SlideShare a Scribd company logo
1 of 3
Download to read offline
Tables for dihedral angles between the adjacent faces with a common edge of various uniform polyhedra
Mr Harish Chandra Rajpoot March, 2015
M.M.M. University of Technology, Gorakhpur-273010 (UP), India
These tables have been prepared by the author Mr H.C. Rajpoot using his data tables of the various polyhedra
for determining the dihedral angles for different uniform polyhedral shells. These are very useful for the
construction & preparing the wire-frame models of the uniform polyhedral shells having different regular
polygonal faces. A polyhedral shell can be easily constructed/framed by continuously fixing all its adjacent
(flat) faces each two as a pair at their common edge at an angle equal to the dihedral angle between them.
The dihedral is the angle of inclination between any two adjacent faces, having a common edge in a uniform
polyhedron, measured normal to their common edge. Mathematically, the dihedral angle ( ) between
any two regular m-gonal & n-gonal faces, having a common edge, at the normal distances
respectively from the centre of a uniform polyhedron with edge length is given by the generalized formula
as follows
{
( )
} {
( )
}
Thus by setting the values of no. of sides and the normal distances of the adjacent regular
polygonal faces of a uniform polyhedron with edge length in the above expression, we can easily calculate
the dihedral angle between the corresponding adjacent regular m-gonal & n-gonal faces each with an equal
edge length . Although, the dihedral angle does not depend on the edge length of any uniform polyhedron
but it merely depends on the geometry & the no. of the faces of a polyhedron. There are the tables for the
dihedral angles of some important regular & uniform polyhedra having congruent regular polygonal faces each
with an equal edge length.
Table for the dihedral angles between the adjacent faces of all five platonic solids
Platonic solid Pair of the adjacent congruent faces
having a common edge
Dihedral angle between the corresponding pair of the
adjacent faces
Regular tetrahedron Equilateral triangles
(
√
)
Regular hexahedron (cube) Squares
Regular octahedron Equilateral triangles (√ )
Regular dodecahedron Regular pentagons
(
√
)
Regular icosahedron Equilateral triangles
(
√
)
Tables for dihedral angles between the adjacent faces with a common edge of various uniform polyhedra
Table for the dihedral angles between the adjacent faces of uniform polyhedra
Uniform Polyhedron Dihedral angle between the adjacent regular polygonal faces with a common edge
Truncated Tetrahedron
having 4 equilateral triangular faces & 4
regular hexagonal faces
Dihedral angle between equilateral triangular face & regular hexagonal face
(√ )
Dihedral angle between two regular hexagonal faces
(
√
)
Truncated cube
having 8 equilateral triangular faces & 6
regular octagonal faces
Dihedral angle between equilateral triangular face & regular octagonal face
(√ )
Dihedral angle between two regular octagonal faces
Truncated octahedron
having 6 square faces & 8 regular
hexagonal faces
Dihedral angle between square face & regular hexagonal face
(√ )
Dihedral angle between two regular hexagonal faces
(√ )
Truncated dodecahedron
having 20 equilateral triangular faces &
12 regular decagonal faces
Dihedral angle between equilateral triangular face & regular decagonal face
( √ )
Dihedral angle between two regular decagonal faces
(
√
)
Cuboctahedron
having 8 equilateral triangular faces & 6
square faces
Dihedral angle between equilateral triangular face & square face
(√ )
Icosidodecahedron
having 20 equilateral triangular faces &
12 regular pentagonal faces
Dihedral angle between equilateral triangular face & regular pentagonal face
( √ )
Tables for dihedral angles between the adjacent faces with a common edge of various uniform polyhedra
Small rhombicuboctahedron
having 8 equilateral triangular faces &
18 square faces
Dihedral angle between equilateral triangular face & square face
(
√
)
Dihedral angle between two square faces
( √ )
Small rhombicosidodecahedron
having 20 equilateral triangular faces, 30
square faces & 12 regular pentagonal
faces
Dihedral angle between equilateral triangular face & square face
(
√
)
Dihedral angle between square face & regular pentagon
(
√
)
Table for the dihedral angles between the adjacent faces of a great rhombicuboctahedron
Pair of the adjacent faces having a
common edge
Square & regular hexagon Square & regular
octagon
Regular hexagon & regular
octagon
Dihedral angle of the corresponding
pair (of the adjacent faces)
(
√
) (√ )
Table for the dihedral angles between the adjacent faces of a great rhombicosidodecahedron
Pair of the adjacent faces having a
common edge
Square & regular hexagon Square & regular
decagon
Regular hexagon & regular
decagon
Dihedral angle of the corresponding
pair (of the adjacent faces) (
√
)
(
√
)
( √ )
Note: Above articles had been derived & illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering)
M.M.M. University of Technology, Gorakhpur-273010 (UP) India March, 2015
Email: rajpootharishchandra@gmail.com
Author’s Home Page: https://notionpress.com/author/HarishChandraRajpoot

