SlideShare a Scribd company logo
1 of 36
Firebird’s big databases Dmitry Kuzmenko, kdv@ib-aid.com IBSurgeon
Agenda What is a big Firebird database? 1 Terabyte (1024Gb) database test Real-world examples Our statistics for databases sizes growth Peculiarities of big databases maintenance Backup/restore approach Health checks for indices and data Automated maintenance with FBDataGuard Licensing changes in IBSurgeon No more “Personal” Focus on preventing corruptions, not fixing
What is a big Firebird database?
What is a big Firebird database? Pre-history 2005  IBSurgeon found 37 gigabytes per table limit in Firebird 1.0-1.5 and all InterBase version 2006 Firebird 2.0 fixes that limit, and introduces nbackup AVARDA (ERP) shows working with the 100gb database 2009 – IBSurgeon created 1 TB Firebird database http://www.ib-aid.com/articles/item104
What is a big Firebird database? Examples from our customers BAS-X, Australia, warehouse & ERP 200-450 GB, no BLOBs Watermark, UK, scanned documents and full-text search 300+ GBs, BLOBs Profitmed, Russia, medical distribution company 50 GB, no BLOBs  Avarda, Russia, ERP 100Gb, no BLOBs Megafon, Russian cell operator 50 GB, cell information storage, no BLOBs
Sizes of Firebird databases (IBSurgeon’s customers statistics)
Peculiarities of big databases maintenance
Usually Firebird database draws simply Firebird because it is believed as something simple.
Zero maintenance? Self-tuned in 90% cases Default firebird.conf is good enough Default database parameters: sweep, buffers, etc are good enough Page size 4096 is Ok Maintenance is simple Just make backup/restore Not true for big databases.
Big databases are hard to maintain Backup/restore cycle can take hours Depends on data density and HDD performance – numeric data are restored slowly Bad example - 1 hour to restore 3.6 GB database Good example – 12 hours to backup 450 Gb database Sweep takes from 30 minutes to 4 hours For 50Gb database gfix of the 37 GB database takes 1-2 hours Restore of 50 GB database takes 4 hours
Big database has high business requirements Profitmed ~450 concurrent users 50 gigabyte database with very intensive load, +1Gb/month 12 hours x 7 days work mode high availability requirements "warn us at least 5 minutes before crush“ Losses in case of 1 day stop ~$50000  Firebird 1.5 Classic 64 bit 64-bit CentOS Linux, 64Gb RAM, SCSI  ,[object Object]
Multi-user backup takes 2 hours
Restore takes 4 hours
nbackup is not available in Firebird 1.5, plain copy is used (with shutdown)
Sweep
only manual
from 30 minutes to 1 hour
2 times per day,[object Object]
Firebird detailsFiles structure delta - Main database file 0-level - Volume files Database file - delta (nbackup) andincremental backups Volume 1 Volume N - External tables
Firebird detailsInternal structure Metadata Data in tables Indices BLOBs
Key difference between small and big databases Small database – backup/restore and relax Just make backup/restore – it creates database from scratch and removes all problems Transaction issues and other problems does have time to grow between backup/restore cycles Big database – need to check and maintain in several steps…
Big database requires individual maintenance plan  Maintenance plan depends on size of database and work mode (8x5, 24x7) Backups scheme is not simple Perform test restores separately To be checked Errors – in firebird.log and run error checking quries on live database Metadata – check integrity  Metadata limits Data & BLOBs – walk through data, check segmentation Indices – check indices health Transactions – any gaps, garbage growth, other problems
Everyday minimal (!) maintenance plan for big database
Example of backup plan for big Firebird database Maintenance server Main server Firebird database Nbackup copy Checking restore Gbak-b And each step should be confirmed and reported.
What to monitor-1 Server and database errors Server and database availability Check all changes in firebird.log Check metadata Transactions Transaction markers monitoring (garbage problems) Limit (2 billions between backup/restore) Users Min/max/avg users
What to monitor-2 Database files Single volume and multi-volume Paths – where to stored (not at the same drive with temp files and backups!) Sizes and growth limits Delta-files (nbackup) Life-time and sizes Backup files Existence, sizes and growth limits
What to monitor-3 Temp files Firebird Overall size and quantity Number of formats per table No more than 255 Less formats in production Non-activated and deactivated indices Deactivated – explicitly deactivated (why deactivated?) Non-activated – indicates problems during restore
What to monitor-4 Periodical statistics (gstat) Firebird server version Latest patches are recommended Firebird installation size Firebird logs size and paths
Maintenance-1 Backups Revolver (days, week, month copies) backups Backup depth Checking restore (need to check results) Growth prognosis (if not enough space, backup should be canceled) Control backup time (too long backup indicates problems)
Maintenance-2 Indices Recalculate indices statistics Selected or excluded Check index status – active/in-active/non-activated Check physical index health
Maintenance-3 Validate database with gfix Don’t forget to shutdown database Analysis (includingfirebird.log) Metadata validation Check important system tables Firebird.log maintenance When log becomes very big, copy it to backup log files And some more things….
Your administrator definitely does all these steps…
…especially in remote offices.
And this is not enough! Business wants to have warranty  - even if hardware fails data should be recovered!
That’s why we created FBDATAguard
FBDataGuarddoes all above things… Watches database files, volumes, deltas, performs and checks backups in the right way Verifies metadata, data and indices Watches for errors, limits and wrong versions Sends alerts and recommendations

