SlideShare a Scribd company logo
1 of 20
Download to read offline
http://www.iaeme.com/IJCIET/index.asp 11 editor@iaeme.com
International Journal of Civil Engineering and Technology (IJCIET)
Volume 10, Issue 03, March 2019, pp. 11–30, Article ID: IJCIET_10_03_002
Available online at http://www.iaeme.com/ijmet/issues.asp?JType=IJCIET&VType=10&IType=3
ISSN Print: 0976-6308 and ISSN Online: 0976-6316
© IAEME Publication Scopus Indexed
A NUMERICAL STUDY ON INTERFERENCE
EFFECTS OF CLOSELY SPACED STRIP
FOOTINGS ON SOILS
S. Anaswara, R. Shivashankar
Department of Civil Engineering
National Institute of Technology Karnataka, Surathkal, 575025, Karnataka, India
Hridya P
Department of Civil Engineering
Vimal Jyothi Engineering College, Chemperi, Kerala, India
ABSTRACT
Foundations of structures often need to be placed close to meet the architectural
as well as the functional requirements. In such cases, the combined action of footings
is different from a single footing. It causes interference of the stress zones. In the
present study, the interference effects of two closely spaced strip footings on the
surface of cohesive and cohesionless soils are being investigated. Parametric studies
are done for two footings by varying the spacing between the footings and the width of
the footings. The results are presented in terms of efficiency factors. In the first case,
both the footings are loaded simultaneously up to failure. In the second case, one of
the footings representing an already existing foundation is loaded with half of the
estimated failure load of isolated footing and adjacent footing loaded up to failure.
The effect of interference is observed to be particularly significant in terms of the
settlement. Effect of shear keys placed beneath the footings, at different locations
beneath the footing and the interference of such footings is also studied in case of stiff
clay. It is found that the presence of shear keys has a significant effect on the
interference between the footings, compared to without the shear keys, especially in
reducing the tilt of foundations.
Key words: Interference, Strip Footing, Settlement, Bearing capacity and Shear Key.
Cite this Article: S. Anaswara, R. Shivashankar and Hridya P, A Numerical Study on
Interference Effects of Closely Spaced Strip Footings on Soils, International Journal
of Civil Engineering and Technology 10(3), 2019, pp. 11–30.
http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=10&IType=3
1. INTRODUCTION
In recent times, due to rapid developmental activities and scarcity of land, especially in the
urban areas, demand for construction sites in good commercial areas are increasing at a rapid
rate. Land prices are soaring sky high. Land which is categorised as nonsuitable for
S. Anaswara, R. Shivashankar and Hridya P
http://www.iaeme.com/IJCIET/index.asp 12 editor@iaeme.com
construction also has to be utilised and made it suitable by any of the ground improvement
methods. Several structures are built close to each other, and hence their closely spaced
foundations often interfere with each other. The conventional methods of foundation design
assume that the foundations are in an isolated condition. However, in actual practice, footings
which are very close to each other are influencing and altering parameters such as settlement,
bearing pressure, failure mechanisms and tilting, are known as interfering footings. Therefore,
the study of the behaviour of closely spaced interacting footings is of paramount practical
importance in the field of sub-structural engineering to achieve economical designs.
Recognising the effects of interference and designing the footing accordingly also ensures
the safety of the structure. Newly constructed structures near to the old construction may
change the settlement, pressure and tilt characteristics of the old one and could lead to its
failure. Incorporating an additional element, such as shear key beneath the footing, reduces
the effects of interference considerably.
Importance of the interference effect of shallow foundations was first noticed by Stuart
[1]. Experimental and limit state method were used and an equation proposed for calculating
bearing capacity with the interference effect by the inclusion of efficiency factors. Das and
Larbi-Cherif [2] compared the model study results with previous studies and found out that
efficiency factor magnitudes are lower when S/B less than 3. Graham et al. [3] considered
three parallel strip footings and calculated efficiency factor as the ratio of failure load of the
central interfering footing to the capacity of a similar isolated footing. Efficiencies are highest
at close spacing and decreases until the footings act as independently. Kumar [4] studied the
interaction of footings resting on reinforced earth slab. In this study, he found that in case of
interfering footings resting on reinforced soil, the magnitude of settlement and tilt decreases
for a given load intensity as compared to the same footings on unreinforced soil for the same
load intensity. The tilt of the closely spaced foundation reinforced with geogrid was
considered for the first time by Kumar and Saran [5]. Lavasan et al. [6] calculated efficiency
factors of bearing capacity of interference footings for the practical range of friction angles.
Many of the researchers done laboratory experimental studies on interference effects [7-16].
From the literature, it has been noted that most of the studies have been carried out for two or
more interfering footings resting on the surface of cohesionless soil medium. Numerical
analyses are carried out to understand the effects of interference of two closely spaced strip
footings resting on both cohesionless soils and clay soils. Six different soil medium ranging
from stiff clay, medium stiff clay, soft clay, dense sand, medium dense sand, and loose sand
are considered. This detailed study of interference of six variety soils gives how much the soil
properties affect the interference effects.
2. METHODOLOGY
Numerical investigations are carried out with various soils and mainly focused on bearing
pressure, settlement and tilt characteristics. Strip footings are analysed in finite element 2D
software PLAXIS. The soil parameters assigned are shown in Table 1. Widths of footings
considered are 1m, 2m and 3m. Modulus of elasticity, E of concrete is taken as 25 x106
kN/m2
. The thickness of footing, d is taken as 0.75m and Poisson's ratio, υ is considered as
0.15. The geometry of interfering footings is shown in Figure 1.
A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils
http://www.iaeme.com/IJCIET/index.asp 13 editor@iaeme.com
Table 1 Material properties of soils [17]
Parameter Stiff clay
Medium stiff
clay
Soft clay Dense sand
Medium
dense sand
Loose sand
Material model Mohr-Coulomb
Mohr-
Coulomb
Mohr-
Coulomb
Mohr-
Coulomb
Mohr-
Coulomb
Mohr-
Coulomb
Material type Undrained Undrained Undrained Drained Drained Drained
Unsaturated unit
weight, γ
(kN/m3
)
18.4 17.2 16.0 19.1 18.2 17.4
Saturated unit
weight,
γsat (kN/m3
)
22.0 21.0 20.3 21.1 21.0 20.9
Young’s
modulus, E
(kN/m2
)
60000 30000 6000 50000 30000 15000
Poisson’s ratio,
υ
0.21 0.28 0.35 0.30 0.28 0.25
Cohesion, C
(kN/m2
)
80 50 20 0 0 0
Angle of
internal friction,
φ ( 0
)
0 0 0 40 35 30
Figure 1. The geometry of interfering footings
Considering single isolated foundation, the far domain in horizontal, x and vertical
downward, z directions are varied and the failure load compared with that calculated by IS
code method [18] (Table 2). For each soil, the process carried out and the farthest domain in x
and z directions have been obtained and are tabulated in Table 3.
Table 2 Comparison of ultimate bearing capacity (qu) from PLAXIS 2D and IS code method [18] for
various soils
Soil
Width of
footing (m)
Ultimate Bearing capacity
(qu) from IS code method
[18] (kN/m2
)
Ultimate bearing
capacity (qu ) from
PLAXIS 2D (kN/m2
)
Percentage
difference
Stiff clay
1 411.2 416 1.17
2 411.2 416 1.17
3 411.2 416 1.17
Medium stiff clay
1 257.0 260 1.15
2 257.0 260 1.15
3 257.0 260 1.15
Soft clay 1 102.8 104 1.15
S. Anaswara, R. Shivashankar and Hridya P
http://www.iaeme.com/IJCIET/index.asp 14 editor@iaeme.com
2 102.8 104 1.15
3 102.8 104 1.15
Dense sand
1 1044.8 711 31.30
2 2089.7 1393 33.30
3 3134.5 2107 32.70
Medium dense
sand
1 268.3 259 3.40
2 536.5 540 0.60
3 804.7 741 7.90
Loose sand
1 125.9 128 1.60
2 251.8 260 3.10
3 377.7 383 1.30
Table 3 Selected domain for different soil types
Soil x z
Stiff clay 2B 2B
Medium stiff clay 2B 2B
Soft clay 2B 2B
Dense sand 15B 15B
Medium dense sand 12B 12B
Loose sand 15B 15B
The Mohr-Coulomb failure criterion which is an elastic, perfectly plastic model is selected
for simplicity, practical importance and the availability of the parameters needed. Two equal
rigid strip footings 0.75 m thick spaced at clear spacing ‘S’ are placed on top of the soil. In all
analyses conducted in the present study, it is assumed that footings are located on the ground
surface on the soil. The groundwater condition is not taken into account. Effect of widths of
strip footings is studied by selecting three different widths of footings such as 1, 2 and 3m.
Plane strain condition with 15 noded triangular elements are used in the modelling. Footings
are modelled by plate elements. Horizontal and vertical displacements are restricted in the
bottom boundary. Vertical boundaries are restricted only in the horizontal direction, and the
top boundary is free in all the directions.
In the first case, both the footings are loaded simultaneously to failure at the same time. In
the second case, one of the footings representing an already existing foundation is loaded with
half of the failure load of isolated footing (Factor of safety is taken as 2) and adjacent footing
loaded up to failure. Clear spacing between the footings ‘S’ is varied from 0.5B, 1B, 1.5B,
2B, 2.5B and 3B. Clear spacing divided by the width of the footings are mentioned as a
spacing ratio, S/B. In this study, inner region midpoint between the two adjacent strip
footings is considered to study the characteristics of the interference effect. Overlapping of
stresses and tilts occur due to interference in the inner region. The settlement and stresses at
points a, b, c, d, e, and f, as shown in Figure.2, which are at depths 0B, 0.25B, 0.5B, 1B, 1.5B
and 2B respectively at the midway between the interfering footings are considered and
analysed. In the third case footings are provided with shear keys. A shear key having depths
(L) 0.25B, 0.5B and 1B beneath the footing and located at the inner edge and in the centre of
