SlideShare a Scribd company logo
1 of 10
Download to read offline
Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces
Application of โ€œHCRโ€™s Theory of Polygonโ€
๐‘ด๐’‚๐’•๐’‰๐’†๐’Ž๐’‚๐’•๐’Š๐’„๐’‚๐’ ๐‘จ๐’๐’‚๐’๐’š๐’”๐’Š๐’” ๐’๐’‡ ๐‘ต๐’๐’ ๐’–๐’๐’Š๐’‡๐’๐’“๐’Ž ๐‘ป๐’†๐’•๐’“๐’‚๐’…๐’†๐’„๐’‚๐’‰๐’†๐’…๐’“๐’๐’
Mr Harish Chandra Rajpoot
M.M.M. University of Technology, Gorakhpur-273010 (UP), India March, 2015
Introduction: Here, we are to analyse a non-uniform tetradecahedron having 2 congruent regular hexagonal
faces, 12 congruent trapezoidal faces & 18 vertices lying on a spherical surface with a certain radius. Each of
12 trapezoidal faces has three equal sides, two equal acute angles each
๐œถ (โ‰ˆ ๐Ÿ•๐Ÿ—. ๐Ÿ’๐Ÿ“๐’) & two equal obtuse angles each ๐œท (โ‰ˆ ๐Ÿ๐ŸŽ๐ŸŽ. ๐Ÿ“๐Ÿ“๐’). (See the Figure
1). The condition, of all 18 vertices lying on a spherical surface, governs &
correlates all the parameters of a non-uniform tetradecahedron such as solid
angle subtended by each face at the centre, normal distance of each face from
the centre, outer (circumscribed) radius, inner (inscribed) radius, mean radius,
surface area, volume etc. If the length of one of two unequal edges is known then
all the dimensions of a non-uniform tetradecahedron can be easily determined.
It is to noted that if the edge length of regular hexagonal face is known then the
analysis becomes very easy. We would derive a mathematical relation of the side
length ๐‘Ž of regular hexagonal faces & the radius ๐‘… of the spherical surface passing
through all 18 vertices. Thus, all the dimensions of a non-uniform
tetradecahedron can be easily determined only in terms of edge length ๐‘Ž & plane
angles, solid angles of each face can also be determined easily.
Analysis of Non-uniform Tetradecahedron: For ease of calculations &
understanding, let there be a non-uniform tetradecahedron, with the centre O,
having 2 congruent regular hexagonal faces each with edge length ๐’‚ & 12
congruent trapezoidal faces and all its 18 vertices lying on a spherical surface
with a radius ๐‘น๐’. Now consider any of 12 congruent trapezoidal faces say ABCD
(๐ด๐ท = ๐ต๐ถ = ๐ถ๐ท = ๐‘Ž) & join the vertices A & D to the centre O. (See the Figure
2). Join the centre E of the top hexagonal face to the centre O & to the vertex
D. Draw a perpendicular DF from the vertex D to the line AO, perpendicular EM
from the centre E to the side CD, perpendicular ON from the centre O to the
side AB & then join the mid-points M & N of the sides CD & AB respectively in
order to obtain trapeziums ADEO & OEMN (See the Figures 3 & 4 below). Now
we have,
๐‘‚๐ด = ๐‘‚๐ท = ๐‘…๐‘œ , ๐ต๐ถ = ๐ถ๐ท = ๐ด๐ท = ๐‘Ž, โˆ ๐ถ๐ธ๐ท = โˆ ๐ด๐‘‚๐ต =
360๐‘œ
6
= 60๐‘œ
Hence, in equilateral triangles โˆ†๐ถ๐ธ๐ท & โˆ†๐ด๐‘‚๐ต , we have
๐‘ฌ๐‘ช = ๐‘ฌ๐‘ซ = ๐‘ช๐‘ซ = ๐’‚ & ๐‘ถ๐‘จ = ๐‘ถ๐‘ฉ = ๐‘จ๐‘ฉ = ๐‘น๐’
In right โˆ†๐ธ๐‘€๐ท (Figure-2)
๐‘๐‘œ๐‘ โˆ ๐ท๐ธ๐‘€ =
๐ธ๐‘€
๐ธ๐ท
โ‡’ ๐‘๐‘œ๐‘ 30๐‘œ
=
๐ธ๐‘€
๐‘Ž
โ‡’ ๐‘ฌ๐‘ด =
๐’‚โˆš๐Ÿ‘
๐Ÿ
= ๐‘ถ๐‘ฏ
Similarly, in right โˆ†๐ด๐‘๐‘‚ (Figure-2)
Figure 1: A non-uniform tetradecahedron has 2
congruent regular hexagonal faces each of edge
length ๐’‚ & 12 congruent trapezoidal faces. All its
18 vertices eventually & exactly lie on a spherical
surface with a certain radius.
Figure 2: ABCD is one of 12 congruent trapezoidal
faces with ๐‘จ๐‘ซ = ๐‘ฉ๐‘ช = ๐‘ช๐‘ซ. โˆ†๐‘ช๐‘ฌ๐‘ซ & โˆ†๐‘จ๐‘ถ๐‘ฉ are
equilateral triangles. ADEO & OEMN are
trapeziums.
Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces
Application of โ€œHCRโ€™s Theory of Polygonโ€
โ‡’ ๐‘ถ๐‘ต = ๐‘…๐‘œ๐‘๐‘œ๐‘ 30๐‘œ
=
๐‘น๐’โˆš๐Ÿ‘
๐Ÿ
In right โˆ†๐‘‚๐ธ๐ท (Figure 3)
๐ธ๐‘‚ = โˆš(๐‘‚๐ท)2 โˆ’ (๐ท๐ธ)2 = โˆš๐‘…๐‘œ
2
โˆ’ ๐‘Ž2 โ‡’ ๐‘ฌ๐‘ถ = ๐‘ซ๐‘ญ = โˆš๐‘น๐’
๐Ÿ
โˆ’ ๐’‚๐Ÿ
In right โˆ†๐ด๐น๐ท (figure 3)
โ‡’ (๐ด๐ท)2
= (๐ด๐น)2
+ (๐ท๐น)2
= (๐‘‚๐ด โˆ’ ๐‘‚๐น)2
+ (๐ท๐น)2
= (๐‘…๐‘œ โˆ’ ๐‘Ž)2
+ (โˆš๐‘…๐‘œ
2
โˆ’ ๐‘Ž2)
2
โ‡’ ๐‘Ž2
= ๐‘…๐‘œ
2
+ ๐‘Ž2
โˆ’ 2๐‘Ž๐‘…๐‘œ + ๐‘…๐‘œ
2
+ ๐‘Ž2
= 2๐‘…๐‘œ
2
โˆ’ 2๐‘Ž๐‘…๐‘œ
2๐‘…๐‘œ
2
โˆ’ 2๐‘Ž๐‘…๐‘œ โˆ’ ๐‘Ž2
= 0
โ‡’ ๐‘…๐‘œ =
2๐‘Ž ยฑ โˆš(โˆ’2๐‘Ž)2 + 8๐‘Ž2
4
=
2๐‘Ž ยฑ 2๐‘Žโˆš3
4
=
๐‘Ž(1 ยฑ โˆš3)
2
But, ๐‘…๐‘œ > ๐‘Ž > 0 by taking positive sign, we get
โˆด ๐‘น๐’ =
(๐Ÿ + โˆš๐Ÿ‘)๐’‚
๐Ÿ
โ€ฆ . โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐ผ)
Now, draw a perpendicular OG from the centre O to the trapezoidal face ABCD,
perpendicular MH from the mid-point M of the side CD to the line ON. Thus in trapezium
OEMN (See the figure 4), we have
๐‘€๐ป = ๐ธ๐‘‚ = โˆš๐‘…๐‘œ
2
โˆ’ ๐‘Ž2 = โˆš(
(1 + โˆš3)๐‘Ž
2
)
2
โˆ’ ๐‘Ž2 = ๐‘Žโˆš
(1 + 3 + 2โˆš3) โˆ’ 4
4
= ๐‘Žโˆš
2โˆš3
4
= ๐‘Žโˆšโˆš3
2
= ๐‘Žโˆšโˆš
3
4
โˆด ๐‘ด๐‘ฏ = ๐‘ฌ๐‘ถ = ๐’‚ (
๐Ÿ‘
๐Ÿ’
)
๐Ÿ
๐Ÿ’
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐ผ๐ผ)
๐‘ต๐‘ฏ = ๐‘‚๐‘ โˆ’ ๐‘‚๐ป = ๐‘‚๐‘ โˆ’ ๐ธ๐‘€ =
๐‘…๐‘œโˆš3
2
โˆ’
๐‘Žโˆš3
2
=
โˆš3(๐‘…๐‘œ โˆ’ ๐‘Ž)
2
=
โˆš3 (
(1 + โˆš3)๐‘Ž
2
โˆ’ ๐‘Ž)
2
(๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘’๐‘ž(๐ผ))
=
๐‘Žโˆš3(1 + โˆš3 โˆ’ 2)
4
=
๐‘Žโˆš3(โˆš3 โˆ’ 1)
4
=
(3 โˆ’ โˆš3)๐‘Ž
4
In right โˆ†๐‘€๐ป๐‘ (Figure 4)
๐‘€๐‘ = โˆš(๐‘€๐ป)2 + (๐‘๐ป)2 = โˆš(๐ธ๐‘‚)2 + (๐‘๐ป)2 = โˆš(๐‘Ž (
3
4
)
1
4
)
2
+ (
(3 โˆ’ โˆš3)๐‘Ž
4
)
2
Figure 3: Trapezium ADEO with
๐‘จ๐‘ซ = ๐‘ซ๐‘ฌ = ๐‘ถ๐‘ญ = ๐’‚, ๐‘ถ๐‘จ =
๐‘ถ๐‘ซ = ๐‘น๐’ & ๐‘ซ๐‘ญ = ๐‘ฌ๐‘ถ. The lines
DE & AO are parallel.
Figure 4: Trapezium OEMN with
๐‘ฌ๐‘ด = ๐‘ถ๐‘ฏ & ๐‘ฌ๐‘ถ = ๐‘ด๐‘ฏ. The lines ME
& NO are parallel.
Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces
Application of โ€œHCRโ€™s Theory of Polygonโ€
= ๐‘Žโˆšโˆš3
2
+
9 + 3 โˆ’ 6โˆš3
16
= ๐‘Žโˆš
8โˆš3 + 12 โˆ’ 6โˆš3
16
= ๐‘Žโˆš
12 + 2โˆš3
16
= ๐‘Žโˆš
6 + โˆš3
8
โˆด ๐‘ด๐‘ต =
๐’‚
๐Ÿ
โˆš
๐Ÿ” + โˆš๐Ÿ‘
๐Ÿ
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (๐ผ๐ผ๐ผ)
Now, area of โˆ†๐‘‚๐‘€๐‘ can be calculated as follows (from the above Figure 4)
๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ โˆ†๐‘‚๐‘€๐‘ =
1
2
[(๐‘€๐‘) ร— (๐‘‚๐บ)] =
1
2
[(๐‘‚๐‘) ร— (๐‘€๐ป)] โ‡’ (๐‘€๐‘) ร— (๐‘‚๐บ) = (๐‘‚๐‘) ร— (๐‘€๐ป)
โ‡’ ๐‘‚๐บ =
(๐‘‚๐‘) ร— (๐‘€๐ป)
๐‘€๐‘
=
(
๐‘…๐‘œโˆš3
2
) ร— (๐‘Ž (
3
4
)
1
4
)
(
๐‘Ž
2
โˆš6 + โˆš3
2
)
= (โˆš3
(1 + โˆš3)๐‘Ž
2
)
โˆš
2 (
โˆš3
2
)
6 + โˆš3
=
(3 + โˆš3)๐‘Ž
2
โˆš
โˆš3
6 + โˆš3
=
(3 + โˆš3)๐‘Ž
2
โˆš
1
2โˆš3 + 1
=
(3 + โˆš3)๐‘Ž
2
โˆš
(2โˆš3 โˆ’ 1)
(2โˆš3 + 1)(2โˆš3 โˆ’ 1)
=
๐‘Ž
2
โˆš
(2โˆš3 โˆ’ 1)(3 + โˆš3)
2
(12 โˆ’ 1)
=
๐‘Ž
2
โˆš
(2โˆš3 โˆ’ 1)(12 + 6โˆš3)
11
=
๐‘Ž
2
โˆš
24 + 18โˆš3
11
= ๐‘Žโˆš
3(4 + 3โˆš3)
22
โˆด ๐‘ถ๐‘ฎ = ๐’‚โˆš
๐Ÿ‘(๐Ÿ’ + ๐Ÿ‘โˆš๐Ÿ‘)
๐Ÿ๐Ÿ
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (๐ผ๐‘‰)
Normal distance (๐‘ฏ๐’‰) of regular hexagonal faces from the centre of non-uniform tetradecahedron:
The normal distance (๐ปโ„Ž) of each of 2 congruent regular hexagonal faces from the centre O of a non-uniform
tetradecahedron is given as
๐ปโ„Ž = ๐ธ๐‘‚ = ๐‘Ž (
3
4
)
1
4
(๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘กโ„Ž๐‘’ ๐‘’๐‘ž(๐ผ๐ผ) ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’)
โˆด ๐‘ฏ๐’‰ = ๐’‚ (
๐Ÿ‘
๐Ÿ’
)
๐Ÿ
๐Ÿ’
โ‰ˆ ๐ŸŽ. ๐Ÿ—๐Ÿ‘๐ŸŽ๐Ÿ”๐ŸŽ๐Ÿ’๐Ÿ–๐Ÿ“๐Ÿ—๐’‚
Itโ€™s clear that both the congruent regular hexagonal faces are at an equal normal distance ๐‘ฏ๐’‰ from the
centre of a non-uniform tetradecahedron.
Solid angle (๐Ž๐’‰) subtended by each of 2 congruent regular hexagonal faces at the centre of non-
uniform tetradecahedron: We know that the solid angle (๐Ž) subtended by any regular polygon with each
side of length ๐’‚ at any point lying at a distance H on the vertical axis passing through the centre of plane is
given by โ€œHCRโ€™s Theory of Polygonโ€ as follows
๐Ž = ๐Ÿ๐… โˆ’ ๐Ÿ๐’ ๐ฌ๐ข๐งโˆ’๐Ÿ
(
๐Ÿ๐‘ฏ๐’”๐’Š๐’
๐…
๐’
โˆš๐Ÿ’๐‘ฏ๐Ÿ + ๐’‚๐Ÿ๐’„๐’๐’•๐Ÿ ๐…
๐’)
Hence, by substituting the corresponding values in the above expression, we get the solid angle subtended by
each regular hexagonal face at the centre of the non-uniform tetradecahedron as follows
Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces
Application of โ€œHCRโ€™s Theory of Polygonโ€
๐œ”โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘› = 2๐œ‹ โˆ’ 2 ร— 6 sinโˆ’1
(
2(๐ธ๐‘‚)๐‘ ๐‘–๐‘›
๐œ‹
6
โˆš4(๐ธ๐‘‚)2 + ๐‘Ž2๐‘๐‘œ๐‘ก2 ๐œ‹
6)
= 2๐œ‹ โˆ’ 12 sinโˆ’1
(
2 (๐‘Ž (
3
4
)
1
4
) (
1
2
)
โˆš4 (๐‘Ž (
3
4
)
1
4
)
2
+ ๐‘Ž2(โˆš3)
2
)
= 2๐œ‹ โˆ’ 12 sinโˆ’1
(
(
3
4
)
1
4
โˆš4 (
โˆš3
2
) + 3
)
= 2๐œ‹ โˆ’ 12 sinโˆ’1
(
โˆš
(
โˆš3
2
)
2โˆš3 + 3
)
= 2๐œ‹ โˆ’ 12 sinโˆ’1
(โˆš
1
2(2 + โˆš3)
)
= 2๐œ‹ โˆ’ 12 sinโˆ’1
(โˆš
(2 โˆ’ โˆš3)
2(2 + โˆš3)(2 โˆ’ โˆš3)
) = 2๐œ‹ โˆ’ 12 sinโˆ’1
(โˆš
