SlideShare a Scribd company logo
1 of 6
Download to read offline
Bài 1. Các bài toán v công th c t h p, ch nh h p
237
CHƯƠNG III. T H P, XÁC SU T VÀ S PH C
BÀI 1. CÁC BÀI TOÁN V CÔNG TH C T H P, CH NH H P
I. D NG 1: CH NG MINH NG TH C
k
nC B NG O HÀM
1. Các bài t p m u minh h a:
Bài 1. Ch ng minh r ng: −1 2 n n 1
n n nC + 2C + ...+ n.C = n2
Gi i
Xét: (1 + x)n
= o 1 2 2 3 3 n 1 n 1 n n
n n n n n nC C x C x C x ... C x C x− −
+ + ⋅ + ⋅ + + +
L y o hàm c 2 v ta có: ( )n 1 1 2 3 2 n n 1
n n n nn 1 x C 2C x 3C x nC x
− −
+ = + ⋅ + ⋅ + + ⋅…
Th x = 1 vào ng th c trên ta có: 1 2 n n 1
n n nC 2C ... n.C n2 −
+ + + =
Bài 2. Ch ng minh r ng: −
− −2 3 n n 2
n n n2.1.C + 3.2.C + ...+ n(n 1)C = n(n 1)2
Gi i
Xét: ( )1
n
x+ = o 1 2 2 3 3 n 1 n 1 n n
n n n n n nC C x C x C x ... C x C x− −
+ + ⋅ + ⋅ + + +
L y o hàm c 2 v ta có: ( )n 1 1 2 3 2 n n 1
n n n nn 1 x C 2C x 3C x nC x
− −
+ = + ⋅ + ⋅ + + ⋅…
L i l y o hàm ta có: ( )( )n 2 2 3 n n 2
n n nn n 1 1 x 2C 3.2.C .x n(n 1)C .x
− −
− + = + + + −…
Th x = 1 vào ng th c trên ta có: 2 3 n n 2
n n n2.1.C 3.2.C ... n(n 1)C n(n 1)2 −
+ + + − = −
Bài 3. ( thi TS H kh i A −−−− 2005): Gi i phương trình:
( )− −1 2 2 3 3 4 2n 2n+1
2n+1 2n+1 2n+1 2n+1 2n+1C 2.2C + 3.2 C 4.2 C + ...+ 2n + 1 2 C = 2005
Gi i
Xét ( )2 1 0 1 2 2 2 1 2 1
2 1 2 1 2 1 2 1 2 11 ... ...
n k k n n
n n n n nx C C x C x C x C x
+ + +
+ + + + ++ = + + + + + +
L y o hàm c 2 v ta có:
( )( ) ( )2 1 2 1 2 1 2
2 1 2 1 2 1 2 12 1 1 2 ... ... 2 1
n k k n n
n n n nn x C C x kC x n C x− +
+ + + ++ + = + + + + + +
Thay x = −2 vào ng th c ta có:
( ) ( ) ( ) ( )1 21 2 2 1
2 1 2 1 2 1 2 12 1 2.2 ... 2 ... 2 2 1
k nk n
n n n nn C C kC n C
− +
+ + + ++ = − + + − + + − +
Phương trình ã cho ⇔ 2n + 1 = 2005 ⇔ n = 1002
Chương III. T h p, Xác su t và S ph c −−−− Tr n Phương
238
Bài 4. Gi i phương trình:
( ) ( ) ( )−
− − − − −
k2 3 k 2 k 2n-1 2n+1
2n+1 2n+1 2n+1 2n+12C 3.2C + ...+ 1 k k 1 2 C + ... 2n 2n + 1 2 C = 110
Gi i
Xét ( ) ( )2 1 0 1 2 2 2 1 2 1
2 1 2 1 2 1 2 1 2 11 ... 1 ...
n k k k n n
n n n n nx C C x C x C x C x
+ + +
+ + + + +− = − + − + − + −
L y o hàm c 2 v ta có:
( )( ) ( ) ( )2 1 2 1 2 1 2
2 1 2 1 2 1 2 12 1 1 2 ... 1 ... 2 1
n k k k n n
n n n nn x C C x kC x n C x− +
+ + + +− + − = − + − + − + − +
L i l y o hàm c 2 v ta có: ( )( )2 1
2 2 1 1
n
n n x
−
+ − =
( ) ( ) ( )2 3 2 2 1 2 1
2 1 2 1 2 1 2 12 3 ... 1 1 ... 2 2 1
k k k n n
n n n nC C x k k C x n n C x− + −
+ + + += − + + − − + − +
Thay x = 2 vào ng th c ta có: ( )2 2 1n n− + =
( ) ( ) ( )2 3 2 2 1 2 1
2 1 2 1 2 1 2 12 3.2 ... 1 1 2 ... 2 2 1 2
k k k n n
n n n nC C k k C n n C− − +
+ + + += − + + − − + − +
Phương trình ã cho ⇔ ( ) 2
2 2 1 110 2 55 0 5n n n n n+ = ⇔ + − = ⇔ =
2. Các bài t p dành cho b n c t gi i:
Bài 1. Ch ng minh r ng: 0 1 2
3 5 ... (2 1) ( 1)2n n
n n n nC C C n C n+ + + + + = +
Bài 2. Ch ng minh r ng: 1 1 2 2 3 3 1
2 2.2 3.2 ... . .3n n n n n
n n n nC C C n C n− − − −
+ + + + =
Bài 3. Ch ng minh r ng: 1 2 3 4 1
2 3 4 ... ( 1) . 0n n
n n n n nC C C C n C−
− + − + + − =
Bài 4. Ch ng minh r ng:
( ) ( ) ( )1 0 2 1 3 2 1 1 1 2 1
4 1 4 2 4 ... 1 2.2 .. .2
nn n n n n n
n n n n n n nn C n C n C C C C n C− − − − −
− − + − − + − = + + +
Bài 5. Ch ng minh r ng: ( ) ( ) ( )
( )
( )[ ]
2 2 21 2
2
2 1 !
2
1 !
n
n n n
n
C C n C
n
−
+ +…+ =
−
∀n ≥ 2
Bài 6. Ch ng minh r ng:
( ) ( )
( )
( )
2 3
2 3
2 1
1
1 1 1
n
n n n
n
C C n C
n n n
−
+ + + =
− − −
… ∀n ≥ 2
Bài 7. Ch ng minh r ng: ( ) 11
1
tg 1 tg
n
nk k
n
k
kC x n x
−−
=