the footing are considered in the case of stiff clay, and the changes in settlement of the
footings are analysed for the points mentioned above (a, b, c, d, e, and f). The parameters
relevant to the shear keys are shown in Table 4.
A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils
http://www.iaeme.com/IJCIET/index.asp 15 editor@iaeme.com
Figure 2. Definition of problem
Table 4 Parameters of the shear key
Width of shear key, W (m) 0.75
Modulus of elasticity, E (kN/m2
) 25x106
Poisson’s ratio, υ 0.15
Depth of shear key, L (m) 0.25 B, 0.5B and 1B
3. RESULTS AND DISCUSSIONS
3.1. Both the Footings Loaded Simultaneously till Failure
Two parameters namely efficiency factor due to bearing pressure (ξγ) and efficiency factor
due to settlement (ξδ) are considered.
3.1.1. Efficiency factor due to bearing pressure (ξγ)
In order to study the interference effect of two closely spaced strip footings, efficiency factors
due to bearing pressure are determined from the load-settlement plots. Efficiency factor due to
bearing pressure (ξγ) is expressed in Equation 1 [13].
The footings are modelled to rest on soils and loaded up to the failure. The load at failure
is noted and compared regarding efficiency factor ξγ. Figure 3 shows the variation of
efficiency factor ξγ with spacing ratio S/B on various soils for footing width 1m, 2m and 3m
respectively. Efficiency factor greater than one indicates, improvement of bearing pressure
due to the adjacent footing, i.e., interference effect. The soil in between the footings is
stiffened due to loading on the footings and due to confinement effect. Efficiency factor of
one means that the footing bearing pressure is the same as that of isolated footing. Stiff clay,
medium stiff clay and soft clay show that the ultimate bearing pressure of interfering footings
compared to isolated footings is not very much different, and there is no significant
improvement in bearing capacity. In cohesionless soils, the variation of efficiency factor
shows the same trend for different footing widths. Maximum improvement regarding bearing
pressure occurred in the medium dense sand at S/B=2 (20% improvement in case of footing
width 1m, 15% in case of 2m wide footing and 11% in case of 3m wide footing respectively).
The efficiency factor shows a value of less than 1 for the spacing ratio of 2.5 in cohesionless
S. Anaswara, R. Shivashankar and Hridya P
http://www.iaeme.com/IJCIET/index.asp 16 editor@iaeme.com
soils except for medium dense sand. It shows the bearing pressure at a spacing ratio of 2.5 is
less than that of isolated footing. The percentage of decrease is only in a range of about 7%.
Figure 3. Variation of ξγ with S/B on soils for footing widths (a)B=1m (b) B=2m (c) B=3m
When the two footings are closely spaced (S<2.5B), the shear failure surfaces of each
footing intersects the shear failure surface of the adjacent footing and strikes beneath the
adjacent footing or strikes close to the adjacent footing. Therefore the footing requires larger
load to cause failure than when the footings act independently (as seen in Figure 4(a) in case
of medium stiff clay with S/B=1, in Figures 4(b) and 4(c) in case of stiff clay with S/B =0.5
and 1.0, Figure 4(d) in case of medium dense sand with S/B=0.5).
When the spacing is about 2 to 3B, the two shear failure surfaces emerge beyond the
edges of the footing in the area in between the two footings. Thus there will be two failure
surface emerging from the space in between. Therefore, there could be a reduction in the
efficiency factor (ξγ) (as seen in Figure 4(e) in case of medium stiff clay with S/B=2, in
Figure 4(f) in case of stiff clay with S/B=2 and Figures 4(g) and 4(h) in case of medium
A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils
http://www.iaeme.com/IJCIET/index.asp 17 editor@iaeme.com
dense sand with S/B=2.5 and 3 respectively). Since the soils in between footings are subject
to lateral confining pressures (due to the vertical loads on the footings), they can sustain larger
loads (or stresses) than the soils beneath a single independent footing. This is the reason for
getting higher efficiency factors (ξγ) in the case of two footings adjacent to each other.
Figure 4. Incremental deviatoric strain contours (a) medium stiff clay (S/B=2) (b) stiff clay (S/B=0.5)
(c) stiff clay (S/B=1)(d) medium dense sand (S/B=0.5) (e) medium stiff clay (S/B=2) (f) stiff clay
(S/B=2) (g) medium dense sand (S/B=2.5) (h) medium dense sand (S/B=3)
S. Anaswara, R. Shivashankar and Hridya P
http://www.iaeme.com/IJCIET/index.asp 18 editor@iaeme.com
3.1.2. Efficiency factor due to settlement (ξδ)
In order to study the interference effect of closely spaced strip footings, efficiency factors due
to the settlement are determined from the load-settlement plots; where the efficiency factor
due to settlement (ξδ) is expressed in Equation 2.
For the first loading case, i.e., both the footings are loaded simultaneously till failure, the
efficiency factors are determined and compared. The points considered in the analysis of
settlement are at the midway between the footings (Figure 2). For the second loading case,
i.e., the first footing is loaded with half the estimated failure load of isolated footing and the
second is loaded till failure. It can be seen that the efficiency factor (ξδ) is greater than 1
(signifying settlement of interfering footing is greater than the isolated footing) in most of the
cases. The efficiency factor is recorded the highest values at the surface point ‘a’ in most of
the spacing ratios. Figures 5-10 show the variation of the efficiency factor due to settlement
(ξδ) with respect to the spacing ratio for various footings widths with all the six soils.
Generally, the efficiency factor is highest in clays at S/B=1.5, except in the cases of medium
stiff clay and soft clay with footing width of 3 m and 1m respectively. The stresses are
maximum at the centre, in between the two footings, because of the overlapping of stress
zones when the S/B ratio is 1.5 in the case of clays. Efficiency factor of sands is recorded the
highest value at S/B=0.5, and a decreasing trend can be seen as spacing ratio increases.
Figure 5. Variation of efficiency factor (ξδ ) with S/B for stiff clay (a) B=1m (b) B=2m (c) B=3m
A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils
http://www.iaeme.com/IJCIET/index.asp 19 editor@iaeme.com
Figure 6. Variation of efficiency factor (ξδ ) with S/B for medium stiff clay (a) B=1m (b) B=2m (c)
B=3m
Figure 7. Variation of efficiency factor (ξδ ) with S/B for soft clay (a) B=1m (b) B=2m (c) B=3m
S. Anaswara, R. Shivashankar and Hridya P
http://www.iaeme.com/IJCIET/index.asp 20 editor@iaeme.com
Figure 8.Variation of efficiency factor (ξδ ) with S/B for dense sand (a) B=1m (b) B=2m (c) B=3m
Figure 9. Variation of efficiency factor (ξδ ) with S/B for medium dense sand (a) B=1m (b) B=2m (c) B=3m
A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils
http://www.iaeme.com/IJCIET/index.asp 21 editor@iaeme.com
Figure 10. Variation of efficiency factor (ξδ ) with S/B for loose sand (a) B=1m (b) B=2m (c) B=3m
3.1.3. Tilt of footings
Due to large stresses at any point between the footings (due to overlapping of stresses), there
is a non-uniform pressure distribution beneath the footings (Figures 12 to 14). There is an
increase in stresses from the outer edge of the footing to the inner edge. This causes an inward
tilt in the footings. The settlement also will not be uniform. The tilt of footing is expressed in
percentage for left footing is being analysed. Variation of tilt, in percentage, with respect to
the spacing ratio is plotted for various footing widths (Figure 11). In all the six soils, soft clay
provides maximum tilt for footing widths of 1m, 2m, and 3m. 7 % in footing width 1m,12%
in 2m and 14 % in 3m. It can be observed that the maximum tilt of footing occurs at a spacing
ratio of 1.5 in clays and loose sand. It is also observed that maximum tilt at left, as well as
right footing, occurs at a spacing ratio of 2 in the case of dense sand and medium dense sand.
(1.6 %, 3.2% and 4.8 % of dense sand at spacing ratio 2 for footing width 1m, 2m, and 3m).
It is noted that the magnitude of the tilt is proportional to the footing width.
S. Anaswara, R. Shivashankar and Hridya P
http://www.iaeme.com/IJCIET/index.asp 22 editor@iaeme.com
Figure 11. Variation of tilt of footing with S/B on soils with footing widths (a) B=1m (b) B=2m (c)
B=3m
3.1.4. Variation of settlement on a horizontal plane
Variation of settlement is studied on a horizontal plane. The study is done up to a distance 2B
from the outer end of footings on the horizontal plane. The study is carried out at different
horizontal levels like at the surface, 1B below the surface and 2B below the surface.
Maximum interference effect is observed at the surface.
Figure 12 shows the variation of settlement on a horizontal plane at the ground level for
footing width 1m on stiff clay. It is clear that the settlement shows the maximum value at a
spacing ratio of 1.5. Other footing widths (2m and 3m) also show a similar trend to that of
1m. The similar trend is seen in the case of medium stiff clay. Figure 13 shows the variation
of settlement in a horizontal plane at the ground level for footing width 1m on dense sand.
The settlement shows the maximum value at the spacing ratio of 0.5. Medium dense sand and
loose sand also follow a similar trend.
3.1.5. Variation of effective stress on a horizontal plane
Effective stresses on a horizontal plane for soils are significant on a horizontal plane 2B depth
from the ground surface. For all the six soils effective stresses are maximum noted for the
spacing ratio of 0.5 (Figures 14 and 15).
A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils
http://www.iaeme.com/IJCIET/index.asp 23 editor@iaeme.com
Figure 12. Variations of settlement on a horizontal plane at the ground level for B=1m on stiff clay
Figure 13. Variations of settlement in a horizontal direction at the ground level for B=1m on dense sand
Figure 14. Variation of effective normal stress on a horizontal plane at the depth 2B below the ground
surface for B=3 m in stiff clay
S. Anaswara, R. Shivashankar and Hridya P
http://www.iaeme.com/IJCIET/index.asp 24 editor@iaeme.com
Figure 15. Variation of effective normal stress on a horizontal plane at the depth 2B below the
ground surface for B=1 m in dense sand
3.2. One Footing Loaded With Half of the Estimated Failure Load of Isolated and
Adjacent Footing Loaded to Failure
3.2.1. Efficiency factor due to bearing pressure