More Related Content

More from Harish Chandra Rajpoot

Regular N-gonal Right Antiprism: Application of HCR’s Theory of Polygon
Regular N-gonal Right Antiprism: Application of HCR’s Theory of PolygonRegular N-gonal Right Antiprism: Application of HCR’s Theory of Polygon
Regular N-gonal Right Antiprism: Application of HCR’s Theory of PolygonHarish Chandra Rajpoot
 
Regular Pentagonal Right Antiprism by HCR
Regular Pentagonal Right Antiprism by HCRRegular Pentagonal Right Antiprism by HCR
Regular Pentagonal Right Antiprism by HCRHarish Chandra Rajpoot
 
Derivation of great-circle distance formula using of HCR's Inverse cosine for...
Derivation of great-circle distance formula using of HCR's Inverse cosine for...Derivation of great-circle distance formula using of HCR's Inverse cosine for...
Derivation of great-circle distance formula using of HCR's Inverse cosine for...Harish Chandra Rajpoot
 
Mathematical Analysis of Circum-inscribed (C-I) Trapezium
Mathematical Analysis of Circum-inscribed (C-I) TrapeziumMathematical Analysis of Circum-inscribed (C-I) Trapezium
Mathematical Analysis of Circum-inscribed (C-I) TrapeziumHarish Chandra Rajpoot
 
Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)
Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)
Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)Harish Chandra Rajpoot
 
Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)
Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)
Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)Harish Chandra Rajpoot
 
Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...
Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...
Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...Harish Chandra Rajpoot
 
Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...
Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...
Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...Harish Chandra Rajpoot
 
HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...
HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...
HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...Harish Chandra Rajpoot
 
How to compute area of spherical triangle given the aperture angles subtended...
How to compute area of spherical triangle given the aperture angles subtended...How to compute area of spherical triangle given the aperture angles subtended...
How to compute area of spherical triangle given the aperture angles subtended...Harish Chandra Rajpoot
 
Mathematical derivations of some important formula in 2D-Geometry H.C. Rajpoot
Mathematical derivations of some important formula in 2D-Geometry H.C. RajpootMathematical derivations of some important formula in 2D-Geometry H.C. Rajpoot
Mathematical derivations of some important formula in 2D-Geometry H.C. RajpootHarish Chandra Rajpoot
 
Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)
Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)
Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)Harish Chandra Rajpoot
 
Mathematical analysis of disphenoid (isosceles tetrahedron) (volume, surface ...
Mathematical analysis of disphenoid (isosceles tetrahedron) (volume, surface ...Mathematical analysis of disphenoid (isosceles tetrahedron) (volume, surface ...
Mathematical analysis of disphenoid (isosceles tetrahedron) (volume, surface ...Harish Chandra Rajpoot
 
Volume & surface area of right circular cone cut by a plane parallel to its s...
Volume & surface area of right circular cone cut by a plane parallel to its s...Volume & surface area of right circular cone cut by a plane parallel to its s...
Volume & surface area of right circular cone cut by a plane parallel to its s...Harish Chandra Rajpoot
 
Hcr's formula for regular spherical polygon
Hcr's formula for regular spherical polygonHcr's formula for regular spherical polygon
Hcr's formula for regular spherical polygonHarish Chandra Rajpoot
 
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...Harish Chandra Rajpoot
 
Mathematical analysis of identical circles touching one another on the spheri...
Mathematical analysis of identical circles touching one another on the spheri...Mathematical analysis of identical circles touching one another on the spheri...
Mathematical analysis of identical circles touching one another on the spheri...Harish Chandra Rajpoot
 