= +∑ ∀n ≥ 2
Bài 8. Ch ng minh r ng: ( )1 2 2 2 3 2 2
2 3 ... 1 2n n
n n n nC C C n C n n −
+ + + + = +
Bài 9. Ch ng minh r ng: ( ) ( ) ( ) 11 2 1
1 2 ... 1 0
nn n n
n n n nnC n C n C C
−− −
− − + − − + − =
Bài 10. CMR: ( ) ( ) ( )1 20 1 1 2 1 1
1 2 1 2 .2 ... 1 2 ... 2
n n n k k k n n
n n n nC C kC nC n
− − − − −
− + − − + − + + =
Bài 1. Các bài toán v công th c t h p, ch nh h p
239
II. D NG 2: CH NG MINH NG TH C
k
nC B NG TÍCH PHÂN
1. Các bài t p m u minh h a:
Bài 1. Ch ng minh r ng:
−n+1
1 2 n
n n n
2 11 1 1
1 + C + C + ...+ C =
2 3 n + 1 n + 1
Gi i
Xét (1 + x)n
= o 1 2 2 3 3 n 1 n 1 n n
n n n n n nC C x C x C x ... C x C x− −
+ + ⋅ + ⋅ + + +
Ta có: ( )
( )n 11 n 11
n
0
0
1 x 2 1
1 x dx
n 1 n 1
+ ++ −
+ = =
+ +∫
M t khác: ( )
1
o 1 2 2 3 3 n 1 n 1 n n
n n n n n n
0
C C x C x C x ... C x C x dx− −
+ + ⋅ + ⋅ + + + =∫
Bài 2. Ch ng minh r ng:
−
−
n+1
1 2 n
n n n
( 1)1 1 n
C C + ...+ C =
2 3 n + 1 n + 1
Gi i
Ta có : (1 − x)n
= 0 1 2 2 n n n
n n n nC C x C x ... ( 1) C x− + + + −
⇒
2 2 n 1
n 0 1 n n n 1 2 n
n n n n n n
0 0
( 1)1 1
(1 x) dx C C x ... ( 1) C x dx C C ... C
2 3 n 1
+
−
 − = − + + − = − + +  +∫ ∫
M t khác
12 n 1
n
0 0
(1 x) 1
(1 x) dx
n 1 n 1
=
−
− = =
+ +∫ ⇒ ( pcm)
Bài 3. Ch ng minh r ng:
( )
−n+1
0 1 2 n
n n n n
1 1 1 1 2 1
C + C + C + …+ C =
3 6 3 3n + 3 3 n + 1
Gi i
Xét P(x) = ( ) ( )
n
2 3 2 0 1 3 2 6 n 3n
n n n nx 1 x x C C x C x C x+ = + ⋅ + ⋅ + + ⋅…
Ta có:
( ) ( ) ( )
1 1 1
n n
2 3 3 3
0 0 0
1
P(x)dx x 1 x dx 1 x d 1 x
3
= + = + +∫ ∫ ∫
( )
( )
n 1
3 n 1
1 1 x 2 1
3 n 1 3 n 1
+
+
+ −
= =
+ +
Chương III. T h p, Xác su t và S ph c −−−− Tr n Phương
240
M t khác: ( )
1 1
0 2 1 5 n 3n 2
n n n
0 0
P(x) dx C x C x C x dx+
= ⋅ + ⋅ + + ⋅∫ ∫ … =
=
1
0 3 1 6 n 3n 3
n n n
0
C x C x C x
3 6 3n 3
+
 ⋅ ⋅ ⋅
+ + + 
+  
… 0 1 2 n
n n n n
1 1 1 1
C C C C
3 6 3 3n 3
= + + + +
+
…
V y
( )
n 1
0 1 2 n
n n n n
1 1 1 1 2 1
C C C C
3 6 3 3n 3 3 n 1
+
−
+ + + + =
+ +
…
2. Các bài t p dành cho b n c t gi i:
Bài 1. Ch ng minh r ng:
n
1 2 n n
n n
C1 1 1
1 C C ... ( 1)
2 3 n 1 n 1
− + − + − =
+ +
Bài 2. Ch ng minh r ng:
n
0 1 2 n
n n n n
( 1)1 1 1 1
C C C ... C
2 4 6 n 2 2(n 1)
−
− + − + =
+ +
Bài 3. Ch ng minh r ng:
n n
0 2 1 3 2 n 1 n
n n n n
( 1) 1 ( 1)1 1
2C 2 C 2 C ... 2 C
2 3 n 1 n 1
+− + −
− ⋅ + ⋅ − + ⋅ =
+ +
Bài 4. Ch ng minh r ng:
n 1
0 2 1 3 2 n 1 n
n n n n
3 11 1 1
2C 2 C 2 C ... 2 C
2 3 n 1 n 1
+
+ −
+ ⋅ + ⋅ + + ⋅ =
+ +
Bài 5. Ch ng minh r ng: ( ) ( )
( )
0 1 2 3 2 !!1 1 1 1... 1
3 5 7 2 1 2 1 !!
n n
n n n n n
n
C C C C C
n n
− + − + + − =
+ +
Bài 6. Ch ng minh r ng:
( )n 1 n nn 1
k k k 1
n n
k 0 k 0
1 e 1 2 1
C C e
n 1 k 1 n 1 k 1
+ +
+
= =
+
+ = +
+ + + +
∑ ∑
Bài 7. Ch ng minh r ng:
( )0 1 2 11 1 1...
2 3 1 1
n
n
n n n nC C C C
n n
−
− + − + =
+ +
Bài 8. Ch ng minh r ng: ( )1 2 3
3 7 ... 2 1 3 2n n n n
n n n nC C C C+ + + + − = −
Bài 9. Ch ng minh r ng:
( ) ( )
k kn n 2n 2 n 1
n n
k 1 n 1
k 0 k 0
C C 2 3
k 1 k 1 2 n 1 2
+ +
+ +
= =
−
− =
+ + +
∑ ∑
Bài 10. t Sn =
1 1 1
1
2 3 n
+ + + +… . Ch ng minh r ng:
( )
( )n 1
n 11 2 n 1
n n n 1 n n 2 n 1
1
S C S C S 1 C S
n
−
− −
− −
−
− + − + − =…
Bài 11. Ch ng minh: ( )n 11 2 3 n
n n n n
1 1 1 1 1 1
C C C 1 C 1
1 2 3 n 2 n
−
⋅ − ⋅ + ⋅ − + − ⋅ ⋅ = + + +… …
Bài 1. Các bài toán v công th c t h p, ch nh h p
241
III. D NG 3: CH NG MINH NG TH C
k
nC B NG NH NGHĨA
1
1
k k
n n
nC C
k
−
−= ( k n< ) ; ( ) 1
1m m
n m n mnC m C +
+ += + ; m k k m k
n m n n kC C C C −
−⋅ = ⋅ (k ≤ m ≤ n) ;
( )
2 3
1
1 2 1 1
1
2 3 ... ...
2
p n
n n n n
n p n
