.83 36.88 35.77 36.36 48.09 46.14 53.28 50.58 48.38 49.55 25.54 25.72 26.45 26.39 27.95 65.18 66.08 65.28 0.98 3.81 TiO2 0.35 0.25 1.04 0.40 0.53 0.72 0.65 0.20 0.43 0.08 1.03 0.13 0.07 0.07 0.25 0.09 0.05 0.19 0.17 0.25 0.10 Al2O3 20.57 20.18 19.26 19.86 18.83 30.59 28.80 27.28 29.76 30.27 27.36 19.95 18.63 18.96 18.75 18.93 19.02 18.58 18.19 0.22 0.37 Cr2O3 0.08 0.07 0.03 0.06 0.01 0.11 0.10 0.02 0.01 0.02 0.05 0.05 0.05 0.01 0.07 0.02 0.04 BDL 0.01 0.03 0.02 Fe2O3 1.76 0.10 0.35 3.36 2.47 0.36 5.45 BDL 1.35 4.05 2.03 BDL BDL BDL BDL BDL 1.22 0.36 0.47 93.35 89.38 FeO 6.53 8.48 7.28 2.75 4.59 3.57 2.10 3.92 2.77 1.56 3.30 27.38 26.75 26.2 26.59 26.29 BDL BDL BDL 0.85 3.17 MnO 30.76 30.03 30.05 32.15 30.73 0.11 0.20 0.19 0.18 0.12 0.38 2.68 2.89 2.39 2.34 2.21 0.03 0.41 0.06 0.36 0.05 MgO 0.56 0.10 0.37 0.52 0.17 1.54 2.36 1.31 1.69 1.54 1.65 11.80 11.87 11.97 12.05 11.73 0.11 0.09 0.05 0.16 0.38 CaO 3.78 3.93 5.14 5.21 6.10 0.18 0.08 0.19 0.07 0.02 0.01 BDL 0.07 0.06 0.09 0.10 0.05 0.06 0.09 0.11 0.15 Na2O 0.01 0.02 0.01 0.02 BDL BDL 0.15 0.14 0.09 0.11 0.04 0.02 0.01 BDL 0.01 0.03 0.38 0.34 0.23 BDL 0.06 K2O 0.01 0.02 0.01 0.04 0.04 10.89 10.63 11.26 9.64 9.82 9.55 BDL 0.08 0.21 0.35 0.15 15.58 15.83 16.3 0.05 0.09 Totals 100.61 100.01 100.41 100.14 99.83 96.17 96.66 97.79 96.58 95.97 94.95 87.55 86.14 86.32 86.89 87.5 101.66 101.94 100.85 96.36 97.58 Oxygens 12 12 12 12 12 11 11 11 11 11 11 14 14 14 14 14 8 8 8 3 3 Si 2.94 3.01 3.00 2.92 2.98 3.22 3.12 3.49 3.33 3.22 3.34 2.76 2.83 2.88 2.87 2.99 2.96 2.99 3.00 0.03 0.10 Ti 0.02 0.02 0.06 0.03 0.03 0.04 0.03 0.01 0.02 <0.01 0.05 0.01 0.01 0.01 0.02 0.01 <0.01 0.01 0.01 0.01 <0.01 Al 1.97 1.94 1.85 1.91 1.82 2.41 2.29 2.11 2.31 2.38 2.18 2.55 2.42 2.44 2.40 2.38 1.02 0.99 0.98 0.01 0.01 Cr 0.01 0.01 <0.01 <0.01 <0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 Fe3+ 0.11 0.01 0.02 0.21 0.15 0.02 0.28 – 0.07 0.20 0.10 – – – – – 0.04 0.01 0.02 1.92 1.79 Fe2+ 0.44 0.58 0.50 0.19 0.32 0.20 0.12 0.22 0.15 0.09 0.19 2.48 2.46 2.39 2.42 2.35 – – – 0.02 0.07 Mn 2.12 2.08 2.07 2.22 2.14 0.01 0.01 0.01 0.01 0.01 0.02 0.25 0.27 0.22 0.22 0.20 <0.01 0.02 <0.01 0.01 <0.01 Mg 0.07 0.01 0.05 0.06 0.02 0.15 0.24 0.13 0.17 0.15 0.17 1.90 1.95 1.94 1.95 1.87 0.01 0.01 <0.01 0.01 0.02 Ca 0.33 0.34 0.45 0.46 0.54 0.01 0.01 0.01 0.01 <0.01 <0.01 – 0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Na <0.01 <0.01 <0.01 <0.01 – – 0.02 0.02 0.01 0.01 0.01 <0.01 <0.01 – <0.01 0.01 0.03 0.03 0.02 – <0.01 K <0.01 <0.01 <0.01 <0.01 <0.01 0.93 0.92 0.94 0.81 0.84 0.82 – 0.01 0.03 0.05 0.02 0.90 0.91 0.95 <0.01 <0.01 py <0.01 – <0.01 <0.01 – mu 0.6 0.46 0.45 0.53 0.58 0.50 clin 0.01 0.01 0.01 0.01 0.01 san 0.96 0.97 0.98 ilm – <0.01 gr <0.01 <0.01 <0.01 <0.01 <0.01 cel 0.04 0.02 0.10 0.05 0.03 0.05 daph 0.04 0.04 0.03 0.03 0.03 ab 0.25 0.22 0.15 hem 0.92 0.79 alm <0.01 0.01 <0.01 <0.01 fcel 0.05 0.01 0.17 0.04 0.02 0.05 ames 0.01 0.01 0.01 0.01 0.01 prh – – spss 0.34 0.31 0.28 0.38 0.33 pa – 0.04 0.24 0.06 0.04 – gei – – andr – – – <0.01 0.02
  • 15. 118M.Hassanetal./PrecambrianResearch241(2014)104–128 Table 5 Representative electron microprobe analyses of mineral assemblages of the studied alumino silicates-bearing samples. Sample123c 1bt1 1bt3 2bt2 3bt1 1mus3 2mus2 3mus2 3mus3 3mus5 1fld1 3fld1 3ill1 1and1 1and2 2and1 2and2 SiO2 38.00 38.73 37.99 37.85 46.98 46.51 51.28 46.90 46.92 66.12 66.12 0.47 37.33 37.37 37.22 37.17 TiO2 1.67 1.42 1.84 1.67 0.20 0.92 0.01 0.14 0.63 0.12 0.11 16.78 0.02 0.02 BDL BDL Al2O3 17.82 20.03 17.23 17.41 33.47 33.39 31.33 36.24 33.49 19.01 18.69 0.37 60.46 60.46 60.75 60.43 Cr2O3 0.08 0.07 0.09 0.03 0.04 BDL 0.03 0.10 0.01 0.02 0.05 0.04 BDL 0.05 0.02 0.01 Fe2O3 0.00 0.00 0.00 0.00 0.00 1.12 0.00 0.95 0.00 0.01 0.07 63.93 BDL BDL BDL BDL FeO 15.2 13.38 15.04 15.12 3.48 2.28 3.18 1.87 3.68 0.00 0.00 13.76 2.17 2.11 1.95 2.06 MnO 0.71 0.49 0.51 0.46 0.05 0.04 0.01 0.04 0.02 0.09 0.02 1.77 0.03 BDL 0.05 BDL MgO 12.58 11.58 13.35 13.25 0.71 0.99 0.46 0.47 0.53 0.16 0.11 0.00 0.26 0.13 0.09 0.43 CaO 0.00 0.07 0.01 0.24 0.01 0.04 0.02 0.08 0.03 0.02 0.09 0.05 BDL 0.04 0.02 BDL Na2O 0.14 0.14 0.09 0.12 0.49 0.59 0.50 0.46 0.47 1.11 0.62 0.00 BDL BDL BDL BDL K2O 10.23 10.10 10.10 9.71 10.80 10.01 9.83 10.41 10.45 15.32 15.22 0.01 BDL BDL 0.01 0.01 Totals 96.44 96.01 96.25 95.86 96.23 95.89 96.65 97.65 96.23 101.98 101.10 97.18 100.09 100.17 100.11 100.07 Oxygens 11 11 11 11 11 11 11 11 11 8 8 3 Si 2.81 2.83 2.81 2.81 3.13 3.10 3.36 3.06 3.13 2.98 3.00 0.01 Ti 0.09 0.08 0.10 0.09 0.01 0.05 – 0.01 0.03 <0.01 <0.01 0.34 Al 1.55 1.73 1.50 1.52 2.63 2.62 2.42 2.79 2.63 1.01 1.00 0.01 Cr 0.01 <0.01 0.01 <0.01 <0.01 – <0.01 0.01 <0.01 <0.01 <0.01 <0.01 Fe3+ – – – – – 0.06 – 0.05 – – <0.01 1.29 Fe2+ 0.94 0.82 0.93 0.94 0.19 0.13 0.17 0.10 0.21 – – 0.31 Mn 0.05 0.03 0.03 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.04 Mg 1.39 1.26 1.47 1.46 0.07 01.0 0.05 0.05 0.05 0.01 0.01 – Ca – 0.01 <0.01 0.02 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 Na 0.02 0.02 0.01 0.02 0.06 0.08 0.06 0.06 0.06 0.10 0.06 – K 0.97 0.94 0.95 0.92 0.92 0.85 0.82 0.87 0.89 0.88 0.88 – Phl 0.09 0.08 0.10 0.10 Mu 0.66 0.62 0.55 0.74 0.64 San 0.91 0.94 Ilm 0.10 Ann 0.03 0.02 0.02 0.02 Cel 0.02 0.02 0.03 <0.01 0.01 Ab 0.61 0.39 Hem 0.41 Aast 0.06 0.06 0.07 0.06 Fcel 0.05 0.03 0.10 0.00 0.05 Prh 0.01 Pa 0.34 0.26 0.46 0.19 0.29 Gei 0.00 Sample 142-1bi1 142-1bi2 142-2bi2 142-2bi3 142-1mu1 142-1mu2 142-1mu3 142-2mu1 142-2mu4 142-1kfs3 142-2kfs2 142-ilinc1 142-and1 142-and2 142-1and1 142-1and3 SiO2 37.03 36.87 37.37 36.85 47.88 47.03 48.48 46.99 47.01 64.47 64.55 0.44 36.82 36.50 36.50 36.80 TiO2 0.75 0.12 1.10 1.24 0.04 0 0.21 0.63 0.43 0.25 0.31 11.16 0.04 0.08 0.06 0.05 Al2O3 19.57 19.78 19.55 19.27 35.21 34.52 36.59 33.26 34.46 18.59 18.69 0.26 61.79 61.02 60.89 60.73 Cr2O3 0.01 0.02 0.01 0.03 0.04 0.04 0.03 0.05 0.04 0.02 0.06 0.07 0.02 0.05 BDL 0.01 Fe2O3 0.00 2.11 0.25 0.00 2.72 2.6 2.06 3.31 2.46 0.13 0.19 74.48 BDL BDL BDL BDL FeO 15.55 13.72 16.24 16.63 1.05 1 0.8 1.28 0.95 0 0 8.78 1.47 1.68 1.89 2.28 MnO 0.34 0.30 0.38 0.38 0.03 0.08 0.04 0.02 0.01 0.03 0.03 1.45 0.04 0.01 0.03 0.02 MgO 12.62 13.49 12.35 11.97 0.85 0.85 0.44 1.13 0.92 0.12 0.09 0.03 0.15 0.10 BDL 0.18 CaO 0.01 0.02 0.03 0.04 0.02 0.01 0 0.06 0.06 0.02 0.05 0.02 0.03 0.02 0.03 0.05 Na2O 0.15 0.06 0.07 0.10 0.42 0.35 0.36 0.33 0.32 0.65 0.62 0.03 0.01 0.00 0.01 BDL K2O 9.97 9.68 9.11 9.77 9.04 8.72 9.12 9.17 8.26 15.18 15.36 0.03 0.04 0.01 0.06 BDL Totals 96.00 96.17 96.46 96.28 97.3 95.2 98.13 96.23 94.92 99.46 99.95 96.75 100.28 99.43 99.32 100.03 Oxygens 11 11 11 11 11 11 11 11 11 8 8 3 Si 2.74 2.72 2.75 2.74 3.11 3.11 3.10 3.10 3.11 2.98 2.98 0.01 Ti 0.04 0.01 0.06 0.07 <0.01 – 0.01 0.03 0.02 0.01 0.01 0.23 Al 1.71 1.72 1.70 1.69 2.69 2.69 2.76 2.59 2.69 1.01 1.02 0.01 Cr <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Fe3+ – 0.12 0.01 – 0.13 0.13 0.10 0.17 0.122 0.01 0.01 1.52 Fe2+ 0.96 0.84 1.00 1.03 0.06 0.06 0.04 0.07 0.05 – – 0.20 Mn 0.02 0.02 0.02 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.03 Mg 1.39 1.48 1.36 1.33 0.08 0.08 0.04 0.11 0.09 0.01 0.01 <0.01
  • 16. M.Hassanetal./PrecambrianResearch241(2014)104–128119 Table 5 (Continued) Sample 142-1bi1 142-1bi2 142-2bi2 142-2bi3 142-1mu1 142-1mu2 142-1mu3 142-2mu1 142-2mu4 142-1kfs3 142-2kfs2 142-ilinc1 142-and1 142-and2 142-1and1 142-1and3 Ca <0.01 <0.01 – <0.01 <0.01 <0.01 – <0.01 <0.01 <0.01 <0.01 <0.01 Na 0.02 0.01 0.01 0.02 0.05 0.05 0.05 0.04 0.04 0.06 0.06 <0.01 K 0.94 0.91 0.86 0.93 0.75 0.74 0.75 0.77 0.70 0.90 0.90 <0.01 Phl 0.10 0.10 0.08 0.08 Mu 0.73 0.75 0.78 0.66 0.77 San 0.94 0.94 Ilm 0.05 Ann 0.03 0.02 0.03 0.03 Cel – – – 0.01 – Ab 0.41 0.39 Hem 0.57 Aast 0.08 0.09 0.07 0.07 Fcel – – – <0.01 – Prh 0.01 Pa 0.09 0.07 0.09 0.07 0.06 Gei 0.00 Sample273A 2bt2 2bt4 3bt2 1bi3 1muin 1mu1 1mu2 1mu3 4mu2 1Xkfs3 4kfs3 1ill1 1and1 1and2 2and1 2and2 SiO2 37.60 36.49 36.39 40.17 46.26 47.22 49.12 48.58 47.15 65.88 65.63 0.43 36.50 36.75 36.90 36.66 TiO2 1.85 1.94 2.51 2.01 0.09 0.01 0.04 0.05 0.09 0.09 0.01 14.28 0.10 BDL BDL BDL Al2O3 17.41 17.60 16.04 15.57 34.96 35.46 34.97 34.55 34.53 18.52 18.50 0.02 62.57 61.76 62.65 61.77 Cr2O3 0.02 0.02 0.01 0.07 0.05 0.01 0.02 0.02 0.04 0.07 0.07 0.05 BDL 0.09 0.07 BDL Fe2O3 0.00 0.00 0.00 0.00 0.00 0.00 2.34 2.36 2.57 0.12 0.03 69.06 BDL BDL BDL BDL FeO 16.37 16.91 16.42 18.59 2.94 1.83 0.90 0.98 0.99 BDL BDL 12.56 1.23 1.79 1.43 1.50 MnO 0.57 0.68 0.67 0.64 0.04 0.02 0.02 0.11 BDL 0.01 0.07 0.52 0.01 BDL 0.02 0.04 MgO 10.56 10.23 11.82 10.69 0.42 0.21 0.77 0.60 0.55 0.07 0.23 0.08 0.06 0.11 0.29 BDL CaO 0.02 0.04 0.01 0.05 0.10 0.06 BDL BDL 0.06 BDL 0.04 0.00 0.06 0.04 BDL 0.09 Na2O 0.14 0.13 0.06 0.04 0.35 0.28 0.33 0.30 0.36 0.86 1.33 0.02 0.01 0.01 0.01 0.01 K2O 9.91 9.99 9.94 7.53 10.84 10.98 8.81 9.21 9.06 15.19 14.69 0.01 BDL 0.02 BDL 0.02 Totals 94.45 94.03 93.87 95.36 96.05 96.08 97.32 96.77 95.41 100.81 100.6 97.03 100.53 100.54 101.27 99.85 Oxygens 11 11 11 11 11 11 11 11 11 8 8 3 Si 2.85 2.80 2.79 2.99 3.08 3.12 3.17 3.16 3.12 3.00 3.00 0.01 Ti 0.11 0.11 0.15 0.11 0.01 0.00 <0.01 <0.01 <0.01 <0.01 0.00 0.29 Al 1.56 1.59 1.45 1.37 2.75 2.76 2.66 2.65 2.69 1.00 1.00 <0.01 Cr <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.12 0.13 <0.01 <0.01 1.40 Fe2+ 1.04 1.08 1.05 1.16 0.16 0.10 0.05 0.05 0.06 0.00 0.00 0.28 Mn 0.04 0.04 0.04 0.04 <0.01 <0.01 <0.01 0.01 0.00 0.00 <0.01 0.01 Mg 1.19 1.17 1.35 1.19 0.04 0.02 0.07 0.06 0.05 0.01 0.02 <0.01 Ca <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.00 0.00 <0.01 0.00 <0.01 0.00 Na 0.02 0.02 0.01 0.01 0.05 0.04 0.04 0.04 0.05 0.08 0.12 <0.01 K 0.96 0.98 0.97 0.72 0.92 0.93 0.72 0.77 0.77 0.88 0.86 0.00 Phl 0.06 0.06 0.07 0.05 Mu 0.74 0.80 0.74 0.73 0.73 San 0.93 0.89 Ilm 0.08 Ann 0.04 0.04 0.04 0.04 Cel 0.01 0.01 – – – Ab 0.51 0.71 Hem 0.50 East 0.04 0.05 0.05 0.03 Fcel 0.03 0.03 – – – Prh <0.01 Pa 0.22 0.21 0.08 0.09 0.10 Gei <0.01