More Related Content

What's hot

RocksDB Performance and Reliability Practices
RocksDB Performance and Reliability PracticesRocksDB Performance and Reliability Practices
RocksDB Performance and Reliability PracticesYoshinori Matsunobu
 
RocksDB detail
RocksDB detailRocksDB detail
RocksDB detailMIJIN AN
 
Kafka High Availability in multi data center setup with floating Observers wi...
Kafka High Availability in multi data center setup with floating Observers wi...Kafka High Availability in multi data center setup with floating Observers wi...
Kafka High Availability in multi data center setup with floating Observers wi...HostedbyConfluent
 
Deep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache SparkDeep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache SparkDatabricks
 
Database Performance at Scale Masterclass: Driver Strategies by Piotr Sarna
Database Performance at Scale Masterclass: Driver Strategies by Piotr SarnaDatabase Performance at Scale Masterclass: Driver Strategies by Piotr Sarna
Database Performance at Scale Masterclass: Driver Strategies by Piotr SarnaScyllaDB
 
Optane DC Persistent Memory(DCPMM) 성능 테스트
Optane DC Persistent Memory(DCPMM) 성능 테스트Optane DC Persistent Memory(DCPMM) 성능 테스트
Optane DC Persistent Memory(DCPMM) 성능 테스트SANG WON PARK
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesDatabricks
 
How Pulsar Stores Your Data - Pulsar Summit NA 2021
How Pulsar Stores Your Data - Pulsar Summit NA 2021How Pulsar Stores Your Data - Pulsar Summit NA 2021
How Pulsar Stores Your Data - Pulsar Summit NA 2021StreamNative
 
Optimizing Hive Queries
Optimizing Hive QueriesOptimizing Hive Queries
Optimizing Hive QueriesOwen O'Malley
 
Faster, better, stronger: The new InnoDB
Faster, better, stronger: The new InnoDBFaster, better, stronger: The new InnoDB
Faster, better, stronger: The new InnoDBMariaDB plc
 
Db2 for z/OS and FlashCopy - Practical use cases (June 2019 Edition)
Db2 for z/OS and FlashCopy - Practical use cases (June 2019 Edition)Db2 for z/OS and FlashCopy - Practical use cases (June 2019 Edition)
Db2 for z/OS and FlashCopy - Practical use cases (June 2019 Edition)Florence Dubois
 
Cassandra serving netflix @ scale
Cassandra serving netflix @ scaleCassandra serving netflix @ scale
Cassandra serving netflix @ scaleVinay Kumar Chella
 
Performance Tuning RocksDB for Kafka Streams' State Stores (Dhruba Borthakur,...
Performance Tuning RocksDB for Kafka Streams' State Stores (Dhruba Borthakur,...Performance Tuning RocksDB for Kafka Streams' State Stores (Dhruba Borthakur,...
Performance Tuning RocksDB for Kafka Streams' State Stores (Dhruba Borthakur,...confluent
 
Kafka replication apachecon_2013
Kafka replication apachecon_2013Kafka replication apachecon_2013
Kafka replication apachecon_2013Jun Rao
 
Cassandra Operations at Netflix
Cassandra Operations at NetflixCassandra Operations at Netflix
Cassandra Operations at Netflixgreggulrich
 
Jvm & Garbage collection tuning for low latencies application
Jvm & Garbage collection tuning for low latencies applicationJvm & Garbage collection tuning for low latencies application
Jvm & Garbage collection tuning for low latencies applicationQuentin Ambard
 
Best practices for MySQL/MariaDB Server/Percona Server High Availability
Best practices for MySQL/MariaDB Server/Percona Server High AvailabilityBest practices for MySQL/MariaDB Server/Percona Server High Availability
Best practices for MySQL/MariaDB Server/Percona Server High AvailabilityColin Charles
 
Performance Tuning RocksDB for Kafka Streams’ State Stores
Performance Tuning RocksDB for Kafka Streams’ State StoresPerformance Tuning RocksDB for Kafka Streams’ State Stores
Performance Tuning RocksDB for Kafka Streams’ State Storesconfluent
 
Photon Technical Deep Dive: How to Think Vectorized
Photon Technical Deep Dive: How to Think VectorizedPhoton Technical Deep Dive: How to Think Vectorized
Photon Technical Deep Dive: How to Think VectorizedDatabricks
 

What's hot (20)

RocksDB Performance and Reliability Practices
RocksDB Performance and Reliability PracticesRocksDB Performance and Reliability Practices
RocksDB Performance and Reliability Practices
 
RocksDB detail
RocksDB detailRocksDB detail
RocksDB detail
 
Kafka High Availability in multi data center setup with floating Observers wi...
Kafka High Availability in multi data center setup with floating Observers wi...Kafka High Availability in multi data center setup with floating Observers wi...
Kafka High Availability in multi data center setup with floating Observers wi...
 
