SlideShare a Scribd company logo
1 of 6
Download to read offline
Lata Bisht, Sandhana Shanker/ International Journal of Engineering Research and
                        Applications (IJERA) ISSN: 2248-9622 www.ijera.com
                        Vol. 2, Issue6, November- December 2012, pp.1323-1328
                        On Recurrent Hsu-Structure Manifold
                             Lata Bisht * And Sandhana Shanker **
     HOD, Department of Applied Science, BTKIT, Dwarahat, Almora, Uttarakhand, India-263653
     **
      Assist. Prof., Department of Applied Science, BTKIT, Dwarahat, Almora, Uttarakhand, India-
                                                263653

ABSTRACT
         In this Paper, we have defined recurrence      Then { , g} is said to give to Vn - metric Hsu-
and symmetry of different kinds in Hsu-structure        structure and Vn is called a metric Hsu-structure
manifold. Some theorems establishing relationship       manifold.
between different kinds of recurrent Hsu-               The curvature tensor K, a vector -valued tri-linear
structure manifold have been stated and proved.         function w.r.t. the connexion D is given by
Furthermore, theorems on different kinds of
recurrent and symmetric Hsu-structure manifold          K ( X , Y , Z )  D X DY Z  DY D X Z  D[ X ,Y ] Z ,
involving equivalent conditions with respect to         (1.3)
various curvature tensors have also been                 where
discussed.
Keywords : Hsu-structure manifold , Curvature           [ X , Y ]  DX Y  DY X .
tensor ,Recurrent Parameter.
                                                        The Ricci tensor in Vn is given by
                                                        Ric (Y , Z )  (C1 K )(Y , Z ).
                                                                           1
I.    INTRODUCTION
           If on an even dimensional manifold Vn, n     (1.4)
= 2m of differentiability class C∞, there exists a                     1
                                                        where by (C1 K )(Y , Z ) , we mean the contraction of
vector valued real linear function  , satisfying
                                                        K ( X ,Y , Z ) with respect to first slot.
 2  ar In ,                                           For Ricci tensor, we also have
(1.1)a    X  a X , for arbitrary vector field X.
                   r

          (1.1)b
                                                        Ric(Y , Z )  Ric(Z ,Y ),
                                                        (1.5)a
Where X  X , 0 ≤ r ≤ n and 'r' is an integer and
                                                        Ric(Y , Z )  g (r (Y ), Z )  g (Y , r (Z )),
                                                        (1.5)b
' a ' is a real or imaginary number.
                                                        (C1 r )  R.
                                                            1
Then {  } is said to give to Vn a Hsu-structure
defined by the equations (1.1) and the manifold Vn is   (1.5)c
called a Hsu-structure manifold.
The equation (1.1)a gives different structure for       Let W, C, L and V be the Projective, conformal,
different values of ' a ' and 'r'.                      conharmonic and concircular curvature tensors
                                                        respectively given by
If r  0 , it is an almost product structure.                                                  1
                                                        W ( X ,Y , Z )  K ( X ,Y , Z )             [ Ric(Y , Z ) X 
If a  0 , it is an almost tangent structure.                                                (n  1)
If r  1 and a  1 , it is an almost product
structure.                                                                         Ric( X , Z )Y ].
If r  1 and a  1 , it is an almost complex
                                                        (1.6)
structure.
If r =2 then it is a GF-structure which includes
                                                        C  X ,Y , Z   K  X ,Y , Z         RicY , Z X 
 π-structure for a  0 ,
                                                                                             1
an almost complex structure for a  i ,                                                    n2
an almost product structure for a  1 ,
an almost tangent structure for a  0 .                 Ric X , Z Y  g Y , Z r ( X )  g  X , Z r (Y )} 
Let the Hsu-structure be endowed with a metric                R
                                                                        [ g (Y , Z ) X  g ( X , Z )Y ].
tensor g, such that g ( X , Y )  a g ( X , Y )  0     (n  1)( n  2)
                                   r

          (1.2)
                                                        (1.7)




                                                                                                  1323 | P a g e
Lata Bisht, Sandhana Shanker/ International Journal of Engineering Research and
                           Applications (IJERA) ISSN: 2248-9622 www.ijera.com
                           Vol. 2, Issue6, November- December 2012, pp.1323-1328
                                    1
L( X , Y , Z )  K ( X , Y , Z )        [ Ric(Y , Z ) X  or equivalently
                                (n  2)
 Ric( X , Z )Y  g ( X , Z )r (Y )  g (Y , Z )r ( X )].                                              
                                                           a r P X , Y , Z , T1  P X ,  Y ,T1 , Z 
(1.8)                                                                a P  X , T , Y , Z   a AT P X , Y , Z  .
                                                                       r
                                                                                            1
                                                                                                              r
                                                                                                                          1
                                                                     (2.2)b
                                              R
V ( X ,Y , Z )  K ( X ,Y , Z )                    [ g (Y , Z ) X 
                                           n(n  1)                  Definition (2.3): A Hsu-structure manifold is said to
                                                                     be (123)-recurrent in P, if

                     g ( X , Z )Y ].                                                                           
                                                                     a r P X , Y , Z , T1  P   X , T1 , Y , Z                  
(1.9)
A manifold is said to be recurrent, if
                                                                                                                        
                                                                     a r P X ,  Y , T1 , Z  a r P X , Y ,  Z , T1                          
(K )( X , Y , Z , T )  A(T1 ) K ( X , Y , Z ).
(1.10)                                                                      a AT P X , Y , Z  ,
                                                                                r
                                                                                        1
                                                                     (2.3)a
The recurrent manifold is said to be symmetric, if
A(T1 )  0, in the equation (1.10).                                  or equivalently

                                                                                                                                        
The manifold is said to be Ricci-recurrent, if
                                                                     a r P X , Y , Z , T1  a r P   X , T1 , Y , Z 
(Ric)(Y , Z , T )  A(T1 ) Ric(Y , Z ),
         (1.11)a
                                                                                                              
                                                                     P X ,   Y , T1 , Z  a P X , Y ,  Z , T1 
                                                                                                          r
                                                                                                                                                    
or
(r )(Y , T )  A(T1 )r (Y ),                                                               
                                                                            a r AT1 P X , Y , Z ,  
(1.11)b                                                              (2.3)b
or
                                                                     or equivalently
(R)(T )  A(T1 ) R.
         (1.11)c
                                                                                                        
                                                                     a r P X , Y , Z , T1  a r P   X , T1 , Y , Z  .              
The Ricci-recurrent manifold is said to be symmetric,                                          
                                                                     a P X ,  Y , T1 , Z  P X , Y ,   Z , T1
                                                                       r
                                                                                                                                              
                                                                            a AT P X , Y , Z  .
if                                                                                  r
 A(T1 )  0, in equation (1.11).                                                        1
                                                                     (2.3)c
                                                                      Note: Similarly (2), (3), (4), (23), (24), (13), (14),
II. RECURRENCE AND SYMMETRY OF                                       (34), (124), (134), (234), and (1234) recurrence in P
DIFFERENT KINDS:                                                     can also be defined.
         Let P, a vector-valued tri-linear function, be
any one of the curvature tensors K, W, C, L or V.                    Definition (2.4): A Hsu-structure manifold is said to
Then we will define recurrence of different kinds as                 be Ricci-(1)-recurrent, if
follows:
                                                                                                      