  • 17. 120 M. Hassan et al. / Precambrian Research 241 (2014) 104–128 Fig. 6. Mineral chemistry. (a) Si versus Mg/(Mg + Fe2+ ) for the studied amphiboles. Classification is after Leake et al. (1997). (b) Chlorite chemistry of metavolcanics and metasediments showing its distribution with respect to end members and XFe content. (c) Chlorite chemistry of metavolcanics and metasediments showing differences in MnO, MgO and FeO contents. (d) Garnet chemistry of metasedimentary rocks and metacarbonates in terms of Mn, Ca and Fe2+ end members. (e) Profile illustrating the change of garnet chemistry across a garnet crystal in metasedimentary rock. (f) Pressure–temperature plot with Si isopleths for white mica, Si content per formula unit. The gray area represents the composition of the studied white micas. The amphiboles of the studied samples are calcic amphiboles with a homogenous composition of magnesio hornblende (Fig. 6a). Amphiboles in all studied rocks have a total number of cations of Na + K less than 0.50 and low Ti content (0.01–0.13). Total alu- minum contents Alt of the amphiboles of metavolcanic rocks are normally higher than those in metasedimentary rocks (Tables 1 and 2). There is no significant differences in Alt content of the amphibole of the intrusive granitoids. Chlorite is common to all rock types except the alumino silicates-bearing metasedimentary rocks. The chlorite in the metavolcanics has XFe = 0.31–0.54, while in the metasedimentary rocks (Table 3), it has a wide range of XFe = 0.18–0.62 (Fig. 6b). Large difference in composition of chlorite in the same sample is distinguishable in some of the metasedimentary rocks. Mn-rich chlorite is characteristic of the garnet-bearing metasedimentary rocks (Fig. 6c).
  • 18. M. Hassan et al. / Precambrian Research 241 (2014) 104–128 121 Fig. 7. Estimated pressure and temperature conditions of the low-grade metavolcanic and metasedimentary rocks based on the reactions between the mineral end-members. Calculation done using THERMOCALC (Powell and Holland, 1988). Garnet is observed just in two lithologies as grossular garnet in metacarbonate sediments with end-members activity of Alm0.30 Grs0.70 (Fig. 6d) and as spessartine in the metapelitic rocks with end-member activity of Sps0.67 Alm0.20 Grs0.12 Prp0.01 (Table 4). The garnet of the metapelitic rocks exhibits chemical zonation as a Ca- rich rim (Fig. 6e) with XCa = [Ca/(Fe + Mg + Mn + Ca)] in the range of 0.14–0.16. The XFe = [Fe/(Fe + Mg + Mn)] of the garnet is 0.12, 0.21 and 0.29 for the core, intermediate and rim zones, respectively (Fig. 6e). Biotite is absent in the mafic metavolcanics, abundant in the intermediate and the felsic metavolcanics, while it is dom- inant in the metasedimentary rocks. Biotite has low Ti content
  • 19. 122 M. Hassan et al. / Precambrian Research 241 (2014) 104–128 in all samples with 0.01–0.17 cations per formula unit. The composition of biotite is relatively similar in all samples with XFe = [Fe/(Fe + Mg)] = 0.27–0.51 with an average of 0.4 (Table 3). Silica cations in the biotite of alumino silicates-bearing metasedi- mentary rocks have a range of 2.80–2.85 atoms of Si per formula unit. Muscovite is compositionally variable. It has a XNa [Na/(Na + Ka)] up to 0.16 and XFe [Fe/(Fe + Mg)] = 0.16–0.86. All muscovites have low Fe and Mg content. In the alumino silicates-bearing rock, mus- covite of the groundmass has silica cations in the range of 3.14–3.17, while silica cations of the muscovite inclusions in the andalusite porphyroblasts range between 3.06 and 3.08 (Table 5). The mus- covite inclusions in the garnet porphyroblasts have Fe contents in the range of XFe = 0.06–0.07, while a higher range (0.18–0.26 atom of Fe per formula unit) was calculated from the muscovite of the groundmass. 