Efficiency factor, ξγ is the ratio of failure load of the new footing to the failure load of isolated
footing. In this case, the old footing is loaded half of the failure load of isolated footing.
Variation of efficiency factor with spacing ratio plotted for various soils. Significant
variations of bearing pressure are not seen for clays. Maximum improvement is noted for
dense sand, medium dense sand and loose sand at the spacing ratio 1.5,1 and 1.5 respectively.
Various efficiency factor with the spacing ratio for various footing widths is plotted in Figure
16.
3.2.2. Variation of settlement
The settlement shows the highest values at the surface point (a) in most of the spacing ratios
for clay soils. The maximum settlement is observed for spacing ratio 1.5 for stiff, medium
stiff and soft clays. The settlement shows the highest values around 1B below the surface for
dense sand and around 0.5 B for medium dense sand and loose sand. Maximum settlement
obtained at the closer spacing for sand, i.e., spacing ratio 0.5.
3.2.3. Tilt of the footings
In cohesive soils, the tilt of existing/old footing adjacent to newly constructed footing is
negligible. In cohesionless soils, the maximum tilt value is observed at spacing ratio 0.5,
where footings are very close to each other (Figure 17).
3.2.4. Variation of settlement on a horizontal plane
Variation of settlement is determined on a horizontal plane. Interference effect in terms of the
settlement is maximum at the surface. Figure 18 shows the variation of settlement on a
horizontal plane at the ground level for footing width 1m on stiff clay.The maximum
settlement is recorded at the spacing ratio 2.5 for clay soils. Figure 19 shows the variation of
settlement in a horizontal direction at the ground level for footing width 1m on dense sand.
From this Figure 19, the settlement shows a slightly higher value at a spacing ratio of 1.5.
Other footing widths (2m and 3m) also show the similar trend as that of 1m.Moreover the
settlement in case 2 are not symmetric about the midpoint between the two footings unlike
case 1 where the settlement were somewhat symmetric.
A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils
http://www.iaeme.com/IJCIET/index.asp 25 editor@iaeme.com
Figure 16. Variations of efficiency factor (ξγ) with the spacing ratio for footing widths (a) B=1m (b)
B=2m (c) B=3m
S. Anaswara, R. Shivashankar and Hridya P
http://www.iaeme.com/IJCIET/index.asp 26 editor@iaeme.com
Figure 17. Variations of tilt of old footing in the presence of newly constructed footing with S/B on
soils with footing width (a) B=1m (b) B=2m (c) B=3m
Figure 18. Variations of settlement on a horizontal plane at the ground level for B=1m on stiff clay
A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils
http://www.iaeme.com/IJCIET/index.asp 27 editor@iaeme.com
Figure 19. Variations of settlement in a horizontal direction at the ground level for B=1m on dense
sand
3.3. Effect of shear key on interference
Shear keys are protrusions provided beneath the footings (Figure 20), generally provided to
give additional sliding resistance (especially to lateral loads). In the present study, shear keys
are contributed to be provided beneath footings to see if they made any difference to the
interference effects between the adjacent strip footings subjected to vertical loads. The
interference effects studied include those due to bearing pressure, due to settlement and on
tilts. Shear keys are considered to be provided with at the inner edge of footings and also at
the centre of the footings. A parametric study is carried out by varying the L/B ratio of the
shear key, where L is the depth of shear key and B is the width of the footing.
The effect of the shear key on the interference of footing is not significant regarding
bearing pressure. Figure 21 shows the variation of the settlement of footing when the shear
key is added to the footings for footings on stiff clay having B=1m, 2m, and 3m respectively
for a spacing ratio of 1.5. From the study, it is found that the settlement becomes less when
the shear key placed at the centre of the interfering footings at an L/B ratio of 0.25
irrespective of the footing width. For B=1m the settlement becomes 15% of the settlement of
footings without a shear key at the ground surface. In the case of B=2m and B=3m settlement
becomes almost 25% of footings without a shear key. The tilt of footing decreases drastically
when shear key included in the footing. The reduction in the tilt of footing is more than 90%
of the tilt of footing without a shear key( Table 5).
Figure 20. Footings with the shear key at the centre
B S B
S. Anaswara, R. Shivashankar and Hridya P
http://www.iaeme.com/IJCIET/index.asp 28 editor@iaeme.com
Figure 21. Variation of the settlement of footing with (placed at edge and centre of footing) and
without shear key on stiff clay for a spacing ratio of 1.5 with footing width (a) B=1 m (b) B=2m (c)
B=3m
A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils
http://www.iaeme.com/IJCIET/index.asp 29 editor@iaeme.com
Table 5 Variation of tilt with and without the shear key on footings for footings resting on stiff clay
Footing
width
Tilt (%)
Footings without
shear key
Footings with the shear key at
centre L/B=0.25
1 5.304 0.202
2 2.515 0.214
3 2.585 0.230
4. CONCLUSIONS
Finite element analysis is carried out on two adjacent strip footings on clays and sands, by
varying parameters, to study the interference effects. Interference effects are studied in terms
of bearing pressure, in terms of the settlement and finally tilt of footings. Two loading cases
are considered such as (i) both footings loaded simultaneously (ii) first footing (an existing/
old footing) is loaded with half estimated failure load and then the second (new) footing is
loaded up to failure. In the case of footings on stiff clay, the effect of providing shear keys
beneath footings is also studied. The analysis yield the following results:
 The effect of interference, regarding the efficiency factor for bearing pressure, in the case of
clays is negligible.
 The frictional soil between the footings is subjected to confinement due to the loading on the
footings and makes the soil in between stiffer and stronger. This is reflected in case of sands
with efficiency factor for bearing (ξγ) greater than one in almost all cases studied.
 Stresses in the area between the two footings will be large due to the overlapping effect.
Stresses on the inner edge of footing will be larger than outer edge resulting in an inward tilt
of the footings. Efficiency factor of settlement attains a clear peak value when the spacing
ratio is 1.5 for clays, whereas in the case of sands the peak value of efficiency factor is when
the spacing ratio is about 0.5.
 Maximum tilt in clays occurs when the spacing ratio is 1.5. In clays the tilt of old footing
(loading case ii) is negligible. Maximum tilt in sands occurs at a spacing ratio of about 0.5.
 The effect of the shear key on footings resting on stiff clay seems to be maximised when the
shear key is placed at the centre of the footing having an L/B ratio of 0.25.
 The settlement decreases drastically, compared to the interfered footings without a shear key
for the same conditions. Moreover, the reduction in the settlement is in the range of 75%.
 The tilt of footing on stiff clay reduces by the addition of shear key on footings. The reduction
is in a range of 90%.
REFERENCES
[1] Stuart, J. G. Interference between foundations, with special reference to surface footings
in sand.Geotechnique, 12(1), (1962), pp. 15-22.
[2] Das, B. M., and Larbi-Cherif, S. Bearing capacity of two closely-spaced shallow
foundations on sand. Soils and Foundations, 23(1), (1983).
[3] Graham, J., Raymond, G. P. and Suppiah, A Bearing capacity of three closely spaced
footings on sand. Geotechnique, 34(2), (1984), pp. 173-182.
S. Anaswara, R. Shivashankar and Hridya P
http://www.iaeme.com/IJCIET/index.asp 30 editor@iaeme.com
[4] Kumar, A. Interaction of footings resting on reinforced earth slab. Ph.D. Dissertation,
University of Roorkee. (1997).
[5] Kumar, A. and Saran, S. Closely Spaced Footings on Geogrid-Reinforced Sand. J.
Geotech. Geoenviron. Eng, 129 (7), (2003), pp. 660-664.
[6] Lavasan, A.A., Ghazavi, M., Blumenthal, A. V. and Schanz, T. Bearing capacity of
interfering strip footings. J. Geotech. Geoenviron. Eng.,144(3), (2018).
[7] West, J. M. and Stuart, J.G. Oblique loading resulting from interference between surface
footings on sand. Proc., 6th Int. Conf. On Soil Mechanics,2, Montreal, (1965),pp. 214–
217.
[8] Suppiah, A. Interference of three parallel surface strip footings on sand. M.S.Thesis,
Department of Civil Engineering, Winnipeg, Manitoba. (1981).
[9] Selvadurai, A. P. S. and Rabbaa, S.A.A. Some experimental studies concerning the
contact stresses beneath interfering rigid strip foundations resting on a granular
stratum.Canadian Geotechnical Journal ,20, (1983), pp. 406-415.
[10] Khan, I. N., Bohara, K. C., Ohri, M.L. and Singh, A. A study on interference of surface
model footings resting on sand. Journal- The Institution of Engineers, Malaysia, 67(1),
(2006).
[11] Kumar, J. and Bhoi, M. KInterference of two closely spaced strip footings on sand using
model tests. J. Geotech. Geoenviron. Eng., 135(4), (2009), pp. 595-604.
[12] Ghosh, P. and Kumar, P. Interference effect of two nearby strip footings on reinforced
sand. Contemporary Engineering Sciences, 2(12), (2009), pp. 577 – 592.
[13] Srinivasan, V. and Ghosh, P. Experimental investigation on interaction problem of two
nearby circular footings on layered cohesionless soil. Geomechanics And Geoengineering:
An International Journal, 8(2), (2013), pp. 97-106.
[14] Naderi, E. and Hataf, N. Model testing and numerical investigation of interference effect
of closely spaced ring and circular footings on reinforced sand.” Geotextiles and
Geomembranes, 42 , (2014), pp.191-200.
[15] Salamatpoor, S., Jafarian, Y. and Hajiannia, A. Bearing capacity and uneven settlement of
consecutively constructed adjacent footings rested on saturated sand using model
tests.International Journal of Civil Engineering, (2018), pp. 1-13.
[16] Gupta, A., and Sitharam, T. G. Experimental and numerical investigations on interference
of closely spaced square footings on sand. International Journal of Geotechnical
Engineering, (2018), pp. 1-9.
[17] Bowles, J. E. Foundation Analysis and Design, McGraw-Hill Book Co., New York, N.Y.,
3rd Ed. (1982).
[18] IS 6403: 1981 (Reaffirmed 2002) Indian Standard code of practice for determination of
breaking capacity of shallow foundations, BIS, New Delhi, pp.6-10.