Mathematical analysis of identical circles touching one another on the whole ...
Mathematical analysis of identical circles touching one another on the whole ...Mathematical analysis of identical circles touching one another on the whole ...
Mathematical analysis of identical circles touching one another on the whole ...Harish Chandra Rajpoot
 
Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...
Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...
Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...Harish Chandra Rajpoot
 

More from Harish Chandra Rajpoot (20)

Regular N-gonal Right Antiprism: Application of HCR’s Theory of Polygon
Regular N-gonal Right Antiprism: Application of HCR’s Theory of PolygonRegular N-gonal Right Antiprism: Application of HCR’s Theory of Polygon
Regular N-gonal Right Antiprism: Application of HCR’s Theory of Polygon
 
Regular Pentagonal Right Antiprism by HCR
Regular Pentagonal Right Antiprism by HCRRegular Pentagonal Right Antiprism by HCR
Regular Pentagonal Right Antiprism by HCR
 
Derivation of great-circle distance formula using of HCR's Inverse cosine for...
Derivation of great-circle distance formula using of HCR's Inverse cosine for...Derivation of great-circle distance formula using of HCR's Inverse cosine for...
Derivation of great-circle distance formula using of HCR's Inverse cosine for...
 
Mathematical Analysis of Circum-inscribed (C-I) Trapezium
Mathematical Analysis of Circum-inscribed (C-I) TrapeziumMathematical Analysis of Circum-inscribed (C-I) Trapezium
Mathematical Analysis of Circum-inscribed (C-I) Trapezium
 
Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)
Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)
Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)
 
Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)
Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)
Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)
 
Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...
Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...
Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...
 
Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...
Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...
Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...
 
HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...
HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...
HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...
 
How to compute area of spherical triangle given the aperture angles subtended...
How to compute area of spherical triangle given the aperture angles subtended...How to compute area of spherical triangle given the aperture angles subtended...
How to compute area of spherical triangle given the aperture angles subtended...
 
Hcr's derivations of 2 d geometry
Hcr's derivations of 2 d geometryHcr's derivations of 2 d geometry
Hcr's derivations of 2 d geometry
 
Mathematical derivations of some important formula in 2D-Geometry H.C. Rajpoot
Mathematical derivations of some important formula in 2D-Geometry H.C. RajpootMathematical derivations of some important formula in 2D-Geometry H.C. Rajpoot
Mathematical derivations of some important formula in 2D-Geometry H.C. Rajpoot
 
Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)
Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)
Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)
 
Mathematical analysis of disphenoid (isosceles tetrahedron) (volume, surface ...
Mathematical analysis of disphenoid (isosceles tetrahedron) (volume, surface ...Mathematical analysis of disphenoid (isosceles tetrahedron) (volume, surface ...
Mathematical analysis of disphenoid (isosceles tetrahedron) (volume, surface ...
 
Volume & surface area of right circular cone cut by a plane parallel to its s...
Volume & surface area of right circular cone cut by a plane parallel to its s...Volume & surface area of right circular cone cut by a plane parallel to its s...
Volume & surface area of right circular cone cut by a plane parallel to its s...
 
Hcr's formula for regular spherical polygon
Hcr's formula for regular spherical polygonHcr's formula for regular spherical polygon
Hcr's formula for regular spherical polygon
 
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...
 
Mathematical analysis of identical circles touching one another on the spheri...
Mathematical analysis of identical circles touching one another on the spheri...Mathematical analysis of identical circles touching one another on the spheri...
Mathematical analysis of identical circles touching one another on the spheri...
 
Mathematical analysis of identical circles touching one another on the whole ...
Mathematical analysis of identical circles touching one another on the whole ...Mathematical analysis of identical circles touching one another on the whole ...
Mathematical analysis of identical circles touching one another on the whole ...
 
Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...
Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...
Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...
 