                                                                     a r Ric Y , Z , T1   Ric   Y , T1 , Z .           
Definition (2.1): A Hsu-structure manifold is said to                                     a r AT1 RicY , Z , T1  .
be (1) - recurrent in P, if
                                          
a r P X , Y , Z , T1   P   X ,T1 , Y , Z                                  (2.4)

          a r AT1 P X , Y , Z .                                 Note: Similarly Ricci-(2)-recurrent can also be
                                                                     defined.
(2.1)
                                                                     Definition (2.5): A recurrent Hsu-structure manifold
Where A(T1 ) is a non-vanishing C∞ function.                         is said to be P-symmetric and Ricci-symmetric
Definition (2.2): A Hsu-structure manifold is said to                       
                                                                     if A T1  0 .
be (12)- recurrent in P, if
                                        
a r P X , Y , Z , T1  P   X ,T1 , Y , Z                     Theorem (2.1): A P-(1)-recurrent Hsu-structure
a P X ,  Y , T1 , Z   a AT1 P X , Y , Z ,
     r                                 r
                                                                   manifold is P-(2)-recurrent Hsu-structure manifold
                                                                     for the same recurrence parameter iff
(2.2)a



                                                                                                                              1324 | P a g e
Lata Bisht, Sandhana Shanker/ International Journal of Engineering Research and
                            Applications (IJERA) ISSN: 2248-9622 www.ijera.com
                            Vol. 2, Issue6, November- December 2012, pp.1323-1328
                                            
P   X , T1 , Y , Z  P X ,   Y , T1 , Z .                                                            
                                                                                                  a r AT1 P X , Y , Z .      
(2.5)                                                                             (2.10)
Necessary condition: If       P-(1)-recurrent Hsu-                                If the manifold is P-(12)-recurrent then from equation
structure manifold is P-(2)-recurrent Hsu-structure                               (2.2)a, we have
manifold then
                                                                                                                             
                                                                                  a r P X , Y , Z , T1  P   X , T1 , Y , Z                  
    r
                                               
a P X , Y , Z , T1   P   X , T1 , Y , Z                               a P X ,  Y , T1 , Z   a AT1 P X , Y , Z .
                                                                                    r                                       r
                                                                                                                                                          
a r AT1 P X , Y , Z   a r P X , Y , Z , T1                                  (2.11)
              
P X ,   Y , T1 , Z  a r AT1 P X , Y , Z  .                               Using equation (2.9) in equation (2.11) , we get the

 P  X , T , Y , Z   P X ,  Y , T , Z  .
                                                                                  equation (2.10). Hence the theorem.
                                      1                                  1        Note: Similarly it can shown that a P-(12)-recurrent
Sufficient condition:                                                             Hsu-structure manifold is P-(2)-recurrent for the
If P  X , T , Y , Z   P X ,  Y , T , Z ,
                                                                                  same recurrence parameter, provided
                                                                                  a r P  X , T1 , Y , Z   0.
                                  1                                  1
then P-(1)-recurrent Hsu-structure manifold is P-(2)-
recurrent Hsu-structure manifold.                                                    (2.12)
Note: Similarly a P-(1)-recurrent Hsu-structure                                   Theorem (2.4): A P-(123)-recurrent Hsu-structure
manifold is P-(3)-recurrent Hsu-structure manifold                                manifold is P-(1)-recurrent for the same recurrence
                                                                                  parameter, provided
                                                                                                                                                                   
for the same recurrence parameter iff
                                            
P   X , T1 , Y , Z  P X , Y ,   Z , T1 ,                              a r P X ,  Y , T1 , Z  a r P X , Y ,  Z , T1   0.
(2.6)                                                                                                                                                   (2.13)
and
                                                                                  Proof: Barring Y and Z in equation (2.1), we get
                                                                                                                                               
A P-(2)-recurrent Hsu-structure manifold is P-(3)-
recurrent Hsu-structure manifold for the same                                     a r P X , Y , Z , T1  P   X , T1 , Y , Z
recurrence parameter iff
                                      
P X ,   Y , T1 , Z  P X , Y ,   Z , T1 .                           
                                                                                             r
                                                                                                        
                                                                                         a AT1 P X , Y , Z .         
                                                                                  (2.14)
(2.7)                                                                             In equation (2.3)a if
Theorem (2.2): A Ricci-(1)-recurrent Hsu-structure
manifold is Ricci-(2)-recurrent Hsu-structure                                                                                     
                                                                                  a r P X ,  Y , T1 , Z  a r P X , Y ,  Z , T1   0                      
manifold for the same recurrence parameter iff,                                   .
                                 
Ric   Y , T1 , Z  Ric Y ,   Z , T1 .                                 Then we get the equation (2.14). Hence the theorem.
                                                                                  Note: Similarly we can prove that a P-(123)-recurrent
Necessary condition: If Ricci-(1)-recurrent Hsu-                                  Hsu-structure    manifold      is    P-(2)-recurrent,
structure manifold is Ricci-(2)-recurrent Hsu-                                    if
structure manifold then
a r Ric Y , Z , T1   Ric   Y , T1 , Z                                                                                
                                                                                  a r P   X , T1 , Y , Z  a r P X , Y ,  Z , T1   0,                    
 a r AT1 RicY , Z   a r RicY , Z , T1                                    and                       P-(3)-recurrent                     ,                if

              
 Ric Y ,   Z , T1  a r AT1 RicY , Z  .
                                                                                    r
                                                                                                                          r
                                                                                                                                    
                                                                                  a P   X , T1 , Y , Z  a P X ,  Y , T1 , Z  0                          
 Ric  Y , T , Z   Ric Y ,  Z , T  .
                                                                                  ,
                                          1                              1        for the same recurrence parameter.
Sufficient condition:                                                             Theorem (2.5): A P-(123)-recurrent Hsu-structure
If Ric  Y , T , Z   Ric Y ,  Z , T  ,
                                                                                  manifold is P-(12)-recurrent for the same recurrence
                                      1                              1            parameter, provided
(2.8)
then Ricci-(1)-recurrent Hsu-structure manifold is
                                                                                         
                                                                                  a r P X , Y ,  Z , T1   0.     
Ricci-(2)-recurrent Hsu-structure manifold.                                       (2.15)
                                                                                  Proof: Barring Z in equation (2.2)a , we get
                                                                                                         
Theorem (2.3): A P-(12)-Recurrent Hsu-structure
manifold is P-(1)-recurrent for the same recurrence                               a r P X , Y , Z , T1  P   X , T1 , Y , Z 
                                                                                  a P X ,  Y , T , Z   a AT P X , Y , Z 
parameter, provided                                                                 r                                       r
        P X ,  Y , T1 , Z   0.
    r                                                                                                       1        1              .
a
                                                                                     (2.16)
(2.9)                                                                             Using equation (2.15) in equation (2.3)a , we get
Proof: Barring Y in equation (2.1) , we get
                                                               
                                                                                  equation(2.16). Hence the theorem.
a r P X , Y , Z , T1  P   X , T1 , Y , Z                                    Note: Similarly we can prove that P-(123)-recurrent
                                                                                  Hsu structure manifold is P-(13)-recurrent
                                                                                         
                                                                                  a r P X ,  Y , T1 Z  0,    

                                                                                                                                        1325 | P a g e
Lata Bisht, Sandhana Shanker/ International Journal of Engineering Research and
                        Applications (IJERA) ISSN: 2248-9622 www.ijera.com
                        Vol. 2, Issue6, November- December 2012, pp.1323-1328
and              P-(23)-recurrent                        ,                   if                                  
                                                                                     V   X , T1 , Y , Z  a r AT1 V  X , Y , Z  .                              
                           
a P   X , T1 , Y , Z  0,
  r
                                                                                       (2.21)
 for the same recurrence parameter.                                                 If a (1)-recurrent Hsu-structure manifold is
Theorem (2.6): In a (1)-recurrent Hsu-structure                                     conformal-(1) - recurrent and conharmonic (1)-
manifold, if any two of the following conditions hold                               recurrent for the same recurrence parameter then
for the same recurrence parameter, then the third also                              from equation (2.21), we get
holds:
a) It is conformal (1)-recurrent,
                                                                                                                             