More Related Content

What's hot

#02080327-27-Time History Analysis of Sym and Unsym building (1)
#02080327-27-Time History Analysis of Sym and Unsym building (1)#02080327-27-Time History Analysis of Sym and Unsym building (1)
#02080327-27-Time History Analysis of Sym and Unsym building (1)Vishruth Jain
 
Influence of stratified soil on seismic response of pile supported building
Influence of stratified soil on seismic response of pile supported buildingInfluence of stratified soil on seismic response of pile supported building
Influence of stratified soil on seismic response of pile supported buildingIJARIIT
 
Finite element analysis of frame with soil structure interaction
Finite element analysis of frame with soil structure interactionFinite element analysis of frame with soil structure interaction
Finite element analysis of frame with soil structure interactioneSAT Journals
 
EXPERIMENTAL STUDY ON COIR FIBRE REINFORCED FLY ASH BASED GEOPOLYMER CONCRETE...
EXPERIMENTAL STUDY ON COIR FIBRE REINFORCED FLY ASH BASED GEOPOLYMER CONCRETE...EXPERIMENTAL STUDY ON COIR FIBRE REINFORCED FLY ASH BASED GEOPOLYMER CONCRETE...
EXPERIMENTAL STUDY ON COIR FIBRE REINFORCED FLY ASH BASED GEOPOLYMER CONCRETE...IAEME Publication
 
Numerical Simulations on Triaxial Strength of Silty Sand in Drained Conditions
Numerical Simulations on Triaxial Strength of Silty Sand in Drained ConditionsNumerical Simulations on Triaxial Strength of Silty Sand in Drained Conditions
Numerical Simulations on Triaxial Strength of Silty Sand in Drained Conditionsijceronline
 
Experimental estimate of ultimate bearing capacity and settlement for rectang
Experimental estimate of ultimate bearing capacity and settlement for rectangExperimental estimate of ultimate bearing capacity and settlement for rectang
Experimental estimate of ultimate bearing capacity and settlement for rectangIAEME Publication
 
An experimental study of square footing resting on geo grid reinforced sand
An experimental study of square footing resting on geo grid reinforced sandAn experimental study of square footing resting on geo grid reinforced sand
An experimental study of square footing resting on geo grid reinforced sandeSAT Publishing House
 
The effect of soil improvement on foundation super structure design
The effect of soil improvement on foundation  super structure designThe effect of soil improvement on foundation  super structure design
The effect of soil improvement on foundation super structure designIAEME Publication
 
Soil structure interaction effect on dynamic behavior of 3 d building frames ...
Soil structure interaction effect on dynamic behavior of 3 d building frames ...Soil structure interaction effect on dynamic behavior of 3 d building frames ...
Soil structure interaction effect on dynamic behavior of 3 d building frames ...eSAT Journals
 
Pc x-2019 adebayo-56
Pc x-2019 adebayo-56Pc x-2019 adebayo-56
Pc x-2019 adebayo-56Dr. Naveen BP
 
Behaviour of Retaining Wall in Black Cotton
Behaviour of Retaining Wall in Black CottonBehaviour of Retaining Wall in Black Cotton
Behaviour of Retaining Wall in Black CottonIRJET Journal
 
Settlement and bearing capacity of foundations with different
Settlement and bearing capacity of foundations with differentSettlement and bearing capacity of foundations with different
Settlement and bearing capacity of foundations with differentAlexander Decker
 
Soil Structure Interaction Analysis of Multi Storey Building Frame for Seismi...
Soil Structure Interaction Analysis of Multi Storey Building Frame for Seismi...Soil Structure Interaction Analysis of Multi Storey Building Frame for Seismi...
Soil Structure Interaction Analysis of Multi Storey Building Frame for Seismi...ijtsrd
 
IRJET- A Review on Dynamic Analysis of RCC Building Considering Soil Stru...
IRJET-  	  A Review on Dynamic Analysis of RCC Building Considering Soil Stru...IRJET-  	  A Review on Dynamic Analysis of RCC Building Considering Soil Stru...
IRJET- A Review on Dynamic Analysis of RCC Building Considering Soil Stru...IRJET Journal
 
STUDY OF SUITABLE FOUNDATION IN SEISMIC ZONE III CONSIDERING SSI
STUDY OF SUITABLE FOUNDATION IN SEISMIC ZONE III CONSIDERING SSISTUDY OF SUITABLE FOUNDATION IN SEISMIC ZONE III CONSIDERING SSI
STUDY OF SUITABLE FOUNDATION IN SEISMIC ZONE III CONSIDERING SSIIAEME Publication
 
Effect of vertical cross sectional shape of foundation and soil reinforcement
Effect of vertical cross sectional shape of foundation and soil reinforcementEffect of vertical cross sectional shape of foundation and soil reinforcement
Effect of vertical cross sectional shape of foundation and soil reinforcementIAEME Publication
 

What's hot (18)

#02080327-27-Time History Analysis of Sym and Unsym building (1)
#02080327-27-Time History Analysis of Sym and Unsym building (1)#02080327-27-Time History Analysis of Sym and Unsym building (1)
#02080327-27-Time History Analysis of Sym and Unsym building (1)
 
Influence of stratified soil on seismic response of pile supported building
Influence of stratified soil on seismic response of pile supported buildingInfluence of stratified soil on seismic response of pile supported building
Influence of stratified soil on seismic response of pile supported building
 
Finite element analysis of frame with soil structure interaction
Finite element analysis of frame with soil structure interactionFinite element analysis of frame with soil structure interaction
Finite element analysis of frame with soil structure interaction
 
EXPERIMENTAL STUDY ON COIR FIBRE REINFORCED FLY ASH BASED GEOPOLYMER CONCRETE...
EXPERIMENTAL STUDY ON COIR FIBRE REINFORCED FLY ASH BASED GEOPOLYMER CONCRETE...EXPERIMENTAL STUDY ON COIR FIBRE REINFORCED FLY ASH BASED GEOPOLYMER CONCRETE...
EXPERIMENTAL STUDY ON COIR FIBRE REINFORCED FLY ASH BASED GEOPOLYMER CONCRETE...
 
30120140503009
3012014050300930120140503009
30120140503009
 
Numerical Simulations on Triaxial Strength of Silty Sand in Drained Conditions
Numerical Simulations on Triaxial Strength of Silty Sand in Drained ConditionsNumerical Simulations on Triaxial Strength of Silty Sand in Drained Conditions
Numerical Simulations on Triaxial Strength of Silty Sand in Drained Conditions
 
Experimental estimate of ultimate bearing capacity and settlement for rectang
Experimental estimate of ultimate bearing capacity and settlement for rectangExperimental estimate of ultimate bearing capacity and settlement for rectang
Experimental estimate of ultimate bearing capacity and settlement for rectang
 
An experimental study of square footing resting on geo grid reinforced sand
An experimental study of square footing resting on geo grid reinforced sandAn experimental study of square footing resting on geo grid reinforced sand
An experimental study of square footing resting on geo grid reinforced sand
 
The effect of soil improvement on foundation super structure design
The effect of soil improvement on foundation  super structure designThe effect of soil improvement on foundation  super structure design
The effect of soil improvement on foundation super structure design
 
Soil structure interaction effect on dynamic behavior of 3 d building frames ...
Soil structure interaction effect on dynamic behavior of 3 d building frames ...Soil structure interaction effect on dynamic behavior of 3 d building frames ...
Soil structure interaction effect on dynamic behavior of 3 d building frames ...
 
Pc x-2019 adebayo-56
Pc x-2019 adebayo-56Pc x-2019 adebayo-56
Pc x-2019 adebayo-56
 
D0363015021
D0363015021D0363015021
D0363015021
 
Behaviour of Retaining Wall in Black Cotton
Behaviour of Retaining Wall in Black CottonBehaviour of Retaining Wall in Black Cotton
Behaviour of Retaining Wall in Black Cotton
 
Settlement and bearing capacity of foundations with different
Settlement and bearing capacity of foundations with differentSettlement and bearing capacity of foundations with different
Settlement and bearing capacity of foundations with different
 
Soil Structure Interaction Analysis of Multi Storey Building Frame for Seismi...
Soil Structure Interaction Analysis of Multi Storey Building Frame for Seismi...Soil Structure Interaction Analysis of Multi Storey Building Frame for Seismi...
Soil Structure Interaction Analysis of Multi Storey Building Frame for Seismi...
 
IRJET- A Review on Dynamic Analysis of RCC Building Considering Soil Stru...
IRJET-  	  A Review on Dynamic Analysis of RCC Building Considering Soil Stru...IRJET-  	  A Review on Dynamic Analysis of RCC Building Considering Soil Stru...
IRJET- A Review on Dynamic Analysis of RCC Building Considering Soil Stru...
 