Deep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache SparkDeep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache Spark
 
Database Performance at Scale Masterclass: Driver Strategies by Piotr Sarna
Database Performance at Scale Masterclass: Driver Strategies by Piotr SarnaDatabase Performance at Scale Masterclass: Driver Strategies by Piotr Sarna
Database Performance at Scale Masterclass: Driver Strategies by Piotr Sarna
 
Optane DC Persistent Memory(DCPMM) 성능 테스트
Optane DC Persistent Memory(DCPMM) 성능 테스트Optane DC Persistent Memory(DCPMM) 성능 테스트
Optane DC Persistent Memory(DCPMM) 성능 테스트
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
 
How Pulsar Stores Your Data - Pulsar Summit NA 2021
How Pulsar Stores Your Data - Pulsar Summit NA 2021How Pulsar Stores Your Data - Pulsar Summit NA 2021
How Pulsar Stores Your Data - Pulsar Summit NA 2021
 
Optimizing Hive Queries
Optimizing Hive QueriesOptimizing Hive Queries
Optimizing Hive Queries
 
Faster, better, stronger: The new InnoDB
Faster, better, stronger: The new InnoDBFaster, better, stronger: The new InnoDB
Faster, better, stronger: The new InnoDB
 
Db2 for z/OS and FlashCopy - Practical use cases (June 2019 Edition)
Db2 for z/OS and FlashCopy - Practical use cases (June 2019 Edition)Db2 for z/OS and FlashCopy - Practical use cases (June 2019 Edition)
Db2 for z/OS and FlashCopy - Practical use cases (June 2019 Edition)
 
Cassandra serving netflix @ scale
Cassandra serving netflix @ scaleCassandra serving netflix @ scale
Cassandra serving netflix @ scale
 
Performance Tuning RocksDB for Kafka Streams' State Stores (Dhruba Borthakur,...
Performance Tuning RocksDB for Kafka Streams' State Stores (Dhruba Borthakur,...Performance Tuning RocksDB for Kafka Streams' State Stores (Dhruba Borthakur,...
Performance Tuning RocksDB for Kafka Streams' State Stores (Dhruba Borthakur,...
 
Kafka replication apachecon_2013
Kafka replication apachecon_2013Kafka replication apachecon_2013
Kafka replication apachecon_2013
 
Cassandra Operations at Netflix
Cassandra Operations at NetflixCassandra Operations at Netflix
Cassandra Operations at Netflix
 
Jvm & Garbage collection tuning for low latencies application
Jvm & Garbage collection tuning for low latencies applicationJvm & Garbage collection tuning for low latencies application
Jvm & Garbage collection tuning for low latencies application
 
Best practices for MySQL/MariaDB Server/Percona Server High Availability
Best practices for MySQL/MariaDB Server/Percona Server High AvailabilityBest practices for MySQL/MariaDB Server/Percona Server High Availability
Best practices for MySQL/MariaDB Server/Percona Server High Availability
 
Apache Spark Architecture
Apache Spark ArchitectureApache Spark Architecture
Apache Spark Architecture
 
Performance Tuning RocksDB for Kafka Streams’ State Stores
Performance Tuning RocksDB for Kafka Streams’ State StoresPerformance Tuning RocksDB for Kafka Streams’ State Stores
Performance Tuning RocksDB for Kafka Streams’ State Stores
 
Photon Technical Deep Dive: How to Think Vectorized
Photon Technical Deep Dive: How to Think VectorizedPhoton Technical Deep Dive: How to Think Vectorized
Photon Technical Deep Dive: How to Think Vectorized
 

Viewers also liked

Firebird recovery tools and techniques by IBSurgeon
Firebird recovery tools and techniques by IBSurgeonFirebird recovery tools and techniques by IBSurgeon
Firebird recovery tools and techniques by IBSurgeonAlexey Kovyazin
 
オープンソースRDBMS新機能ランダウンOSC2017TokyoSpring
オープンソースRDBMS新機能ランダウンOSC2017TokyoSpringオープンソースRDBMS新機能ランダウンOSC2017TokyoSpring
オープンソースRDBMS新機能ランダウンOSC2017TokyoSpringMeiji Kimura
 
Understandung Firebird optimizer, by Dmitry Yemanov (in English)
Understandung Firebird optimizer, by Dmitry Yemanov (in English)Understandung Firebird optimizer, by Dmitry Yemanov (in English)
Understandung Firebird optimizer, by Dmitry Yemanov (in English)Alexey Kovyazin
 

Viewers also liked (6)

Firebird recovery tools and techniques by IBSurgeon
Firebird recovery tools and techniques by IBSurgeonFirebird recovery tools and techniques by IBSurgeon
Firebird recovery tools and techniques by IBSurgeon
 
Firebird grupo3
Firebird grupo3Firebird grupo3
Firebird grupo3
 
Mer modelo entidad relación
Mer   modelo entidad relaciónMer   modelo entidad relación
Mer modelo entidad relación
 
オープンソースRDBMS新機能ランダウンOSC2017TokyoSpring
オープンソースRDBMS新機能ランダウンOSC2017TokyoSpringオープンソースRDBMS新機能ランダウンOSC2017TokyoSpring
オープンソースRDBMS新機能ランダウンOSC2017TokyoSpring
 
Firebird v2.1.4.installation guide
Firebird v2.1.4.installation guideFirebird v2.1.4.installation guide
Firebird v2.1.4.installation guide
 
Understandung Firebird optimizer, by Dmitry Yemanov (in English)
Understandung Firebird optimizer, by Dmitry Yemanov (in English)Understandung Firebird optimizer, by Dmitry Yemanov (in English)
Understandung Firebird optimizer, by Dmitry Yemanov (in English)
 