(2 โˆ’ โˆš3)
2(4 โˆ’ 3)
) = 2๐œ‹ โˆ’ 12 sinโˆ’1
(โˆš
2 โˆ’ โˆš3
2
)
๐Ž๐’‰ = ๐Ÿ๐… โˆ’ ๐Ÿ๐Ÿ ๐ฌ๐ข๐งโˆ’๐Ÿ
(โˆš
๐Ÿ โˆ’ โˆš๐Ÿ‘
๐Ÿ
) โ‰ˆ ๐Ÿ. ๐Ÿ•๐Ÿ–๐Ÿ”๐Ÿ‘๐Ÿ•๐Ÿ๐Ÿ๐Ÿ๐Ÿ” ๐’”๐’“
Normal distance (๐‘ฏ๐’•) of trapezoidal faces from the centre of non-uniform tetradecahedron: The
normal distance (๐ป๐‘ก) of each of 12 congruent trapezoidal faces from the centre of non-uniform tetradehedron
is given as
๐ป๐‘ก = ๐‘‚๐บ = ๐‘Žโˆš
3(4 + 3โˆš3)
22
(๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘กโ„Ž๐‘’ ๐‘’๐‘ž(๐ผ๐‘‰) ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’)
โ‡’ ๐‘ฏ๐’• = ๐’‚โˆš
๐Ÿ‘(๐Ÿ’ + ๐Ÿ‘โˆš๐Ÿ‘)
๐Ÿ๐Ÿ
โ‰ˆ ๐Ÿ. ๐Ÿ๐Ÿ๐Ÿ—๐Ÿ–๐Ÿ‘๐ŸŽ๐Ÿ”๐Ÿ—๐Ÿ“๐’‚
Itโ€™s clear that all 12 congruent trapezoidal faces are at an equal normal distance ๐‘ฏ๐’• from the centre of a non-
uniform tetradecahedron.
Solid angle (๐Ž๐’•) subtended by each of 12 congruent trapezoidal faces at the centre of non-uniform
tetradecahedron: Since a non-uniform tetradecahedron is a closed surface & we know that the total solid
angle, subtended by any closed surface at any point lying inside it, is ๐Ÿ’๐… ๐’”๐’“ (Ste-radian) hence the sum of solid
angles subtended by 2 congruent regular hexagonal & 12 congruent trapezoidal faces at the centre of the non-
uniform tetradecahedron must be 4๐œ‹ ๐‘ ๐‘Ÿ. Thus we have
2[๐œ”โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘›] + 12[๐œ”๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘–๐‘ข๐‘š] = 4๐œ‹ ๐‘œ๐‘Ÿ 12[๐œ”๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘–๐‘ข๐‘š] = 4๐œ‹ โˆ’ 2[๐œ”โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘›]
๐œ”๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘–๐‘ข๐‘š =
2๐œ‹ โˆ’ ๐œ”โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘›
6
=
2๐œ‹ โˆ’ [2๐œ‹ โˆ’ 12 sinโˆ’1
(โˆš2 โˆ’ โˆš3
2
)]
6
= 2 sinโˆ’1
(โˆš
2 โˆ’ โˆš3
2
)
Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces
Application of โ€œHCRโ€™s Theory of Polygonโ€
โˆด ๐Ž๐’• = ๐Ÿ ๐ฌ๐ข๐งโˆ’๐Ÿ
(โˆš
๐Ÿ โˆ’ โˆš๐Ÿ‘
๐Ÿ
) โ‰ˆ ๐ŸŽ. ๐Ÿ•๐Ÿ’๐Ÿ—๐Ÿ’๐Ÿ”๐Ÿ–๐Ÿ–๐Ÿ”๐Ÿ“ ๐’”๐’“
Itโ€™s clear from the above results that the solid angle subtended by each of 2 regular hexagonal faces is greater
than the solid angle subtended by each of 12 trapezoidal faces at the centre of a non-uniform tetradecahedron.
Itโ€™s also clear from the above results that ๐‘ฏ๐’• > ๐‘ฏ๐’‰ i.e. the normal distance (๐ป๐‘ก) of trapezoidal faces is greater
than the normal distance ๐ปโ„Ž of the regular hexagonal faces from the centre of a non-uniform tetradecahedron
i.e. regular hexagonal faces are closer to the centre as compared to the trapezoidal faces in a non-uniform
tetradecahedron.
Interior angles (๐œถ & ๐œท) of the trapezoidal faces of non-uniform tetradecahedron: From above Figures
1 & 2, let ๐›ผ be acute angle & ๐›ฝ be obtuse angle. Acute angle ๐›ผ is determined as follows
sin ๏ก ๐ต๐ด๐ท =
๐‘€๐‘
๐ด๐ท
โ‡’ ๐‘ ๐‘–๐‘›๐›ผ =
(
๐‘Ž
2
โˆš6 + โˆš3
2
)
๐‘Ž
๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘’๐‘ž(๐ผ๐ผ๐ผ)๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’
=
1
2
โˆš
6 + โˆš3
2
๐‘œ๐‘Ÿ ๐›ผ = sinโˆ’1
(
1
2
โˆš
6 + โˆš3
2
)
โ‡’ ๐‘จ๐’„๐’–๐’•๐’† ๐’‚๐’๐’ˆ๐’๐’†, ๐œถ = ๐ฌ๐ข๐งโˆ’๐Ÿ
(
๐Ÿ
๐Ÿ
โˆš
๐Ÿ” + โˆš๐Ÿ‘
๐Ÿ
) โ‰ˆ ๐Ÿ•๐Ÿ—. ๐Ÿ’๐Ÿ“๐Ÿ’๐Ÿ•๐ŸŽ๐Ÿ—๐Ÿ’๐Ÿ๐’
โ‰ˆ ๐Ÿ•๐Ÿ—๐’
๐Ÿ๐Ÿ•โ€ฒ
๐Ÿ๐Ÿ”. ๐Ÿ—๐Ÿ“โ€ฒโ€ฒ
In trapezoidal face ABCD, we know that the sum of all interior angles (of a quadrilateral) is ๐Ÿ‘๐Ÿ”๐ŸŽ๐’
โˆด 2๐›ผ + 2๐›ฝ = 360๐‘œ
๐‘œ๐‘Ÿ ๐›ฝ = 180๐‘œ
โˆ’ ๐›ผ
โˆด ๐‘ถ๐’ƒ๐’•๐’–๐’”๐’† ๐’‚๐’๐’ˆ๐’๐’†, ๐œท = ๐Ÿ๐Ÿ–๐ŸŽ๐’
โˆ’ ๐œถ โ‰ˆ ๐Ÿ๐ŸŽ๐ŸŽ. ๐Ÿ“๐Ÿ’๐Ÿ“๐Ÿ๐Ÿ—๐ŸŽ๐Ÿ”๐’
โ‰ˆ ๐Ÿ๐ŸŽ๐ŸŽ๐’
๐Ÿ‘๐Ÿโ€ฒ
๐Ÿ’๐Ÿ‘. ๐ŸŽ๐Ÿ“โ€ฒโ€ฒ
Sides of the trapezoidal face of non-uniform tetradecahedron: All the sides of each trapezoidal face can
be determined as follows (See Figures (3) & (5) above)
๐‘ช๐‘ซ = ๐‘จ๐‘ซ = ๐‘ฉ๐‘ช = ๐’‚ & ๐‘จ๐‘ฉ = ๐‘น๐’ =
(๐Ÿ + โˆš๐Ÿ‘)๐’‚
๐Ÿ
(๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘’๐‘ž(๐ผ) ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’)
๐‘ซ๐’Š๐’”๐’•๐’‚๐’๐’„๐’† ๐’ƒ๐’†๐’•๐’˜๐’†๐’†๐’ ๐’‘๐’‚๐’“๐’‚๐’๐’๐’†๐’ ๐’”๐’Š๐’…๐’†๐’” ๐‘จ๐‘ฉ & ๐‘ช๐‘ซ ๐’๐’‡ ๐’•๐’“๐’‚๐’‘๐’†๐’›๐’๐’Š๐’…๐’‚๐’ ๐’‡๐’‚๐’„๐’† ๐‘จ๐‘ฉ๐‘ช๐‘ซ
โˆด ๐‘ด๐‘ต =
๐’‚
๐Ÿ
โˆš
๐Ÿ” + โˆš๐Ÿ‘
๐Ÿ
(๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘’๐‘ž(๐ผ๐ผ๐ผ)๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’)
Hence, the area of each of 12 congruent trapezoidal faces of a non-uniform tetradecahedron is given as follows
๐‘จ๐’“๐’†๐’‚ ๐’๐’‡ ๐’•๐’“๐’‚๐’‘๐’†๐’›๐’Š๐’–๐’Ž ๐‘จ๐‘ฉ๐‘ช๐‘ซ =
1
2
(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘™๐‘™๐‘’๐‘™ ๐‘ ๐‘–๐‘‘๐‘’๐‘ ) ร— (๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘™๐‘™๐‘’๐‘™ ๐‘ ๐‘–๐‘‘๐‘’๐‘ )
=
1
2
(๐ด๐ต + ๐ถ๐ท)(๐‘€๐‘) =
1
2
(๐‘…๐‘œ + ๐‘Ž) (
๐‘Ž
2
โˆš
6 + โˆš3
2
) =
๐‘Ž
4
(
(1 + โˆš3)๐‘Ž
2
+ ๐‘Ž) โˆš
6 + โˆš3
2
Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces
Application of โ€œHCRโ€™s Theory of Polygonโ€
=
๐‘Ž2
8
(1 + โˆš3 + 2)โˆš
6 + โˆš3
2
=
๐‘Ž2
8
(3 + โˆš3)โˆš
6 + โˆš3
2
=
๐‘Ž2
8
โˆš(6 + โˆš3)(3 + โˆš3)
2
2
=
๐‘Ž2
8
โˆš
(6 + โˆš3)(12 + 6โˆš3)
2
=
๐‘Ž2
8
โˆš
(6 + โˆš3)(12 + 6โˆš3)
2
=
๐‘Ž2
8
โˆš
90 + 48โˆš3
2
=
๐‘Ž2
8
โˆš45 + 24โˆš3
=
๐’‚๐Ÿ
๐Ÿ–
โˆš๐Ÿ’๐Ÿ“ + ๐Ÿ๐Ÿ’โˆš๐Ÿ‘ โ‰ˆ ๐Ÿ. ๐Ÿ๐Ÿ”๐Ÿ‘๐ŸŽ๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐’‚๐Ÿ
Important parameters of a non-uniform tetradecahedron:
1. Inner (inscribed) radius (๐‘น๐’Š): It is the radius of the largest sphere inscribed (trapped inside) by a
non-uniform tetradecahedron. The largest inscribed sphere always touches both the congruent regular
hexagonal faces but does not touch any of 12 congruent trapezoidal faces at all since both the
hexagonal faces are closer to the centre as compared to all 12 trapezoidal faces. Thus, inner radius is
always equal to the normal distance (๐ปโ„Ž) of the regular hexagonal faces from the centre of a non-
uniform tetradecahedron & is given as follows
๐‘น๐’Š = ๐’‚ (
๐Ÿ‘
๐Ÿ’
)
๐Ÿ
๐Ÿ’
โ‰ˆ ๐ŸŽ. ๐Ÿ—๐Ÿ‘๐ŸŽ๐Ÿ”๐ŸŽ๐Ÿ’๐Ÿ–๐Ÿ“๐Ÿ—๐’‚
Hence, the volume of inscribed sphere is given as
๐‘ฝ๐’Š๐’๐’”๐’„๐’“๐’Š๐’ƒ๐’†๐’… =
4
3
๐œ‹(๐‘…๐‘–)3
=
๐Ÿ’
๐Ÿ‘
๐… (๐’‚ (
๐Ÿ‘
๐Ÿ’
)
๐Ÿ
๐Ÿ’
)
๐Ÿ‘
โ‰ˆ ๐Ÿ‘. ๐Ÿ‘๐Ÿ•๐Ÿ“๐Ÿ–๐Ÿ”๐Ÿ๐ŸŽ๐ŸŽ๐Ÿ’๐’‚๐Ÿ‘
2. Outer (circumscribed) radius (๐‘น๐’): It is the radius of the smallest sphere circumscribing a non-
uniform tetradecahedron or itโ€™s the radius of a spherical surface passing through all 18 vertices of a
non-uniform tetradecahedron. It is given as follows
๐‘น๐’ =
(๐Ÿ + โˆš๐Ÿ‘)๐’‚
๐Ÿ
โ‰ˆ ๐Ÿ. ๐Ÿ‘๐Ÿ”๐Ÿ”๐ŸŽ๐Ÿ๐Ÿ“๐Ÿ’๐ŸŽ๐Ÿ’๐’‚
Hence, the volume of circumscribed sphere is given as
๐‘ฝ๐’„๐’Š๐’“๐’„๐’–๐’Ž๐’”๐’„๐’“๐’Š๐’ƒ๐’†๐’… =
4
3
๐œ‹(๐‘…๐‘œ)3
=
๐Ÿ’
๐Ÿ‘
๐… (
(๐Ÿ + โˆš๐Ÿ‘)๐’‚
๐Ÿ
)
๐Ÿ‘
= ๐Ÿ๐ŸŽ. ๐Ÿ”๐Ÿ•๐Ÿ•๐Ÿ‘๐Ÿ–๐Ÿ“๐Ÿ–๐Ÿ“๐’‚๐Ÿ‘
3. Surface area (๐‘จ๐’”): We know that a non-uniform tetradecahedron has 2 congruent regular hexagonal
faces & 12 congruent trapezoidal faces. Hence, its surface area is given as follows
๐ด๐‘  = 2(๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘›) + 12(๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘–๐‘ข๐‘š ๐ด๐ต๐ถ๐ท) (๐‘ ๐‘’๐‘’ ๐‘“๐‘–๐‘”๐‘ข๐‘Ÿ๐‘’ 2 ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’)
We know that area of any regular n-polygon with each side of length ๐‘Ž is given as
๐‘จ =
๐Ÿ
๐Ÿ’
๐’๐’‚๐Ÿ
๐’„๐’๐’•
๐…
๐’
(๐‘“๐‘œ๐‘Ÿ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘›, ๐‘› = 6)
Hence, by substituting all the corresponding values in the above expression, we get
Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces
Application of โ€œHCRโ€™s Theory of Polygonโ€
๐ด๐‘  = 2 ร— (
1
4
ร— 6๐‘Ž2
๐‘๐‘œ๐‘ก
๐œ‹
6
) + 12 ร— (
1
2
(๐ด๐ต + ๐ถ๐ท)(๐‘€๐‘)) = 3๐‘Ž2
โˆš3 + 12 ร— (
๐‘Ž2
8
โˆš45 + 24โˆš3)
= 3๐‘Ž2
โˆš3 +
3๐‘Ž2
2
โˆš45 + 24โˆš3 =
3๐‘Ž2
2
(2โˆš3 + โˆš45 + 24โˆš3)
โˆด ๐‘จ๐’” =
๐Ÿ‘๐’‚๐Ÿ
๐Ÿ
(๐Ÿโˆš๐Ÿ‘ + โˆš๐Ÿ’๐Ÿ“ + ๐Ÿ๐Ÿ’โˆš๐Ÿ‘) โ‰ˆ ๐Ÿ๐Ÿ—. ๐Ÿ๐Ÿ“๐Ÿ๐Ÿ“๐Ÿ‘๐Ÿ—๐Ÿ”๐Ÿ๐’‚๐Ÿ
4. Volume (๐‘ฝ): We know that a non-uniform tetradecahedron has 2 congruent regular hexagonal & 12
congruent trapezoidal faces. Hence, the volume (V) of the non-uniform tetradecahedron is the sum of
volumes of all its elementary right pyramids with regular hexagonal & trapezoidal bases (faces) given
as follows
๐‘‰ = 2(๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘Ÿ๐‘–๐‘”โ„Ž๐‘ก ๐‘๐‘ฆ๐‘Ÿ๐‘Ž๐‘š๐‘–๐‘‘ ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘›๐‘Ž๐‘™ ๐‘๐‘Ž๐‘ ๐‘’)
+ 12(๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘Ÿ๐‘–๐‘”โ„Ž๐‘ก ๐‘๐‘ฆ๐‘Ÿ๐‘Ž๐‘š๐‘–๐‘‘ ๐‘ค๐‘–๐‘กโ„Ž ๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘œ๐‘–๐‘‘๐‘Ž๐‘™ ๐‘๐‘Ž๐‘ ๐‘’ ๐ด๐ต๐ถ๐ท)