STUDY OF SUITABLE FOUNDATION IN SEISMIC ZONE III CONSIDERING SSI
STUDY OF SUITABLE FOUNDATION IN SEISMIC ZONE III CONSIDERING SSISTUDY OF SUITABLE FOUNDATION IN SEISMIC ZONE III CONSIDERING SSI
STUDY OF SUITABLE FOUNDATION IN SEISMIC ZONE III CONSIDERING SSI
 
Effect of vertical cross sectional shape of foundation and soil reinforcement
Effect of vertical cross sectional shape of foundation and soil reinforcementEffect of vertical cross sectional shape of foundation and soil reinforcement
Effect of vertical cross sectional shape of foundation and soil reinforcement
 

Similar to A NUMERICAL STUDY ON INTERFERENCE EFFECTS OF CLOSELY SPACED STRIP FOOTINGS ON SOILS

Optimization of 3 d geometrical soil model for multiple footing resting on sand
Optimization of 3 d geometrical soil model for multiple footing resting on sandOptimization of 3 d geometrical soil model for multiple footing resting on sand
Optimization of 3 d geometrical soil model for multiple footing resting on sandeSAT Journals
 
Optimization of 3 d geometrical soil model for
Optimization of 3 d geometrical soil model forOptimization of 3 d geometrical soil model for
Optimization of 3 d geometrical soil model foreSAT Publishing House
 
SEISMIC ANALYSIS OF RC STRUCTURE BY CONSIDERING SOIL STRUCTURE INTERACTION (SSI)
SEISMIC ANALYSIS OF RC STRUCTURE BY CONSIDERING SOIL STRUCTURE INTERACTION (SSI)SEISMIC ANALYSIS OF RC STRUCTURE BY CONSIDERING SOIL STRUCTURE INTERACTION (SSI)
SEISMIC ANALYSIS OF RC STRUCTURE BY CONSIDERING SOIL STRUCTURE INTERACTION (SSI)IRJET Journal
 
Ijciet 08 01_073
Ijciet 08 01_073Ijciet 08 01_073
Ijciet 08 01_073Tushar Dey
 
Shear Strength Assessment of Pile’s Concrete Interface with different (Varyin...
Shear Strength Assessment of Pile’s Concrete Interface with different (Varyin...Shear Strength Assessment of Pile’s Concrete Interface with different (Varyin...
Shear Strength Assessment of Pile’s Concrete Interface with different (Varyin...IRJET Journal
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Framework for assessment of shear strength parameters of
Framework for assessment of shear strength parameters ofFramework for assessment of shear strength parameters of
Framework for assessment of shear strength parameters ofIAEME Publication
 
Fixity depth of offshore piles in elastoplastic soft clay under dynamic load
Fixity depth of offshore piles in elastoplastic soft clay under dynamic loadFixity depth of offshore piles in elastoplastic soft clay under dynamic load
Fixity depth of offshore piles in elastoplastic soft clay under dynamic loadeSAT Journals
 
Numerical study of behavior of square footing on geogrid reinforced flyash be...
Numerical study of behavior of square footing on geogrid reinforced flyash be...Numerical study of behavior of square footing on geogrid reinforced flyash be...
Numerical study of behavior of square footing on geogrid reinforced flyash be...eSAT Publishing House
 
IRJET-Soil-Structure Effect of Multideck R.C.C. Structures
IRJET-Soil-Structure Effect of Multideck R.C.C. StructuresIRJET-Soil-Structure Effect of Multideck R.C.C. Structures
IRJET-Soil-Structure Effect of Multideck R.C.C. StructuresIRJET Journal
 
EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED
EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BEDEFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED
EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BEDIAEME Publication
 
Numerical simulation of laterally loaded pile
Numerical simulation of laterally loaded pileNumerical simulation of laterally loaded pile
Numerical simulation of laterally loaded pileDr. Naveen BP
 
Analytical study of abutment and pile behaviour of iab with soil interaction
Analytical study of abutment and pile behaviour of iab with soil interactionAnalytical study of abutment and pile behaviour of iab with soil interaction
Analytical study of abutment and pile behaviour of iab with soil interactioneSAT Publishing House
 
IRJET- Effect of Roughness of Rectangular Combined Footing based on Ultimate ...
IRJET- Effect of Roughness of Rectangular Combined Footing based on Ultimate ...IRJET- Effect of Roughness of Rectangular Combined Footing based on Ultimate ...
IRJET- Effect of Roughness of Rectangular Combined Footing based on Ultimate ...IRJET Journal
 
To Experimental Study of Comparison and Development of Design for Rigid Pavem...
To Experimental Study of Comparison and Development of Design for Rigid Pavem...To Experimental Study of Comparison and Development of Design for Rigid Pavem...
To Experimental Study of Comparison and Development of Design for Rigid Pavem...Agriculture Journal IJOEAR
 
Effect of Soil Structure Interaction on Seismic Response of Multistorey Building
Effect of Soil Structure Interaction on Seismic Response of Multistorey BuildingEffect of Soil Structure Interaction on Seismic Response of Multistorey Building
Effect of Soil Structure Interaction on Seismic Response of Multistorey BuildingIRJET Journal
 
EFFECT OF CONCENTRATED ECCENTRIC LOAD IN LONGITUDINAL DIRECTION OF RECTANGULA...
EFFECT OF CONCENTRATED ECCENTRIC LOAD IN LONGITUDINAL DIRECTION OF RECTANGULA...EFFECT OF CONCENTRATED ECCENTRIC LOAD IN LONGITUDINAL DIRECTION OF RECTANGULA...
EFFECT OF CONCENTRATED ECCENTRIC LOAD IN LONGITUDINAL DIRECTION OF RECTANGULA...IAEME Publication
 

Similar to A NUMERICAL STUDY ON INTERFERENCE EFFECTS OF CLOSELY SPACED STRIP FOOTINGS ON SOILS (20)

Influence of Interference of Symmetrical Footings on Bearing Capacity of Soil
Influence of Interference of Symmetrical Footings on Bearing Capacity of SoilInfluence of Interference of Symmetrical Footings on Bearing Capacity of Soil
Influence of Interference of Symmetrical Footings on Bearing Capacity of Soil
 
Optimization of 3 d geometrical soil model for multiple footing resting on sand
Optimization of 3 d geometrical soil model for multiple footing resting on sandOptimization of 3 d geometrical soil model for multiple footing resting on sand
Optimization of 3 d geometrical soil model for multiple footing resting on sand
 
Optimization of 3 d geometrical soil model for
Optimization of 3 d geometrical soil model forOptimization of 3 d geometrical soil model for
Optimization of 3 d geometrical soil model for
 
SEISMIC ANALYSIS OF RC STRUCTURE BY CONSIDERING SOIL STRUCTURE INTERACTION (SSI)
SEISMIC ANALYSIS OF RC STRUCTURE BY CONSIDERING SOIL STRUCTURE INTERACTION (SSI)SEISMIC ANALYSIS OF RC STRUCTURE BY CONSIDERING SOIL STRUCTURE INTERACTION (SSI)
SEISMIC ANALYSIS OF RC STRUCTURE BY CONSIDERING SOIL STRUCTURE INTERACTION (SSI)
 
Ijciet 08 01_073
Ijciet 08 01_073Ijciet 08 01_073
Ijciet 08 01_073
 
Shear Strength Assessment of Pile’s Concrete Interface with different (Varyin...
Shear Strength Assessment of Pile’s Concrete Interface with different (Varyin...Shear Strength Assessment of Pile’s Concrete Interface with different (Varyin...
Shear Strength Assessment of Pile’s Concrete Interface with different (Varyin...
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Framework for assessment of shear strength parameters of
Framework for assessment of shear strength parameters ofFramework for assessment of shear strength parameters of
Framework for assessment of shear strength parameters of
 
Fixity depth of offshore piles in elastoplastic soft clay under dynamic load
Fixity depth of offshore piles in elastoplastic soft clay under dynamic loadFixity depth of offshore piles in elastoplastic soft clay under dynamic load
Fixity depth of offshore piles in elastoplastic soft clay under dynamic load
 
Numerical study of behavior of square footing on geogrid reinforced flyash be...
Numerical study of behavior of square footing on geogrid reinforced flyash be...Numerical study of behavior of square footing on geogrid reinforced flyash be...
Numerical study of behavior of square footing on geogrid reinforced flyash be...
 
Ijciet 06 10_008
Ijciet 06 10_008Ijciet 06 10_008
Ijciet 06 10_008
 
IRJET-Soil-Structure Effect of Multideck R.C.C. Structures
IRJET-Soil-Structure Effect of Multideck R.C.C. StructuresIRJET-Soil-Structure Effect of Multideck R.C.C. Structures
IRJET-Soil-Structure Effect of Multideck R.C.C. Structures
 
EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED
EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BEDEFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED
EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED
 
Numerical simulation of laterally loaded pile
Numerical simulation of laterally loaded pileNumerical simulation of laterally loaded pile
Numerical simulation of laterally loaded pile
 
Analytical study of abutment and pile behaviour of iab with soil interaction
Analytical study of abutment and pile behaviour of iab with soil interactionAnalytical study of abutment and pile behaviour of iab with soil interaction
Analytical study of abutment and pile behaviour of iab with soil interaction
 
IRJET- Effect of Roughness of Rectangular Combined Footing based on Ultimate ...
IRJET- Effect of Roughness of Rectangular Combined Footing based on Ultimate ...IRJET- Effect of Roughness of Rectangular Combined Footing based on Ultimate ...
IRJET- Effect of Roughness of Rectangular Combined Footing based on Ultimate ...
 
To Experimental Study of Comparison and Development of Design for Rigid Pavem...
To Experimental Study of Comparison and Development of Design for Rigid Pavem...To Experimental Study of Comparison and Development of Design for Rigid Pavem...
To Experimental Study of Comparison and Development of Design for Rigid Pavem...
 
Effect of Soil Structure Interaction on Seismic Response of Multistorey Building
Effect of Soil Structure Interaction on Seismic Response of Multistorey BuildingEffect of Soil Structure Interaction on Seismic Response of Multistorey Building
Effect of Soil Structure Interaction on Seismic Response of Multistorey Building
 
EFFECT OF CONCENTRATED ECCENTRIC LOAD IN LONGITUDINAL DIRECTION OF RECTANGULA...
EFFECT OF CONCENTRATED ECCENTRIC LOAD IN LONGITUDINAL DIRECTION OF RECTANGULA...EFFECT OF CONCENTRATED ECCENTRIC LOAD IN LONGITUDINAL DIRECTION OF RECTANGULA...
EFFECT OF CONCENTRATED ECCENTRIC LOAD IN LONGITUDINAL DIRECTION OF RECTANGULA...
 