6. Pressure and temperature estimates In order to estimate the metamorphic conditions, THERMOCALC (Powell and Holland, 1988) was used to calculate independent sets of reactions between the mineral end-members of the metavol- canics and the metasediments using the internally consistent dataset of Holland and Powell (1998). THERMOCALC was also used to calculate P–T pseudosections for the garnet- and the alumino silicates-bearing metasedimentary rocks. Al-in-amphibole was used to calculate the pressure conditions of the granitic intrusions based on the calibration of Schmidt (1992), while amphibole- plagioclase exchange thermometer with the calibration of Holland and Blundy (1994) was used to estimate the intrusion temperature. For the low-grade metavolcanic and metasedimentary rocks inde- pendent sets of reactions between the mineral end-members were carried out on three metamorphic mineral assemblages. The first mineral assemblage (actinolite + chlorite + plagioclase + K- feldspar + clinozoisite + magnetite + quartz ± mica) indicates that the metavolcanics and metasediments were metamorphosed regionally in a greenschist facies conditions. For a quantitative determination, three metavolcanic and one metasedimentary rock were analyzed. Fig. 7 shows the calculated independent reactions and the average pressures and temperatures derived from them. All four samples give comparable metamorphic conditions that range between 370 ◦C and 420 ◦C and around 3 kbar (Fig. 7). For the apparently higher grade assemblage similar calculations were done. Calculations of independent end member reactions showed that the assemblage and + bi + mu + plag + ksp + q equil- ibrated at conditions around 3.0–3.5 kbar and 610–630 ◦C. The same pressure range (3.0–3.5 kbar) was calculated for the garnet- bearing rock (sample 215b) with the assemblage garnet, muscovite, chlorite, plagioclase, K-feldspar and quartz. Curiously, the garnet- bearing sample gave a lower temperature range (450–470 ◦C) than that of the alumino silicate-bearing rock (sample 273a), and this can be related to the distance from the locally intruded sheets of red granite as a heat source for the contact meta- morphism. The garnet-muscovite and garnet-chlorite exchange thermometers confirm that the garnet-bearing sample record peak metamorphism temperature condition around 470 ± 30 ◦C (Hynes and Forest, 1988; Grambling, 1990). However, in general it may be said that the temperatures derived for the andalusite and garnet bearing assemblages is higher than that for the low-grade rocks, but that the pressure of equilibration is comparable for all rocks. This was confirmed by applying the muscovite thermobarometer of Massonne and Schreyer (1987), which gave a pressure range around 3–4.5 kbar (Fig. 6f). In order to test out hypothesis that contact metamorphism is responsible for the higher grade assemblage, we also derived the Fig. 8. Estimated pressure and temperature conditions of the undeformed gran- ites samples by amphibole-plagioclase exchange thermometer (Holland and Blundy, 1994) and Al content in amphibole barometer (Schmidt, 1992). Calculation done by PET 1.1 (Dachs, 2004). Numbers are sample numbers and refer to: 51 = late intruded granodiorite; 82 and 89 = syntectonic diorite and quartz-diorite. depth of intrusion for the granites. Three granitic samples were investigated for estimation of pressure and temperature condi- tions during magmatic crystallization. The amphibole-plagioclase exchange thermometer confirms that the granitic samples record the crystallization temperature around 650–730 ◦C (Fig. 8). These depth estimates are largely consistent with those discussed above. Sample 51 is a later intruded granodiorite records lower pres- sure conditions (range 1.2–2.1 kbar) than other earlier intruded diorite and quartz-diorite (samples 82 and 89) which record a pres- sure range of (2–3.4 kbar, Fig. 8). It is worth mentioning that the differences in pressure estimates may therefore reflect different intrusion cycles at different crustal levels. 7. Pseudosection modeling Pseudosections were constructed for several bulk compositions to constrain the metamorphic evolution. For this purpose, we have selected two samples from the high-grade rocks because they are (1) reasonably well equilibrated thus justifying the use of pseudo- sections and (2) they are characterized by a high-grade assemblage interpreted to have formed from a lower grade assemblage which is in turn partly retrogressed so that an entire PT path may be derived from them. Sample 215b represents garnet-bearing metasediments and was collected around 500 m away from the granitic intrusions (28◦40 12 N and 34◦08 53 E). Sample 273a is an alumino silicates- bearing metasedimentary rock which was collected around 100 m away from the granitic intrusions (28◦40 06 N and 34◦09 50 E) (Fig. 2). For bulk rock chemical analysis a Bruker Pioneer S4 X-ray flu- orescence spectrometer was used at the Institute of Earth Science, Karl-Franzens-Universität, Graz, Austria. Samples were prepared as fused pellets using Li2B4O7 flux (Table 6). The pseudosections were constructed using PerPleX (Connolly and Kerrick, 1987; Connolly, 1990, 2005) and the internally consistent dataset of Holland and Powell (1998). The following activity composition models were used: muscovite (Holland and Powell, 1998); biotite (Tajcmanová et al., 2009); chlorite (Holland et al., 1998); melt (Holland and Powell, 2001; White et al., 2001); garnet (White et al., 2000); chlo- ritoid (White et al., 2000); staurolite (Holland and Powell, 1998);