                                                                                     a r V  X , Y , Z , T1   V   X , T1 , Y , Z                            
b) It is conharmonic (1)-recurrent,                                                         a AT1 V  X , Y , Z  .
                                                                                               r

c) It is concircular (1)-recurrent.                                                     (2.22)
                                                                                    Which shows, that the manifold is concircular-(1)-
Proof: From equation (1.6), (1.7) and (1.8), we have                                recurrent.
C  X , Y , Z   L X , Y , Z          K  X , Y , Z  
                                     n                                              The proof of the remaining two cases follows
                                                                                    similarly.
                                  n2
                            V  X , Y , Z .
                                                                                    Theorem (2.7): In a (1)-symmetric Hsu-structure
                                                                                    manifold, if any two of the following conditions hold
(2.17)                                                                              for the same recurrence parameter, then third also
Barring X in equation (2.17) ,we get                                                holds:

                           n  2 K X ,Y , Z 
                                                                                    a) It is conformal (1)-symmetric,
                                    n
C X ,Y , Z  L X ,Y , Z                                                            b) It is conharmonic (1)-symmetric,
                                                                                    c) It is concircular (1)-symmetric.
                            V X , Y , Z  .                                       Proof: The statement follows from the theorem (2.6)
                                                                                    and definition (2.5).
   (2.18)                                                                           Theorem (2.8): In a (12)-recurrent Hsu-structure
Multiplying equation (2.18) by AT1  , barring X and                               manifold, if any two of the following conditions hold
then using equation (1.1)a in the resulting equation,                               for the same recurrence parameter, then the third also
we get                                                                              holds:
a r AT1 C  X , Y , Z   a r AT1 L X , Y , Z                                a) It is conformal (12)-recurrent,
                                                                                    b) It is conharmonic (12)-recurrent,
            na r AT1 
                        K  X , Y , Z   V  X , Y , Z  .                       c) It is concircular (12)-recurrent.
             n  2                                                                Proof: Barring X and Y in equation (2.17), we get
           (2.19)
Differentiating equation (2.18) w.r.t. T1, using
                                                                                                       
                                                                                     C X ,Y , Z  L X ,Y , Z                    n
                                                                                                                                 n2
                                                                                                                                                 
                                                                                                                                      K X ,Y , Z                          
equation (2.18) and then barring X in the resulting
equation, we get
                                                                                                                                             
                                                                                                                                  V X ,Y , Z .                
                            
a r C  X , Y , Z , T1   C   X , T1 , Y , Z 
                                                                (2.23)
                                                         Multiplying equation (2.23) by AT  , barring X
a L X , Y , Z , T   L X , T , Y , Z  
                                                                                                                                                 1
  r
                      1                          1       and then using equation (1.1)a in the resulting
   n
n  2
        a K  X ,Y , Z ,T   K  X ,T ,Y , Z  equation,Cwe get, Z   a AT LX ,Y , Z 
            r
                                 1
                                                         a AT  X , Y
                                                                     1                 r
                                                                                               1
                                                                                                                         r
                                                                                                                                     1

                                                                                     na AT1 
                                                                                                                                                 
                                                                                           r

                                        
a V  X , Y , Z , T1   V   X , T1 , Y , Z .
  r
                                                                                   n  2
                                                                                               K X ,Y , Z V X ,Y , Z .
(2.20)                                                                              (2.24)
Subtracting equation (2.19) from (2.20) , we have
                                        
a r C  X , Y , Z , T1   C   X , T1 , Y , Z                               Differentiating equation (2.23) w.r.t T1 , using
                                                                                    equation (2.23) and then barring X in the resulting
a AT C  X , Y , Z   a L X , Y , Z , T1  
  r                                  r                                              equation, we get

                         
   L   X , T1 , Y , Z  a r AT1 L X , Y , Z  
                                                                                                                    
                                                                                     a r C X , Y , Z , T1  C   X , T1 , Y , Z                
                                                                                    a C  X ,  Y , T , Z   a LX , Y , Z , T  
                                                                                       r                                         r
   n
n  2
                                             
         a r K  X , Y , Z , T1   K   X , T1 , Y , Z                     L X , T , Y , Z   a L X ,  Y , T , Z  
                                                                                                        1
                                                                                                                1
                                                                                                                             r
                                                                                                                                                                   1

                                                                                                                                                                   1

 a r AT1 K  X , Y , Z   a r V  X , Y , Z , T1  
                                                                                        n
                                                                                     n  2
                                                                                                                             
                                                                                             a r K X , Y , Z , T1  K   X , T1 , Y , Z                                  


                                                                                                                                                 1326 | P a g e
Lata Bisht, Sandhana Shanker/ International Journal of Engineering Research and
                       Applications (IJERA) ISSN: 2248-9622 www.ijera.com
                       Vol. 2, Issue6, November- December 2012, pp.1323-1328
                                                    
a r K  X ,  Y , T1 , Z   a r V X , Y , Z , T1                       Multiplying equation (2.28) by AT1  , barring X and
                                                                                then using equation (1.1)a in the resulting equation ,

                                                                        
                                                                                we get
V   X , T1 , Y , Z  a rV  X ,  Y , T1 , Z  .                                                               
                                                                                a r AT1 C X , Y , Z  a r AT1 L X , Y , Z 
                                                                                na AT 
(2.25)
                                                                                         K X , Y , Z  V X , Y , Z .
                                                                                      r
Subtracting equation (2.24) from equation (2.25), we                                              1
get                                                                              n  2
                                         
a r C X , Y , Z , T1  C   X , T1 , Y , Z                               (2.29)
a r C  X ,  Y , T1 , Z   a r AT1 C X , Y , Z                      Differentiating equation (2.28) w.r.t T1 , using

                                       
a L X , Y , Z , T1  L   X , T1 , Y , Z 
  r
                                                                                equation (2.28) and then barring X in the resulting
                                                                                equation, we get
a L X ,  Y , T , Z   a AT LX , Y , Z  
  r
                           1
                                        r
                                                1
                                                                                                                      
                                                                                a r C X , Y , Z , T1  C   X , T1 , Y , Z                                 
   n
n  2
        a K X ,Y , Z ,T  K   X ,T ,Y , Z 
                 r
                                    1                               1                                                            
                                                                                a r C X ,  Y , T1 , Z  a r C X , Y ,  Z , T1                                       
a r K  X ,  Y , T1 , Z   a r A(T1 ) K X , Y , Z                                           
                                                                                a r L X , Y , Z , T1  L   X , T1 , Y , Z 
                                                                                a LX ,  Y , T , Z   a LX , Y ,  Z , T  
                                                                                  r                                                       r


                                       
                                                                                                                      1                                                       1
a r V X , Y , Z , T1  V   X , T1 , Y , Z 
a V  X ,  Y , T , Z   a AT V X , Y , Z .
  r                                     r                                          n
                                                                                                                 
                                                                                        a r K X , Y , Z , T1  K   X , T1 , Y , Z                                           
                                                                                n  2
                           1                    1
(2.26)
If a (12)-recurrent Hsu-structure manifold is
conformal (12)-recurrent and conharmonic (12)-
recurrent for the same recurrence parameter then
                                                                                                                                 
                                                                                a r K X ,  Y , T1 , Z  a r K X , Y , Z , T1                                        
                                                                                                       
from equation (2.26) , we get
                                         
a r V X , Y , Z , T1  V   X , T1 , Y , Z                               a r V X , Y , Z , T1  V   X , T1 , Y , Z 
a rV  X ,  Y , T1 , Z   a r AT1 V X , Y , Z                        a V X ,  Y , T , Z   a V X , Y , Z , T 
                                                                                  r
                                                                                                                      1
                                                                                                                                          r
                                                                                                                                                                              1