= 2 (
1
3
(๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘›) ร— ๐ปโ„Ž) + 12 (
1
3
(๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘–๐‘ข๐‘š ๐ด๐ต๐ถ๐ท) ร— ๐ป๐‘ก)
= 2 (
1
3
(
1
4
ร— 6๐‘Ž2
๐‘๐‘œ๐‘ก
๐œ‹
6
) ร— ๐‘Ž (
3
4
)
1
4
) + 12 (
1
3
(
๐‘Ž2
8
โˆš45 + 24โˆš3) ร— ๐‘Žโˆš
3(4 + 3โˆš3)
22
)
= ๐‘Ž3
(โˆš3) (
3
4
)
1
4
+
๐‘Ž3
2
โˆš45 + 24โˆš3โˆš
3(4 + 3โˆš3)
22
= ๐‘Ž3โˆš
3โˆš3
2
+
๐‘Ž3
2
โˆš
3(4 + 3โˆš3)(45 + 24โˆš3)
22
= ๐‘Ž3โˆš
3โˆš3
2
+
๐‘Ž3
2
โˆš
3(396 + 231โˆš3)
22
= ๐‘Ž3โˆš
3โˆš3
2
+
๐‘Ž3
2
โˆš
3(396 + 231โˆš3)
22
= ๐‘Ž3โˆš
3โˆš3
2
+
๐‘Ž3
2
โˆš
99(12 + 7โˆš3)
22
= ๐‘Ž3
(โˆš
3โˆš3
2
+
3
2
โˆš
12 + 7โˆš3
2
) = ๐‘Ž3
(
2โˆš6โˆš3 + 3โˆš24 + 14โˆš3
4
)
โˆด ๐‘ฝ = ๐’‚๐Ÿ‘
(
๐Ÿโˆš๐Ÿ”โˆš๐Ÿ‘ + ๐Ÿ‘โˆš๐Ÿ๐Ÿ’ + ๐Ÿ๐Ÿ’โˆš๐Ÿ‘
๐Ÿ’
) โ‰ˆ ๐Ÿ”. ๐Ÿ–๐Ÿ๐Ÿ๐Ÿ’๐Ÿ“๐Ÿ๐Ÿ–๐Ÿ๐Ÿ๐’‚๐Ÿ‘
5. Mean radius (๐‘น๐’Ž): It is the radius of the sphere having a volume equal to that of a non-uniform
tetradecahedron. It is calculated as follows
๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘ค๐‘–๐‘กโ„Ž ๐‘š๐‘’๐‘Ž๐‘› ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘ข๐‘  ๐‘…๐‘š = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘›๐‘œ๐‘› ๐‘ข๐‘›๐‘–๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘ก๐‘’๐‘ก๐‘Ÿ๐‘Ž๐‘‘๐‘’๐‘๐‘Žโ„Ž๐‘’๐‘‘๐‘Ÿ๐‘œ๐‘›
4
3
๐œ‹(๐‘…๐‘š)3
= ๐‘Ž3
(
2โˆš6โˆš3 + 3โˆš24 + 14โˆš3
4
) โ‡’ (๐‘…๐‘š)3
= (
6โˆš6โˆš3 + 9โˆš24 + 14โˆš3
16๐œ‹
) ๐‘Ž3
โˆด ๐‘น๐’Ž = ๐’‚ (
๐Ÿ”โˆš๐Ÿ”โˆš๐Ÿ‘ + ๐Ÿ—โˆš๐Ÿ๐Ÿ’ + ๐Ÿ๐Ÿ’โˆš๐Ÿ‘
๐Ÿ๐Ÿ”๐…
)
๐Ÿ
๐Ÿ‘
โ‰ˆ ๐Ÿ. ๐Ÿ๐Ÿ•๐Ÿ”๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐ŸŽ๐Ÿ–๐’‚
Itโ€™s clear from above results that ๐‘น๐’Š < ๐‘น๐’Ž < ๐‘น๐’
Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces
Application of โ€œHCRโ€™s Theory of Polygonโ€
Construction of a solid non-uniform tetradecahedron: In order to construct a there are two methods
1. Construction from elementary right pyramids: In this method, first we construct all elementary right
pyramids as follows
Construct 2 congruent right pyramids with regular hexagonal base of side length ๐‘Ž & normal height (๐ปโ„Ž)
๐ปโ„Ž = ๐‘Ž (
3
4
)
1
4
โ‰ˆ 0.930604859๐‘Ž
Construct 12 congruent right pyramids with trapezoidal base ABCD of sides ๐ด๐ต, ๐ต๐ถ = ๐ด๐ท = ๐ถ๐ท & normal
height (๐ป๐‘ก)
๐ป๐‘ก = ๐‘Žโˆš
3(4 + 3โˆš3)
22
โ‰ˆ 1.119830695๐‘Ž
๐ด๐ท = ๐ต๐ถ = ๐ถ๐ท = ๐‘Ž & ๐ด๐ต =
(1 + โˆš3)๐‘Ž
2
โ‰ˆ 1.366025404๐‘Ž (๐‘†๐‘’๐‘’ ๐‘“๐‘–๐‘”๐‘ข๐‘Ÿ๐‘’ 2 ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’)
๐ด๐‘๐‘ข๐‘ก๐‘’ ๐‘Ž๐‘›๐‘”๐‘™๐‘’, ๐›ผ โ‰ˆ 79.45470941๐‘œ
๐ด๐ต & ๐ถ๐ท ๐‘Ž๐‘Ÿ๐‘’ ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘™๐‘™๐‘’๐‘™ ๐‘ ๐‘–๐‘‘๐‘’๐‘  & ๐ด๐ท & ๐ด๐ถ ๐‘Ž๐‘Ÿ๐‘’ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™ ๐‘๐‘ข๐‘ก ๐‘›๐‘œ๐‘› ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘™๐‘™๐‘’๐‘™ ๐‘ ๐‘–๐‘‘๐‘’๐‘ 
Now, paste/bond by joining all these elementary right pyramids by overlapping their lateral surfaces & keeping
their apex points coincident with each other such that all 6 edges of each regular hexagonal base (face) coincide
with the edges of 6 trapezoidal bases (faces). Thus a solid non-uniform tetradecahedron, with 2 congruent
regular hexagonal faces, 12 congruent trapezoidal faces & 18 vertices lying on a spherical surface, is obtained.
2. Facing a solid sphere: It is a method of facing, first we select a blank as a solid sphere of certain material (i.e.
metal, alloy, composite material etc.) & with suitable diameter in order to obtain the maximum desired edge
length of the hexagonal face of a non-uniform tetradecahedron. Then, we perform the facing operations on the
solid sphere to generate 2 congruent regular hexagonal faces each with edge length ๐‘Ž & 12 congruent
trapezoidal faces.
Let there be a blank as a solid sphere with a diameter D. Then the edge length ๐‘Ž, of each regular hexagonal face
of a non-uniform tetradecahedron of the maximum volume to be produced, can be co-related with the diameter
D by relation of outer radius (๐‘น๐’) with edge length (๐’‚) of the hexagonal face as follows
๐‘…๐‘œ =
(1 + โˆš3)๐‘Ž
2
Now, substituting ๐‘…๐‘œ = ๐ท
2
โ„ in the above expression, we have
๐ท
2
=
(1 + โˆš3)๐‘Ž
2
๐‘œ๐‘Ÿ ๐‘Ž =
๐ท
(โˆš3 + 1)
=
๐ท(โˆš3 โˆ’ 1)
(โˆš3 + 1)(โˆš3 โˆ’ 1)
=
๐ท(โˆš3 โˆ’ 1)
2
๐’‚ =
๐‘ซ(โˆš๐Ÿ‘ โˆ’ ๐Ÿ)
๐Ÿ
โ‰ˆ ๐ŸŽ. ๐Ÿ‘๐Ÿ”๐Ÿ”๐ŸŽ๐Ÿ๐Ÿ“๐Ÿ’๐ŸŽ๐Ÿ‘๐‘ซ
Above relation is very useful for determining the edge length ๐‘Ž of regular hexagonal face of a non-uniform
tetradecahedron to be produced from a solid sphere with known diameter D for manufacturing purpose.
Hence, the maximum volume of non-uniform tetradecahedron produced from a solid sphere is given as follows
Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces
Application of โ€œHCRโ€™s Theory of Polygonโ€
๐‘‰
๐‘š๐‘Ž๐‘ฅ = ๐‘Ž3
(
2โˆš6โˆš3 + 3โˆš24 + 14โˆš3
4
) = (
๐ท(โˆš3 โˆ’ 1)
2
)
3
(
2โˆš6โˆš3 + 3โˆš24 + 14โˆš3
4
)
= ๐ท3
(6โˆš3 โˆ’ 10) (
2โˆš6โˆš3 + 3โˆš24 + 14โˆš3
32
) = ๐ท3
(3โˆš3 โˆ’ 5) (
2โˆš6โˆš3 + 3โˆš24 + 14โˆš3
16
)
= ๐ท3
(
2โˆš6โˆš3(3โˆš3 โˆ’ 5)
2
+ 3โˆš(24 + 14โˆš3)(3โˆš3 โˆ’ 5)
2
16
)
= ๐ท3
(
2โˆš3(26โˆš3 โˆ’ 45) + 3โˆš(2โˆš3 โˆ’ 3)
8
)
๐‘ฝ๐’Ž๐’‚๐’™ = ๐‘ซ๐Ÿ‘
(
๐Ÿโˆš๐Ÿ‘(๐Ÿ๐Ÿ”โˆš๐Ÿ‘ โˆ’ ๐Ÿ’๐Ÿ“) + ๐Ÿ‘โˆš๐Ÿโˆš๐Ÿ‘ โˆ’ ๐Ÿ‘
๐Ÿ–
)
โ‰ˆ ๐ŸŽ. ๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ“๐Ÿ๐Ÿ๐ŸŽ๐Ÿ•๐Ÿ“๐‘ซ๐Ÿ‘
Minimum volume of material removed is given as
(๐‘‰๐‘Ÿ๐‘’๐‘š๐‘œ๐‘ฃ๐‘’๐‘‘)๐‘š๐‘–๐‘› = (๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘๐‘Ž๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘ค๐‘–๐‘กโ„Ž ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐ท)
โˆ’ (๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘›๐‘œ๐‘› ๐‘ข๐‘›๐‘–๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘ก๐‘’๐‘ก๐‘Ÿ๐‘Ž๐‘‘๐‘’๐‘๐‘Žโ„Ž๐‘’๐‘‘๐‘Ÿ๐‘œ๐‘›)
=
๐œ‹
6
๐ท3
โˆ’ ๐ท3
(
2โˆš3(26โˆš3 โˆ’ 45) + 3โˆš2โˆš3 โˆ’ 3
8
)
=
(
๐œ‹
6
โˆ’
2โˆš3(26โˆš3 โˆ’ 45) + 3โˆš2โˆš3 โˆ’ 3
8
)
๐ท3
(๐‘ฝ๐’“๐’†๐’Ž๐’๐’—๐’†๐’…)๐’Ž๐’Š๐’ =
(
๐…
๐Ÿ”
โˆ’
๐Ÿโˆš๐Ÿ‘(๐Ÿ๐Ÿ”โˆš๐Ÿ‘ โˆ’ ๐Ÿ’๐Ÿ“) + ๐Ÿ‘โˆš๐Ÿโˆš๐Ÿ‘ โˆ’ ๐Ÿ‘
๐Ÿ–
)
๐‘ซ๐Ÿ‘
โ‰ˆ ๐ŸŽ. ๐Ÿ๐Ÿ–๐Ÿ—๐ŸŽ๐Ÿ–๐Ÿ•๐Ÿ•๐‘ซ๐Ÿ‘
Percentage (%) of minimum volume of material removed
% ๐’๐’‡ ๐‘ฝ๐’“๐’†๐’Ž๐’๐’—๐’†๐’… =
๐‘š๐‘–๐‘›๐‘–๐‘š๐‘ข๐‘š ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘Ÿ๐‘’๐‘š๐‘œ๐‘ฃ๐‘’๐‘‘
๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’
ร— 100
= (
๐œ‹
6
โˆ’
2โˆš3(26โˆš3 โˆ’ 45) + 3โˆš2โˆš3 โˆ’ 3
8
)
๐ท3
๐œ‹
6
๐ท3
ร— 100 =
(
๐Ÿ โˆ’
๐Ÿ”โˆš๐Ÿ‘(๐Ÿ๐Ÿ”โˆš๐Ÿ‘ โˆ’ ๐Ÿ’๐Ÿ“) + ๐Ÿ—โˆš๐Ÿโˆš๐Ÿ‘ โˆ’ ๐Ÿ‘
๐Ÿ’๐…
)
ร— ๐Ÿ๐ŸŽ๐ŸŽ
โ‰ˆ ๐Ÿ‘๐Ÿ”. ๐Ÿ๐Ÿ%
Itโ€™s obvious that when a solid non-uniform tetradecahedron of the maximum volume is produced from a solid
sphere then about ๐Ÿ‘๐Ÿ”. ๐Ÿ๐Ÿ% of material is removed as scraps. Thus, we can select optimum diameter of blank
as a solid sphere to produce a solid non-uniform tetradecahedron of the maximum volume (or with the
maximum desired edge length ๐‘Ž of regular hexagonal face)
Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces
Application of โ€œHCRโ€™s Theory of Polygonโ€
Conclusions: Let there be a non-uniform tetradecahedron having 2 congruent regular hexagonal faces
each with edge length ๐‘Ž, 12 congruent trapezoidal faces & 18 vertices lying on a spherical surface with
certain radius then all its important parameters are calculated/determined as tabulated below
Congruent
polygonal faces
No. of
faces
Normal distance of each face from the
centre of the non-uniform tetradecahedron
Solid angle subtended by each face at the centre of the
non-uniform tetradecahedron
Regular
hexagon
2
๐‘Ž (
3
4
)
1
4
โ‰ˆ 0.930604859๐‘Ž 2๐œ‹ โˆ’ 12 sinโˆ’1
(โˆš
2 โˆ’ โˆš3
2
) โ‰ˆ 1.786372116 ๐‘ ๐‘Ÿ
Trapezium 12
๐‘Žโˆš
3(4 + 3โˆš3)
22
โ‰ˆ 1.119830695๐‘Ž 2 sinโˆ’1
(โˆš
2 โˆ’ โˆš3
2
) โ‰ˆ 0.749468865 ๐‘ ๐‘Ÿ
Inner (inscribed) radius (๐‘น๐’Š)
๐‘…๐‘– = ๐‘Ž (
3
4
)
1
4
โ‰ˆ 0.930604859๐‘Ž
Outer (circumscribed) radius (๐‘น๐’)
๐‘…๐‘œ =
(1 + โˆš3)๐‘Ž
2
โ‰ˆ 1.366025404๐‘Ž
Mean radius (๐‘น๐’Ž)
๐‘…๐‘š = ๐‘Ž (
6โˆš6โˆš3 + 9โˆš24 + 14โˆš3
16๐œ‹
)
1
3
โ‰ˆ 1.176511208๐‘Ž
Surface area (๐‘จ๐’”)
๐ด๐‘  =
3๐‘Ž2
2
(2โˆš3 + โˆš45 + 24โˆš3) โ‰ˆ 19.15253962๐‘Ž2
Volume (๐‘ฝ)
๐‘‰ = ๐‘Ž3
(
2โˆš6โˆš3 + 3โˆš24 + 14โˆš3
4
) โ‰ˆ 6.821451822๐‘Ž3
Note: Above articles had been developed & illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering)
M.M.M. University of Technology, Gorakhpur-273010 (UP) India March, 2015
Email: rajpootharishchandra@gmail.com
Authorโ€™s Home Page: https://notionpress.com/author/HarishChandraRajpoot