  • 20. M. Hassan et al. / Precambrian Research 241 (2014) 104–128 123 Table 6 Bulk rock chemical analysis of studied garnet- or alumino silicates-bearing metasedimentary rocks of Sa’al–Zaghra metamorphic complex (major oxides are represented in wt.% and trace elements in ppm; LOI, loss of ignition; BDL, below detection limit). Sample 215b 273a 142 123c SiO2 (wt%) 54.20 69.99 72.77 77.65 TiO2 1.41 0.17 0.30 0.14 Al2O3 17.81 14.73 14.54 11.43 Fe2O3 11.37 3.15 2.20 1.84 MnO 2.32 0.04 0.04 0.04 MgO 2.16 0.26 0.86 0.25 CaO 1.09 0.40 0.52 0.99 Na2O 0.19 3.04 3.26 3.37 K2O 5.60 5.97 3.12 2.75 P2O3 0.45 0.01 0.03 0.02 LOI 3.35 0.56 1.46 0.54 Totals 99.95 98.62 99.48 99.33 Ba (ppm) 416 104 802 326 Ce 41 133 66 102 Co 43 159 177 209 Cr 75 BDL BDL BDL Cs BDL BDL BDL BDL Cu 843 62 132 56 Ga 39 25 20 16 La 96 72 43 52 Nb 25 27 15 21 Nd 107 53 37 49 Ni BDL BDL BDL BDL Pb 48 BDL BDL BDL Pr BDL BDL BDL BDL Rb 277 174 77 86 Sc 20 BDL BDL BDL Sr 39 29 118 70 Th BDL 20 BDL BDL U BDL BDL BDL BDL V 158 BDL BDL BDL Y 103 37 28 46 Zn 1794 41 83 50 Zr 204 664 271 169 plagioclase (Newton et al., 1980); and K-feldspar (Thompson and Hovis, 1979). For cordierite we assumed ideal mixing. In addi- tion, the following phases were used without solution models: andalusite, kyanite, sillimanite, kaolinite, pyrophyllite, diaspora, pumpellyite, lawsonite, prehnite, wairakite, analcite, laumontite, quartz and H2O. 7.1. Garnet-bearing sample The P–T pseudosection for this sample was calculated in the sys- tem MnNCKFMASH since these components represent 98.12% of the XRF-derived bulk composition of sample 215b (Table 6). Quartz and H2O are assumed to be in excess. The P–T pseudosection of sample 215b is characterized by a series of mineral assemblage fields with steep boundaries (Fig. 9). Garnet is a stable phase over a wide P–T range. The garnet-in reactions occur as isothermal bound- aries in a temperature range of 250–270 ◦C. Chlorite is stable below 460 ◦C. The stable minerals of sample 215b are chlorite, muscovite, gar- net, albite, K-feldspar and quartz. This mineral assemblage appears in Fig. 9 in a quadrivariant field in the region (280–355 ◦C and pres- sure is <3.2 kbar). However the garnet chemistry and that of the muscovite inclusions in garnet show that part of the rock equil- ibrated at higher temperatures. The muscovite inclusions in the garnet crystals have XFe in the range of 0.06–0.07 (pfu) and most of the garnet has an XFe between 0.12 and 0.19. The Fe isopleths of the muscovite intersect the XFe contours for the garnet roughly in the same PT range in Fig. 9 as derived from the average PT calculations, i.e. roughly around 450 ◦C and 3 kbar. This indicates that plagioclase was a stable mineral during garnet nucleation process. The garnet crystals have Ca-rich rims (i.e. XCa is in the range of 0.14–0.16). These rims are in equilibrium with the muscovite of the external foliation thus intersections between the XCa isopleths and the Fe content (0.18–0.26 pfu) of the muscovite may be used to constrain a point along the retrograde path of this sample, consistent with an isobaric cooling path. In summary, the easiest interpretation of the compositional variations is to suggest that the rock equilibrated at about 300 ◦C and 3 kbar with a limited excursion (and partial re-equilibration) to 450–480 ◦C and similar pressure, followed by cooling to 300–350 ◦C at the same crustal level. This interpretation is consistent with both the thermobarometric calculations and the pseudosection in Fig. 9 and suggests contact metamorphic heating and subsequent cooling to a low-grade regional metamorphic event. 7.2. Alumino silicates-bearing sample In contrast to sample 215b, the MnO content of sample 273a is only 0.038 wt.