n n n n
C C C C n n
C p n
C C C C− −
+
+ + + + + + = ;
( ) ( )
1
11 2 3
1
0
2 3 ... 1 1
n
n kn k
n n n n n
k
C C C nC n C
−
−
−
=
− + − + − = −∑ ; 1 1
2 2 2 2
1
2
n n n
n n nC C C− +
++ = ;
0 1 2
1 2 3 1 1
2 3 4 2 2 2
1
... ...
2
k n
n n n n n
k n
n n n n k n
C C C C C
C C C C C+ +
+ + + + + +
+ + + + + + = ; 1 1 1
22m m m m
n n n nC C C C+ − +
++ + = ;
IV. D NG 4: CH NG MINH B NG CÔNG TH C
1
1 1;− −
− −= + =k n k k k k
n n n n nC C C C C
1
1 2 1 1...k k k k k k
n n n k k nC C C C C C +
− − + ++ + + + + = ; 1 2 3
33 3k k k k k
n n n n nC C C C C− − −
++ + + =
1 2 3 2 3
2 32 5 4k k k k k k
n n n n n nC C C C C C+ + + + +
+ ++ + + = + ; 1
0
m
k m
n k n m
k
C C+ + +
=
=∑
1 2 3 4
44 6 4k k k k k k
n n n n n nC C C C C C− − − −
++ + + + =
V. D NG 5: CH NG MINH B NG KHAI TRI N NEWTON
0 1
... 2n n
n n nC C C+ + + = ; 1 3 2 1 0 2 2 2 1
2 2 2 2 2 2... ... 2n n n
n n n n n nC C C C C C− −
+ + + = + + + =
0 1 1 1
3 3 ... 3 4n n n n n
n n n nC C C C− −
+ + + + = ; 0 1 2 2 3 3
6 6 6 ... 6 7n n n
n n n n nC C C C C+ + + + + =
( )0 1 2 3
... 1 0
n n
n n n n nC C C C C− + − + + − = ; 0 1 1 2 2 3 1 1
2 2 .2 2 .3 ... 2 . .3n n n
n n n nC C C nC n− −
+ + + + =
0 2 2 1 3 2 1
... ... ... ...k k
n n n n n nC C C C C C +
+ + + + = + + + +
0 1 2 2 3 3 2 1 2 1 2 2
2 2 2 2 2 210 10 10 ... 10 10 81n n n n n
n n n n n nC C C C C C− −
− + − + − + =
( ) ( )0 1 1 2 2
2 2 2 ... 1 2 ... 1 1
k nn n n n k k n
n n n n nC C C C C− − −
− + − + − + + − =
( )0 1 1 2 2 0 1 2 2
4 4 4 ... 1 2 2 .. 2
nn n n n n n
n n n n n n n nC C C C C C C C− −
− + − + − = + + + +
0 2 1 3 2 1 12 2 2 2 3 1...
1 2 3 1 1
n n n
n n n nC C C C
n n
+ +
−+ + + + =
+ +
( )0 2 2 4 4 2 2 2 1 2
2 2 2 23 3 ... 3 2 2 1n n n n
n n n nC C C C −
+ + + + = +
( )0 2 2 4 4 2000 2000 2000 2001
2001 2001 2001 20013 3 ... 3 2 2 1C C C C+ + + + = −
Chương III. T h p, Xác su t và S ph c −−−− Tr n Phương
242
VI. D NG 6: CH NG MINH NG TH C B NG CÁCH NG NH T H S THEO 2
CÁCH KHAI TRI N
0 1 1 1 1 0
. . ... . .k k k k k
n m n m n m n m m nC C C C C C C C C− −
++ + + + =
0 1 1
2. . ... .k k n k n n k
n n n n n n nC C C C C C C+ − +
+ + + =
( ) ( ) ( )
2 2 20 1
2... n n
n n n nC C C C+ + + =
( ) ( ) ( ) ( )
2 2 2 20 1 2 2 1
2 1 2 1 2 1 2 1... 0n
n n n nC C C C +
+ + + +− + − − =
( ) ( ) ( ) ( ) ( )
2 2 2 20 1 2 2
2 2 2 2 2... 1
nn n
n n n n nC C C C C− + − + = −
VII. D NG 7: PHƯƠNG TRÌNH, H PHƯƠNG TRÌNH, BPT CH A ; ;k k
n n nA C P
1. Gi i các phương trình sau ây:
3 2
2 20n nC C= ;
4
3 4
1
24
23
n
n
n n
A
A C −
+
=
−
; 3
5
5
720n
n n
P
A P
+
−
= ; 1 3
172 72n nA A +− = ;
1 2 3 2
6 6 9 14n n nC C C n n+ + = − ; ( )2 2
72 6 2n n n nP A A P+ = + ;
5 6 7
5 2 14
n n n
C C C
− = ;
4 3 2
1 1 2
5 0
4n n nC C A− − −− − = ; 1 1
1 1 1: : 5:5:3m m m
n n nC C C+ −
+ + + = ; 3 2
14n
n nA C n−
+ = ;
3 3
8 65n
n nC A+
+ += ; 1
2 2 235 132n n
n nC C−
−= ;
4 5 6
1 1 1
n n n
C C C
− = ;
( )2 4 4 2
1 1 4 1n n
n n nn C xC x C− −
− −+ = + ; 1 1
2 2 13 2n n
n nC C− −
+= ; 3 2 1
14 n
n n nA C C −
+ =
2. Gi i các b t phương trình sau ây:
( )
4
4 42
2 !
n
n
A
Pn
+
≤
+
;
( )
4
4 143
42 !
n
n
A
Pn
+
≤
+
;
2
1
2
1
2
n
n
n
n
A
P
C
−
+
−
≥ ;
3
3
1
195 0
4
n
n n
A
P P
+
+
− > ;
4
4
2
143 0
4
n
n n
A
P P
+
+
− > ;
2 2 3
2
61 10
2 n n nA A C
x
− ≤ + ; 11
13 13
n m
C C −
≥ ; 4 3 2
1 1 2
5 0
4n n nC C A− − −− − = ; 1 1
112 162n nC C−
++ ≥ ;
1 3
172 72n nA A +− ≤ ; 2 2
12 3 30n nC A+ + < ; 3 1
1 1100 n
n nC C −
+ +≥ +
3. Gi i các h phương trình sau ây:
2 5 90
5 2 80
y y
x x
y y
x x
A C
A C
 + =