More Related Content

Similar to Mathematical analysis of a non-uniform tetradecahedron having 2 congruent regular hexagonal faces, 12 congruent trapezoidal faces & 18 vertices lying on a spherical surface

Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
ย 
Mathematical analysis of identical circles touching one another on the spheri...
Mathematical analysis of identical circles touching one another on the spheri...Mathematical analysis of identical circles touching one another on the spheri...
Mathematical analysis of identical circles touching one another on the spheri...Harish Chandra Rajpoot
ย 
Volume of a square based pyramid by Integration
Volume of a square based pyramid by IntegrationVolume of a square based pyramid by Integration
Volume of a square based pyramid by IntegrationSue Melloy
ย 
Application of Integration
Application of IntegrationApplication of Integration
Application of IntegrationRaymundo Raymund
ย 
Mathematical analysis of great rhombicosidodecahedron (the largest Archimedea...
Mathematical analysis of great rhombicosidodecahedron (the largest Archimedea...Mathematical analysis of great rhombicosidodecahedron (the largest Archimedea...
Mathematical analysis of great rhombicosidodecahedron (the largest Archimedea...Harish Chandra Rajpoot
ย 
Ii unidad plano cartesiano jeancarlos freitez
Ii unidad plano cartesiano jeancarlos freitezIi unidad plano cartesiano jeancarlos freitez
Ii unidad plano cartesiano jeancarlos freitezJeancarlosFreitez
ย 
Exposicion semana13
Exposicion semana13Exposicion semana13
Exposicion semana13Danilo Morote
ย 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationRai University
ย 
Mathematical analysis of small rhombicosidodecahedron (Archimedean solid) by hcr
Mathematical analysis of small rhombicosidodecahedron (Archimedean solid) by hcrMathematical analysis of small rhombicosidodecahedron (Archimedean solid) by hcr
Mathematical analysis of small rhombicosidodecahedron (Archimedean solid) by hcrHarish Chandra Rajpoot
ย 
Mathematical analysis of great rhombicuboctahedron (an Archimedean solid) (Ap...
Mathematical analysis of great rhombicuboctahedron (an Archimedean solid) (Ap...Mathematical analysis of great rhombicuboctahedron (an Archimedean solid) (Ap...
Mathematical analysis of great rhombicuboctahedron (an Archimedean solid) (Ap...Harish Chandra Rajpoot
ย 
Fรญsica Integrales_Katherine Jaya
Fรญsica Integrales_Katherine JayaFรญsica Integrales_Katherine Jaya
Fรญsica Integrales_Katherine JayaXimeJaya
ย 
Mathematical analysis of cuboctahedron/Archimedean solid by HCR
Mathematical analysis of cuboctahedron/Archimedean solid by HCRMathematical analysis of cuboctahedron/Archimedean solid by HCR
Mathematical analysis of cuboctahedron/Archimedean solid by HCRHarish Chandra Rajpoot
ย 
Mathematical analysis of truncated icosahedron & identical football by applyi...
Mathematical analysis of truncated icosahedron & identical football by applyi...Mathematical analysis of truncated icosahedron & identical football by applyi...
Mathematical analysis of truncated icosahedron & identical football by applyi...Harish Chandra Rajpoot
ย 
Change variablethm
Change variablethmChange variablethm
Change variablethmJasonleav
ย 
Mathematical analysis of a small rhombicuboctahedron (Archimedean solid) by HCR
Mathematical analysis of a small rhombicuboctahedron  (Archimedean solid) by HCRMathematical analysis of a small rhombicuboctahedron  (Archimedean solid) by HCR
Mathematical analysis of a small rhombicuboctahedron (Archimedean solid) by HCRHarish Chandra Rajpoot
ย 
IIT JAM Math 2022 Question Paper | Sourav Sir's Classes
IIT JAM Math 2022 Question Paper | Sourav Sir's ClassesIIT JAM Math 2022 Question Paper | Sourav Sir's Classes
IIT JAM Math 2022 Question Paper | Sourav Sir's ClassesSOURAV DAS
ย 
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric SpaceSome Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric SpaceIOSR Journals
ย 
4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptxHappy Ladher
ย 
POTENCIAS Y RAรCES DE NรšMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAรCES DE NรšMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptxPOTENCIAS Y RAรCES DE NรšMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAรCES DE NรšMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptxTejedaGarcaAngelBala
ย 

Similar to Mathematical analysis of a non-uniform tetradecahedron having 2 congruent regular hexagonal faces, 12 congruent trapezoidal faces & 18 vertices lying on a spherical surface (20)

Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
ย 
Mathematical analysis of identical circles touching one another on the spheri...
Mathematical analysis of identical circles touching one another on the spheri...Mathematical analysis of identical circles touching one another on the spheri...
Mathematical analysis of identical circles touching one another on the spheri...
ย 
Volume of a square based pyramid by Integration
Volume of a square based pyramid by IntegrationVolume of a square based pyramid by Integration
Volume of a square based pyramid by Integration
ย 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
ย 
Mathematical analysis of great rhombicosidodecahedron (the largest Archimedea...
Mathematical analysis of great rhombicosidodecahedron (the largest Archimedea...Mathematical analysis of great rhombicosidodecahedron (the largest Archimedea...
Mathematical analysis of great rhombicosidodecahedron (the largest Archimedea...
ย 
Ii unidad plano cartesiano jeancarlos freitez
Ii unidad plano cartesiano jeancarlos freitezIi unidad plano cartesiano jeancarlos freitez
Ii unidad plano cartesiano jeancarlos freitez
ย 
Exposicion semana13
Exposicion semana13Exposicion semana13
Exposicion semana13
ย 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
ย 
Mathematical analysis of small rhombicosidodecahedron (Archimedean solid) by hcr
Mathematical analysis of small rhombicosidodecahedron (Archimedean solid) by hcrMathematical analysis of small rhombicosidodecahedron (Archimedean solid) by hcr
Mathematical analysis of small rhombicosidodecahedron (Archimedean solid) by hcr
ย 
Mathematical analysis of great rhombicuboctahedron (an Archimedean solid) (Ap...
Mathematical analysis of great rhombicuboctahedron (an Archimedean solid) (Ap...Mathematical analysis of great rhombicuboctahedron (an Archimedean solid) (Ap...
Mathematical analysis of great rhombicuboctahedron (an Archimedean solid) (Ap...
ย 
Math Analysis I
Math Analysis I Math Analysis I
Math Analysis I
ย 
Fรญsica Integrales_Katherine Jaya
Fรญsica Integrales_Katherine JayaFรญsica Integrales_Katherine Jaya
Fรญsica Integrales_Katherine Jaya
ย 
Mathematical analysis of cuboctahedron/Archimedean solid by HCR
Mathematical analysis of cuboctahedron/Archimedean solid by HCRMathematical analysis of cuboctahedron/Archimedean solid by HCR
Mathematical analysis of cuboctahedron/Archimedean solid by HCR
ย 
Mathematical analysis of truncated icosahedron & identical football by applyi...
Mathematical analysis of truncated icosahedron & identical football by applyi...Mathematical analysis of truncated icosahedron & identical football by applyi...
Mathematical analysis of truncated icosahedron & identical football by applyi...
ย 
Change variablethm
Change variablethmChange variablethm
Change variablethm
ย 
Mathematical analysis of a small rhombicuboctahedron (Archimedean solid) by HCR
Mathematical analysis of a small rhombicuboctahedron  (Archimedean solid) by HCRMathematical analysis of a small rhombicuboctahedron  (Archimedean solid) by HCR
Mathematical analysis of a small rhombicuboctahedron (Archimedean solid) by HCR
ย 
IIT JAM Math 2022 Question Paper | Sourav Sir's Classes
IIT JAM Math 2022 Question Paper | Sourav Sir's ClassesIIT JAM Math 2022 Question Paper | Sourav Sir's Classes
IIT JAM Math 2022 Question Paper | Sourav Sir's Classes
ย 
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric SpaceSome Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
ย 
4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx
ย 
POTENCIAS Y RAรCES DE NรšMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAรCES DE NรšMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptxPOTENCIAS Y RAรCES DE NรšMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAรCES DE NรšMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
ย 