(2.27)                                                                           .
Which shows, that the manifold is concircular-(12)-                             (2.30)
recurrent.                                                                      Subtracting equation (2.29) from equation (2.30), we
The proof of the remaining two cases follows                                    get
similarly.
 Theorem (2.9): In a (12)-symmetric Hsu-structure                                                      
                                                                                a r C X , Y , Z , T1  C   X , T1 , Y , Z 
manifold, if any two of the following conditions hold                           a C X ,  Y , T , Z   a C X , Y ,  Z , T  
                                                                                  r
                                                                                                                      1
                                                                                                                                          r
                                                                                                                                                                              1
for the same recurrence parameter, then third also

                                                                                                                         
holds:
a) It is conformal (12)-symmetric,                                              a r AT1 C X , Y , Z  a r L X , Y , Z , T1 
                                                                                L X , T , Y , Z   a LX ,  Y , T , Z  
b) It is conharmonic (12)-symmetric,                                                                                                  r
c) It is concircular (12)-symmetric.                                                                          1                                                   1
Proof: The statement follows from the theorem (2.8)
and definition (2.5).
Theorem (2.10): In a (123)-recurrent Hsu-structure
                                                                                                                                 
                                                                                a r L X , Y ,  Z , T1   a r AT1 L X , Y , Z                                    
manifold, if any two of the following conditions hold
for the same recurrence parameter, then the third also
                                                                                   n
                                                                                n  2
                                                                                                                 
                                                                                         a r K X , Y , Z , T1  K   X , T1 , Y , Z                                          
holds:
a) It is conformal (123)-recurrent,
b) It is conharmonic (123)-recurrent,
c) It is concircular (123)-recurrent.
Proof: Barring X, Y and Z in equation (2.17), we get
                                                                                                                             
                                                                                a r K X ,  Y , T1 , Z  a r K X , Y ,  Z , T1                                   
                     
C X ,Y , Z  L X ,Y , Z             n  2 K X ,Y , Z 
                                           n
                                                                                                                 
                                                                                 a r A(T1 ) K X , Y , Z  a r V X , Y , Z , T1 
                                   V X , Y , Z .                             V  X , T , Y , Z   a V X ,  Y , T , Z  
                                                                                                              1
                                                                                                                                      r
                                                                                                                                                                  1

(2.28)


                                                                                                                                                      1327 | P a g e
Lata Bisht, Sandhana Shanker/ International Journal of Engineering Research and
                       Applications (IJERA) ISSN: 2248-9622 www.ijera.com
                       Vol. 2, Issue6, November- December 2012, pp.1323-1328
                                         
 a r V X , Y ,  Z , T1   a r AT1 V X , Y , Z               Manifold", Journal of Tensor Society, Vol.23,
                                                                      2009, pp. 79-104.
.                                                                [11] U.C. De, N. Guha and D. Kamila, "On
       (2.31)                                                         Generalized Ricci recurrent manifolds", Tensor
If a (123)-recurrent Hsu-structure manifold is                        (N.S.) (56), 1995, pp. 312-317.
conformal (123)-recurrent and conharmonic (123)-
recurrent for the same recurrence parameter then
from equation (2.31), we get
                                      
a r V X , Y , Z , T1  V   X , T1 , Y , Z  
                                    
a rV X ,  Y , T1 , Z  a rV X , Y ,  Z , T1      
                          
     a r AT1 V X , Y , Z .
    (2.32)
This shows, that the manifold is concircular (123)-
recurrent Hsu-structure manifold.
The proof of the remaining two cases follows
similarly.
Theorem (2.11): In a (123)-symmetric Hsu-structure
manifold, if any two of the following conditions hold
for the same recurrence parameter, then third also
holds:
a) It is conformal (123)-symmetric,
b) It is conharmonic (123)-symmetric,
c) It is concircular (123)-symmetric.
Proof: The statement follows from the theorem (2.8)
and definition (2.5).

REFERENCES:
[1] C.J. Hsu, "On some structure which are similar
     to quaternion structure", Tohoku Math. J., (12),
     1960, pp. 403-428.
[2] Q. Khan, "On recurrent Riemannian manifolds",
     Kuungpook Math. J., (44), 2004, pp. 269-276.
[3] R.S. Mishra, S.B. Pandey and U. Sharma
     "Pseudo n-Recurrent Manifold with KH-
     Structure", Indian J. pure applied Mathematics,
     7(10), 1974, pp. 1277-1287.
[4] R.S. Mishra, "A course in tensors with
     applications to Riemannian Geometry", II edition
     Pothishala Pvt., Ltd. Allahabad (1973).
[5] R.S. Mishra, "Structure on a differentiable
     manifold and their applications", Chandrama
     Prakashan, 50-A, Balrampur House, Allahabad
     (1984).
[6] S.B. Pandey and Lata Dasila," On General
     Differentiable Manifold". U. Scientist Phyl.
     Sciences, Vol.7, No. 2,147-152(1995).
[7] S.B. Pandey and Lata Dasila, "On Birecurrent
     General Differentiable Manifold". U. Scientist
     Phyl. Sciences, Vol.9, No.1, 1997.
[8] S.B. Pandey and Lata Bisht, "On HGF-Structure
     Manifold", International Academy of Phyl.
     Sciences, Vol.12, 2008, pp. 173-177.
[9] S.B. Pandey and Lata Dasila, "Pseudo
     Conformal n-Recurrent Manifold with KH-
     Structure", International Journal of Physical
     Sciences, Vol.20, No.2, 2008.
[10] S.B. Pandey, Meenakshi Pant and Savita Pantni,
     " On n-Recurrent HGF-Structure Metric



                                                                                                    1328 | P a g e

More Related Content

What's hot

A new class of a stable implicit schemes for treatment of stiff
A new class of a stable implicit schemes for treatment of stiffA new class of a stable implicit schemes for treatment of stiff
A new class of a stable implicit schemes for treatment of stiffAlexander Decker
 
Physics of Algorithms Talk
Physics of Algorithms TalkPhysics of Algorithms Talk
Physics of Algorithms Talkjasonj383
 
Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Rene Kotze
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
CVPR2010: Sparse Coding and Dictionary Learning for Image Analysis: Part 1: S...
CVPR2010: Sparse Coding and Dictionary Learning for Image Analysis: Part 1: S...CVPR2010: Sparse Coding and Dictionary Learning for Image Analysis: Part 1: S...
CVPR2010: Sparse Coding and Dictionary Learning for Image Analysis: Part 1: S...zukun
 
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"Rene Kotze
 
Bayesian regression models and treed Gaussian process models
Bayesian regression models and treed Gaussian process modelsBayesian regression models and treed Gaussian process models
Bayesian regression models and treed Gaussian process modelsTommaso Rigon
 
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Rene Kotze
 
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsVjekoslavKovac1
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureVjekoslavKovac1
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Rene Kotze
 
Norm-variation of bilinear averages
Norm-variation of bilinear averagesNorm-variation of bilinear averages
Norm-variation of bilinear averagesVjekoslavKovac1
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling SetsVjekoslavKovac1
 
H function and a problem related to a string
H function and a problem related to a stringH function and a problem related to a string
H function and a problem related to a stringAlexander Decker
 
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...Realizations, Differential Equations, Canonical Quantum Commutators And Infin...
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...vcuesta
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsVjekoslavKovac1
 
Stochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesStochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesRene Kotze
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 

What's hot (20)

A new class of a stable implicit schemes for treatment of stiff
A new class of a stable implicit schemes for treatment of stiffA new class of a stable implicit schemes for treatment of stiff
A new class of a stable implicit schemes for treatment of stiff
 
Physics of Algorithms Talk
Physics of Algorithms TalkPhysics of Algorithms Talk
Physics of Algorithms Talk
 
Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cube
 
CVPR2010: Sparse Coding and Dictionary Learning for Image Analysis: Part 1: S...
CVPR2010: Sparse Coding and Dictionary Learning for Image Analysis: Part 1: S...CVPR2010: Sparse Coding and Dictionary Learning for Image Analysis: Part 1: S...
CVPR2010: Sparse Coding and Dictionary Learning for Image Analysis: Part 1: S...
 