% (Table 6). Therefore the thermo- dynamic system was reduced to be NCKFMASH (Fig. 10). The P–T pseudosection is characterized by a relative sim- ple topology at temperature conditions 660 ◦C. Four sillimanite-bearing assemblages (sill + bi + pl + ksp + q + H2O; sill + bi + pl + ksp + q + H2O + liq; sill + cd + bi + pl + ksp + q + H2O + liq; sill + bi + pl + ksp + H2O + liq) and four andalusite- bearing assemblages (and + cd + bi + pl + ksp + q + H2O; and + bi + mu + pl + ksp + q + H2O; and + bi + pl + ksp + q + H2O; and + cd + bi + pl + ksp + q + H2O + liq) are stable below 3.9 kbar and in a temperature range of 560–660 ◦C. Three univariant reactions appear in the pseudosection, two of them (bi + mu + chl + ab + ksp + lmt + pre + q + H2O; bi + mu + chl + ab + ksp + wrk + pre + q + H2O) at low tempera- ture (290–340 ◦C), while an alumino silicate-bearing univariant reaction appears at higher temperature (650–655 ◦C). Clinozoisite is stable over a wide range of pressure (1.3–6 kbar) but in a narrow temperature window (345–460 ◦C). The inferred equilibrium mineral assemblage of sample 273a is alumino silicate–biotite–plagioclase–K-feldspar and quartz with both andalusite and sillimanite occurring as alumino silicates phases and pervasive late muscovite replacing most of it (see petrography section). This assemblage is stable between 2.9 and 3.5 kbar and in a temperature range of 630–650 ◦C (Fig. 10). The post-peak conditions can be identified using the Si content of the mica in the groundmass surrounding the porphyroblasts. The Si isopleths of biotite and muscovite intersect in a temperature range of 425–500 ◦C and in a pressure range of 2.3–4.4 kbar. Muscovite thermobarometer (Fig. 6f) indicates that the post-peak micas are stable in a P–T range of 3–4.5 kbar and 440–510 ◦C (P and T range bars of Fig. 10). Muscovite inclusions may be used to get some infor- mation about the pre-peak conditions. The two black bold lines of Fig. 10 show the limiting content of the Si in the chemical formula of the muscovite inclusions. The Si contents indicate that the pre- peak assemblage can be at any condition between 450 and 630 ◦C and in a pressure range below 4 kbar. All of this evidence confirms the interpretation of the garnet-bearing sample discussed in Fig. 9. It shows that the rock equilibrated between 400 and 450 ◦C and around 3 kbar and that it also partially equilibrated at higher tem- peratures and comparable pressures. As for sample 215b, both is consistent with an interpretation of low-grade regional metamor- phism overprinted by a contact metamorphic event. 8. Discussion The majority of the metavolcanic-metasedimentary associa- tions of the Sa’al–Zaghra Complex show good preservation of
  • 21. 124 M. Hassan et al. / Precambrian Research 241 (2014) 104–128 Fig. 9. P–T pseudosection for the garnet-bearing sample number 215b. The two white dashed lines represent the garnet composition of the intermediate zone. The red polygons indicate conditions constrained by mineral isopleths. (For interpretation of the reference to color in this figure legend, the reader is referred to the web version of the article.) primary volcanic and sedimentary microstructures (e.g. porphyritic texture; Fig. 4b) and have been affected by only low-strain typically involving a weakly developed foliation parallel to layering and bed- ding planes. The P–T history of the Sa’al–Zaghra Complex shows that most of the rocks equilibrated at similar temperature condi- tions around 370–420 ◦C and pressures around 2.5–3.2 kbar. This is equivalent to a crustal depth variation of 9–11.5 km (for an overbur- den density 2850 kg m−3 and assuming lithostatic conditions). The Sa’al–Zaghra area was later intruded by granitoids, which cut across the foliations. The pressure conditions for the granodiorite and the diorite intrusions (earlier) are 2.5–3.4 kbar, whereas the later granitic intrusions have pressures of 1.4–2 kbar attending mag- matic crystallization. These differences in the pressure conditions may reflect distinct crustal levels of intrusion relating to differ- ent intrusion phases. The early syntectonic intrusions (in particular the red gneissic granite sheets, Fig. 3g) caused local contact meta- morphism, resulting in partial equilibration of the assemblages at 630–650 ◦C. For the Sa’al–Zaghra complex we suggest that the flat lying D1 fabric in association with the metamorphic conditions around 400 ◦C and 3 kbar indicate metamorphism during a crustal thin- ning event that occurred during an extension regime. The peak metamorphism of the M1 in the study area occurred at a depth of 9–11.5 km corresponding to a geothermal gradient of 38–41 ◦C/km. This is much higher than the geothermal gradients for the subse- quent event as derived for the Feiran–Solaf region (25–27 ◦C/km for the Pan-African event at ca. 632 Ma; Abu-Alam and Stüwe, 2009) or the Gabal Samra metapelites from the same general region (27 ◦C/km; Abu El-Enen, 2011). Although the local remarked higher geothermal gradient in Sinai (43–50 ◦C/Km) which is related to heat flow transferred from nearby granite intrusions (Eliwa et al., 2008; Abu El-Enen, 2011), we suggest that the higher geother- mal gradients during the earlier M1 event in the Sa’al–Zaghra complex may be interpreted as additional evidence for an exten- sional setting and crustal thinning during D1. In the remainder of this paper an attempt is made to derive a metamorphic evolution for the Sa’al–Zaghra complex and compare this with metamor- phic histories of other complexes of Sinai. The implications of these discussions for the tectonic evolution of the Arabia-Nubian Shield at the stage between Rodinia rifting and East- and West- Gondwanaland collision will then be considered. 8.1. Age and origin of the Sa’al–Zaghra complex Recently published zircon U–Pb analyses of volcanic ash-flow yielded concordia ages of 1030 ± 5 Ma interpreted to represent crystallization ages of their magma chambers, while calc-alkaline volcanic and intrusive rocks of Wadi Sa’al area yielded ages of ca. 1030–1020 Ma (Be’eri-Shlevin et al., 2012). Nevertheless, timing of volcanic activity, sedimentation, deformation and metamor- phism of the metavolcanics and metasedimentary associations in the Sa’al–Zaghra complex are unclear. Abu Anbar et al. (2009)
  • 22. M. Hassan et al. / Precambrian Research 241 (2014) 104–128 125 Fig. 10. P–T pseudosection for the alumino silicates-bearing sample for the phases that cited in the text. concluded that the age of the rhyolitic-dacitic parents that later became deformed and metamorphosed to form the schists of Sa’al area was 873 ± 16 Ma, while the metavolcanics unconformably above the schists were dated at 736 ± 22 Ma. Bielski (1982) gave an average Rb–Sr age of 734 ± 17 Ma for the metavolcanic rocks. Abu Anbar et al. (2009) noted that schists were associated only with the metasediments, but the schists found to be associated also with the metavolcanics, and no evidence of unconformity between the schists (El-Rayan phyllites) and the metavolcanics (Agramiya Fm). This casts some doubt on the idea that the schistosity and metamorphism formed before the metavolcanics, and therefore the significant age difference between schists (873 Ma) and metavol- canics (736 Ma) may reflect isotopic disturbance rather than real age differences. Sa’al Conglomerate pebble ages by Priem et al. (1984) apparently placed a maximum age of 757 ± 28 Ma on conglomerate deposition, and may be revised to 672 Ma according to recent data (Andresen, pers. commun.). A zircon population dated by Stern et al. (2010) at 606 ± 10 Ma was also found to accompany a second zircon pop- ulation dated at 931 ± 14 Ma in diorite boulders from the Wadi Zaghra conglomerates. Stern et al. (2010) offered two possible explanations for the ∼605 Ma zircons. The first was that they dated the diorite magma, and that the older population (∼930 Ma) was xenocrysts in the diorite magma. The second explanation was that both populations define a discordia giving a magmatic age for the diorite of 1045 ± 55 Ma (upper intercept) and a Pb-loss event affect- ing the zircons at about 569 ± 55 Ma. These data do not conclusively show either an old (∼1 Ga) or young (∼600 Ma) age for the Wadi Zaghra conglomerates. El-Gaby et al. (2002) concluded that the Sa’al–Zaghra complex is a relatively undeformed, unmetamorphosed succession related to the younger Dokhan volcanics and can also be correlated to Hammamat molasse sediments of the Eastern Desert of Egypt. In contrast to this, detrital zircon from the Sa’al andalusite-bearing schist gave concordant ages of 1029 ± 7 Ma and 1110 ± 8 Ma (Be’eri- Shlevin et al., 2012). In addition, El-Rayan pelitic sedimentary rocks yielded a bimodal age pattern of 1003 and 1110 Ma (Be’eri- Shlevin et al., 2009). Moreover, whole-rock εNd (t = 1.0 Ga) value of +2 is significantly lower than found for juvenile Neoprotero- zoic rocks in the Arabian-Nubian Shield which led Be’eri-Shlevin et al. (2009) to interpret the Sa’al schist to represent Kibaran (Grenville) age crust incorporated into the northernmost part of the Arabian-Nubian Shield. The volcanic activity that formed most of the Sa’al–Zaghra complex appears to have occurred in the time interval of 1110–1030 Ma (Stern et al., 2010; Be’eri-Shlevin et al., 2012). The single dynamothermal metamorphic event (M1) in the study area began during the development of layering-parallel