Similar to Firebird's Big Databases (in English)

Firebird Anti-Corruption Approach
Firebird Anti-Corruption ApproachFirebird Anti-Corruption Approach
Firebird Anti-Corruption ApproachAlexey Kovyazin
 
Firebird database recovery and protection for enterprises and ISV
Firebird database recovery and protection for enterprises and ISVFirebird database recovery and protection for enterprises and ISV
Firebird database recovery and protection for enterprises and ISVMind The Firebird
 
Health Check Your DB2 UDB For Z/OS System
Health Check Your DB2 UDB For Z/OS SystemHealth Check Your DB2 UDB For Z/OS System
Health Check Your DB2 UDB For Z/OS Systemsjreese
 
Geek Sync | Guide to Understanding and Monitoring Tempdb
Geek Sync | Guide to Understanding and Monitoring TempdbGeek Sync | Guide to Understanding and Monitoring Tempdb
Geek Sync | Guide to Understanding and Monitoring TempdbIDERA Software
 
Presentation backup and recovery best practices for very large databases (v...
Presentation   backup and recovery best practices for very large databases (v...Presentation   backup and recovery best practices for very large databases (v...
Presentation backup and recovery best practices for very large databases (v...xKinAnx
 
Firebird migration: from Firebird 1.5 to Firebird 2.5
Firebird migration: from Firebird 1.5 to Firebird 2.5Firebird migration: from Firebird 1.5 to Firebird 2.5
Firebird migration: from Firebird 1.5 to Firebird 2.5Alexey Kovyazin
 
Hoodie: Incremental processing on hadoop
Hoodie: Incremental processing on hadoopHoodie: Incremental processing on hadoop
Hoodie: Incremental processing on hadoopPrasanna Rajaperumal
 
Best Practices for Becoming an Exceptional Postgres DBA
Best Practices for Becoming an Exceptional Postgres DBA Best Practices for Becoming an Exceptional Postgres DBA
Best Practices for Becoming an Exceptional Postgres DBA EDB
 
Top 10 database optimization tips
Top 10 database optimization tipsTop 10 database optimization tips
Top 10 database optimization tipsraviwriter
 
MySQL enterprise backup overview
MySQL enterprise backup overviewMySQL enterprise backup overview
MySQL enterprise backup overview郁萍 王
 
BACKUP & RECOVERY IN DBMS
BACKUP & RECOVERY IN DBMSBACKUP & RECOVERY IN DBMS
BACKUP & RECOVERY IN DBMSBaivabiNayak
 
Oracle apps dba training dba technologies
Oracle apps dba training   dba technologiesOracle apps dba training   dba technologies
Oracle apps dba training dba technologiessanind88
 
Database Dumps and Backups
Database Dumps and BackupsDatabase Dumps and Backups
Database Dumps and BackupsEDB
 
Espc17 make your share point fly by tuning and optimising sql server
Espc17 make your share point  fly by tuning and optimising sql serverEspc17 make your share point  fly by tuning and optimising sql server
Espc17 make your share point fly by tuning and optimising sql serverIsabelle Van Campenhoudt
 
Make your SharePoint fly by tuning and optimizing SQL Server
Make your SharePoint  fly by tuning and optimizing SQL ServerMake your SharePoint  fly by tuning and optimizing SQL Server
Make your SharePoint fly by tuning and optimizing SQL Serverserge luca
 
VLDB Administration Strategies
VLDB Administration StrategiesVLDB Administration Strategies
VLDB Administration StrategiesMurilo Miranda
 

Similar to Firebird's Big Databases (in English) (20)

Firebird Anti-Corruption Approach
Firebird Anti-Corruption ApproachFirebird Anti-Corruption Approach
Firebird Anti-Corruption Approach
 
Firebird database recovery and protection for enterprises and ISV
Firebird database recovery and protection for enterprises and ISVFirebird database recovery and protection for enterprises and ISV
Firebird database recovery and protection for enterprises and ISV
 
Dba tuning
Dba tuningDba tuning
Dba tuning
 
Health Check Your DB2 UDB For Z/OS System
Health Check Your DB2 UDB For Z/OS SystemHealth Check Your DB2 UDB For Z/OS System
Health Check Your DB2 UDB For Z/OS System
 
Geek Sync | Guide to Understanding and Monitoring Tempdb
Geek Sync | Guide to Understanding and Monitoring TempdbGeek Sync | Guide to Understanding and Monitoring Tempdb
Geek Sync | Guide to Understanding and Monitoring Tempdb
 
Presentation backup and recovery best practices for very large databases (v...
Presentation   backup and recovery best practices for very large databases (v...Presentation   backup and recovery best practices for very large databases (v...
Presentation backup and recovery best practices for very large databases (v...
 