More from Harish Chandra Rajpoot

Derivation of great-circle distance formula using of HCR's Inverse cosine for...
Derivation of great-circle distance formula using of HCR's Inverse cosine for...Derivation of great-circle distance formula using of HCR's Inverse cosine for...
Derivation of great-circle distance formula using of HCR's Inverse cosine for...Harish Chandra Rajpoot
ย 
Mathematical Analysis of Circum-inscribed (C-I) Trapezium
Mathematical Analysis of Circum-inscribed (C-I) TrapeziumMathematical Analysis of Circum-inscribed (C-I) Trapezium
Mathematical Analysis of Circum-inscribed (C-I) TrapeziumHarish Chandra Rajpoot
ย 
Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)
Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)
Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)Harish Chandra Rajpoot
ย 
Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)
Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)
Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)Harish Chandra Rajpoot
ย 
Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...
Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...
Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...Harish Chandra Rajpoot
ย 
Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...
Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...
Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...Harish Chandra Rajpoot
ย 
HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...
HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...
HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...Harish Chandra Rajpoot
ย 
How to compute area of spherical triangle given the aperture angles subtended...
How to compute area of spherical triangle given the aperture angles subtended...How to compute area of spherical triangle given the aperture angles subtended...
How to compute area of spherical triangle given the aperture angles subtended...Harish Chandra Rajpoot
ย 
Hcr's derivations of 2 d geometry
Hcr's derivations of 2 d geometryHcr's derivations of 2 d geometry
Hcr's derivations of 2 d geometryHarish Chandra Rajpoot
ย 
Mathematical derivations of some important formula in 2D-Geometry H.C. Rajpoot
Mathematical derivations of some important formula in 2D-Geometry H.C. RajpootMathematical derivations of some important formula in 2D-Geometry H.C. Rajpoot
Mathematical derivations of some important formula in 2D-Geometry H.C. RajpootHarish Chandra Rajpoot
ย 
Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)
Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)
Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)Harish Chandra Rajpoot
ย 
Volume & surface area of right circular cone cut by a plane parallel to its s...
Volume & surface area of right circular cone cut by a plane parallel to its s...Volume & surface area of right circular cone cut by a plane parallel to its s...
Volume & surface area of right circular cone cut by a plane parallel to its s...Harish Chandra Rajpoot
ย 
Hcr's formula for regular spherical polygon
Hcr's formula for regular spherical polygonHcr's formula for regular spherical polygon
Hcr's formula for regular spherical polygonHarish Chandra Rajpoot
ย 
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...Harish Chandra Rajpoot
ย 
Mathematical analysis of identical circles touching one another on the whole ...
Mathematical analysis of identical circles touching one another on the whole ...Mathematical analysis of identical circles touching one another on the whole ...
Mathematical analysis of identical circles touching one another on the whole ...Harish Chandra Rajpoot
ย 
Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...
Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...
Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...Harish Chandra Rajpoot
ย 
Derivations of inscribed & circumscribed radii for three externally touching ...
Derivations of inscribed & circumscribed radii for three externally touching ...Derivations of inscribed & circumscribed radii for three externally touching ...
Derivations of inscribed & circumscribed radii for three externally touching ...Harish Chandra Rajpoot
ย 
Mathematical Analysis of Spherical Rectangle (Application of HCR's Theory of ...
Mathematical Analysis of Spherical Rectangle (Application of HCR's Theory of ...Mathematical Analysis of Spherical Rectangle (Application of HCR's Theory of ...
Mathematical Analysis of Spherical Rectangle (Application of HCR's Theory of ...Harish Chandra Rajpoot
ย 
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...Harish Chandra Rajpoot
ย 
Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...
Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...
Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...Harish Chandra Rajpoot
ย 

More from Harish Chandra Rajpoot (20)

Derivation of great-circle distance formula using of HCR's Inverse cosine for...
Derivation of great-circle distance formula using of HCR's Inverse cosine for...Derivation of great-circle distance formula using of HCR's Inverse cosine for...
Derivation of great-circle distance formula using of HCR's Inverse cosine for...
ย 
Mathematical Analysis of Circum-inscribed (C-I) Trapezium
Mathematical Analysis of Circum-inscribed (C-I) TrapeziumMathematical Analysis of Circum-inscribed (C-I) Trapezium
Mathematical Analysis of Circum-inscribed (C-I) Trapezium
ย 
Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)
Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)
Mathematical Analysis of Rhombicuboctahedron (Application of HCR's Theory)
ย 
Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)
Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)
Mathematical analysis of truncated rhombic dodecahedron (HCR's Polyhedron)
ย 
Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...
Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...
Mathematical Analysis of Rhombic Dodecahedron by applying HCR's Theory of Pol...
ย 
Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...
Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...
Mathematical Analysis & Modeling of Pyramidal Flat Container, Right Pyramid &...
ย 
HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...
HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...
HCR's theorem (Rotation of two co-planar planes, meeting at angle bisector, a...
ย 
How to compute area of spherical triangle given the aperture angles subtended...
How to compute area of spherical triangle given the aperture angles subtended...How to compute area of spherical triangle given the aperture angles subtended...
How to compute area of spherical triangle given the aperture angles subtended...
ย 
Hcr's derivations of 2 d geometry
Hcr's derivations of 2 d geometryHcr's derivations of 2 d geometry
Hcr's derivations of 2 d geometry
ย 
Mathematical derivations of some important formula in 2D-Geometry H.C. Rajpoot
Mathematical derivations of some important formula in 2D-Geometry H.C. RajpootMathematical derivations of some important formula in 2D-Geometry H.C. Rajpoot
Mathematical derivations of some important formula in 2D-Geometry H.C. Rajpoot
ย 
Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)
Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)
Hcr's hand book (Formula of Advanced Geometry by H.C. Rajpoot)
ย 
Volume & surface area of right circular cone cut by a plane parallel to its s...
Volume & surface area of right circular cone cut by a plane parallel to its s...Volume & surface area of right circular cone cut by a plane parallel to its s...
Volume & surface area of right circular cone cut by a plane parallel to its s...
ย 
Hcr's formula for regular spherical polygon
Hcr's formula for regular spherical polygonHcr's formula for regular spherical polygon
Hcr's formula for regular spherical polygon
ย 
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...
ย 
Mathematical analysis of identical circles touching one another on the whole ...
Mathematical analysis of identical circles touching one another on the whole ...Mathematical analysis of identical circles touching one another on the whole ...
Mathematical analysis of identical circles touching one another on the whole ...
ย 
Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...
Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...
Reflection of a point about a line & a plane in 2-D & 3-D co-ordinate systems...
ย 
Derivations of inscribed & circumscribed radii for three externally touching ...
Derivations of inscribed & circumscribed radii for three externally touching ...Derivations of inscribed & circumscribed radii for three externally touching ...
Derivations of inscribed & circumscribed radii for three externally touching ...
ย 
Mathematical Analysis of Spherical Rectangle (Application of HCR's Theory of ...
Mathematical Analysis of Spherical Rectangle (Application of HCR's Theory of ...Mathematical Analysis of Spherical Rectangle (Application of HCR's Theory of ...
Mathematical Analysis of Spherical Rectangle (Application of HCR's Theory of ...
ย 
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
ย 
Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...
Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...
Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...
ย 

Recently uploaded

Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
ย 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
ย 
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
ย 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
ย 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
ย 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
ย 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
ย 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
ย 
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,Virag Sontakke
ย 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
ย 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
ย 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
ย 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
ย 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
ย 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
ย 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
ย 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
ย 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
ย 

Recently uploaded (20)

Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
ย 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
ย 
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
ย 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
ย 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
ย 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ย 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
ย 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ย 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
ย 
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,
ย 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
ย 
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
ย 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
ย 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
ย 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
ย 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
ย 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
ย 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
ย 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
ย 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
ย 

Mathematical analysis of a non-uniform tetradecahedron having 2 congruent regular hexagonal faces, 12 congruent trapezoidal faces & 18 vertices lying on a spherical surface