 − =
;
( ) ( )
( )
221 1 1 1
31 1
2 3
2 1
x y x y
x y x y
x y
x y
C C A C
C A
− − − −
− −
 + =


 = +
;
( ) ( )( )
1 1
1 1
3
2
3 2
1 1
6 14
32 1
x y
x y x y
x y
y
yx
x
C A
C A
C
x C
y y
− −
− −
−
−
 − = −




= + +
− −

More Related Content

What's hot (12)

Exam7
Exam7Exam7
Exam7
 
The solution-of-problem
The solution-of-problemThe solution-of-problem
The solution-of-problem
 
The solution of problem
The solution of problemThe solution of problem
The solution of problem
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
Capitulo 4 Soluciones Purcell 9na Edicion
Capitulo 4 Soluciones Purcell 9na EdicionCapitulo 4 Soluciones Purcell 9na Edicion
Capitulo 4 Soluciones Purcell 9na Edicion
 
Capitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na EdicionCapitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na Edicion
 
1003 ch 10 day 3
1003 ch 10 day 31003 ch 10 day 3
1003 ch 10 day 3
 
C6 6.6
C6 6.6C6 6.6
C6 6.6
 
Capitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na EdicionCapitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na Edicion
 
Calculo purcell 9 ed solucionario
Calculo  purcell  9 ed   solucionarioCalculo  purcell  9 ed   solucionario
Calculo purcell 9 ed solucionario
 
solucionario de purcell 2
solucionario de purcell 2solucionario de purcell 2
solucionario de purcell 2
 
AMU - Mathematics - 2007
AMU - Mathematics  - 2007AMU - Mathematics  - 2007
AMU - Mathematics - 2007
 

Viewers also liked

Baigiang10 nhi thuc niu ton
Baigiang10 nhi thuc niu tonBaigiang10 nhi thuc niu ton
Baigiang10 nhi thuc niu tongadaubac2003
 
14.hinhgiaitichphang
14.hinhgiaitichphang14.hinhgiaitichphang
14.hinhgiaitichphanggadaubac2003
 
Bai giang 8_tiep_tuyen
Bai giang 8_tiep_tuyenBai giang 8_tiep_tuyen
Bai giang 8_tiep_tuyengadaubac2003
 
Toa do-trong-mat-phang
Toa do-trong-mat-phangToa do-trong-mat-phang
Toa do-trong-mat-phanggadaubac2003
 
10 nhi thuc niuton_mathvn.com
10 nhi thuc niuton_mathvn.com10 nhi thuc niuton_mathvn.com
10 nhi thuc niuton_mathvn.comgadaubac2003
 
Baigiang15 ba duong conic
Baigiang15 ba duong conicBaigiang15 ba duong conic
Baigiang15 ba duong conicgadaubac2003
 
Toan daisotohop-chuong5(1) (1)
Toan daisotohop-chuong5(1) (1)Toan daisotohop-chuong5(1) (1)
Toan daisotohop-chuong5(1) (1)gadaubac2003
 
Chuyen de-9-hinh-hoc-phang
Chuyen de-9-hinh-hoc-phangChuyen de-9-hinh-hoc-phang
Chuyen de-9-hinh-hoc-phanggadaubac2003
 
Toan daisotohop-chuong5(2)
Toan daisotohop-chuong5(2)Toan daisotohop-chuong5(2)
Toan daisotohop-chuong5(2)gadaubac2003
 
Baigiang14 duong tron
Baigiang14 duong tronBaigiang14 duong tron
Baigiang14 duong trongadaubac2003
 
Bai tap-kim-loai-trong-de-thi-dh
Bai tap-kim-loai-trong-de-thi-dhBai tap-kim-loai-trong-de-thi-dh
Bai tap-kim-loai-trong-de-thi-dhgadaubac2003
 
Baigiang10 nhi thuc niu ton (1)
Baigiang10 nhi thuc niu ton (1)Baigiang10 nhi thuc niu ton (1)
Baigiang10 nhi thuc niu ton (1)gadaubac2003
 
Dai so-to-hop-nhi-thuc-niu ton-xac-suat-ltdh
Dai so-to-hop-nhi-thuc-niu ton-xac-suat-ltdhDai so-to-hop-nhi-thuc-niu ton-xac-suat-ltdh
Dai so-to-hop-nhi-thuc-niu ton-xac-suat-ltdhgadaubac2003
 
24hchiase.com tuyen-bdt-gtln-gtnn
24hchiase.com tuyen-bdt-gtln-gtnn24hchiase.com tuyen-bdt-gtln-gtnn
24hchiase.com tuyen-bdt-gtln-gtnngadaubac2003
 
Giao an sinh hoat lop
Giao an sinh hoat lopGiao an sinh hoat lop
Giao an sinh hoat lopgadaubac2003
 
[Www.pne.edu.vn] bo de thi hoc sinh gioi toan lop 8 tap 2
[Www.pne.edu.vn] bo de thi hoc sinh gioi toan lop 8 tap 2[Www.pne.edu.vn] bo de thi hoc sinh gioi toan lop 8 tap 2
[Www.pne.edu.vn] bo de thi hoc sinh gioi toan lop 8 tap 2gadaubac2003
 
Kimloiaxit 130724215139-phpapp01
Kimloiaxit 130724215139-phpapp01Kimloiaxit 130724215139-phpapp01
Kimloiaxit 130724215139-phpapp01gadaubac2003
 

Viewers also liked (17)

Baigiang10 nhi thuc niu ton
Baigiang10 nhi thuc niu tonBaigiang10 nhi thuc niu ton
Baigiang10 nhi thuc niu ton
 
14.hinhgiaitichphang
14.hinhgiaitichphang14.hinhgiaitichphang
14.hinhgiaitichphang
 
Bai giang 8_tiep_tuyen
Bai giang 8_tiep_tuyenBai giang 8_tiep_tuyen
Bai giang 8_tiep_tuyen
 
Toa do-trong-mat-phang
Toa do-trong-mat-phangToa do-trong-mat-phang
Toa do-trong-mat-phang
 
10 nhi thuc niuton_mathvn.com
10 nhi thuc niuton_mathvn.com10 nhi thuc niuton_mathvn.com
10 nhi thuc niuton_mathvn.com
 
Baigiang15 ba duong conic
Baigiang15 ba duong conicBaigiang15 ba duong conic
Baigiang15 ba duong conic
 
Toan daisotohop-chuong5(1) (1)
Toan daisotohop-chuong5(1) (1)Toan daisotohop-chuong5(1) (1)
Toan daisotohop-chuong5(1) (1)
 