Exchange Server 2013 Database and Store Changes
Exchange Server 2013 Database and Store ChangesExchange Server 2013 Database and Store Changes
Exchange Server 2013 Database and Store Changes
 
Firebird migration: from Firebird 1.5 to Firebird 2.5
Firebird migration: from Firebird 1.5 to Firebird 2.5Firebird migration: from Firebird 1.5 to Firebird 2.5
Firebird migration: from Firebird 1.5 to Firebird 2.5
 
Hoodie: Incremental processing on hadoop
Hoodie: Incremental processing on hadoopHoodie: Incremental processing on hadoop
Hoodie: Incremental processing on hadoop
 
Galaxy Big Data with MariaDB
Galaxy Big Data with MariaDBGalaxy Big Data with MariaDB
Galaxy Big Data with MariaDB
 
Best Practices for Becoming an Exceptional Postgres DBA
Best Practices for Becoming an Exceptional Postgres DBA Best Practices for Becoming an Exceptional Postgres DBA
Best Practices for Becoming an Exceptional Postgres DBA
 
Top 10 database optimization tips
Top 10 database optimization tipsTop 10 database optimization tips
Top 10 database optimization tips
 
MySQL enterprise backup overview
MySQL enterprise backup overviewMySQL enterprise backup overview
MySQL enterprise backup overview
 
5 backuprecoveryw imp
5 backuprecoveryw imp5 backuprecoveryw imp
5 backuprecoveryw imp
 
BACKUP & RECOVERY IN DBMS
BACKUP & RECOVERY IN DBMSBACKUP & RECOVERY IN DBMS
BACKUP & RECOVERY IN DBMS
 
Oracle apps dba training dba technologies
Oracle apps dba training   dba technologiesOracle apps dba training   dba technologies
Oracle apps dba training dba technologies
 
Database Dumps and Backups
Database Dumps and BackupsDatabase Dumps and Backups
Database Dumps and Backups
 
Espc17 make your share point fly by tuning and optimising sql server
Espc17 make your share point  fly by tuning and optimising sql serverEspc17 make your share point  fly by tuning and optimising sql server
Espc17 make your share point fly by tuning and optimising sql server
 
Make your SharePoint fly by tuning and optimizing SQL Server
Make your SharePoint  fly by tuning and optimizing SQL ServerMake your SharePoint  fly by tuning and optimizing SQL Server
Make your SharePoint fly by tuning and optimizing SQL Server
 
VLDB Administration Strategies
VLDB Administration StrategiesVLDB Administration Strategies
VLDB Administration Strategies
 

More from Alexey Kovyazin

Fail-Safe Cluster for FirebirdSQL and something more
Fail-Safe Cluster for FirebirdSQL and something moreFail-Safe Cluster for FirebirdSQL and something more
Fail-Safe Cluster for FirebirdSQL and something moreAlexey Kovyazin
 
Новые возможности языка SQL в Firebird 3.0
Новые возможности языка SQL в Firebird 3.0Новые возможности языка SQL в Firebird 3.0
Новые возможности языка SQL в Firebird 3.0Alexey Kovyazin
 
Professional tools for Firebird optimization and maintenance from IBSurgeon
Professional tools for Firebird optimization and maintenance from IBSurgeonProfessional tools for Firebird optimization and maintenance from IBSurgeon
Professional tools for Firebird optimization and maintenance from IBSurgeonAlexey Kovyazin
 
Firebird migration: from Firebird 1.5 to Firebird 2.5
Firebird migration: from Firebird 1.5 to Firebird 2.5Firebird migration: from Firebird 1.5 to Firebird 2.5
Firebird migration: from Firebird 1.5 to Firebird 2.5Alexey Kovyazin
 
Firebird Dataguard (Russian)
Firebird Dataguard (Russian)Firebird Dataguard (Russian)
Firebird Dataguard (Russian)Alexey Kovyazin
 
Решения на базе СУБД Firebird в крупных компаниях и государственных учреждени...
Решения на базе СУБД Firebird в крупных компаниях и государственных учреждени...Решения на базе СУБД Firebird в крупных компаниях и государственных учреждени...
Решения на базе СУБД Firebird в крупных компаниях и государственных учреждени...Alexey Kovyazin
 
Firebird DataGuard - Еще раз об уверенности в завтрашнем дне
Firebird DataGuard -  Еще раз об уверенности в завтрашнем днеFirebird DataGuard -  Еще раз об уверенности в завтрашнем дне
Firebird DataGuard - Еще раз об уверенности в завтрашнем днеAlexey Kovyazin
 
Firebird usage promo draft
Firebird usage promo draftFirebird usage promo draft
Firebird usage promo draftAlexey Kovyazin
 
FBScanner: IBSurgeon's tool to solve all types of performance problems with F...
FBScanner: IBSurgeon's tool to solve all types of performance problems with F...FBScanner: IBSurgeon's tool to solve all types of performance problems with F...
FBScanner: IBSurgeon's tool to solve all types of performance problems with F...Alexey Kovyazin
 
Firebird 2.5 - вектор дальнейшего развития, Dmitry Yemanov, (in Russian)
Firebird 2.5 - вектор дальнейшего развития, Dmitry Yemanov, (in Russian)Firebird 2.5 - вектор дальнейшего развития, Dmitry Yemanov, (in Russian)
Firebird 2.5 - вектор дальнейшего развития, Dmitry Yemanov, (in Russian)Alexey Kovyazin
 
Firebird: cost-based optimization and statistics, by Dmitry Yemanov (in English)
Firebird: cost-based optimization and statistics, by Dmitry Yemanov (in English)Firebird: cost-based optimization and statistics, by Dmitry Yemanov (in English)
Firebird: cost-based optimization and statistics, by Dmitry Yemanov (in English)Alexey Kovyazin
 