  • 1. Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces Application of โ€œHCRโ€™s Theory of Polygonโ€ ๐‘ด๐’‚๐’•๐’‰๐’†๐’Ž๐’‚๐’•๐’Š๐’„๐’‚๐’ ๐‘จ๐’๐’‚๐’๐’š๐’”๐’Š๐’” ๐’๐’‡ ๐‘ต๐’๐’ ๐’–๐’๐’Š๐’‡๐’๐’“๐’Ž ๐‘ป๐’†๐’•๐’“๐’‚๐’…๐’†๐’„๐’‚๐’‰๐’†๐’…๐’“๐’๐’ Mr Harish Chandra Rajpoot M.M.M. University of Technology, Gorakhpur-273010 (UP), India March, 2015 Introduction: Here, we are to analyse a non-uniform tetradecahedron having 2 congruent regular hexagonal faces, 12 congruent trapezoidal faces & 18 vertices lying on a spherical surface with a certain radius. Each of 12 trapezoidal faces has three equal sides, two equal acute angles each ๐œถ (โ‰ˆ ๐Ÿ•๐Ÿ—. ๐Ÿ’๐Ÿ“๐’) & two equal obtuse angles each ๐œท (โ‰ˆ ๐Ÿ๐ŸŽ๐ŸŽ. ๐Ÿ“๐Ÿ“๐’). (See the Figure 1). The condition, of all 18 vertices lying on a spherical surface, governs & correlates all the parameters of a non-uniform tetradecahedron such as solid angle subtended by each face at the centre, normal distance of each face from the centre, outer (circumscribed) radius, inner (inscribed) radius, mean radius, surface area, volume etc. If the length of one of two unequal edges is known then all the dimensions of a non-uniform tetradecahedron can be easily determined. It is to noted that if the edge length of regular hexagonal face is known then the analysis becomes very easy. We would derive a mathematical relation of the side length ๐‘Ž of regular hexagonal faces & the radius ๐‘… of the spherical surface passing through all 18 vertices. Thus, all the dimensions of a non-uniform tetradecahedron can be easily determined only in terms of edge length ๐‘Ž & plane angles, solid angles of each face can also be determined easily. Analysis of Non-uniform Tetradecahedron: For ease of calculations & understanding, let there be a non-uniform tetradecahedron, with the centre O, having 2 congruent regular hexagonal faces each with edge length ๐’‚ & 12 congruent trapezoidal faces and all its 18 vertices lying on a spherical surface with a radius ๐‘น๐’. Now consider any of 12 congruent trapezoidal faces say ABCD (๐ด๐ท = ๐ต๐ถ = ๐ถ๐ท = ๐‘Ž) & join the vertices A & D to the centre O. (See the Figure 2). Join the centre E of the top hexagonal face to the centre O & to the vertex D. Draw a perpendicular DF from the vertex D to the line AO, perpendicular EM from the centre E to the side CD, perpendicular ON from the centre O to the side AB & then join the mid-points M & N of the sides CD & AB respectively in order to obtain trapeziums ADEO & OEMN (See the Figures 3 & 4 below). Now we have, ๐‘‚๐ด = ๐‘‚๐ท = ๐‘…๐‘œ , ๐ต๐ถ = ๐ถ๐ท = ๐ด๐ท = ๐‘Ž, โˆ ๐ถ๐ธ๐ท = โˆ ๐ด๐‘‚๐ต = 360๐‘œ 6 = 60๐‘œ Hence, in equilateral triangles โˆ†๐ถ๐ธ๐ท & โˆ†๐ด๐‘‚๐ต , we have ๐‘ฌ๐‘ช = ๐‘ฌ๐‘ซ = ๐‘ช๐‘ซ = ๐’‚ & ๐‘ถ๐‘จ = ๐‘ถ๐‘ฉ = ๐‘จ๐‘ฉ = ๐‘น๐’ In right โˆ†๐ธ๐‘€๐ท (Figure-2) ๐‘๐‘œ๐‘ โˆ ๐ท๐ธ๐‘€ = ๐ธ๐‘€ ๐ธ๐ท โ‡’ ๐‘๐‘œ๐‘ 30๐‘œ = ๐ธ๐‘€ ๐‘Ž โ‡’ ๐‘ฌ๐‘ด = ๐’‚โˆš๐Ÿ‘ ๐Ÿ = ๐‘ถ๐‘ฏ Similarly, in right โˆ†๐ด๐‘๐‘‚ (Figure-2) Figure 1: A non-uniform tetradecahedron has 2 congruent regular hexagonal faces each of edge length ๐’‚ & 12 congruent trapezoidal faces. All its 18 vertices eventually & exactly lie on a spherical surface with a certain radius. Figure 2: ABCD is one of 12 congruent trapezoidal faces with ๐‘จ๐‘ซ = ๐‘ฉ๐‘ช = ๐‘ช๐‘ซ. โˆ†๐‘ช๐‘ฌ๐‘ซ & โˆ†๐‘จ๐‘ถ๐‘ฉ are equilateral triangles. ADEO & OEMN are trapeziums.
  • 2. Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces Application of โ€œHCRโ€™s Theory of Polygonโ€ โ‡’ ๐‘ถ๐‘ต = ๐‘…๐‘œ๐‘๐‘œ๐‘ 30๐‘œ = ๐‘น๐’โˆš๐Ÿ‘ ๐Ÿ In right โˆ†๐‘‚๐ธ๐ท (Figure 3) ๐ธ๐‘‚ = โˆš(๐‘‚๐ท)2 โˆ’ (๐ท๐ธ)2 = โˆš๐‘…๐‘œ 2 โˆ’ ๐‘Ž2 โ‡’ ๐‘ฌ๐‘ถ = ๐‘ซ๐‘ญ = โˆš๐‘น๐’ ๐Ÿ โˆ’ ๐’‚๐Ÿ In right โˆ†๐ด๐น๐ท (figure 3) โ‡’ (๐ด๐ท)2 = (๐ด๐น)2 + (๐ท๐น)2 = (๐‘‚๐ด โˆ’ ๐‘‚๐น)2 + (๐ท๐น)2 = (๐‘…๐‘œ โˆ’ ๐‘Ž)2 + (โˆš๐‘…๐‘œ 2 โˆ’ ๐‘Ž2) 2 โ‡’ ๐‘Ž2 = ๐‘…๐‘œ 2 + ๐‘Ž2 โˆ’ 2๐‘Ž๐‘…๐‘œ + ๐‘…๐‘œ 2 + ๐‘Ž2 = 2๐‘…๐‘œ 2 โˆ’ 2๐‘Ž๐‘…๐‘œ 2๐‘…๐‘œ 2 โˆ’ 2๐‘Ž๐‘…๐‘œ โˆ’ ๐‘Ž2 = 0 โ‡’ ๐‘…๐‘œ = 2๐‘Ž ยฑ โˆš(โˆ’2๐‘Ž)2 + 8๐‘Ž2 4 = 2๐‘Ž ยฑ 2๐‘Žโˆš3 4 = ๐‘Ž(1 ยฑ โˆš3) 2 But, ๐‘…๐‘œ > ๐‘Ž > 0 by taking positive sign, we get โˆด ๐‘น๐’ = (๐Ÿ + โˆš๐Ÿ‘)๐’‚ ๐Ÿ โ€ฆ . โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐ผ) Now, draw a perpendicular OG from the centre O to the trapezoidal face ABCD, perpendicular MH from the mid-point M of the side CD to the line ON. Thus in trapezium OEMN (See the figure 4), we have ๐‘€๐ป = ๐ธ๐‘‚ = โˆš๐‘…๐‘œ 2 โˆ’ ๐‘Ž2 = โˆš( (1 + โˆš3)๐‘Ž 2 ) 2 โˆ’ ๐‘Ž2 = ๐‘Žโˆš (1 + 3 + 2โˆš3) โˆ’ 4 4 = ๐‘Žโˆš 2โˆš3 4 = ๐‘Žโˆšโˆš3 2 = ๐‘Žโˆšโˆš 3 4 โˆด ๐‘ด๐‘ฏ = ๐‘ฌ๐‘ถ = ๐’‚ ( ๐Ÿ‘ ๐Ÿ’ ) ๐Ÿ ๐Ÿ’ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐ผ๐ผ) ๐‘ต๐‘ฏ = ๐‘‚๐‘ โˆ’ ๐‘‚๐ป = ๐‘‚๐‘ โˆ’ ๐ธ๐‘€ = ๐‘…๐‘œโˆš3 2 โˆ’ ๐‘Žโˆš3 2 = โˆš3(๐‘…๐‘œ โˆ’ ๐‘Ž) 2 = โˆš3 ( (1 + โˆš3)๐‘Ž 2 โˆ’ ๐‘Ž) 2 (๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘’๐‘ž(๐ผ)) = ๐‘Žโˆš3(1 + โˆš3 โˆ’ 2) 4 = ๐‘Žโˆš3(โˆš3 โˆ’ 1) 4 = (3 โˆ’ โˆš3)๐‘Ž 4 In right โˆ†๐‘€๐ป๐‘ (Figure 4) ๐‘€๐‘ = โˆš(๐‘€๐ป)2 + (๐‘๐ป)2 = โˆš(๐ธ๐‘‚)2 + (๐‘๐ป)2 = โˆš(๐‘Ž ( 3 4 ) 1 4 ) 2 + ( (3 โˆ’ โˆš3)๐‘Ž 4 ) 2 Figure 3: Trapezium ADEO with ๐‘จ๐‘ซ = ๐‘ซ๐‘ฌ = ๐‘ถ๐‘ญ = ๐’‚, ๐‘ถ๐‘จ = ๐‘ถ๐‘ซ = ๐‘น๐’ & ๐‘ซ๐‘ญ = ๐‘ฌ๐‘ถ. The lines DE & AO are parallel. Figure 4: Trapezium OEMN with ๐‘ฌ๐‘ด = ๐‘ถ๐‘ฏ & ๐‘ฌ๐‘ถ = ๐‘ด๐‘ฏ. The lines ME & NO are parallel.
  • 3. Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces Application of โ€œHCRโ€™s Theory of Polygonโ€ = ๐‘Žโˆšโˆš3 2 + 9 + 3 โˆ’ 6โˆš3 16 = ๐‘Žโˆš 8โˆš3 + 12 โˆ’ 6โˆš3 16 = ๐‘Žโˆš 12 + 2โˆš3 16 = ๐‘Žโˆš 6 + โˆš3 8 โˆด ๐‘ด๐‘ต = ๐’‚ ๐Ÿ โˆš ๐Ÿ” + โˆš๐Ÿ‘ ๐Ÿ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (๐ผ๐ผ๐ผ) Now, area of โˆ†๐‘‚๐‘€๐‘ can be calculated as follows (from the above Figure 4) ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ โˆ†๐‘‚๐‘€๐‘ = 1 2 [(๐‘€๐‘) ร— (๐‘‚๐บ)] = 1 2 [(๐‘‚๐‘) ร— (๐‘€๐ป)] โ‡’ (๐‘€๐‘) ร— (๐‘‚๐บ) = (๐‘‚๐‘) ร— (๐‘€๐ป) โ‡’ ๐‘‚๐บ = (๐‘‚๐‘) ร— (๐‘€๐ป) ๐‘€๐‘ = ( ๐‘…๐‘œโˆš3 2 ) ร— (๐‘Ž ( 3 4 ) 1 4 ) ( ๐‘Ž 2 โˆš6 + โˆš3 2 ) = (โˆš3 (1 + โˆš3)๐‘Ž 2 ) โˆš 2 ( โˆš3 2 ) 6 + โˆš3 = (3 + โˆš3)๐‘Ž 2 โˆš โˆš3 6 + โˆš3 = (3 + โˆš3)๐‘Ž 2 โˆš 1 2โˆš3 + 1 = (3 + โˆš3)๐‘Ž 2 โˆš (2โˆš3 โˆ’ 1) (2โˆš3 + 1)(2โˆš3 โˆ’ 1) = ๐‘Ž 2 โˆš (2โˆš3 โˆ’ 1)(3 + โˆš3) 2 (12 โˆ’ 1) = ๐‘Ž 2 โˆš (2โˆš3 โˆ’ 1)(12 + 6โˆš3) 11 = ๐‘Ž 2 โˆš 24 + 18โˆš3 11 = ๐‘Žโˆš 3(4 + 3โˆš3) 22 โˆด ๐‘ถ๐‘ฎ = ๐’‚โˆš ๐Ÿ‘(๐Ÿ’ + ๐Ÿ‘โˆš๐Ÿ‘) ๐Ÿ๐Ÿ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (๐ผ๐‘‰) Normal distance (๐‘ฏ๐’‰) of regular hexagonal faces from the centre of non-uniform tetradecahedron: The normal distance (๐ปโ„Ž) of each of 2 congruent regular hexagonal faces from the centre O of a non-uniform tetradecahedron is given as ๐ปโ„Ž = ๐ธ๐‘‚ = ๐‘Ž ( 3 4 ) 1 4 (๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘กโ„Ž๐‘’ ๐‘’๐‘ž(๐ผ๐ผ) ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’) โˆด ๐‘ฏ๐’‰ = ๐’‚ ( ๐Ÿ‘ ๐Ÿ’ ) ๐Ÿ ๐Ÿ’ โ‰ˆ ๐ŸŽ. ๐Ÿ—๐Ÿ‘๐ŸŽ๐Ÿ”๐ŸŽ๐Ÿ’๐Ÿ–๐Ÿ“๐Ÿ—๐’‚ Itโ€™s clear that both the congruent regular hexagonal faces are at an equal normal distance ๐‘ฏ๐’‰ from the centre of a non-uniform tetradecahedron. Solid angle (๐Ž๐’‰) subtended by each of 2 congruent regular hexagonal faces at the centre of non- uniform tetradecahedron: We know that the solid angle (๐Ž) subtended by any regular polygon with each side of length ๐’‚ at any point lying at a distance H on the vertical axis passing through the centre of plane is given by โ€œHCRโ€™s Theory of Polygonโ€ as follows ๐Ž = ๐Ÿ๐… โˆ’ ๐Ÿ๐’ ๐ฌ๐ข๐งโˆ’๐Ÿ ( ๐Ÿ๐‘ฏ๐’”๐’Š๐’ ๐… ๐’ โˆš๐Ÿ’๐‘ฏ๐Ÿ + ๐’‚๐Ÿ๐’„๐’๐’•๐Ÿ ๐… ๐’) Hence, by substituting the corresponding values in the above expression, we get the solid angle subtended by each regular hexagonal face at the centre of the non-uniform tetradecahedron as follows