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
 
Bayesian regression models and treed Gaussian process models
Bayesian regression models and treed Gaussian process modelsBayesian regression models and treed Gaussian process models
Bayesian regression models and treed Gaussian process models
 
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
 
Norm-variation of bilinear averages
Norm-variation of bilinear averagesNorm-variation of bilinear averages
Norm-variation of bilinear averages
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling Sets
 
H function and a problem related to a string
H function and a problem related to a stringH function and a problem related to a string
H function and a problem related to a string
 
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...Realizations, Differential Equations, Canonical Quantum Commutators And Infin...
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Stochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesStochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat Spacetimes
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 

Viewers also liked

Construindo negócios Web 2.0 que apostam na Experiência do Usuário
Construindo negócios  Web 2.0 que apostam na  Experiência do UsuárioConstruindo negócios  Web 2.0 que apostam na  Experiência do Usuário
Construindo negócios Web 2.0 que apostam na Experiência do UsuárioUTFPR
 
Datorrena'04: ¿Qué pasará en Internet?
Datorrena'04: ¿Qué pasará en Internet?Datorrena'04: ¿Qué pasará en Internet?
Datorrena'04: ¿Qué pasará en Internet?Mentxu Ramilo Araujo
 
Pousada Praia Dos Ingleses
Pousada Praia Dos InglesesPousada Praia Dos Ingleses
Pousada Praia Dos Inglesesinvestimoveis
 
Volta ao Mundo
Volta ao MundoVolta ao Mundo
Volta ao Mundoatilahab
 
Temetica telecomunicaciones
Temetica telecomunicacionesTemetica telecomunicaciones
Temetica telecomunicacionesFDY2010
 
Investigación Cualitativa
Investigación CualitativaInvestigación Cualitativa
Investigación CualitativaPavel Vargas
 
Acidente Vascular Cerebral
Acidente Vascular CerebralAcidente Vascular Cerebral
Acidente Vascular Cerebralatilahab
 

Viewers also liked (20)

Ej31898902
Ej31898902Ej31898902
Ej31898902
 
Da Vinci
Da VinciDa Vinci
Da Vinci
 
Tendências 2013
Tendências 2013Tendências 2013
Tendências 2013
 
Estojos Natura Dia das Maes 2008
Estojos Natura Dia das Maes 2008Estojos Natura Dia das Maes 2008
Estojos Natura Dia das Maes 2008
 
O Inverno
O InvernoO Inverno
O Inverno
 
Depresión
DepresiónDepresión
Depresión
 
Construindo negócios Web 2.0 que apostam na Experiência do Usuário
Construindo negócios  Web 2.0 que apostam na  Experiência do UsuárioConstruindo negócios  Web 2.0 que apostam na  Experiência do Usuário
Construindo negócios Web 2.0 que apostam na Experiência do Usuário
 
Datorrena'04: ¿Qué pasará en Internet?
Datorrena'04: ¿Qué pasará en Internet?Datorrena'04: ¿Qué pasará en Internet?
Datorrena'04: ¿Qué pasará en Internet?
 
Tropicalismo
TropicalismoTropicalismo
Tropicalismo
 
Feliz 2008
Feliz 2008Feliz 2008
Feliz 2008
 
Pousada Praia Dos Ingleses
Pousada Praia Dos InglesesPousada Praia Dos Ingleses
Pousada Praia Dos Ingleses
 
Agenda simposio ar
Agenda   simposio arAgenda   simposio ar
Agenda simposio ar
 
Volta ao Mundo
Volta ao MundoVolta ao Mundo
Volta ao Mundo
 
Temetica telecomunicaciones
Temetica telecomunicacionesTemetica telecomunicaciones
Temetica telecomunicaciones
 
El Tour
El TourEl Tour
El Tour
 
No renuncies
No renunciesNo renuncies
No renuncies
 
Investigación Cualitativa
Investigación CualitativaInvestigación Cualitativa
Investigación Cualitativa
 
Besos[1]...
Besos[1]...Besos[1]...
Besos[1]...
 
Acidente Vascular Cerebral
Acidente Vascular CerebralAcidente Vascular Cerebral
Acidente Vascular Cerebral
 
Fotos Praia Carcavelos
Fotos Praia CarcavelosFotos Praia Carcavelos
Fotos Praia Carcavelos
 

Similar to Gp2613231328

International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)inventionjournals
 
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive ConditionsOn Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive Conditionsresearchinventy
 
An introduction to quantum stochastic calculus
An introduction to quantum stochastic calculusAn introduction to quantum stochastic calculus
An introduction to quantum stochastic calculusSpringer
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integralsTarun Gehlot
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integralsTarun Gehlot
 
Notes on (T, S)-Intuitionistic Fuzzy Subhemirings of a Hemiring
Notes on (T, S)-Intuitionistic Fuzzy Subhemirings of a HemiringNotes on (T, S)-Intuitionistic Fuzzy Subhemirings of a Hemiring
Notes on (T, S)-Intuitionistic Fuzzy Subhemirings of a HemiringIRJET Journal
 
An application if ivfss in med dignosis
An application if ivfss in med dignosisAn application if ivfss in med dignosis
An application if ivfss in med dignosisjobishvd
 
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docxFINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docxvoversbyobersby
 
A unique common fixed point theorem for four
A unique common fixed point theorem for fourA unique common fixed point theorem for four
A unique common fixed point theorem for fourAlexander Decker
 
Redundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsRedundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsSpringer
 
A common fixed point theorem for compatible mapping
A common fixed point theorem for compatible mappingA common fixed point theorem for compatible mapping
A common fixed point theorem for compatible mappingAlexander Decker
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
New Mathematical Tools for the Financial Sector
New Mathematical Tools for the Financial SectorNew Mathematical Tools for the Financial Sector
New Mathematical Tools for the Financial SectorSSA KPI
 
Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Markettomoyukiichiba
 

Similar to Gp2613231328 (20)

International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive ConditionsOn Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
 
An introduction to quantum stochastic calculus
An introduction to quantum stochastic calculusAn introduction to quantum stochastic calculus
An introduction to quantum stochastic calculus
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integrals
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integrals
 
Notes on (T, S)-Intuitionistic Fuzzy Subhemirings of a Hemiring
Notes on (T, S)-Intuitionistic Fuzzy Subhemirings of a HemiringNotes on (T, S)-Intuitionistic Fuzzy Subhemirings of a Hemiring
Notes on (T, S)-Intuitionistic Fuzzy Subhemirings of a Hemiring
 
Surfaces quadric
Surfaces quadricSurfaces quadric
Surfaces quadric
 
An application if ivfss in med dignosis
An application if ivfss in med dignosisAn application if ivfss in med dignosis
An application if ivfss in med dignosis
 
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docxFINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
 
A unique common fixed point theorem for four
A unique common fixed point theorem for fourA unique common fixed point theorem for four
A unique common fixed point theorem for four
 
Antenna parameters
Antenna parametersAntenna parameters
Antenna parameters
 
Redundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsRedundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systems
 
A common fixed point theorem for compatible mapping
A common fixed point theorem for compatible mappingA common fixed point theorem for compatible mapping
A common fixed point theorem for compatible mapping
 