СУБД Firebird: Краткий обзор, Дмитрий Еманов (in Russian)
СУБД Firebird: Краткий обзор, Дмитрий Еманов (in Russian)СУБД Firebird: Краткий обзор, Дмитрий Еманов (in Russian)
СУБД Firebird: Краткий обзор, Дмитрий Еманов (in Russian)Alexey Kovyazin
 
Open Source: взгляд изнутри, Дмитрий Еманов (The Firebird Project) (in Russian)
Open Source: взгляд изнутри, Дмитрий Еманов (The Firebird Project) (in Russian)Open Source: взгляд изнутри, Дмитрий Еманов (The Firebird Project) (in Russian)
Open Source: взгляд изнутри, Дмитрий Еманов (The Firebird Project) (in Russian)Alexey Kovyazin
 
Firebird Scalability, by Dmitry Yemanov (in English)
Firebird Scalability, by Dmitry Yemanov (in English)Firebird Scalability, by Dmitry Yemanov (in English)
Firebird Scalability, by Dmitry Yemanov (in English)Alexey Kovyazin
 
Firebird 2.1 What's New by Vladislav Khorsun (English)
Firebird 2.1 What's New by Vladislav Khorsun (English)Firebird 2.1 What's New by Vladislav Khorsun (English)
Firebird 2.1 What's New by Vladislav Khorsun (English)Alexey Kovyazin
 
Firebird: Универсальная СУБД. Краткая презентация на Интероп 2008, Дмитрий Ем...
Firebird: Универсальная СУБД. Краткая презентация на Интероп 2008, Дмитрий Ем...Firebird: Универсальная СУБД. Краткая презентация на Интероп 2008, Дмитрий Ем...
Firebird: Универсальная СУБД. Краткая презентация на Интероп 2008, Дмитрий Ем...Alexey Kovyazin
 
Firebird Roadmap-2006 Текущее состояние разработки и перспективы развития (in...
Firebird Roadmap-2006 Текущее состояние разработки и перспективы развития (in...Firebird Roadmap-2006 Текущее состояние разработки и перспективы развития (in...
Firebird Roadmap-2006 Текущее состояние разработки и перспективы развития (in...Alexey Kovyazin
 
Firebird в 2008: новые возможности и планы по дальнейшему развитию, by Дмитри...
Firebird в 2008: новые возможности и планы по дальнейшему развитию, by Дмитри...Firebird в 2008: новые возможности и планы по дальнейшему развитию, by Дмитри...
Firebird в 2008: новые возможности и планы по дальнейшему развитию, by Дмитри...Alexey Kovyazin
 
Firebird в 2008 году: эволюция или революция? (in Russian, by Dmitry Kuzmenko)
Firebird в 2008 году: эволюция или революция? (in Russian, by Dmitry Kuzmenko)Firebird в 2008 году: эволюция или революция? (in Russian, by Dmitry Kuzmenko)
Firebird в 2008 году: эволюция или революция? (in Russian, by Dmitry Kuzmenko)Alexey Kovyazin
 
Новые возможности Firebird 2.1 (in Russian, Vlad Khorsun)
Новые возможности Firebird 2.1 (in Russian, Vlad Khorsun)Новые возможности Firebird 2.1 (in Russian, Vlad Khorsun)
Новые возможности Firebird 2.1 (in Russian, Vlad Khorsun)Alexey Kovyazin
 

More from Alexey Kovyazin (20)

Fail-Safe Cluster for FirebirdSQL and something more
Fail-Safe Cluster for FirebirdSQL and something moreFail-Safe Cluster for FirebirdSQL and something more
Fail-Safe Cluster for FirebirdSQL and something more
 
Новые возможности языка SQL в Firebird 3.0
Новые возможности языка SQL в Firebird 3.0Новые возможности языка SQL в Firebird 3.0
Новые возможности языка SQL в Firebird 3.0
 
Professional tools for Firebird optimization and maintenance from IBSurgeon
Professional tools for Firebird optimization and maintenance from IBSurgeonProfessional tools for Firebird optimization and maintenance from IBSurgeon
Professional tools for Firebird optimization and maintenance from IBSurgeon
 
Firebird migration: from Firebird 1.5 to Firebird 2.5
Firebird migration: from Firebird 1.5 to Firebird 2.5Firebird migration: from Firebird 1.5 to Firebird 2.5
Firebird migration: from Firebird 1.5 to Firebird 2.5
 
Firebird Dataguard (Russian)
Firebird Dataguard (Russian)Firebird Dataguard (Russian)
Firebird Dataguard (Russian)
 
Решения на базе СУБД Firebird в крупных компаниях и государственных учреждени...
Решения на базе СУБД Firebird в крупных компаниях и государственных учреждени...Решения на базе СУБД Firebird в крупных компаниях и государственных учреждени...
Решения на базе СУБД Firebird в крупных компаниях и государственных учреждени...
 