Chuyen de-9-hinh-hoc-phang
Chuyen de-9-hinh-hoc-phangChuyen de-9-hinh-hoc-phang
Chuyen de-9-hinh-hoc-phang
 
Toan daisotohop-chuong5(2)
Toan daisotohop-chuong5(2)Toan daisotohop-chuong5(2)
Toan daisotohop-chuong5(2)
 
Baigiang14 duong tron
Baigiang14 duong tronBaigiang14 duong tron
Baigiang14 duong tron
 
Bai tap-kim-loai-trong-de-thi-dh
Bai tap-kim-loai-trong-de-thi-dhBai tap-kim-loai-trong-de-thi-dh
Bai tap-kim-loai-trong-de-thi-dh
 
Baigiang10 nhi thuc niu ton (1)
Baigiang10 nhi thuc niu ton (1)Baigiang10 nhi thuc niu ton (1)
Baigiang10 nhi thuc niu ton (1)
 
Dai so-to-hop-nhi-thuc-niu ton-xac-suat-ltdh
Dai so-to-hop-nhi-thuc-niu ton-xac-suat-ltdhDai so-to-hop-nhi-thuc-niu ton-xac-suat-ltdh
Dai so-to-hop-nhi-thuc-niu ton-xac-suat-ltdh
 
24hchiase.com tuyen-bdt-gtln-gtnn
24hchiase.com tuyen-bdt-gtln-gtnn24hchiase.com tuyen-bdt-gtln-gtnn
24hchiase.com tuyen-bdt-gtln-gtnn
 
Giao an sinh hoat lop
Giao an sinh hoat lopGiao an sinh hoat lop
Giao an sinh hoat lop
 
[Www.pne.edu.vn] bo de thi hoc sinh gioi toan lop 8 tap 2
[Www.pne.edu.vn] bo de thi hoc sinh gioi toan lop 8 tap 2[Www.pne.edu.vn] bo de thi hoc sinh gioi toan lop 8 tap 2
[Www.pne.edu.vn] bo de thi hoc sinh gioi toan lop 8 tap 2
 
Kimloiaxit 130724215139-phpapp01
Kimloiaxit 130724215139-phpapp01Kimloiaxit 130724215139-phpapp01
Kimloiaxit 130724215139-phpapp01
 

Similar to Solving Combinatorial Problems Using Binomial Coefficients

Question bank Engineering Mathematics- ii
Question bank Engineering Mathematics- ii Question bank Engineering Mathematics- ii
Question bank Engineering Mathematics- ii Mohammad Imran
 
Question 1 1. Evaluate using integration by parts. l.docx
Question 1 1. Evaluate using integration by parts. l.docxQuestion 1 1. Evaluate using integration by parts. l.docx
Question 1 1. Evaluate using integration by parts. l.docxmakdul
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationHareem Aslam
 
Question 1 1. Evaluate using integration by parts. .docx
Question 1  1.  Evaluate using integration by parts. .docxQuestion 1  1.  Evaluate using integration by parts. .docx
Question 1 1. Evaluate using integration by parts. .docxmakdul
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15Carlos Fuentes
 
Bsc maths derivative_formula
Bsc maths derivative_formulaBsc maths derivative_formula
Bsc maths derivative_formulaShani Qasmi
 
Diagram Venn Beserta Contoh Soal
Diagram Venn Beserta Contoh SoalDiagram Venn Beserta Contoh Soal
Diagram Venn Beserta Contoh SoalEman Mendrofa
 
Trigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualTrigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualLin1936
 
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions ManualTrigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manualrajevynab
 
Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19JAVIERTELLOCAMPOS
 
De thi hsg lop 9 co dap an de 9
De thi hsg lop 9 co dap an   de 9De thi hsg lop 9 co dap an   de 9
De thi hsg lop 9 co dap an de 9Trần Lê Quốc
 
Binomial theorem for any index
Binomial theorem for any indexBinomial theorem for any index
Binomial theorem for any indexindu psthakur
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integralesjoseluisroyo
 
Strategic Intervention Materials
Strategic Intervention MaterialsStrategic Intervention Materials
Strategic Intervention MaterialsBrian Mary
 

Similar to Solving Combinatorial Problems Using Binomial Coefficients (20)

Question bank Engineering Mathematics- ii
Question bank Engineering Mathematics- ii Question bank Engineering Mathematics- ii
Question bank Engineering Mathematics- ii
 
Computer science-formulas
Computer science-formulasComputer science-formulas
Computer science-formulas
 
Question 1 1. Evaluate using integration by parts. l.docx
Question 1 1. Evaluate using integration by parts. l.docxQuestion 1 1. Evaluate using integration by parts. l.docx
Question 1 1. Evaluate using integration by parts. l.docx
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 Integration
 
Question 1 1. Evaluate using integration by parts. .docx
Question 1  1.  Evaluate using integration by parts. .docxQuestion 1  1.  Evaluate using integration by parts. .docx
Question 1 1. Evaluate using integration by parts. .docx
 
Para mayra
Para mayraPara mayra
Para mayra
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15
 
Bsc maths derivative_formula
Bsc maths derivative_formulaBsc maths derivative_formula
Bsc maths derivative_formula
 
Diagram Venn Beserta Contoh Soal
Diagram Venn Beserta Contoh SoalDiagram Venn Beserta Contoh Soal
Diagram Venn Beserta Contoh Soal
 
Time complexity
Time complexityTime complexity
Time complexity
 
Gilat_ch03.pdf
Gilat_ch03.pdfGilat_ch03.pdf
Gilat_ch03.pdf
 
Trigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualTrigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manual
 
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions ManualTrigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
 
Solo edo hasta 20
Solo edo hasta 20Solo edo hasta 20
Solo edo hasta 20
 
Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19
 
Vivek
VivekVivek
Vivek
 
De thi hsg lop 9 co dap an de 9
De thi hsg lop 9 co dap an   de 9De thi hsg lop 9 co dap an   de 9
De thi hsg lop 9 co dap an de 9
 
Binomial theorem for any index
Binomial theorem for any indexBinomial theorem for any index
Binomial theorem for any index
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Strategic Intervention Materials
Strategic Intervention MaterialsStrategic Intervention Materials
Strategic Intervention Materials
 

More from gadaubac2003

24hchiase.com toadophang
24hchiase.com toadophang24hchiase.com toadophang
24hchiase.com toadophanggadaubac2003
 
14.hinhgiaitichphang
14.hinhgiaitichphang14.hinhgiaitichphang
14.hinhgiaitichphanggadaubac2003
 
Baigiang13 duong thang trong mat phang
Baigiang13 duong thang trong mat phangBaigiang13 duong thang trong mat phang
Baigiang13 duong thang trong mat phanggadaubac2003
 