I1076166
I1076166I1076166
I1076166
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Talk spinoam photon
Talk spinoam photonTalk spinoam photon
Talk spinoam photon
 
New Mathematical Tools for the Financial Sector
New Mathematical Tools for the Financial SectorNew Mathematical Tools for the Financial Sector
New Mathematical Tools for the Financial Sector
 
International Journal of Engineering Inventions (IJEI),
International Journal of Engineering Inventions (IJEI), International Journal of Engineering Inventions (IJEI),
International Journal of Engineering Inventions (IJEI),
 
Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Market
 
Asymptotic Analysis
Asymptotic  AnalysisAsymptotic  Analysis
Asymptotic Analysis
 

Gp2613231328

  • 1. Lata Bisht, Sandhana Shanker/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue6, November- December 2012, pp.1323-1328 On Recurrent Hsu-Structure Manifold Lata Bisht * And Sandhana Shanker ** HOD, Department of Applied Science, BTKIT, Dwarahat, Almora, Uttarakhand, India-263653 ** Assist. Prof., Department of Applied Science, BTKIT, Dwarahat, Almora, Uttarakhand, India- 263653 ABSTRACT In this Paper, we have defined recurrence Then { , g} is said to give to Vn - metric Hsu- and symmetry of different kinds in Hsu-structure structure and Vn is called a metric Hsu-structure manifold. Some theorems establishing relationship manifold. between different kinds of recurrent Hsu- The curvature tensor K, a vector -valued tri-linear structure manifold have been stated and proved. function w.r.t. the connexion D is given by Furthermore, theorems on different kinds of recurrent and symmetric Hsu-structure manifold K ( X , Y , Z )  D X DY Z  DY D X Z  D[ X ,Y ] Z , involving equivalent conditions with respect to (1.3) various curvature tensors have also been where discussed. Keywords : Hsu-structure manifold , Curvature [ X , Y ]  DX Y  DY X . tensor ,Recurrent Parameter. The Ricci tensor in Vn is given by Ric (Y , Z )  (C1 K )(Y , Z ). 1 I. INTRODUCTION If on an even dimensional manifold Vn, n (1.4) = 2m of differentiability class C∞, there exists a 1 where by (C1 K )(Y , Z ) , we mean the contraction of vector valued real linear function  , satisfying K ( X ,Y , Z ) with respect to first slot.  2  ar In , For Ricci tensor, we also have (1.1)a X  a X , for arbitrary vector field X. r (1.1)b Ric(Y , Z )  Ric(Z ,Y ), (1.5)a Where X  X , 0 ≤ r ≤ n and 'r' is an integer and Ric(Y , Z )  g (r (Y ), Z )  g (Y , r (Z )), (1.5)b ' a ' is a real or imaginary number. (C1 r )  R. 1 Then {  } is said to give to Vn a Hsu-structure defined by the equations (1.1) and the manifold Vn is (1.5)c called a Hsu-structure manifold. The equation (1.1)a gives different structure for Let W, C, L and V be the Projective, conformal, different values of ' a ' and 'r'. conharmonic and concircular curvature tensors respectively given by If r  0 , it is an almost product structure. 1 W ( X ,Y , Z )  K ( X ,Y , Z )  [ Ric(Y , Z ) X  If a  0 , it is an almost tangent structure. (n  1) If r  1 and a  1 , it is an almost product structure. Ric( X , Z )Y ]. If r  1 and a  1 , it is an almost complex (1.6) structure. If r =2 then it is a GF-structure which includes C  X ,Y , Z   K  X ,Y , Z   RicY , Z X  π-structure for a  0 , 1 an almost complex structure for a  i , n2 an almost product structure for a  1 , an almost tangent structure for a  0 . Ric X , Z Y  g Y , Z r ( X )  g  X , Z r (Y )}  Let the Hsu-structure be endowed with a metric R [ g (Y , Z ) X  g ( X , Z )Y ]. tensor g, such that g ( X , Y )  a g ( X , Y )  0 (n  1)( n  2) r (1.2) (1.7) 1323 | P a g e
  • 2. Lata Bisht, Sandhana Shanker/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue6, November- December 2012, pp.1323-1328 1 L( X , Y , Z )  K ( X , Y , Z )  [ Ric(Y , Z ) X  or equivalently (n  2) Ric( X , Z )Y  g ( X , Z )r (Y )  g (Y , Z )r ( X )].       a r P X , Y , Z , T1  P X ,  Y ,T1 , Z  (1.8) a P  X , T , Y , Z   a AT P X , Y , Z  . r 1 r 1 (2.2)b R V ( X ,Y , Z )  K ( X ,Y , Z )  [ g (Y , Z ) X  n(n  1) Definition (2.3): A Hsu-structure manifold is said to be (123)-recurrent in P, if g ( X , Z )Y ].     a r P X , Y , Z , T1  P   X , T1 , Y , Z    (1.9) A manifold is said to be recurrent, if    a r P X ,  Y , T1 , Z  a r P X , Y ,  Z , T1   (K )( X , Y , Z , T )  A(T1 ) K ( X , Y , Z ). (1.10)  a AT P X , Y , Z  , r 1 (2.3)a The recurrent manifold is said to be symmetric, if A(T1 )  0, in the equation (1.10). or equivalently     The manifold is said to be Ricci-recurrent, if a r P X , Y , Z , T1  a r P   X , T1 , Y , Z  (Ric)(Y , Z , T )  A(T1 ) Ric(Y , Z ), (1.11)a      P X ,   Y , T1 , Z  a P X , Y ,  Z , T1  r  or (r )(Y , T )  A(T1 )r (Y ),   a r AT1 P X , Y , Z ,  (1.11)b (2.3)b or or equivalently (R)(T )  A(T1 ) R. (1.11)c    a r P X , Y , Z , T1  a r P   X , T1 , Y , Z  .  The Ricci-recurrent manifold is said to be symmetric,    a P X ,  Y , T1 , Z  P X , Y ,   Z , T1 r    a AT P X , Y , Z  . if r A(T1 )  0, in equation (1.11). 1 (2.3)c Note: Similarly (2), (3), (4), (23), (24), (13), (14), II. RECURRENCE AND SYMMETRY OF (34), (124), (134), (234), and (1234) recurrence in P DIFFERENT KINDS: can also be defined. Let P, a vector-valued tri-linear function, be any one of the curvature tensors K, W, C, L or V. Definition (2.4): A Hsu-structure manifold is said to Then we will define recurrence of different kinds as be Ricci-(1)-recurrent, if follows:  a r Ric Y , Z , T1   Ric   Y , T1 , Z .    Definition (2.1): A Hsu-structure manifold is said to  a r AT1 RicY , Z , T1  . be (1) - recurrent in P, if   a r P X , Y , Z , T1   P   X ,T1 , Y , Z   (2.4)  a r AT1 P X , Y , Z . Note: Similarly Ricci-(2)-recurrent can also be defined. (2.1) Definition (2.5): A recurrent Hsu-structure manifold Where A(T1 ) is a non-vanishing C∞ function. is said to be P-symmetric and Ricci-symmetric Definition (2.2): A Hsu-structure manifold is said to   if A T1  0 . be (12)- recurrent in P, if     a r P X , Y , Z , T1  P   X ,T1 , Y , Z    Theorem (2.1): A P-(1)-recurrent Hsu-structure a P X ,  Y , T1 , Z   a AT1 P X , Y , Z , r r   manifold is P-(2)-recurrent Hsu-structure manifold for the same recurrence parameter iff (2.2)a 1324 | P a g e