Firebird DataGuard - Еще раз об уверенности в завтрашнем дне
Firebird DataGuard -  Еще раз об уверенности в завтрашнем днеFirebird DataGuard -  Еще раз об уверенности в завтрашнем дне
Firebird DataGuard - Еще раз об уверенности в завтрашнем дне
 
Firebird usage promo draft
Firebird usage promo draftFirebird usage promo draft
Firebird usage promo draft
 
FBScanner: IBSurgeon's tool to solve all types of performance problems with F...
FBScanner: IBSurgeon's tool to solve all types of performance problems with F...FBScanner: IBSurgeon's tool to solve all types of performance problems with F...
FBScanner: IBSurgeon's tool to solve all types of performance problems with F...
 
Firebird 2.5 - вектор дальнейшего развития, Dmitry Yemanov, (in Russian)
Firebird 2.5 - вектор дальнейшего развития, Dmitry Yemanov, (in Russian)Firebird 2.5 - вектор дальнейшего развития, Dmitry Yemanov, (in Russian)
Firebird 2.5 - вектор дальнейшего развития, Dmitry Yemanov, (in Russian)
 
Firebird: cost-based optimization and statistics, by Dmitry Yemanov (in English)
Firebird: cost-based optimization and statistics, by Dmitry Yemanov (in English)Firebird: cost-based optimization and statistics, by Dmitry Yemanov (in English)
Firebird: cost-based optimization and statistics, by Dmitry Yemanov (in English)
 
СУБД Firebird: Краткий обзор, Дмитрий Еманов (in Russian)
СУБД Firebird: Краткий обзор, Дмитрий Еманов (in Russian)СУБД Firebird: Краткий обзор, Дмитрий Еманов (in Russian)
СУБД Firebird: Краткий обзор, Дмитрий Еманов (in Russian)
 
Open Source: взгляд изнутри, Дмитрий Еманов (The Firebird Project) (in Russian)
Open Source: взгляд изнутри, Дмитрий Еманов (The Firebird Project) (in Russian)Open Source: взгляд изнутри, Дмитрий Еманов (The Firebird Project) (in Russian)
Open Source: взгляд изнутри, Дмитрий Еманов (The Firebird Project) (in Russian)
 
Firebird Scalability, by Dmitry Yemanov (in English)
Firebird Scalability, by Dmitry Yemanov (in English)Firebird Scalability, by Dmitry Yemanov (in English)
Firebird Scalability, by Dmitry Yemanov (in English)
 
Firebird 2.1 What's New by Vladislav Khorsun (English)
Firebird 2.1 What's New by Vladislav Khorsun (English)Firebird 2.1 What's New by Vladislav Khorsun (English)
Firebird 2.1 What's New by Vladislav Khorsun (English)
 
Firebird: Универсальная СУБД. Краткая презентация на Интероп 2008, Дмитрий Ем...
Firebird: Универсальная СУБД. Краткая презентация на Интероп 2008, Дмитрий Ем...Firebird: Универсальная СУБД. Краткая презентация на Интероп 2008, Дмитрий Ем...
Firebird: Универсальная СУБД. Краткая презентация на Интероп 2008, Дмитрий Ем...
 
Firebird Roadmap-2006 Текущее состояние разработки и перспективы развития (in...
Firebird Roadmap-2006 Текущее состояние разработки и перспективы развития (in...Firebird Roadmap-2006 Текущее состояние разработки и перспективы развития (in...
Firebird Roadmap-2006 Текущее состояние разработки и перспективы развития (in...
 
Firebird в 2008: новые возможности и планы по дальнейшему развитию, by Дмитри...
Firebird в 2008: новые возможности и планы по дальнейшему развитию, by Дмитри...Firebird в 2008: новые возможности и планы по дальнейшему развитию, by Дмитри...
Firebird в 2008: новые возможности и планы по дальнейшему развитию, by Дмитри...
 
Firebird в 2008 году: эволюция или революция? (in Russian, by Dmitry Kuzmenko)
Firebird в 2008 году: эволюция или революция? (in Russian, by Dmitry Kuzmenko)Firebird в 2008 году: эволюция или революция? (in Russian, by Dmitry Kuzmenko)
Firebird в 2008 году: эволюция или революция? (in Russian, by Dmitry Kuzmenko)
 
Новые возможности Firebird 2.1 (in Russian, Vlad Khorsun)
Новые возможности Firebird 2.1 (in Russian, Vlad Khorsun)Новые возможности Firebird 2.1 (in Russian, Vlad Khorsun)
Новые возможности Firebird 2.1 (in Russian, Vlad Khorsun)
 

Recently uploaded

Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate AgentsRyan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate AgentsRyan Mahoney
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????blackmambaettijean
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterMydbops
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 

Recently uploaded (20)

Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate AgentsRyan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL Router
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 

Firebird's Big Databases (in English)