20320140505007
2032014050500720320140505007
20320140505007
 

More from IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSIAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSIAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSIAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSIAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOIAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYIAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEIAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTIAEME Publication
 

More from IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Recently uploaded

Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIkoyaldeepu123
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 

Recently uploaded (20)

Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AI
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 

A NUMERICAL STUDY ON INTERFERENCE EFFECTS OF CLOSELY SPACED STRIP FOOTINGS ON SOILS

  • 1. http://www.iaeme.com/IJCIET/index.asp 11 editor@iaeme.com International Journal of Civil Engineering and Technology (IJCIET) Volume 10, Issue 03, March 2019, pp. 11–30, Article ID: IJCIET_10_03_002 Available online at http://www.iaeme.com/ijmet/issues.asp?JType=IJCIET&VType=10&IType=3 ISSN Print: 0976-6308 and ISSN Online: 0976-6316 © IAEME Publication Scopus Indexed A NUMERICAL STUDY ON INTERFERENCE EFFECTS OF CLOSELY SPACED STRIP FOOTINGS ON SOILS S. Anaswara, R. Shivashankar Department of Civil Engineering National Institute of Technology Karnataka, Surathkal, 575025, Karnataka, India Hridya P Department of Civil Engineering Vimal Jyothi Engineering College, Chemperi, Kerala, India ABSTRACT Foundations of structures often need to be placed close to meet the architectural as well as the functional requirements. In such cases, the combined action of footings is different from a single footing. It causes interference of the stress zones. In the present study, the interference effects of two closely spaced strip footings on the surface of cohesive and cohesionless soils are being investigated. Parametric studies are done for two footings by varying the spacing between the footings and the width of the footings. The results are presented in terms of efficiency factors. In the first case, both the footings are loaded simultaneously up to failure. In the second case, one of the footings representing an already existing foundation is loaded with half of the estimated failure load of isolated footing and adjacent footing loaded up to failure. The effect of interference is observed to be particularly significant in terms of the settlement. Effect of shear keys placed beneath the footings, at different locations beneath the footing and the interference of such footings is also studied in case of stiff clay. It is found that the presence of shear keys has a significant effect on the interference between the footings, compared to without the shear keys, especially in reducing the tilt of foundations. Key words: Interference, Strip Footing, Settlement, Bearing capacity and Shear Key. Cite this Article: S. Anaswara, R. Shivashankar and Hridya P, A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils, International Journal of Civil Engineering and Technology 10(3), 2019, pp. 11–30. http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=10&IType=3 1. INTRODUCTION In recent times, due to rapid developmental activities and scarcity of land, especially in the urban areas, demand for construction sites in good commercial areas are increasing at a rapid rate. Land prices are soaring sky high. Land which is categorised as nonsuitable for
  • 2. S. Anaswara, R. Shivashankar and Hridya P http://www.iaeme.com/IJCIET/index.asp 12 editor@iaeme.com construction also has to be utilised and made it suitable by any of the ground improvement methods. Several structures are built close to each other, and hence their closely spaced foundations often interfere with each other. The conventional methods of foundation design assume that the foundations are in an isolated condition. However, in actual practice, footings which are very close to each other are influencing and altering parameters such as settlement, bearing pressure, failure mechanisms and tilting, are known as interfering footings. Therefore, the study of the behaviour of closely spaced interacting footings is of paramount practical importance in the field of sub-structural engineering to achieve economical designs. Recognising the effects of interference and designing the footing accordingly also ensures the safety of the structure. Newly constructed structures near to the old construction may change the settlement, pressure and tilt characteristics of the old one and could lead to its failure. Incorporating an additional element, such as shear key beneath the footing, reduces the effects of interference considerably. Importance of the interference effect of shallow foundations was first noticed by Stuart [1]. Experimental and limit state method were used and an equation proposed for calculating bearing capacity with the interference effect by the inclusion of efficiency factors. Das and Larbi-Cherif [2] compared the model study results with previous studies and found out that efficiency factor magnitudes are lower when S/B less than 3. Graham et al. [3] considered three parallel strip footings and calculated efficiency factor as the ratio of failure load of the central interfering footing to the capacity of a similar isolated footing. Efficiencies are highest at close spacing and decreases until the footings act as independently. Kumar [4] studied the interaction of footings resting on reinforced earth slab. In this study, he found that in case of interfering footings resting on reinforced soil, the magnitude of settlement and tilt decreases for a given load intensity as compared to the same footings on unreinforced soil for the same load intensity. The tilt of the closely spaced foundation reinforced with geogrid was considered for the first time by Kumar and Saran [5]. Lavasan et al. [6] calculated efficiency factors of bearing capacity of interference footings for the practical range of friction angles. Many of the researchers done laboratory experimental studies on interference effects [7-16]. From the literature, it has been noted that most of the studies have been carried out for two or more interfering footings resting on the surface of cohesionless soil medium. Numerical analyses are carried out to understand the effects of interference of two closely spaced strip footings resting on both cohesionless soils and clay soils. Six different soil medium ranging from stiff clay, medium stiff clay, soft clay, dense sand, medium dense sand, and loose sand are considered. This detailed study of interference of six variety soils gives how much the soil properties affect the interference effects. 2. METHODOLOGY Numerical investigations are carried out with various soils and mainly focused on bearing pressure, settlement and tilt characteristics. Strip footings are analysed in finite element 2D software PLAXIS. The soil parameters assigned are shown in Table 1. Widths of footings considered are 1m, 2m and 3m. Modulus of elasticity, E of concrete is taken as 25 x106 kN/m2 . The thickness of footing, d is taken as 0.75m and Poisson's ratio, υ is considered as 0.15. The geometry of interfering footings is shown in Figure 1.
  • 3. A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils http://www.iaeme.com/IJCIET/index.asp 13 editor@iaeme.com Table 1 Material properties of soils [17] Parameter Stiff clay Medium stiff clay Soft clay Dense sand Medium dense sand Loose sand Material model Mohr-Coulomb Mohr- Coulomb Mohr- Coulomb Mohr- Coulomb Mohr- Coulomb Mohr- Coulomb Material type Undrained Undrained Undrained Drained Drained Drained Unsaturated unit weight, γ (kN/m3 ) 18.4 17.2 16.0 19.1 18.2 17.4 Saturated unit weight, γsat (kN/m3 ) 22.0 21.0 20.3 21.1 21.0 20.9 Young’s modulus, E (kN/m2 ) 60000 30000 6000 50000 30000 15000 Poisson’s ratio, υ 0.21 0.28 0.35 0.30 0.28 0.25 Cohesion, C (kN/m2 ) 80 50 20 0 0 0 Angle of internal friction, φ ( 0 ) 0 0 0 40 35 30 Figure 1. The geometry of interfering footings Considering single isolated foundation, the far domain in horizontal, x and vertical downward, z directions are varied and the failure load compared with that calculated by IS code method [18] (Table 2). For each soil, the process carried out and the farthest domain in x and z directions have been obtained and are tabulated in Table 3. Table 2 Comparison of ultimate bearing capacity (qu) from PLAXIS 2D and IS code method [18] for various soils Soil Width of footing (m) Ultimate Bearing capacity (qu) from IS code method [18] (kN/m2 ) Ultimate bearing capacity (qu ) from PLAXIS 2D (kN/m2 ) Percentage difference Stiff clay 1 411.2 416 1.17 2 411.2 416 1.17 3 411.2 416 1.17 Medium stiff clay 1 257.0 260 1.15 2 257.0 260 1.15 3 257.0 260 1.15 Soft clay 1 102.8 104 1.15
  • 4. S. Anaswara, R. Shivashankar and Hridya P http://www.iaeme.com/IJCIET/index.asp 14 editor@iaeme.com 2 102.8 104 1.15 3 102.8 104 1.15 Dense sand 1 1044.8 711 31.30 2 2089.7 1393 33.30 3 3134.5 2107 32.70 Medium dense sand 1 268.3 259 3.40 2 536.5 540 0.60 3 804.7 741 7.90 Loose sand 1 125.9 128 1.60 2 251.8 260 3.10 3 377.7 383 1.30 Table 3 Selected domain for different soil types Soil x z Stiff clay 2B 2B Medium stiff clay 2B 2B Soft clay 2B 2B Dense sand 15B 15B Medium dense sand 12B 12B Loose sand 15B 15B The Mohr-Coulomb failure criterion which is an elastic, perfectly plastic model is selected for simplicity, practical importance and the availability of the parameters needed. Two equal rigid strip footings 0.75 m thick spaced at clear spacing ‘S’ are placed on top of the soil. In all analyses conducted in the present study, it is assumed that footings are located on the ground surface on the soil. The groundwater condition is not taken into account. Effect of widths of strip footings is studied by selecting three different widths of footings such as 1, 2 and 3m. Plane strain condition with 15 noded triangular elements are used in the modelling. Footings are modelled by plate elements. Horizontal and vertical displacements are restricted in the bottom boundary. Vertical boundaries are restricted only in the horizontal direction, and the top boundary is free in all the directions. In the first case, both the footings are loaded simultaneously to failure at the same time. In the second case, one of the footings representing an already existing foundation is loaded with half of the failure load of isolated footing (Factor of safety is taken as 2) and adjacent footing loaded up to failure. Clear spacing between the footings ‘S’ is varied from 0.5B, 1B, 1.5B, 2B, 2.5B and 3B. Clear spacing divided by the width of the footings are mentioned as a spacing ratio, S/B. In this study, inner region midpoint between the two adjacent strip footings is considered to study the characteristics of the interference effect. Overlapping of stresses and tilts occur due to interference in the inner region. The settlement and stresses at points a, b, c, d, e, and f, as shown in Figure.2, which are at depths 0B, 0.25B, 0.5B, 1B, 1.5B and 2B respectively at the midway between the interfering footings are considered and analysed. In the third case footings are provided with shear keys. A shear key having depths (L) 0.25B, 0.5B and 1B beneath the footing and located at the inner edge and in the centre of the footing are considered in the case of stiff clay, and the changes in settlement of the footings are analysed for the points mentioned above (a, b, c, d, e, and f). The parameters relevant to the shear keys are shown in Table 4.