  • 3. Lata Bisht, Sandhana Shanker/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue6, November- December 2012, pp.1323-1328      P   X , T1 , Y , Z  P X ,   Y , T1 , Z .      a r AT1 P X , Y , Z .  (2.5) (2.10) Necessary condition: If P-(1)-recurrent Hsu- If the manifold is P-(12)-recurrent then from equation structure manifold is P-(2)-recurrent Hsu-structure (2.2)a, we have manifold then     a r P X , Y , Z , T1  P   X , T1 , Y , Z    r  a P X , Y , Z , T1   P   X , T1 , Y , Z     a P X ,  Y , T1 , Z   a AT1 P X , Y , Z . r r   a r AT1 P X , Y , Z   a r P X , Y , Z , T1   (2.11)     P X ,   Y , T1 , Z  a r AT1 P X , Y , Z  . Using equation (2.9) in equation (2.11) , we get the  P  X , T , Y , Z   P X ,  Y , T , Z  . equation (2.10). Hence the theorem. 1 1 Note: Similarly it can shown that a P-(12)-recurrent Sufficient condition: Hsu-structure manifold is P-(2)-recurrent for the If P  X , T , Y , Z   P X ,  Y , T , Z , same recurrence parameter, provided a r P  X , T1 , Y , Z   0. 1 1 then P-(1)-recurrent Hsu-structure manifold is P-(2)- recurrent Hsu-structure manifold. (2.12) Note: Similarly a P-(1)-recurrent Hsu-structure Theorem (2.4): A P-(123)-recurrent Hsu-structure manifold is P-(3)-recurrent Hsu-structure manifold manifold is P-(1)-recurrent for the same recurrence parameter, provided     for the same recurrence parameter iff      P   X , T1 , Y , Z  P X , Y ,   Z , T1 ,   a r P X ,  Y , T1 , Z  a r P X , Y ,  Z , T1   0. (2.6) (2.13) and Proof: Barring Y and Z in equation (2.1), we get       A P-(2)-recurrent Hsu-structure manifold is P-(3)- recurrent Hsu-structure manifold for the same a r P X , Y , Z , T1  P   X , T1 , Y , Z recurrence parameter iff      P X ,   Y , T1 , Z  P X , Y ,   Z , T1 .   r   a AT1 P X , Y , Z .  (2.14) (2.7) In equation (2.3)a if Theorem (2.2): A Ricci-(1)-recurrent Hsu-structure manifold is Ricci-(2)-recurrent Hsu-structure    a r P X ,  Y , T1 , Z  a r P X , Y ,  Z , T1   0  manifold for the same recurrence parameter iff, .     Ric   Y , T1 , Z  Ric Y ,   Z , T1 .    Then we get the equation (2.14). Hence the theorem. Note: Similarly we can prove that a P-(123)-recurrent Necessary condition: If Ricci-(1)-recurrent Hsu- Hsu-structure manifold is P-(2)-recurrent, structure manifold is Ricci-(2)-recurrent Hsu- if structure manifold then a r Ric Y , Z , T1   Ric   Y , T1 , Z         a r P   X , T1 , Y , Z  a r P X , Y ,  Z , T1   0,  a r AT1 RicY , Z   a r RicY , Z , T1   and P-(3)-recurrent , if    Ric Y ,   Z , T1  a r AT1 RicY , Z  . r   r  a P   X , T1 , Y , Z  a P X ,  Y , T1 , Z  0   Ric  Y , T , Z   Ric Y ,  Z , T  . , 1 1 for the same recurrence parameter. Sufficient condition: Theorem (2.5): A P-(123)-recurrent Hsu-structure If Ric  Y , T , Z   Ric Y ,  Z , T  , manifold is P-(12)-recurrent for the same recurrence 1 1 parameter, provided (2.8) then Ricci-(1)-recurrent Hsu-structure manifold is  a r P X , Y ,  Z , T1   0.  Ricci-(2)-recurrent Hsu-structure manifold. (2.15) Proof: Barring Z in equation (2.2)a , we get       Theorem (2.3): A P-(12)-Recurrent Hsu-structure manifold is P-(1)-recurrent for the same recurrence a r P X , Y , Z , T1  P   X , T1 , Y , Z  a P X ,  Y , T , Z   a AT P X , Y , Z  parameter, provided r r P X ,  Y , T1 , Z   0. r 1 1 . a (2.16) (2.9) Using equation (2.15) in equation (2.3)a , we get Proof: Barring Y in equation (2.1) , we get       equation(2.16). Hence the theorem. a r P X , Y , Z , T1  P   X , T1 , Y , Z Note: Similarly we can prove that P-(123)-recurrent Hsu structure manifold is P-(13)-recurrent  a r P X ,  Y , T1 Z  0,  1325 | P a g e
  • 4. Lata Bisht, Sandhana Shanker/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue6, November- December 2012, pp.1323-1328 and P-(23)-recurrent , if     V   X , T1 , Y , Z  a r AT1 V  X , Y , Z  .    a P   X , T1 , Y , Z  0, r (2.21) for the same recurrence parameter. If a (1)-recurrent Hsu-structure manifold is Theorem (2.6): In a (1)-recurrent Hsu-structure conformal-(1) - recurrent and conharmonic (1)- manifold, if any two of the following conditions hold recurrent for the same recurrence parameter then for the same recurrence parameter, then the third also from equation (2.21), we get holds: a) It is conformal (1)-recurrent,  a r V  X , Y , Z , T1   V   X , T1 , Y , Z    b) It is conharmonic (1)-recurrent,  a AT1 V  X , Y , Z  . r c) It is concircular (1)-recurrent. (2.22) Which shows, that the manifold is concircular-(1)- Proof: From equation (1.6), (1.7) and (1.8), we have recurrent. C  X , Y , Z   L X , Y , Z   K  X , Y , Z   n The proof of the remaining two cases follows similarly. n2 V  X , Y , Z . Theorem (2.7): In a (1)-symmetric Hsu-structure manifold, if any two of the following conditions hold (2.17) for the same recurrence parameter, then third also Barring X in equation (2.17) ,we get holds:     n  2 K X ,Y , Z  a) It is conformal (1)-symmetric, n C X ,Y , Z  L X ,Y , Z  b) It is conharmonic (1)-symmetric, c) It is concircular (1)-symmetric. V X , Y , Z  . Proof: The statement follows from the theorem (2.6) and definition (2.5). (2.18) Theorem (2.8): In a (12)-recurrent Hsu-structure Multiplying equation (2.18) by AT1  , barring X and manifold, if any two of the following conditions hold then using equation (1.1)a in the resulting equation, for the same recurrence parameter, then the third also we get holds: a r AT1 C  X , Y , Z   a r AT1 L X , Y , Z   a) It is conformal (12)-recurrent, b) It is conharmonic (12)-recurrent, na r AT1  K  X , Y , Z   V  X , Y , Z  . c) It is concircular (12)-recurrent. n  2 Proof: Barring X and Y in equation (2.17), we get (2.19) Differentiating equation (2.18) w.r.t. T1, using    C X ,Y , Z  L X ,Y , Z   n n2  K X ,Y , Z   equation (2.18) and then barring X in the resulting equation, we get  V X ,Y , Z .      a r C  X , Y , Z , T1   C   X , T1 , Y , Z  (2.23) Multiplying equation (2.23) by AT  , barring X a L X , Y , Z , T   L X , T , Y , Z   1 r 1 1 and then using equation (1.1)a in the resulting n n  2 a K  X ,Y , Z ,T   K  X ,T ,Y , Z  equation,Cwe get, Z   a AT LX ,Y , Z  r 1 a AT  X , Y 1 r 1 r 1 na AT1      r   a V  X , Y , Z , T1   V   X , T1 , Y , Z . r   n  2 K X ,Y , Z V X ,Y , Z . (2.20) (2.24) Subtracting equation (2.19) from (2.20) , we have   a r C  X , Y , Z , T1   C   X , T1 , Y , Z    Differentiating equation (2.23) w.r.t T1 , using equation (2.23) and then barring X in the resulting a AT C  X , Y , Z   a L X , Y , Z , T1   r r equation, we get     L   X , T1 , Y , Z  a r AT1 L X , Y , Z      a r C X , Y , Z , T1  C   X , T1 , Y , Z    a C  X ,  Y , T , Z   a LX , Y , Z , T   r r n n  2  a r K  X , Y , Z , T1   K   X , T1 , Y , Z    L X , T , Y , Z   a L X ,  Y , T , Z   1 1 r 1 1  a r AT1 K  X , Y , Z   a r V  X , Y , Z , T1   n n  2      a r K X , Y , Z , T1  K   X , T1 , Y , Z    1326 | P a g e