  • 1. Firebird’s big databases Dmitry Kuzmenko, kdv@ib-aid.com IBSurgeon
  • 2. Agenda What is a big Firebird database? 1 Terabyte (1024Gb) database test Real-world examples Our statistics for databases sizes growth Peculiarities of big databases maintenance Backup/restore approach Health checks for indices and data Automated maintenance with FBDataGuard Licensing changes in IBSurgeon No more “Personal” Focus on preventing corruptions, not fixing
  • 3. What is a big Firebird database?
  • 4. What is a big Firebird database? Pre-history 2005 IBSurgeon found 37 gigabytes per table limit in Firebird 1.0-1.5 and all InterBase version 2006 Firebird 2.0 fixes that limit, and introduces nbackup AVARDA (ERP) shows working with the 100gb database 2009 – IBSurgeon created 1 TB Firebird database http://www.ib-aid.com/articles/item104
  • 5. What is a big Firebird database? Examples from our customers BAS-X, Australia, warehouse & ERP 200-450 GB, no BLOBs Watermark, UK, scanned documents and full-text search 300+ GBs, BLOBs Profitmed, Russia, medical distribution company 50 GB, no BLOBs Avarda, Russia, ERP 100Gb, no BLOBs Megafon, Russian cell operator 50 GB, cell information storage, no BLOBs
  • 6. Sizes of Firebird databases (IBSurgeon’s customers statistics)
  • 7. Peculiarities of big databases maintenance
  • 8. Usually Firebird database draws simply Firebird because it is believed as something simple.
  • 9. Zero maintenance? Self-tuned in 90% cases Default firebird.conf is good enough Default database parameters: sweep, buffers, etc are good enough Page size 4096 is Ok Maintenance is simple Just make backup/restore Not true for big databases.
  • 10. Big databases are hard to maintain Backup/restore cycle can take hours Depends on data density and HDD performance – numeric data are restored slowly Bad example - 1 hour to restore 3.6 GB database Good example – 12 hours to backup 450 Gb database Sweep takes from 30 minutes to 4 hours For 50Gb database gfix of the 37 GB database takes 1-2 hours Restore of 50 GB database takes 4 hours
  • 11.
  • 14. nbackup is not available in Firebird 1.5, plain copy is used (with shutdown)
  • 15. Sweep
  • 17. from 30 minutes to 1 hour
  • 18.
  • 19. Firebird detailsFiles structure delta - Main database file 0-level - Volume files Database file - delta (nbackup) andincremental backups Volume 1 Volume N - External tables
  • 20. Firebird detailsInternal structure Metadata Data in tables Indices BLOBs
  • 21. Key difference between small and big databases Small database – backup/restore and relax Just make backup/restore – it creates database from scratch and removes all problems Transaction issues and other problems does have time to grow between backup/restore cycles Big database – need to check and maintain in several steps…
  • 22. Big database requires individual maintenance plan Maintenance plan depends on size of database and work mode (8x5, 24x7) Backups scheme is not simple Perform test restores separately To be checked Errors – in firebird.log and run error checking quries on live database Metadata – check integrity Metadata limits Data & BLOBs – walk through data, check segmentation Indices – check indices health Transactions – any gaps, garbage growth, other problems
  • 23. Everyday minimal (!) maintenance plan for big database
  • 24. Example of backup plan for big Firebird database Maintenance server Main server Firebird database Nbackup copy Checking restore Gbak-b And each step should be confirmed and reported.
  • 25. What to monitor-1 Server and database errors Server and database availability Check all changes in firebird.log Check metadata Transactions Transaction markers monitoring (garbage problems) Limit (2 billions between backup/restore) Users Min/max/avg users
  • 26. What to monitor-2 Database files Single volume and multi-volume Paths – where to stored (not at the same drive with temp files and backups!) Sizes and growth limits Delta-files (nbackup) Life-time and sizes Backup files Existence, sizes and growth limits
  • 27. What to monitor-3 Temp files Firebird Overall size and quantity Number of formats per table No more than 255 Less formats in production Non-activated and deactivated indices Deactivated – explicitly deactivated (why deactivated?) Non-activated – indicates problems during restore
  • 28. What to monitor-4 Periodical statistics (gstat) Firebird server version Latest patches are recommended Firebird installation size Firebird logs size and paths
  • 29. Maintenance-1 Backups Revolver (days, week, month copies) backups Backup depth Checking restore (need to check results) Growth prognosis (if not enough space, backup should be canceled) Control backup time (too long backup indicates problems)
  • 30. Maintenance-2 Indices Recalculate indices statistics Selected or excluded Check index status – active/in-active/non-activated Check physical index health
  • 31. Maintenance-3 Validate database with gfix Don’t forget to shutdown database Analysis (includingfirebird.log) Metadata validation Check important system tables Firebird.log maintenance When log becomes very big, copy it to backup log files And some more things….
  • 32. Your administrator definitely does all these steps…
  • 33. …especially in remote offices.
  • 34. And this is not enough! Business wants to have warranty - even if hardware fails data should be recovered!
  • 35. That’s why we created FBDATAguard
  • 36. FBDataGuarddoes all above things… Watches database files, volumes, deltas, performs and checks backups in the right way Verifies metadata, data and indices Watches for errors, limits and wrong versions Sends alerts and recommendations
  • 37. And even more – protects from hardware failures FBDataGuard Extractor extracts data from corrupted database and inserts to the new Metadata repository New БД Tables data BLOBs
  • 38. Firebird DataGuard Watch for 26 important database and server parameters Alerts for potential and real problem by email Proper automation of database maintenance Windows, Linux, MacOS, Firebird 1.5-2.1 Special licensing for ISV (Independent Software Vendors) Firebird developers
  • 40. Why to change? Prevent corruptions instead of fixing It’s time to fight reasons, not consequences Wwronglicense understanding No more Personal Software-As-A-Service offer – 1 month and 1 instance
  • 41. Upgrade paths Pack Support 4.0 FirstAID Tech Support 3.0 Cancelled
  • 42. Only at FDD 2010