  • 5. A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils http://www.iaeme.com/IJCIET/index.asp 15 editor@iaeme.com Figure 2. Definition of problem Table 4 Parameters of the shear key Width of shear key, W (m) 0.75 Modulus of elasticity, E (kN/m2 ) 25x106 Poisson’s ratio, υ 0.15 Depth of shear key, L (m) 0.25 B, 0.5B and 1B 3. RESULTS AND DISCUSSIONS 3.1. Both the Footings Loaded Simultaneously till Failure Two parameters namely efficiency factor due to bearing pressure (ξγ) and efficiency factor due to settlement (ξδ) are considered. 3.1.1. Efficiency factor due to bearing pressure (ξγ) In order to study the interference effect of two closely spaced strip footings, efficiency factors due to bearing pressure are determined from the load-settlement plots. Efficiency factor due to bearing pressure (ξγ) is expressed in Equation 1 [13]. The footings are modelled to rest on soils and loaded up to the failure. The load at failure is noted and compared regarding efficiency factor ξγ. Figure 3 shows the variation of efficiency factor ξγ with spacing ratio S/B on various soils for footing width 1m, 2m and 3m respectively. Efficiency factor greater than one indicates, improvement of bearing pressure due to the adjacent footing, i.e., interference effect. The soil in between the footings is stiffened due to loading on the footings and due to confinement effect. Efficiency factor of one means that the footing bearing pressure is the same as that of isolated footing. Stiff clay, medium stiff clay and soft clay show that the ultimate bearing pressure of interfering footings compared to isolated footings is not very much different, and there is no significant improvement in bearing capacity. In cohesionless soils, the variation of efficiency factor shows the same trend for different footing widths. Maximum improvement regarding bearing pressure occurred in the medium dense sand at S/B=2 (20% improvement in case of footing width 1m, 15% in case of 2m wide footing and 11% in case of 3m wide footing respectively). The efficiency factor shows a value of less than 1 for the spacing ratio of 2.5 in cohesionless
  • 6. S. Anaswara, R. Shivashankar and Hridya P http://www.iaeme.com/IJCIET/index.asp 16 editor@iaeme.com soils except for medium dense sand. It shows the bearing pressure at a spacing ratio of 2.5 is less than that of isolated footing. The percentage of decrease is only in a range of about 7%. Figure 3. Variation of ξγ with S/B on soils for footing widths (a)B=1m (b) B=2m (c) B=3m When the two footings are closely spaced (S<2.5B), the shear failure surfaces of each footing intersects the shear failure surface of the adjacent footing and strikes beneath the adjacent footing or strikes close to the adjacent footing. Therefore the footing requires larger load to cause failure than when the footings act independently (as seen in Figure 4(a) in case of medium stiff clay with S/B=1, in Figures 4(b) and 4(c) in case of stiff clay with S/B =0.5 and 1.0, Figure 4(d) in case of medium dense sand with S/B=0.5). When the spacing is about 2 to 3B, the two shear failure surfaces emerge beyond the edges of the footing in the area in between the two footings. Thus there will be two failure surface emerging from the space in between. Therefore, there could be a reduction in the efficiency factor (ξγ) (as seen in Figure 4(e) in case of medium stiff clay with S/B=2, in Figure 4(f) in case of stiff clay with S/B=2 and Figures 4(g) and 4(h) in case of medium
  • 7. A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils http://www.iaeme.com/IJCIET/index.asp 17 editor@iaeme.com dense sand with S/B=2.5 and 3 respectively). Since the soils in between footings are subject to lateral confining pressures (due to the vertical loads on the footings), they can sustain larger loads (or stresses) than the soils beneath a single independent footing. This is the reason for getting higher efficiency factors (ξγ) in the case of two footings adjacent to each other. Figure 4. Incremental deviatoric strain contours (a) medium stiff clay (S/B=2) (b) stiff clay (S/B=0.5) (c) stiff clay (S/B=1)(d) medium dense sand (S/B=0.5) (e) medium stiff clay (S/B=2) (f) stiff clay (S/B=2) (g) medium dense sand (S/B=2.5) (h) medium dense sand (S/B=3)
  • 8. S. Anaswara, R. Shivashankar and Hridya P http://www.iaeme.com/IJCIET/index.asp 18 editor@iaeme.com 3.1.2. Efficiency factor due to settlement (ξδ) In order to study the interference effect of closely spaced strip footings, efficiency factors due to the settlement are determined from the load-settlement plots; where the efficiency factor due to settlement (ξδ) is expressed in Equation 2. For the first loading case, i.e., both the footings are loaded simultaneously till failure, the efficiency factors are determined and compared. The points considered in the analysis of settlement are at the midway between the footings (Figure 2). For the second loading case, i.e., the first footing is loaded with half the estimated failure load of isolated footing and the second is loaded till failure. It can be seen that the efficiency factor (ξδ) is greater than 1 (signifying settlement of interfering footing is greater than the isolated footing) in most of the cases. The efficiency factor is recorded the highest values at the surface point ‘a’ in most of the spacing ratios. Figures 5-10 show the variation of the efficiency factor due to settlement (ξδ) with respect to the spacing ratio for various footings widths with all the six soils. Generally, the efficiency factor is highest in clays at S/B=1.5, except in the cases of medium stiff clay and soft clay with footing width of 3 m and 1m respectively. The stresses are maximum at the centre, in between the two footings, because of the overlapping of stress zones when the S/B ratio is 1.5 in the case of clays. Efficiency factor of sands is recorded the highest value at S/B=0.5, and a decreasing trend can be seen as spacing ratio increases. Figure 5. Variation of efficiency factor (ξδ ) with S/B for stiff clay (a) B=1m (b) B=2m (c) B=3m
  • 9. A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils http://www.iaeme.com/IJCIET/index.asp 19 editor@iaeme.com Figure 6. Variation of efficiency factor (ξδ ) with S/B for medium stiff clay (a) B=1m (b) B=2m (c) B=3m Figure 7. Variation of efficiency factor (ξδ ) with S/B for soft clay (a) B=1m (b) B=2m (c) B=3m
  • 10. S. Anaswara, R. Shivashankar and Hridya P http://www.iaeme.com/IJCIET/index.asp 20 editor@iaeme.com Figure 8.Variation of efficiency factor (ξδ ) with S/B for dense sand (a) B=1m (b) B=2m (c) B=3m Figure 9. Variation of efficiency factor (ξδ ) with S/B for medium dense sand (a) B=1m (b) B=2m (c) B=3m
  • 11. A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils http://www.iaeme.com/IJCIET/index.asp 21 editor@iaeme.com Figure 10. Variation of efficiency factor (ξδ ) with S/B for loose sand (a) B=1m (b) B=2m (c) B=3m 3.1.3. Tilt of footings Due to large stresses at any point between the footings (due to overlapping of stresses), there is a non-uniform pressure distribution beneath the footings (Figures 12 to 14). There is an increase in stresses from the outer edge of the footing to the inner edge. This causes an inward tilt in the footings. The settlement also will not be uniform. The tilt of footing is expressed in percentage for left footing is being analysed. Variation of tilt, in percentage, with respect to the spacing ratio is plotted for various footing widths (Figure 11). In all the six soils, soft clay provides maximum tilt for footing widths of 1m, 2m, and 3m. 7 % in footing width 1m,12% in 2m and 14 % in 3m. It can be observed that the maximum tilt of footing occurs at a spacing ratio of 1.5 in clays and loose sand. It is also observed that maximum tilt at left, as well as right footing, occurs at a spacing ratio of 2 in the case of dense sand and medium dense sand. (1.6 %, 3.2% and 4.8 % of dense sand at spacing ratio 2 for footing width 1m, 2m, and 3m). It is noted that the magnitude of the tilt is proportional to the footing width.
  • 12. S. Anaswara, R. Shivashankar and Hridya P http://www.iaeme.com/IJCIET/index.asp 22 editor@iaeme.com Figure 11. Variation of tilt of footing with S/B on soils with footing widths (a) B=1m (b) B=2m (c) B=3m 3.1.4. Variation of settlement on a horizontal plane Variation of settlement is studied on a horizontal plane. The study is done up to a distance 2B from the outer end of footings on the horizontal plane. The study is carried out at different horizontal levels like at the surface, 1B below the surface and 2B below the surface. Maximum interference effect is observed at the surface. Figure 12 shows the variation of settlement on a horizontal plane at the ground level for footing width 1m on stiff clay. It is clear that the settlement shows the maximum value at a spacing ratio of 1.5. Other footing widths (2m and 3m) also show a similar trend to that of 1m. The similar trend is seen in the case of medium stiff clay. Figure 13 shows the variation of settlement in a horizontal plane at the ground level for footing width 1m on dense sand. The settlement shows the maximum value at the spacing ratio of 0.5. Medium dense sand and loose sand also follow a similar trend. 3.1.5. Variation of effective stress on a horizontal plane Effective stresses on a horizontal plane for soils are significant on a horizontal plane 2B depth from the ground surface. For all the six soils effective stresses are maximum noted for the spacing ratio of 0.5 (Figures 14 and 15).
  • 13. A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils http://www.iaeme.com/IJCIET/index.asp 23 editor@iaeme.com Figure 12. Variations of settlement on a horizontal plane at the ground level for B=1m on stiff clay Figure 13. Variations of settlement in a horizontal direction at the ground level for B=1m on dense sand Figure 14. Variation of effective normal stress on a horizontal plane at the depth 2B below the ground surface for B=3 m in stiff clay