Chuyen de nc hh 10 nguyen minh ha
Chuyen de nc hh 10 nguyen minh haChuyen de nc hh 10 nguyen minh ha
Chuyen de nc hh 10 nguyen minh hagadaubac2003
 
Bai tap-axit-h cl-trong-de-thi-dh
Bai tap-axit-h cl-trong-de-thi-dhBai tap-axit-h cl-trong-de-thi-dh
Bai tap-axit-h cl-trong-de-thi-dhgadaubac2003
 
Decuonghoa9 10-11-140802224422-phpapp01
Decuonghoa9 10-11-140802224422-phpapp01Decuonghoa9 10-11-140802224422-phpapp01
Decuonghoa9 10-11-140802224422-phpapp01gadaubac2003
 

More from gadaubac2003 (9)

24hchiase.com toadophang
24hchiase.com toadophang24hchiase.com toadophang
24hchiase.com toadophang
 
Nhi thuc-niuton-2
Nhi thuc-niuton-2Nhi thuc-niuton-2
Nhi thuc-niuton-2
 
Nhịthucniuton
NhịthucniutonNhịthucniuton
Nhịthucniuton
 
14.hinhgiaitichphang
14.hinhgiaitichphang14.hinhgiaitichphang
14.hinhgiaitichphang
 
10 cd
10 cd10 cd
10 cd
 
Baigiang13 duong thang trong mat phang
Baigiang13 duong thang trong mat phangBaigiang13 duong thang trong mat phang
Baigiang13 duong thang trong mat phang
 
Chuyen de nc hh 10 nguyen minh ha
Chuyen de nc hh 10 nguyen minh haChuyen de nc hh 10 nguyen minh ha
Chuyen de nc hh 10 nguyen minh ha
 
Bai tap-axit-h cl-trong-de-thi-dh
Bai tap-axit-h cl-trong-de-thi-dhBai tap-axit-h cl-trong-de-thi-dh
Bai tap-axit-h cl-trong-de-thi-dh
 
Decuonghoa9 10-11-140802224422-phpapp01
Decuonghoa9 10-11-140802224422-phpapp01Decuonghoa9 10-11-140802224422-phpapp01
Decuonghoa9 10-11-140802224422-phpapp01
 