  • 23. 126 M. Hassan et al. / Precambrian Research 241 (2014) 104–128 Fig. 11. The relation of metamorphism and deformation in the study area in the content of the evolution of the Arabian Nubian Shield. foliation (D1) and may have reached peak temperatures in the last stages of this foliation-forming event. This event is believed to have involved horizontal NW–SE tectonic extension. The exten- sion event was followed by two compressional deformations. The NW–SE compressive D2 event may overlap with the intrusion of the El-Fringa metagabbro. The foliation of the complex is cut by gabbro with an intrusion age of 1017 ± 5 Ma (Be’eri-Shlevin et al., 2009), consequently the metamorphism and the crustal exten- sional in the Sa’al–Zaghra area practicably occurred in the interval 1030–1017 Ma. These observations are consistent with the vol- canic rocks of the complex being formed and metamorphosed in an extensional setting older than 1017 ± 5 Ma, and therefore pos- sibly occurring during the early stages of breakup of the Rodinia supercontinent. Based on sediment composition and volcanic rock geochem- istry, Shimron et al. (1993) and El-Gaby et al. (2002) interpreted the Sa’al–Zaghra rocks as a volcano-sedimentary succession of island arc to active continental margin affinities, though heterogene- ity and magma mixing may have occurred, according to Soliman (1986), Mehanna (2000) and Abu Anbar et al. (2009). However, our preferred interpretation is that the Sa’al–Zaghra complex was a rift-related volcano-sedimentary assemblage that formed dur- ing the early stages of the break-up of Rodinia, according to the lithological characteristics of the volcanic-sedimentary assemblage of the complex. The amount of felsic volcanism in the complex is not compatible with island arc volcanism. Also, volcanic rocks of the Agramiya Formation are bimodal, typical of rift volcanism. The conglomerates of Zaghra Formation could have been deposited on alluvium fans close to the border faults of the rifted margins. 8.2. Sa’al–Zaghra complex in the context of Sinai tectonism Abu-Alam and Stüwe (2009) found remnants of an earlier fab- ric as inclusion trails in garnet porphyroblasts of the Feiran–Solaf metamorphic complex (west of the Sa’al–Zaghra area). They concluded that these early fabric represented an early metamor- phic phase (M1) of the Feiran–Solaf area. Fowler and Hassen (2008) showed that the principal shortening strain during the M1 metamorphic event in the Feiran–Solaf area was a vertical flatten- ing with stretching had occurred in the NW–SE direction and, to a lesser degree, the NE–SW direction. This early extensional event reflected a larger-scale extension related to the breakup of Rodinia (Fowler and Hassen, 2008) and that may correlate with the first deformation phase in the Sa’al–Zaghra metamorphic complex. Ali et al. (2009) concluded that the presence of inherited zir- cons with ages of ∼1790 Ma in syenogranite from Sinai indicates that older material is present within the basement. Rock fragments of age ca. 900–1100 Ma were found in the volcano-sedimentary succession at Wadi Rutig, Sinai (Samuel et al., 2011). In addition to these late mesoproterozoic fragments, other rock fragments with a Pan-African age 629–615 Ma can be found. Abu El-Enen and Whitehouse (2013) found that the metapsammitic gneiss in Solaf area of the Feiran–Solaf complex has a Mesoproterozoic age (1.0 Ga). These age data can be interpreted in the context of Be’eri-Shlevin et al.’s (2012) data from the Sa’al–Zaghra complex (1110–1030 Ma) to indicate a possibility of that the Sa’al–Zaghra and the Solaf complexes together represent the oldest rocks in the northernmost segment of the Arabian-Nubian Shield in having a Mesoproterozoic age. If so, the Pan-African Rb/Sr whole rock age of c. 610 Ma reported by Stern and Manton (1987) for the Feiran–Solaf complex may have been a result of isotopic disturbances during the Pan-African metamorphism (610–615 Ma); or during the exhuma- tion (594 Ma; Eliwa et al., 2008). The existence of a single metamorphic event (M1) in the Sa’al–Zaghra complex in time interval 1030–1017 Ma demon- strates that the complex escaped later metamorphism during the East- and West-Gondwana collision (Pan-African age), but not the deformation associated with this event, which is represented by the D3 deformation as open folding with axial planes trending NW–SE (Fig. 11). This phase of deformation also correlates with the NE–SW tectonic shortening event in the Feiran–Solaf complex which is characterized by NW–SE close folding. These facts are con- sistent with the Sa’al–Zaghra complex having been at a shallow crustal level (<9 km) during the East- and West-Gondwana colli- sion, and thus the complex was not affected by the deep crustal level Pan-African metamorphism.