  • 14. S. Anaswara, R. Shivashankar and Hridya P http://www.iaeme.com/IJCIET/index.asp 24 editor@iaeme.com Figure 15. Variation of effective normal stress on a horizontal plane at the depth 2B below the ground surface for B=1 m in dense sand 3.2. One Footing Loaded With Half of the Estimated Failure Load of Isolated and Adjacent Footing Loaded to Failure 3.2.1. Efficiency factor due to bearing pressure Efficiency factor, ξγ is the ratio of failure load of the new footing to the failure load of isolated footing. In this case, the old footing is loaded half of the failure load of isolated footing. Variation of efficiency factor with spacing ratio plotted for various soils. Significant variations of bearing pressure are not seen for clays. Maximum improvement is noted for dense sand, medium dense sand and loose sand at the spacing ratio 1.5,1 and 1.5 respectively. Various efficiency factor with the spacing ratio for various footing widths is plotted in Figure 16. 3.2.2. Variation of settlement The settlement shows the highest values at the surface point (a) in most of the spacing ratios for clay soils. The maximum settlement is observed for spacing ratio 1.5 for stiff, medium stiff and soft clays. The settlement shows the highest values around 1B below the surface for dense sand and around 0.5 B for medium dense sand and loose sand. Maximum settlement obtained at the closer spacing for sand, i.e., spacing ratio 0.5. 3.2.3. Tilt of the footings In cohesive soils, the tilt of existing/old footing adjacent to newly constructed footing is negligible. In cohesionless soils, the maximum tilt value is observed at spacing ratio 0.5, where footings are very close to each other (Figure 17). 3.2.4. Variation of settlement on a horizontal plane Variation of settlement is determined on a horizontal plane. Interference effect in terms of the settlement is maximum at the surface. Figure 18 shows the variation of settlement on a horizontal plane at the ground level for footing width 1m on stiff clay.The maximum settlement is recorded at the spacing ratio 2.5 for clay soils. Figure 19 shows the variation of settlement in a horizontal direction at the ground level for footing width 1m on dense sand. From this Figure 19, the settlement shows a slightly higher value at a spacing ratio of 1.5. Other footing widths (2m and 3m) also show the similar trend as that of 1m.Moreover the settlement in case 2 are not symmetric about the midpoint between the two footings unlike case 1 where the settlement were somewhat symmetric.
  • 15. A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils http://www.iaeme.com/IJCIET/index.asp 25 editor@iaeme.com Figure 16. Variations of efficiency factor (ξγ) with the spacing ratio for footing widths (a) B=1m (b) B=2m (c) B=3m
  • 16. S. Anaswara, R. Shivashankar and Hridya P http://www.iaeme.com/IJCIET/index.asp 26 editor@iaeme.com Figure 17. Variations of tilt of old footing in the presence of newly constructed footing with S/B on soils with footing width (a) B=1m (b) B=2m (c) B=3m Figure 18. Variations of settlement on a horizontal plane at the ground level for B=1m on stiff clay
  • 17. A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils http://www.iaeme.com/IJCIET/index.asp 27 editor@iaeme.com Figure 19. Variations of settlement in a horizontal direction at the ground level for B=1m on dense sand 3.3. Effect of shear key on interference Shear keys are protrusions provided beneath the footings (Figure 20), generally provided to give additional sliding resistance (especially to lateral loads). In the present study, shear keys are contributed to be provided beneath footings to see if they made any difference to the interference effects between the adjacent strip footings subjected to vertical loads. The interference effects studied include those due to bearing pressure, due to settlement and on tilts. Shear keys are considered to be provided with at the inner edge of footings and also at the centre of the footings. A parametric study is carried out by varying the L/B ratio of the shear key, where L is the depth of shear key and B is the width of the footing. The effect of the shear key on the interference of footing is not significant regarding bearing pressure. Figure 21 shows the variation of the settlement of footing when the shear key is added to the footings for footings on stiff clay having B=1m, 2m, and 3m respectively for a spacing ratio of 1.5. From the study, it is found that the settlement becomes less when the shear key placed at the centre of the interfering footings at an L/B ratio of 0.25 irrespective of the footing width. For B=1m the settlement becomes 15% of the settlement of footings without a shear key at the ground surface. In the case of B=2m and B=3m settlement becomes almost 25% of footings without a shear key. The tilt of footing decreases drastically when shear key included in the footing. The reduction in the tilt of footing is more than 90% of the tilt of footing without a shear key( Table 5). Figure 20. Footings with the shear key at the centre B S B
  • 18. S. Anaswara, R. Shivashankar and Hridya P http://www.iaeme.com/IJCIET/index.asp 28 editor@iaeme.com Figure 21. Variation of the settlement of footing with (placed at edge and centre of footing) and without shear key on stiff clay for a spacing ratio of 1.5 with footing width (a) B=1 m (b) B=2m (c) B=3m
  • 19. A Numerical Study on Interference Effects of Closely Spaced Strip Footings on Soils http://www.iaeme.com/IJCIET/index.asp 29 editor@iaeme.com Table 5 Variation of tilt with and without the shear key on footings for footings resting on stiff clay Footing width Tilt (%) Footings without shear key Footings with the shear key at centre L/B=0.25 1 5.304 0.202 2 2.515 0.214 3 2.585 0.230 4. CONCLUSIONS Finite element analysis is carried out on two adjacent strip footings on clays and sands, by varying parameters, to study the interference effects. Interference effects are studied in terms of bearing pressure, in terms of the settlement and finally tilt of footings. Two loading cases are considered such as (i) both footings loaded simultaneously (ii) first footing (an existing/ old footing) is loaded with half estimated failure load and then the second (new) footing is loaded up to failure. In the case of footings on stiff clay, the effect of providing shear keys beneath footings is also studied. The analysis yield the following results:  The effect of interference, regarding the efficiency factor for bearing pressure, in the case of clays is negligible.  The frictional soil between the footings is subjected to confinement due to the loading on the footings and makes the soil in between stiffer and stronger. This is reflected in case of sands with efficiency factor for bearing (ξγ) greater than one in almost all cases studied.  Stresses in the area between the two footings will be large due to the overlapping effect. Stresses on the inner edge of footing will be larger than outer edge resulting in an inward tilt of the footings. Efficiency factor of settlement attains a clear peak value when the spacing ratio is 1.5 for clays, whereas in the case of sands the peak value of efficiency factor is when the spacing ratio is about 0.5.  Maximum tilt in clays occurs when the spacing ratio is 1.5. In clays the tilt of old footing (loading case ii) is negligible. Maximum tilt in sands occurs at a spacing ratio of about 0.5.  The effect of the shear key on footings resting on stiff clay seems to be maximised when the shear key is placed at the centre of the footing having an L/B ratio of 0.25.  The settlement decreases drastically, compared to the interfered footings without a shear key for the same conditions. Moreover, the reduction in the settlement is in the range of 75%.  The tilt of footing on stiff clay reduces by the addition of shear key on footings. The reduction is in a range of 90%. REFERENCES [1] Stuart, J. G. Interference between foundations, with special reference to surface footings in sand.Geotechnique, 12(1), (1962), pp. 15-22. [2] Das, B. M., and Larbi-Cherif, S. Bearing capacity of two closely-spaced shallow foundations on sand. Soils and Foundations, 23(1), (1983). [3] Graham, J., Raymond, G. P. and Suppiah, A Bearing capacity of three closely spaced footings on sand. Geotechnique, 34(2), (1984), pp. 173-182.
  • 20. S. Anaswara, R. Shivashankar and Hridya P http://www.iaeme.com/IJCIET/index.asp 30 editor@iaeme.com [4] Kumar, A. Interaction of footings resting on reinforced earth slab. Ph.D. Dissertation, University of Roorkee. (1997). [5] Kumar, A. and Saran, S. Closely Spaced Footings on Geogrid-Reinforced Sand. J. Geotech. Geoenviron. Eng, 129 (7), (2003), pp. 660-664. [6] Lavasan, A.A., Ghazavi, M., Blumenthal, A. V. and Schanz, T. Bearing capacity of interfering strip footings. J. Geotech. Geoenviron. Eng.,144(3), (2018). [7] West, J. M. and Stuart, J.G. Oblique loading resulting from interference between surface footings on sand. Proc., 6th Int. Conf. On Soil Mechanics,2, Montreal, (1965),pp. 214– 217. [8] Suppiah, A. Interference of three parallel surface strip footings on sand. M.S.Thesis, Department of Civil Engineering, Winnipeg, Manitoba. (1981). [9] Selvadurai, A. P. S. and Rabbaa, S.A.A. Some experimental studies concerning the contact stresses beneath interfering rigid strip foundations resting on a granular stratum.Canadian Geotechnical Journal ,20, (1983), pp. 406-415. [10] Khan, I. N., Bohara, K. C., Ohri, M.L. and Singh, A. A study on interference of surface model footings resting on sand. Journal- The Institution of Engineers, Malaysia, 67(1), (2006). [11] Kumar, J. and Bhoi, M. KInterference of two closely spaced strip footings on sand using model tests. J. Geotech. Geoenviron. Eng., 135(4), (2009), pp. 595-604. [12] Ghosh, P. and Kumar, P. Interference effect of two nearby strip footings on reinforced sand. Contemporary Engineering Sciences, 2(12), (2009), pp. 577 – 592. [13] Srinivasan, V. and Ghosh, P. Experimental investigation on interaction problem of two nearby circular footings on layered cohesionless soil. Geomechanics And Geoengineering: An International Journal, 8(2), (2013), pp. 97-106. [14] Naderi, E. and Hataf, N. Model testing and numerical investigation of interference effect of closely spaced ring and circular footings on reinforced sand.” Geotextiles and Geomembranes, 42 , (2014), pp.191-200. [15] Salamatpoor, S., Jafarian, Y. and Hajiannia, A. Bearing capacity and uneven settlement of consecutively constructed adjacent footings rested on saturated sand using model tests.International Journal of Civil Engineering, (2018), pp. 1-13. [16] Gupta, A., and Sitharam, T. G. Experimental and numerical investigations on interference of closely spaced square footings on sand. International Journal of Geotechnical Engineering, (2018), pp. 1-9. [17] Bowles, J. E. Foundation Analysis and Design, McGraw-Hill Book Co., New York, N.Y., 3rd Ed. (1982). [18] IS 6403: 1981 (Reaffirmed 2002) Indian Standard code of practice for determination of breaking capacity of shallow foundations, BIS, New Delhi, pp.6-10.