Solving Combinatorial Problems Using Binomial Coefficients

  • 1. Bài 1. Các bài toán v công th c t h p, ch nh h p 237 CHƯƠNG III. T H P, XÁC SU T VÀ S PH C BÀI 1. CÁC BÀI TOÁN V CÔNG TH C T H P, CH NH H P I. D NG 1: CH NG MINH NG TH C k nC B NG O HÀM 1. Các bài t p m u minh h a: Bài 1. Ch ng minh r ng: −1 2 n n 1 n n nC + 2C + ...+ n.C = n2 Gi i Xét: (1 + x)n = o 1 2 2 3 3 n 1 n 1 n n n n n n n nC C x C x C x ... C x C x− − + + ⋅ + ⋅ + + + L y o hàm c 2 v ta có: ( )n 1 1 2 3 2 n n 1 n n n nn 1 x C 2C x 3C x nC x − − + = + ⋅ + ⋅ + + ⋅… Th x = 1 vào ng th c trên ta có: 1 2 n n 1 n n nC 2C ... n.C n2 − + + + = Bài 2. Ch ng minh r ng: − − −2 3 n n 2 n n n2.1.C + 3.2.C + ...+ n(n 1)C = n(n 1)2 Gi i Xét: ( )1 n x+ = o 1 2 2 3 3 n 1 n 1 n n n n n n n nC C x C x C x ... C x C x− − + + ⋅ + ⋅ + + + L y o hàm c 2 v ta có: ( )n 1 1 2 3 2 n n 1 n n n nn 1 x C 2C x 3C x nC x − − + = + ⋅ + ⋅ + + ⋅… L i l y o hàm ta có: ( )( )n 2 2 3 n n 2 n n nn n 1 1 x 2C 3.2.C .x n(n 1)C .x − − − + = + + + −… Th x = 1 vào ng th c trên ta có: 2 3 n n 2 n n n2.1.C 3.2.C ... n(n 1)C n(n 1)2 − + + + − = − Bài 3. ( thi TS H kh i A −−−− 2005): Gi i phương trình: ( )− −1 2 2 3 3 4 2n 2n+1 2n+1 2n+1 2n+1 2n+1 2n+1C 2.2C + 3.2 C 4.2 C + ...+ 2n + 1 2 C = 2005 Gi i Xét ( )2 1 0 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 11 ... ... n k k n n n n n n nx C C x C x C x C x + + + + + + + ++ = + + + + + + L y o hàm c 2 v ta có: ( )( ) ( )2 1 2 1 2 1 2 2 1 2 1 2 1 2 12 1 1 2 ... ... 2 1 n k k n n n n n nn x C C x kC x n C x− + + + + ++ + = + + + + + + Thay x = −2 vào ng th c ta có: ( ) ( ) ( ) ( )1 21 2 2 1 2 1 2 1 2 1 2 12 1 2.2 ... 2 ... 2 2 1 k nk n n n n nn C C kC n C − + + + + ++ = − + + − + + − + Phương trình ã cho ⇔ 2n + 1 = 2005 ⇔ n = 1002
  • 2. Chương III. T h p, Xác su t và S ph c −−−− Tr n Phương 238 Bài 4. Gi i phương trình: ( ) ( ) ( )− − − − − − k2 3 k 2 k 2n-1 2n+1 2n+1 2n+1 2n+1 2n+12C 3.2C + ...+ 1 k k 1 2 C + ... 2n 2n + 1 2 C = 110 Gi i Xét ( ) ( )2 1 0 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 11 ... 1 ... n k k k n n n n n n nx C C x C x C x C x + + + + + + + +− = − + − + − + − L y o hàm c 2 v ta có: ( )( ) ( ) ( )2 1 2 1 2 1 2 2 1 2 1 2 1 2 12 1 1 2 ... 1 ... 2 1 n k k k n n n n n nn x C C x kC x n C x− + + + + +− + − = − + − + − + − + L i l y o hàm c 2 v ta có: ( )( )2 1 2 2 1 1 n n n x − + − = ( ) ( ) ( )2 3 2 2 1 2 1 2 1 2 1 2 1 2 12 3 ... 1 1 ... 2 2 1 k k k n n n n n nC C x k k C x n n C x− + − + + + += − + + − − + − + Thay x = 2 vào ng th c ta có: ( )2 2 1n n− + = ( ) ( ) ( )2 3 2 2 1 2 1 2 1 2 1 2 1 2 12 3.2 ... 1 1 2 ... 2 2 1 2 k k k n n n n n nC C k k C n n C− − + + + + += − + + − − + − + Phương trình ã cho ⇔ ( ) 2 2 2 1 110 2 55 0 5n n n n n+ = ⇔ + − = ⇔ = 2. Các bài t p dành cho b n c t gi i: Bài 1. Ch ng minh r ng: 0 1 2 3 5 ... (2 1) ( 1)2n n n n n nC C C n C n+ + + + + = + Bài 2. Ch ng minh r ng: 1 1 2 2 3 3 1 2 2.2 3.2 ... . .3n n n n n n n n nC C C n C n− − − − + + + + = Bài 3. Ch ng minh r ng: 1 2 3 4 1 2 3 4 ... ( 1) . 0n n n n n n nC C C C n C− − + − + + − = Bài 4. Ch ng minh r ng: ( ) ( ) ( )1 0 2 1 3 2 1 1 1 2 1 4 1 4 2 4 ... 1 2.2 .. .2 nn n n n n n n n n n n n nn C n C n C C C C n C− − − − − − − + − − + − = + + + Bài 5. Ch ng minh r ng: ( ) ( ) ( ) ( ) ( )[ ] 2 2 21 2 2 2 1 ! 2 1 ! n n n n n C C n C n − + +…+ = − ∀n ≥ 2 Bài 6. Ch ng minh r ng: ( ) ( ) ( ) ( ) 2 3 2 3 2 1 1 1 1 1 n n n n n C C n C n n n − + + + = − − − … ∀n ≥ 2 Bài 7. Ch ng minh r ng: ( ) 11 1 tg 1 tg n nk k n k kC x n x −− = = +∑ ∀n ≥ 2 Bài 8. Ch ng minh r ng: ( )1 2 2 2 3 2 2 2 3 ... 1 2n n n n n nC C C n C n n − + + + + = + Bài 9. Ch ng minh r ng: ( ) ( ) ( ) 11 2 1 1 2 ... 1 0 nn n n n n n nnC n C n C C −− − − − + − − + − = Bài 10. CMR: ( ) ( ) ( )1 20 1 1 2 1 1 1 2 1 2 .2 ... 1 2 ... 2 n n n k k k n n n n n nC C kC nC n − − − − − − + − − + − + + =
  • 3. Bài 1. Các bài toán v công th c t h p, ch nh h p 239 II. D NG 2: CH NG MINH NG TH C k nC B NG TÍCH PHÂN 1. Các bài t p m u minh h a: Bài 1. Ch ng minh r ng: −n+1 1 2 n n n n 2 11 1 1 1 + C + C + ...+ C = 2 3 n + 1 n + 1 Gi i Xét (1 + x)n = o 1 2 2 3 3 n 1 n 1 n n n n n n n nC C x C x C x ... C x C x− − + + ⋅ + ⋅ + + + Ta có: ( ) ( )n 11 n 11 n 0 0 1 x 2 1 1 x dx n 1 n 1 + ++ − + = = + +∫ M t khác: ( ) 1 o 1 2 2 3 3 n 1 n 1 n n n n n n n n 0 C C x C x C x ... C x C x dx− − + + ⋅ + ⋅ + + + =∫ Bài 2. Ch ng minh r ng: − − n+1 1 2 n n n n ( 1)1 1 n C C + ...+ C = 2 3 n + 1 n + 1 Gi i Ta có : (1 − x)n = 0 1 2 2 n n n n n n nC C x C x ... ( 1) C x− + + + − ⇒ 2 2 n 1 n 0 1 n n n 1 2 n n n n n n n 0 0 ( 1)1 1 (1 x) dx C C x ... ( 1) C x dx C C ... C 2 3 n 1 + −  − = − + + − = − + +  +∫ ∫ M t khác 12 n 1 n 0 0 (1 x) 1 (1 x) dx n 1 n 1 = − − = = + +∫ ⇒ ( pcm) Bài 3. Ch ng minh r ng: ( ) −n+1 0 1 2 n n n n n 1 1 1 1 2 1 C + C + C + …+ C = 3 6 3 3n + 3 3 n + 1 Gi i Xét P(x) = ( ) ( ) n 2 3 2 0 1 3 2 6 n 3n n n n nx 1 x x C C x C x C x+ = + ⋅ + ⋅ + + ⋅… Ta có: ( ) ( ) ( ) 1 1 1 n n 2 3 3 3 0 0 0 1 P(x)dx x 1 x dx 1 x d 1 x 3 = + = + +∫ ∫ ∫ ( ) ( ) n 1 3 n 1 1 1 x 2 1 3 n 1 3 n 1 + + + − = = + +