  • 4. Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces Application of โ€œHCRโ€™s Theory of Polygonโ€ ๐œ”โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘› = 2๐œ‹ โˆ’ 2 ร— 6 sinโˆ’1 ( 2(๐ธ๐‘‚)๐‘ ๐‘–๐‘› ๐œ‹ 6 โˆš4(๐ธ๐‘‚)2 + ๐‘Ž2๐‘๐‘œ๐‘ก2 ๐œ‹ 6) = 2๐œ‹ โˆ’ 12 sinโˆ’1 ( 2 (๐‘Ž ( 3 4 ) 1 4 ) ( 1 2 ) โˆš4 (๐‘Ž ( 3 4 ) 1 4 ) 2 + ๐‘Ž2(โˆš3) 2 ) = 2๐œ‹ โˆ’ 12 sinโˆ’1 ( ( 3 4 ) 1 4 โˆš4 ( โˆš3 2 ) + 3 ) = 2๐œ‹ โˆ’ 12 sinโˆ’1 ( โˆš ( โˆš3 2 ) 2โˆš3 + 3 ) = 2๐œ‹ โˆ’ 12 sinโˆ’1 (โˆš 1 2(2 + โˆš3) ) = 2๐œ‹ โˆ’ 12 sinโˆ’1 (โˆš (2 โˆ’ โˆš3) 2(2 + โˆš3)(2 โˆ’ โˆš3) ) = 2๐œ‹ โˆ’ 12 sinโˆ’1 (โˆš (2 โˆ’ โˆš3) 2(4 โˆ’ 3) ) = 2๐œ‹ โˆ’ 12 sinโˆ’1 (โˆš 2 โˆ’ โˆš3 2 ) ๐Ž๐’‰ = ๐Ÿ๐… โˆ’ ๐Ÿ๐Ÿ ๐ฌ๐ข๐งโˆ’๐Ÿ (โˆš ๐Ÿ โˆ’ โˆš๐Ÿ‘ ๐Ÿ ) โ‰ˆ ๐Ÿ. ๐Ÿ•๐Ÿ–๐Ÿ”๐Ÿ‘๐Ÿ•๐Ÿ๐Ÿ๐Ÿ๐Ÿ” ๐’”๐’“ Normal distance (๐‘ฏ๐’•) of trapezoidal faces from the centre of non-uniform tetradecahedron: The normal distance (๐ป๐‘ก) of each of 12 congruent trapezoidal faces from the centre of non-uniform tetradehedron is given as ๐ป๐‘ก = ๐‘‚๐บ = ๐‘Žโˆš 3(4 + 3โˆš3) 22 (๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘กโ„Ž๐‘’ ๐‘’๐‘ž(๐ผ๐‘‰) ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’) โ‡’ ๐‘ฏ๐’• = ๐’‚โˆš ๐Ÿ‘(๐Ÿ’ + ๐Ÿ‘โˆš๐Ÿ‘) ๐Ÿ๐Ÿ โ‰ˆ ๐Ÿ. ๐Ÿ๐Ÿ๐Ÿ—๐Ÿ–๐Ÿ‘๐ŸŽ๐Ÿ”๐Ÿ—๐Ÿ“๐’‚ Itโ€™s clear that all 12 congruent trapezoidal faces are at an equal normal distance ๐‘ฏ๐’• from the centre of a non- uniform tetradecahedron. Solid angle (๐Ž๐’•) subtended by each of 12 congruent trapezoidal faces at the centre of non-uniform tetradecahedron: Since a non-uniform tetradecahedron is a closed surface & we know that the total solid angle, subtended by any closed surface at any point lying inside it, is ๐Ÿ’๐… ๐’”๐’“ (Ste-radian) hence the sum of solid angles subtended by 2 congruent regular hexagonal & 12 congruent trapezoidal faces at the centre of the non- uniform tetradecahedron must be 4๐œ‹ ๐‘ ๐‘Ÿ. Thus we have 2[๐œ”โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘›] + 12[๐œ”๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘–๐‘ข๐‘š] = 4๐œ‹ ๐‘œ๐‘Ÿ 12[๐œ”๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘–๐‘ข๐‘š] = 4๐œ‹ โˆ’ 2[๐œ”โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘›] ๐œ”๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘–๐‘ข๐‘š = 2๐œ‹ โˆ’ ๐œ”โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘› 6 = 2๐œ‹ โˆ’ [2๐œ‹ โˆ’ 12 sinโˆ’1 (โˆš2 โˆ’ โˆš3 2 )] 6 = 2 sinโˆ’1 (โˆš 2 โˆ’ โˆš3 2 )
  • 5. Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces Application of โ€œHCRโ€™s Theory of Polygonโ€ โˆด ๐Ž๐’• = ๐Ÿ ๐ฌ๐ข๐งโˆ’๐Ÿ (โˆš ๐Ÿ โˆ’ โˆš๐Ÿ‘ ๐Ÿ ) โ‰ˆ ๐ŸŽ. ๐Ÿ•๐Ÿ’๐Ÿ—๐Ÿ’๐Ÿ”๐Ÿ–๐Ÿ–๐Ÿ”๐Ÿ“ ๐’”๐’“ Itโ€™s clear from the above results that the solid angle subtended by each of 2 regular hexagonal faces is greater than the solid angle subtended by each of 12 trapezoidal faces at the centre of a non-uniform tetradecahedron. Itโ€™s also clear from the above results that ๐‘ฏ๐’• > ๐‘ฏ๐’‰ i.e. the normal distance (๐ป๐‘ก) of trapezoidal faces is greater than the normal distance ๐ปโ„Ž of the regular hexagonal faces from the centre of a non-uniform tetradecahedron i.e. regular hexagonal faces are closer to the centre as compared to the trapezoidal faces in a non-uniform tetradecahedron. Interior angles (๐œถ & ๐œท) of the trapezoidal faces of non-uniform tetradecahedron: From above Figures 1 & 2, let ๐›ผ be acute angle & ๐›ฝ be obtuse angle. Acute angle ๐›ผ is determined as follows sin ๏ก ๐ต๐ด๐ท = ๐‘€๐‘ ๐ด๐ท โ‡’ ๐‘ ๐‘–๐‘›๐›ผ = ( ๐‘Ž 2 โˆš6 + โˆš3 2 ) ๐‘Ž ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘’๐‘ž(๐ผ๐ผ๐ผ)๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’ = 1 2 โˆš 6 + โˆš3 2 ๐‘œ๐‘Ÿ ๐›ผ = sinโˆ’1 ( 1 2 โˆš 6 + โˆš3 2 ) โ‡’ ๐‘จ๐’„๐’–๐’•๐’† ๐’‚๐’๐’ˆ๐’๐’†, ๐œถ = ๐ฌ๐ข๐งโˆ’๐Ÿ ( ๐Ÿ ๐Ÿ โˆš ๐Ÿ” + โˆš๐Ÿ‘ ๐Ÿ ) โ‰ˆ ๐Ÿ•๐Ÿ—. ๐Ÿ’๐Ÿ“๐Ÿ’๐Ÿ•๐ŸŽ๐Ÿ—๐Ÿ’๐Ÿ๐’ โ‰ˆ ๐Ÿ•๐Ÿ—๐’ ๐Ÿ๐Ÿ•โ€ฒ ๐Ÿ๐Ÿ”. ๐Ÿ—๐Ÿ“โ€ฒโ€ฒ In trapezoidal face ABCD, we know that the sum of all interior angles (of a quadrilateral) is ๐Ÿ‘๐Ÿ”๐ŸŽ๐’ โˆด 2๐›ผ + 2๐›ฝ = 360๐‘œ ๐‘œ๐‘Ÿ ๐›ฝ = 180๐‘œ โˆ’ ๐›ผ โˆด ๐‘ถ๐’ƒ๐’•๐’–๐’”๐’† ๐’‚๐’๐’ˆ๐’๐’†, ๐œท = ๐Ÿ๐Ÿ–๐ŸŽ๐’ โˆ’ ๐œถ โ‰ˆ ๐Ÿ๐ŸŽ๐ŸŽ. ๐Ÿ“๐Ÿ’๐Ÿ“๐Ÿ๐Ÿ—๐ŸŽ๐Ÿ”๐’ โ‰ˆ ๐Ÿ๐ŸŽ๐ŸŽ๐’ ๐Ÿ‘๐Ÿโ€ฒ ๐Ÿ’๐Ÿ‘. ๐ŸŽ๐Ÿ“โ€ฒโ€ฒ Sides of the trapezoidal face of non-uniform tetradecahedron: All the sides of each trapezoidal face can be determined as follows (See Figures (3) & (5) above) ๐‘ช๐‘ซ = ๐‘จ๐‘ซ = ๐‘ฉ๐‘ช = ๐’‚ & ๐‘จ๐‘ฉ = ๐‘น๐’ = (๐Ÿ + โˆš๐Ÿ‘)๐’‚ ๐Ÿ (๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘’๐‘ž(๐ผ) ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’) ๐‘ซ๐’Š๐’”๐’•๐’‚๐’๐’„๐’† ๐’ƒ๐’†๐’•๐’˜๐’†๐’†๐’ ๐’‘๐’‚๐’“๐’‚๐’๐’๐’†๐’ ๐’”๐’Š๐’…๐’†๐’” ๐‘จ๐‘ฉ & ๐‘ช๐‘ซ ๐’๐’‡ ๐’•๐’“๐’‚๐’‘๐’†๐’›๐’๐’Š๐’…๐’‚๐’ ๐’‡๐’‚๐’„๐’† ๐‘จ๐‘ฉ๐‘ช๐‘ซ โˆด ๐‘ด๐‘ต = ๐’‚ ๐Ÿ โˆš ๐Ÿ” + โˆš๐Ÿ‘ ๐Ÿ (๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘’๐‘ž(๐ผ๐ผ๐ผ)๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’) Hence, the area of each of 12 congruent trapezoidal faces of a non-uniform tetradecahedron is given as follows ๐‘จ๐’“๐’†๐’‚ ๐’๐’‡ ๐’•๐’“๐’‚๐’‘๐’†๐’›๐’Š๐’–๐’Ž ๐‘จ๐‘ฉ๐‘ช๐‘ซ = 1 2 (๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘™๐‘™๐‘’๐‘™ ๐‘ ๐‘–๐‘‘๐‘’๐‘ ) ร— (๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘™๐‘™๐‘’๐‘™ ๐‘ ๐‘–๐‘‘๐‘’๐‘ ) = 1 2 (๐ด๐ต + ๐ถ๐ท)(๐‘€๐‘) = 1 2 (๐‘…๐‘œ + ๐‘Ž) ( ๐‘Ž 2 โˆš 6 + โˆš3 2 ) = ๐‘Ž 4 ( (1 + โˆš3)๐‘Ž 2 + ๐‘Ž) โˆš 6 + โˆš3 2
  • 6. Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces Application of โ€œHCRโ€™s Theory of Polygonโ€ = ๐‘Ž2 8 (1 + โˆš3 + 2)โˆš 6 + โˆš3 2 = ๐‘Ž2 8 (3 + โˆš3)โˆš 6 + โˆš3 2 = ๐‘Ž2 8 โˆš(6 + โˆš3)(3 + โˆš3) 2 2 = ๐‘Ž2 8 โˆš (6 + โˆš3)(12 + 6โˆš3) 2 = ๐‘Ž2 8 โˆš (6 + โˆš3)(12 + 6โˆš3) 2 = ๐‘Ž2 8 โˆš 90 + 48โˆš3 2 = ๐‘Ž2 8 โˆš45 + 24โˆš3 = ๐’‚๐Ÿ ๐Ÿ– โˆš๐Ÿ’๐Ÿ“ + ๐Ÿ๐Ÿ’โˆš๐Ÿ‘ โ‰ˆ ๐Ÿ. ๐Ÿ๐Ÿ”๐Ÿ‘๐ŸŽ๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐’‚๐Ÿ Important parameters of a non-uniform tetradecahedron: 1. Inner (inscribed) radius (๐‘น๐’Š): It is the radius of the largest sphere inscribed (trapped inside) by a non-uniform tetradecahedron. The largest inscribed sphere always touches both the congruent regular hexagonal faces but does not touch any of 12 congruent trapezoidal faces at all since both the hexagonal faces are closer to the centre as compared to all 12 trapezoidal faces. Thus, inner radius is always equal to the normal distance (๐ปโ„Ž) of the regular hexagonal faces from the centre of a non- uniform tetradecahedron & is given as follows ๐‘น๐’Š = ๐’‚ ( ๐Ÿ‘ ๐Ÿ’ ) ๐Ÿ ๐Ÿ’ โ‰ˆ ๐ŸŽ. ๐Ÿ—๐Ÿ‘๐ŸŽ๐Ÿ”๐ŸŽ๐Ÿ’๐Ÿ–๐Ÿ“๐Ÿ—๐’‚ Hence, the volume of inscribed sphere is given as ๐‘ฝ๐’Š๐’๐’”๐’„๐’“๐’Š๐’ƒ๐’†๐’… = 4 3 ๐œ‹(๐‘…๐‘–)3 = ๐Ÿ’ ๐Ÿ‘ ๐… (๐’‚ ( ๐Ÿ‘ ๐Ÿ’ ) ๐Ÿ ๐Ÿ’ ) ๐Ÿ‘ โ‰ˆ ๐Ÿ‘. ๐Ÿ‘๐Ÿ•๐Ÿ“๐Ÿ–๐Ÿ”๐Ÿ๐ŸŽ๐ŸŽ๐Ÿ’๐’‚๐Ÿ‘ 2. Outer (circumscribed) radius (๐‘น๐’): It is the radius of the smallest sphere circumscribing a non- uniform tetradecahedron or itโ€™s the radius of a spherical surface passing through all 18 vertices of a non-uniform tetradecahedron. It is given as follows ๐‘น๐’ = (๐Ÿ + โˆš๐Ÿ‘)๐’‚ ๐Ÿ โ‰ˆ ๐Ÿ. ๐Ÿ‘๐Ÿ”๐Ÿ”๐ŸŽ๐Ÿ๐Ÿ“๐Ÿ’๐ŸŽ๐Ÿ’๐’‚ Hence, the volume of circumscribed sphere is given as ๐‘ฝ๐’„๐’Š๐’“๐’„๐’–๐’Ž๐’”๐’„๐’“๐’Š๐’ƒ๐’†๐’… = 4 3 ๐œ‹(๐‘…๐‘œ)3 = ๐Ÿ’ ๐Ÿ‘ ๐… ( (๐Ÿ + โˆš๐Ÿ‘)๐’‚ ๐Ÿ ) ๐Ÿ‘ = ๐Ÿ๐ŸŽ. ๐Ÿ”๐Ÿ•๐Ÿ•๐Ÿ‘๐Ÿ–๐Ÿ“๐Ÿ–๐Ÿ“๐’‚๐Ÿ‘ 3. Surface area (๐‘จ๐’”): We know that a non-uniform tetradecahedron has 2 congruent regular hexagonal faces & 12 congruent trapezoidal faces. Hence, its surface area is given as follows ๐ด๐‘  = 2(๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘›) + 12(๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘–๐‘ข๐‘š ๐ด๐ต๐ถ๐ท) (๐‘ ๐‘’๐‘’ ๐‘“๐‘–๐‘”๐‘ข๐‘Ÿ๐‘’ 2 ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’) We know that area of any regular n-polygon with each side of length ๐‘Ž is given as ๐‘จ = ๐Ÿ ๐Ÿ’ ๐’๐’‚๐Ÿ ๐’„๐’๐’• ๐… ๐’ (๐‘“๐‘œ๐‘Ÿ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘›, ๐‘› = 6) Hence, by substituting all the corresponding values in the above expression, we get