  • 5. Lata Bisht, Sandhana Shanker/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue6, November- December 2012, pp.1323-1328  a r K  X ,  Y , T1 , Z   a r V X , Y , Z , T1   Multiplying equation (2.28) by AT1  , barring X and then using equation (1.1)a in the resulting equation ,      we get V   X , T1 , Y , Z  a rV  X ,  Y , T1 , Z  .     a r AT1 C X , Y , Z  a r AT1 L X , Y , Z  na AT  (2.25) K X , Y , Z  V X , Y , Z . r Subtracting equation (2.24) from equation (2.25), we 1 get n  2     a r C X , Y , Z , T1  C   X , T1 , Y , Z    (2.29) a r C  X ,  Y , T1 , Z   a r AT1 C X , Y , Z    Differentiating equation (2.28) w.r.t T1 , using       a L X , Y , Z , T1  L   X , T1 , Y , Z  r equation (2.28) and then barring X in the resulting equation, we get a L X ,  Y , T , Z   a AT LX , Y , Z   r 1 r 1    a r C X , Y , Z , T1  C   X , T1 , Y , Z     n n  2 a K X ,Y , Z ,T  K   X ,T ,Y , Z  r 1 1   a r C X ,  Y , T1 , Z  a r C X , Y ,  Z , T1     a r K  X ,  Y , T1 , Z   a r A(T1 ) K X , Y , Z          a r L X , Y , Z , T1  L   X , T1 , Y , Z  a LX ,  Y , T , Z   a LX , Y ,  Z , T   r r       1 1 a r V X , Y , Z , T1  V   X , T1 , Y , Z  a V  X ,  Y , T , Z   a AT V X , Y , Z . r r n   a r K X , Y , Z , T1  K   X , T1 , Y , Z       n  2 1 1 (2.26) If a (12)-recurrent Hsu-structure manifold is conformal (12)-recurrent and conharmonic (12)- recurrent for the same recurrence parameter then   a r K X ,  Y , T1 , Z  a r K X , Y , Z , T1           from equation (2.26) , we get     a r V X , Y , Z , T1  V   X , T1 , Y , Z    a r V X , Y , Z , T1  V   X , T1 , Y , Z  a rV  X ,  Y , T1 , Z   a r AT1 V X , Y , Z   a V X ,  Y , T , Z   a V X , Y , Z , T  r 1 r 1 (2.27) . Which shows, that the manifold is concircular-(12)- (2.30) recurrent. Subtracting equation (2.29) from equation (2.30), we The proof of the remaining two cases follows get similarly. Theorem (2.9): In a (12)-symmetric Hsu-structure       a r C X , Y , Z , T1  C   X , T1 , Y , Z  manifold, if any two of the following conditions hold a C X ,  Y , T , Z   a C X , Y ,  Z , T   r 1 r 1 for the same recurrence parameter, then third also     holds: a) It is conformal (12)-symmetric, a r AT1 C X , Y , Z  a r L X , Y , Z , T1  L X , T , Y , Z   a LX ,  Y , T , Z   b) It is conharmonic (12)-symmetric, r c) It is concircular (12)-symmetric. 1 1 Proof: The statement follows from the theorem (2.8) and definition (2.5). Theorem (2.10): In a (123)-recurrent Hsu-structure   a r L X , Y ,  Z , T1   a r AT1 L X , Y , Z    manifold, if any two of the following conditions hold for the same recurrence parameter, then the third also n n  2   a r K X , Y , Z , T1  K   X , T1 , Y , Z       holds: a) It is conformal (123)-recurrent, b) It is conharmonic (123)-recurrent, c) It is concircular (123)-recurrent. Proof: Barring X, Y and Z in equation (2.17), we get   a r K X ,  Y , T1 , Z  a r K X , Y ,  Z , T1        C X ,Y , Z  L X ,Y , Z   n  2 K X ,Y , Z  n    a r A(T1 ) K X , Y , Z  a r V X , Y , Z , T1  V X , Y , Z . V  X , T , Y , Z   a V X ,  Y , T , Z   1 r 1 (2.28) 1327 | P a g e
  • 6. Lata Bisht, Sandhana Shanker/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue6, November- December 2012, pp.1323-1328    a r V X , Y ,  Z , T1   a r AT1 V X , Y , Z  Manifold", Journal of Tensor Society, Vol.23, 2009, pp. 79-104. . [11] U.C. De, N. Guha and D. Kamila, "On (2.31) Generalized Ricci recurrent manifolds", Tensor If a (123)-recurrent Hsu-structure manifold is (N.S.) (56), 1995, pp. 312-317. conformal (123)-recurrent and conharmonic (123)- recurrent for the same recurrence parameter then from equation (2.31), we get      a r V X , Y , Z , T1  V   X , T1 , Y , Z      a rV X ,  Y , T1 , Z  a rV X , Y ,  Z , T1      a r AT1 V X , Y , Z . (2.32) This shows, that the manifold is concircular (123)- recurrent Hsu-structure manifold. The proof of the remaining two cases follows similarly. Theorem (2.11): In a (123)-symmetric Hsu-structure manifold, if any two of the following conditions hold for the same recurrence parameter, then third also holds: a) It is conformal (123)-symmetric, b) It is conharmonic (123)-symmetric, c) It is concircular (123)-symmetric. Proof: The statement follows from the theorem (2.8) and definition (2.5). REFERENCES: [1] C.J. Hsu, "On some structure which are similar to quaternion structure", Tohoku Math. J., (12), 1960, pp. 403-428. [2] Q. Khan, "On recurrent Riemannian manifolds", Kuungpook Math. J., (44), 2004, pp. 269-276. [3] R.S. Mishra, S.B. Pandey and U. Sharma "Pseudo n-Recurrent Manifold with KH- Structure", Indian J. pure applied Mathematics, 7(10), 1974, pp. 1277-1287. [4] R.S. Mishra, "A course in tensors with applications to Riemannian Geometry", II edition Pothishala Pvt., Ltd. Allahabad (1973). [5] R.S. Mishra, "Structure on a differentiable manifold and their applications", Chandrama Prakashan, 50-A, Balrampur House, Allahabad (1984). [6] S.B. Pandey and Lata Dasila," On General Differentiable Manifold". U. Scientist Phyl. Sciences, Vol.7, No. 2,147-152(1995). [7] S.B. Pandey and Lata Dasila, "On Birecurrent General Differentiable Manifold". U. Scientist Phyl. Sciences, Vol.9, No.1, 1997. [8] S.B. Pandey and Lata Bisht, "On HGF-Structure Manifold", International Academy of Phyl. Sciences, Vol.12, 2008, pp. 173-177. [9] S.B. Pandey and Lata Dasila, "Pseudo Conformal n-Recurrent Manifold with KH- Structure", International Journal of Physical Sciences, Vol.20, No.2, 2008. [10] S.B. Pandey, Meenakshi Pant and Savita Pantni, " On n-Recurrent HGF-Structure Metric 1328 | P a g e