Recently uploaded

Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 

Recently uploaded (20)

Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 

Tables for dihedral angles between the adjacent faces of platonic solids & various uniform polyhedra (or uniform polyhedral shells) by HCR

  • 1. Tables for dihedral angles between the adjacent faces with a common edge of various uniform polyhedra Mr Harish Chandra Rajpoot March, 2015 M.M.M. University of Technology, Gorakhpur-273010 (UP), India These tables have been prepared by the author Mr H.C. Rajpoot using his data tables of the various polyhedra for determining the dihedral angles for different uniform polyhedral shells. These are very useful for the construction & preparing the wire-frame models of the uniform polyhedral shells having different regular polygonal faces. A polyhedral shell can be easily constructed/framed by continuously fixing all its adjacent (flat) faces each two as a pair at their common edge at an angle equal to the dihedral angle between them. The dihedral is the angle of inclination between any two adjacent faces, having a common edge in a uniform polyhedron, measured normal to their common edge. Mathematically, the dihedral angle ( ) between any two regular m-gonal & n-gonal faces, having a common edge, at the normal distances respectively from the centre of a uniform polyhedron with edge length is given by the generalized formula as follows { ( ) } { ( ) } Thus by setting the values of no. of sides and the normal distances of the adjacent regular polygonal faces of a uniform polyhedron with edge length in the above expression, we can easily calculate the dihedral angle between the corresponding adjacent regular m-gonal & n-gonal faces each with an equal edge length . Although, the dihedral angle does not depend on the edge length of any uniform polyhedron but it merely depends on the geometry & the no. of the faces of a polyhedron. There are the tables for the dihedral angles of some important regular & uniform polyhedra having congruent regular polygonal faces each with an equal edge length. Table for the dihedral angles between the adjacent faces of all five platonic solids Platonic solid Pair of the adjacent congruent faces having a common edge Dihedral angle between the corresponding pair of the adjacent faces Regular tetrahedron Equilateral triangles ( √ ) Regular hexahedron (cube) Squares Regular octahedron Equilateral triangles (√ ) Regular dodecahedron Regular pentagons ( √ ) Regular icosahedron Equilateral triangles ( √ )
  • 2. Tables for dihedral angles between the adjacent faces with a common edge of various uniform polyhedra Table for the dihedral angles between the adjacent faces of uniform polyhedra Uniform Polyhedron Dihedral angle between the adjacent regular polygonal faces with a common edge Truncated Tetrahedron having 4 equilateral triangular faces & 4 regular hexagonal faces Dihedral angle between equilateral triangular face & regular hexagonal face (√ ) Dihedral angle between two regular hexagonal faces ( √ ) Truncated cube having 8 equilateral triangular faces & 6 regular octagonal faces Dihedral angle between equilateral triangular face & regular octagonal face (√ ) Dihedral angle between two regular octagonal faces Truncated octahedron having 6 square faces & 8 regular hexagonal faces Dihedral angle between square face & regular hexagonal face (√ ) Dihedral angle between two regular hexagonal faces (√ ) Truncated dodecahedron having 20 equilateral triangular faces & 12 regular decagonal faces Dihedral angle between equilateral triangular face & regular decagonal face ( √ ) Dihedral angle between two regular decagonal faces ( √ ) Cuboctahedron having 8 equilateral triangular faces & 6 square faces Dihedral angle between equilateral triangular face & square face (√ ) Icosidodecahedron having 20 equilateral triangular faces & 12 regular pentagonal faces Dihedral angle between equilateral triangular face & regular pentagonal face ( √ )
  • 3. Tables for dihedral angles between the adjacent faces with a common edge of various uniform polyhedra Small rhombicuboctahedron having 8 equilateral triangular faces & 18 square faces Dihedral angle between equilateral triangular face & square face ( √ ) Dihedral angle between two square faces ( √ ) Small rhombicosidodecahedron having 20 equilateral triangular faces, 30 square faces & 12 regular pentagonal faces Dihedral angle between equilateral triangular face & square face ( √ ) Dihedral angle between square face & regular pentagon ( √ ) Table for the dihedral angles between the adjacent faces of a great rhombicuboctahedron Pair of the adjacent faces having a common edge Square & regular hexagon Square & regular octagon Regular hexagon & regular octagon Dihedral angle of the corresponding pair (of the adjacent faces) ( √ ) (√ ) Table for the dihedral angles between the adjacent faces of a great rhombicosidodecahedron Pair of the adjacent faces having a common edge Square & regular hexagon Square & regular decagon Regular hexagon & regular decagon Dihedral angle of the corresponding pair (of the adjacent faces) ( √ ) ( √ ) ( √ ) Note: Above articles had been derived & illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering) M.M.M. University of Technology, Gorakhpur-273010 (UP) India March, 2015 Email: rajpootharishchandra@gmail.com Author’s Home Page: https://notionpress.com/author/HarishChandraRajpoot