  • 7. Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces Application of โ€œHCRโ€™s Theory of Polygonโ€ ๐ด๐‘  = 2 ร— ( 1 4 ร— 6๐‘Ž2 ๐‘๐‘œ๐‘ก ๐œ‹ 6 ) + 12 ร— ( 1 2 (๐ด๐ต + ๐ถ๐ท)(๐‘€๐‘)) = 3๐‘Ž2 โˆš3 + 12 ร— ( ๐‘Ž2 8 โˆš45 + 24โˆš3) = 3๐‘Ž2 โˆš3 + 3๐‘Ž2 2 โˆš45 + 24โˆš3 = 3๐‘Ž2 2 (2โˆš3 + โˆš45 + 24โˆš3) โˆด ๐‘จ๐’” = ๐Ÿ‘๐’‚๐Ÿ ๐Ÿ (๐Ÿโˆš๐Ÿ‘ + โˆš๐Ÿ’๐Ÿ“ + ๐Ÿ๐Ÿ’โˆš๐Ÿ‘) โ‰ˆ ๐Ÿ๐Ÿ—. ๐Ÿ๐Ÿ“๐Ÿ๐Ÿ“๐Ÿ‘๐Ÿ—๐Ÿ”๐Ÿ๐’‚๐Ÿ 4. Volume (๐‘ฝ): We know that a non-uniform tetradecahedron has 2 congruent regular hexagonal & 12 congruent trapezoidal faces. Hence, the volume (V) of the non-uniform tetradecahedron is the sum of volumes of all its elementary right pyramids with regular hexagonal & trapezoidal bases (faces) given as follows ๐‘‰ = 2(๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘Ÿ๐‘–๐‘”โ„Ž๐‘ก ๐‘๐‘ฆ๐‘Ÿ๐‘Ž๐‘š๐‘–๐‘‘ ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘›๐‘Ž๐‘™ ๐‘๐‘Ž๐‘ ๐‘’) + 12(๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘Ÿ๐‘–๐‘”โ„Ž๐‘ก ๐‘๐‘ฆ๐‘Ÿ๐‘Ž๐‘š๐‘–๐‘‘ ๐‘ค๐‘–๐‘กโ„Ž ๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘œ๐‘–๐‘‘๐‘Ž๐‘™ ๐‘๐‘Ž๐‘ ๐‘’ ๐ด๐ต๐ถ๐ท) = 2 ( 1 3 (๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘Ÿ๐‘’๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ โ„Ž๐‘’๐‘ฅ๐‘Ž๐‘”๐‘œ๐‘›) ร— ๐ปโ„Ž) + 12 ( 1 3 (๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘–๐‘ข๐‘š ๐ด๐ต๐ถ๐ท) ร— ๐ป๐‘ก) = 2 ( 1 3 ( 1 4 ร— 6๐‘Ž2 ๐‘๐‘œ๐‘ก ๐œ‹ 6 ) ร— ๐‘Ž ( 3 4 ) 1 4 ) + 12 ( 1 3 ( ๐‘Ž2 8 โˆš45 + 24โˆš3) ร— ๐‘Žโˆš 3(4 + 3โˆš3) 22 ) = ๐‘Ž3 (โˆš3) ( 3 4 ) 1 4 + ๐‘Ž3 2 โˆš45 + 24โˆš3โˆš 3(4 + 3โˆš3) 22 = ๐‘Ž3โˆš 3โˆš3 2 + ๐‘Ž3 2 โˆš 3(4 + 3โˆš3)(45 + 24โˆš3) 22 = ๐‘Ž3โˆš 3โˆš3 2 + ๐‘Ž3 2 โˆš 3(396 + 231โˆš3) 22 = ๐‘Ž3โˆš 3โˆš3 2 + ๐‘Ž3 2 โˆš 3(396 + 231โˆš3) 22 = ๐‘Ž3โˆš 3โˆš3 2 + ๐‘Ž3 2 โˆš 99(12 + 7โˆš3) 22 = ๐‘Ž3 (โˆš 3โˆš3 2 + 3 2 โˆš 12 + 7โˆš3 2 ) = ๐‘Ž3 ( 2โˆš6โˆš3 + 3โˆš24 + 14โˆš3 4 ) โˆด ๐‘ฝ = ๐’‚๐Ÿ‘ ( ๐Ÿโˆš๐Ÿ”โˆš๐Ÿ‘ + ๐Ÿ‘โˆš๐Ÿ๐Ÿ’ + ๐Ÿ๐Ÿ’โˆš๐Ÿ‘ ๐Ÿ’ ) โ‰ˆ ๐Ÿ”. ๐Ÿ–๐Ÿ๐Ÿ๐Ÿ’๐Ÿ“๐Ÿ๐Ÿ–๐Ÿ๐Ÿ๐’‚๐Ÿ‘ 5. Mean radius (๐‘น๐’Ž): It is the radius of the sphere having a volume equal to that of a non-uniform tetradecahedron. It is calculated as follows ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘ค๐‘–๐‘กโ„Ž ๐‘š๐‘’๐‘Ž๐‘› ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘ข๐‘  ๐‘…๐‘š = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘›๐‘œ๐‘› ๐‘ข๐‘›๐‘–๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘ก๐‘’๐‘ก๐‘Ÿ๐‘Ž๐‘‘๐‘’๐‘๐‘Žโ„Ž๐‘’๐‘‘๐‘Ÿ๐‘œ๐‘› 4 3 ๐œ‹(๐‘…๐‘š)3 = ๐‘Ž3 ( 2โˆš6โˆš3 + 3โˆš24 + 14โˆš3 4 ) โ‡’ (๐‘…๐‘š)3 = ( 6โˆš6โˆš3 + 9โˆš24 + 14โˆš3 16๐œ‹ ) ๐‘Ž3 โˆด ๐‘น๐’Ž = ๐’‚ ( ๐Ÿ”โˆš๐Ÿ”โˆš๐Ÿ‘ + ๐Ÿ—โˆš๐Ÿ๐Ÿ’ + ๐Ÿ๐Ÿ’โˆš๐Ÿ‘ ๐Ÿ๐Ÿ”๐… ) ๐Ÿ ๐Ÿ‘ โ‰ˆ ๐Ÿ. ๐Ÿ๐Ÿ•๐Ÿ”๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐ŸŽ๐Ÿ–๐’‚ Itโ€™s clear from above results that ๐‘น๐’Š < ๐‘น๐’Ž < ๐‘น๐’
  • 8. Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces Application of โ€œHCRโ€™s Theory of Polygonโ€ Construction of a solid non-uniform tetradecahedron: In order to construct a there are two methods 1. Construction from elementary right pyramids: In this method, first we construct all elementary right pyramids as follows Construct 2 congruent right pyramids with regular hexagonal base of side length ๐‘Ž & normal height (๐ปโ„Ž) ๐ปโ„Ž = ๐‘Ž ( 3 4 ) 1 4 โ‰ˆ 0.930604859๐‘Ž Construct 12 congruent right pyramids with trapezoidal base ABCD of sides ๐ด๐ต, ๐ต๐ถ = ๐ด๐ท = ๐ถ๐ท & normal height (๐ป๐‘ก) ๐ป๐‘ก = ๐‘Žโˆš 3(4 + 3โˆš3) 22 โ‰ˆ 1.119830695๐‘Ž ๐ด๐ท = ๐ต๐ถ = ๐ถ๐ท = ๐‘Ž & ๐ด๐ต = (1 + โˆš3)๐‘Ž 2 โ‰ˆ 1.366025404๐‘Ž (๐‘†๐‘’๐‘’ ๐‘“๐‘–๐‘”๐‘ข๐‘Ÿ๐‘’ 2 ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’) ๐ด๐‘๐‘ข๐‘ก๐‘’ ๐‘Ž๐‘›๐‘”๐‘™๐‘’, ๐›ผ โ‰ˆ 79.45470941๐‘œ ๐ด๐ต & ๐ถ๐ท ๐‘Ž๐‘Ÿ๐‘’ ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘™๐‘™๐‘’๐‘™ ๐‘ ๐‘–๐‘‘๐‘’๐‘  & ๐ด๐ท & ๐ด๐ถ ๐‘Ž๐‘Ÿ๐‘’ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™ ๐‘๐‘ข๐‘ก ๐‘›๐‘œ๐‘› ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘™๐‘™๐‘’๐‘™ ๐‘ ๐‘–๐‘‘๐‘’๐‘  Now, paste/bond by joining all these elementary right pyramids by overlapping their lateral surfaces & keeping their apex points coincident with each other such that all 6 edges of each regular hexagonal base (face) coincide with the edges of 6 trapezoidal bases (faces). Thus a solid non-uniform tetradecahedron, with 2 congruent regular hexagonal faces, 12 congruent trapezoidal faces & 18 vertices lying on a spherical surface, is obtained. 2. Facing a solid sphere: It is a method of facing, first we select a blank as a solid sphere of certain material (i.e. metal, alloy, composite material etc.) & with suitable diameter in order to obtain the maximum desired edge length of the hexagonal face of a non-uniform tetradecahedron. Then, we perform the facing operations on the solid sphere to generate 2 congruent regular hexagonal faces each with edge length ๐‘Ž & 12 congruent trapezoidal faces. Let there be a blank as a solid sphere with a diameter D. Then the edge length ๐‘Ž, of each regular hexagonal face of a non-uniform tetradecahedron of the maximum volume to be produced, can be co-related with the diameter D by relation of outer radius (๐‘น๐’) with edge length (๐’‚) of the hexagonal face as follows ๐‘…๐‘œ = (1 + โˆš3)๐‘Ž 2 Now, substituting ๐‘…๐‘œ = ๐ท 2 โ„ in the above expression, we have ๐ท 2 = (1 + โˆš3)๐‘Ž 2 ๐‘œ๐‘Ÿ ๐‘Ž = ๐ท (โˆš3 + 1) = ๐ท(โˆš3 โˆ’ 1) (โˆš3 + 1)(โˆš3 โˆ’ 1) = ๐ท(โˆš3 โˆ’ 1) 2 ๐’‚ = ๐‘ซ(โˆš๐Ÿ‘ โˆ’ ๐Ÿ) ๐Ÿ โ‰ˆ ๐ŸŽ. ๐Ÿ‘๐Ÿ”๐Ÿ”๐ŸŽ๐Ÿ๐Ÿ“๐Ÿ’๐ŸŽ๐Ÿ‘๐‘ซ Above relation is very useful for determining the edge length ๐‘Ž of regular hexagonal face of a non-uniform tetradecahedron to be produced from a solid sphere with known diameter D for manufacturing purpose. Hence, the maximum volume of non-uniform tetradecahedron produced from a solid sphere is given as follows
  • 9. Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces Application of โ€œHCRโ€™s Theory of Polygonโ€ ๐‘‰ ๐‘š๐‘Ž๐‘ฅ = ๐‘Ž3 ( 2โˆš6โˆš3 + 3โˆš24 + 14โˆš3 4 ) = ( ๐ท(โˆš3 โˆ’ 1) 2 ) 3 ( 2โˆš6โˆš3 + 3โˆš24 + 14โˆš3 4 ) = ๐ท3 (6โˆš3 โˆ’ 10) ( 2โˆš6โˆš3 + 3โˆš24 + 14โˆš3 32 ) = ๐ท3 (3โˆš3 โˆ’ 5) ( 2โˆš6โˆš3 + 3โˆš24 + 14โˆš3 16 ) = ๐ท3 ( 2โˆš6โˆš3(3โˆš3 โˆ’ 5) 2 + 3โˆš(24 + 14โˆš3)(3โˆš3 โˆ’ 5) 2 16 ) = ๐ท3 ( 2โˆš3(26โˆš3 โˆ’ 45) + 3โˆš(2โˆš3 โˆ’ 3) 8 ) ๐‘ฝ๐’Ž๐’‚๐’™ = ๐‘ซ๐Ÿ‘ ( ๐Ÿโˆš๐Ÿ‘(๐Ÿ๐Ÿ”โˆš๐Ÿ‘ โˆ’ ๐Ÿ’๐Ÿ“) + ๐Ÿ‘โˆš๐Ÿโˆš๐Ÿ‘ โˆ’ ๐Ÿ‘ ๐Ÿ– ) โ‰ˆ ๐ŸŽ. ๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ“๐Ÿ๐Ÿ๐ŸŽ๐Ÿ•๐Ÿ“๐‘ซ๐Ÿ‘ Minimum volume of material removed is given as (๐‘‰๐‘Ÿ๐‘’๐‘š๐‘œ๐‘ฃ๐‘’๐‘‘)๐‘š๐‘–๐‘› = (๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘๐‘Ž๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘ค๐‘–๐‘กโ„Ž ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐ท) โˆ’ (๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘›๐‘œ๐‘› ๐‘ข๐‘›๐‘–๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘ก๐‘’๐‘ก๐‘Ÿ๐‘Ž๐‘‘๐‘’๐‘๐‘Žโ„Ž๐‘’๐‘‘๐‘Ÿ๐‘œ๐‘›) = ๐œ‹ 6 ๐ท3 โˆ’ ๐ท3 ( 2โˆš3(26โˆš3 โˆ’ 45) + 3โˆš2โˆš3 โˆ’ 3 8 ) = ( ๐œ‹ 6 โˆ’ 2โˆš3(26โˆš3 โˆ’ 45) + 3โˆš2โˆš3 โˆ’ 3 8 ) ๐ท3 (๐‘ฝ๐’“๐’†๐’Ž๐’๐’—๐’†๐’…)๐’Ž๐’Š๐’ = ( ๐… ๐Ÿ” โˆ’ ๐Ÿโˆš๐Ÿ‘(๐Ÿ๐Ÿ”โˆš๐Ÿ‘ โˆ’ ๐Ÿ’๐Ÿ“) + ๐Ÿ‘โˆš๐Ÿโˆš๐Ÿ‘ โˆ’ ๐Ÿ‘ ๐Ÿ– ) ๐‘ซ๐Ÿ‘ โ‰ˆ ๐ŸŽ. ๐Ÿ๐Ÿ–๐Ÿ—๐ŸŽ๐Ÿ–๐Ÿ•๐Ÿ•๐‘ซ๐Ÿ‘ Percentage (%) of minimum volume of material removed % ๐’๐’‡ ๐‘ฝ๐’“๐’†๐’Ž๐’๐’—๐’†๐’… = ๐‘š๐‘–๐‘›๐‘–๐‘š๐‘ข๐‘š ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘Ÿ๐‘’๐‘š๐‘œ๐‘ฃ๐‘’๐‘‘ ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’ ร— 100 = ( ๐œ‹ 6 โˆ’ 2โˆš3(26โˆš3 โˆ’ 45) + 3โˆš2โˆš3 โˆ’ 3 8 ) ๐ท3 ๐œ‹ 6 ๐ท3 ร— 100 = ( ๐Ÿ โˆ’ ๐Ÿ”โˆš๐Ÿ‘(๐Ÿ๐Ÿ”โˆš๐Ÿ‘ โˆ’ ๐Ÿ’๐Ÿ“) + ๐Ÿ—โˆš๐Ÿโˆš๐Ÿ‘ โˆ’ ๐Ÿ‘ ๐Ÿ’๐… ) ร— ๐Ÿ๐ŸŽ๐ŸŽ โ‰ˆ ๐Ÿ‘๐Ÿ”. ๐Ÿ๐Ÿ% Itโ€™s obvious that when a solid non-uniform tetradecahedron of the maximum volume is produced from a solid sphere then about ๐Ÿ‘๐Ÿ”. ๐Ÿ๐Ÿ% of material is removed as scraps. Thus, we can select optimum diameter of blank as a solid sphere to produce a solid non-uniform tetradecahedron of the maximum volume (or with the maximum desired edge length ๐‘Ž of regular hexagonal face)
  • 10. Mathematical analysis of non-uniform tetradecahedron with regular hexagonal & trapezoidal faces Application of โ€œHCRโ€™s Theory of Polygonโ€ Conclusions: Let there be a non-uniform tetradecahedron having 2 congruent regular hexagonal faces each with edge length ๐‘Ž, 12 congruent trapezoidal faces & 18 vertices lying on a spherical surface with certain radius then all its important parameters are calculated/determined as tabulated below Congruent polygonal faces No. of faces Normal distance of each face from the centre of the non-uniform tetradecahedron Solid angle subtended by each face at the centre of the non-uniform tetradecahedron Regular hexagon 2 ๐‘Ž ( 3 4 ) 1 4 โ‰ˆ 0.930604859๐‘Ž 2๐œ‹ โˆ’ 12 sinโˆ’1 (โˆš 2 โˆ’ โˆš3 2 ) โ‰ˆ 1.786372116 ๐‘ ๐‘Ÿ Trapezium 12 ๐‘Žโˆš 3(4 + 3โˆš3) 22 โ‰ˆ 1.119830695๐‘Ž 2 sinโˆ’1 (โˆš 2 โˆ’ โˆš3 2 ) โ‰ˆ 0.749468865 ๐‘ ๐‘Ÿ Inner (inscribed) radius (๐‘น๐’Š) ๐‘…๐‘– = ๐‘Ž ( 3 4 ) 1 4 โ‰ˆ 0.930604859๐‘Ž Outer (circumscribed) radius (๐‘น๐’) ๐‘…๐‘œ = (1 + โˆš3)๐‘Ž 2 โ‰ˆ 1.366025404๐‘Ž Mean radius (๐‘น๐’Ž) ๐‘…๐‘š = ๐‘Ž ( 6โˆš6โˆš3 + 9โˆš24 + 14โˆš3 16๐œ‹ ) 1 3 โ‰ˆ 1.176511208๐‘Ž Surface area (๐‘จ๐’”) ๐ด๐‘  = 3๐‘Ž2 2 (2โˆš3 + โˆš45 + 24โˆš3) โ‰ˆ 19.15253962๐‘Ž2 Volume (๐‘ฝ) ๐‘‰ = ๐‘Ž3 ( 2โˆš6โˆš3 + 3โˆš24 + 14โˆš3 4 ) โ‰ˆ 6.821451822๐‘Ž3 Note: Above articles had been developed & illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering) M.M.M. University of Technology, Gorakhpur-273010 (UP) India March, 2015 Email: rajpootharishchandra@gmail.com Authorโ€™s Home Page: https://notionpress.com/author/HarishChandraRajpoot