  • 4. Chương III. T h p, Xác su t và S ph c −−−− Tr n Phương 240 M t khác: ( ) 1 1 0 2 1 5 n 3n 2 n n n 0 0 P(x) dx C x C x C x dx+ = ⋅ + ⋅ + + ⋅∫ ∫ … = = 1 0 3 1 6 n 3n 3 n n n 0 C x C x C x 3 6 3n 3 +  ⋅ ⋅ ⋅ + + +  +   … 0 1 2 n n n n n 1 1 1 1 C C C C 3 6 3 3n 3 = + + + + + … V y ( ) n 1 0 1 2 n n n n n 1 1 1 1 2 1 C C C C 3 6 3 3n 3 3 n 1 + − + + + + = + + … 2. Các bài t p dành cho b n c t gi i: Bài 1. Ch ng minh r ng: n 1 2 n n n n C1 1 1 1 C C ... ( 1) 2 3 n 1 n 1 − + − + − = + + Bài 2. Ch ng minh r ng: n 0 1 2 n n n n n ( 1)1 1 1 1 C C C ... C 2 4 6 n 2 2(n 1) − − + − + = + + Bài 3. Ch ng minh r ng: n n 0 2 1 3 2 n 1 n n n n n ( 1) 1 ( 1)1 1 2C 2 C 2 C ... 2 C 2 3 n 1 n 1 +− + − − ⋅ + ⋅ − + ⋅ = + + Bài 4. Ch ng minh r ng: n 1 0 2 1 3 2 n 1 n n n n n 3 11 1 1 2C 2 C 2 C ... 2 C 2 3 n 1 n 1 + + − + ⋅ + ⋅ + + ⋅ = + + Bài 5. Ch ng minh r ng: ( ) ( ) ( ) 0 1 2 3 2 !!1 1 1 1... 1 3 5 7 2 1 2 1 !! n n n n n n n n C C C C C n n − + − + + − = + + Bài 6. Ch ng minh r ng: ( )n 1 n nn 1 k k k 1 n n k 0 k 0 1 e 1 2 1 C C e n 1 k 1 n 1 k 1 + + + = = + + = + + + + + ∑ ∑ Bài 7. Ch ng minh r ng: ( )0 1 2 11 1 1... 2 3 1 1 n n n n n nC C C C n n − − + − + = + + Bài 8. Ch ng minh r ng: ( )1 2 3 3 7 ... 2 1 3 2n n n n n n n nC C C C+ + + + − = − Bài 9. Ch ng minh r ng: ( ) ( ) k kn n 2n 2 n 1 n n k 1 n 1 k 0 k 0 C C 2 3 k 1 k 1 2 n 1 2 + + + + = = − − = + + + ∑ ∑ Bài 10. t Sn = 1 1 1 1 2 3 n + + + +… . Ch ng minh r ng: ( ) ( )n 1 n 11 2 n 1 n n n 1 n n 2 n 1 1 S C S C S 1 C S n − − − − − − − + − + − =… Bài 11. Ch ng minh: ( )n 11 2 3 n n n n n 1 1 1 1 1 1 C C C 1 C 1 1 2 3 n 2 n − ⋅ − ⋅ + ⋅ − + − ⋅ ⋅ = + + +… …
  • 5. Bài 1. Các bài toán v công th c t h p, ch nh h p 241 III. D NG 3: CH NG MINH NG TH C k nC B NG NH NGHĨA 1 1 k k n n nC C k − −= ( k n< ) ; ( ) 1 1m m n m n mnC m C + + += + ; m k k m k n m n n kC C C C − −⋅ = ⋅ (k ≤ m ≤ n) ; ( ) 2 3 1 1 2 1 1 1 2 3 ... ... 2 p n n n n n n p n n n n n C C C C n n C p n C C C C− − + + + + + + + = ; ( ) ( ) 1 11 2 3 1 0 2 3 ... 1 1 n n kn k n n n n n k C C C nC n C − − − = − + − + − = −∑ ; 1 1 2 2 2 2 1 2 n n n n n nC C C− + ++ = ; 0 1 2 1 2 3 1 1 2 3 4 2 2 2 1 ... ... 2 k n n n n n n k n n n n n k n C C C C C C C C C C+ + + + + + + + + + + + + + = ; 1 1 1 22m m m m n n n nC C C C+ − + ++ + = ; IV. D NG 4: CH NG MINH B NG CÔNG TH C 1 1 1;− − − −= + =k n k k k k n n n n nC C C C C 1 1 2 1 1...k k k k k k n n n k k nC C C C C C + − − + ++ + + + + = ; 1 2 3 33 3k k k k k n n n n nC C C C C− − − ++ + + = 1 2 3 2 3 2 32 5 4k k k k k k n n n n n nC C C C C C+ + + + + + ++ + + = + ; 1 0 m k m n k n m k C C+ + + = =∑ 1 2 3 4 44 6 4k k k k k k n n n n n nC C C C C C− − − − ++ + + + = V. D NG 5: CH NG MINH B NG KHAI TRI N NEWTON 0 1 ... 2n n n n nC C C+ + + = ; 1 3 2 1 0 2 2 2 1 2 2 2 2 2 2... ... 2n n n n n n n n nC C C C C C− − + + + = + + + = 0 1 1 1 3 3 ... 3 4n n n n n n n n nC C C C− − + + + + = ; 0 1 2 2 3 3 6 6 6 ... 6 7n n n n n n n nC C C C C+ + + + + = ( )0 1 2 3 ... 1 0 n n n n n n nC C C C C− + − + + − = ; 0 1 1 2 2 3 1 1 2 2 .2 2 .3 ... 2 . .3n n n n n n nC C C nC n− − + + + + = 0 2 2 1 3 2 1 ... ... ... ...k k n n n n n nC C C C C C + + + + + = + + + + 0 1 2 2 3 3 2 1 2 1 2 2 2 2 2 2 2 210 10 10 ... 10 10 81n n n n n n n n n n nC C C C C C− − − + − + − + = ( ) ( )0 1 1 2 2 2 2 2 ... 1 2 ... 1 1 k nn n n n k k n n n n n nC C C C C− − − − + − + − + + − = ( )0 1 1 2 2 0 1 2 2 4 4 4 ... 1 2 2 .. 2 nn n n n n n n n n n n n n nC C C C C C C C− − − + − + − = + + + + 0 2 1 3 2 1 12 2 2 2 3 1... 1 2 3 1 1 n n n n n n nC C C C n n + + −+ + + + = + + ( )0 2 2 4 4 2 2 2 1 2 2 2 2 23 3 ... 3 2 2 1n n n n n n n nC C C C − + + + + = + ( )0 2 2 4 4 2000 2000 2000 2001 2001 2001 2001 20013 3 ... 3 2 2 1C C C C+ + + + = −
  • 6. Chương III. T h p, Xác su t và S ph c −−−− Tr n Phương 242 VI. D NG 6: CH NG MINH NG TH C B NG CÁCH NG NH T H S THEO 2 CÁCH KHAI TRI N 0 1 1 1 1 0 . . ... . .k k k k k n m n m n m n m m nC C C C C C C C C− − ++ + + + = 0 1 1 2. . ... .k k n k n n k n n n n n n nC C C C C C C+ − + + + + = ( ) ( ) ( ) 2 2 20 1 2... n n n n n nC C C C+ + + = ( ) ( ) ( ) ( ) 2 2 2 20 1 2 2 1 2 1 2 1 2 1 2 1... 0n n n n nC C C C + + + + +− + − − = ( ) ( ) ( ) ( ) ( ) 2 2 2 20 1 2 2 2 2 2 2 2... 1 nn n n n n n nC C C C C− + − + = − VII. D NG 7: PHƯƠNG TRÌNH, H PHƯƠNG TRÌNH, BPT CH A ; ;k k n n nA C P 1. Gi i các phương trình sau ây: 3 2 2 20n nC C= ; 4 3 4 1 24 23 n n n n A A C − + = − ; 3 5 5 720n n n P A P + − = ; 1 3 172 72n nA A +− = ; 1 2 3 2 6 6 9 14n n nC C C n n+ + = − ; ( )2 2 72 6 2n n n nP A A P+ = + ; 5 6 7 5 2 14 n n n C C C − = ; 4 3 2 1 1 2 5 0 4n n nC C A− − −− − = ; 1 1 1 1 1: : 5:5:3m m m n n nC C C+ − + + + = ; 3 2 14n n nA C n− + = ; 3 3 8 65n n nC A+ + += ; 1 2 2 235 132n n n nC C− −= ; 4 5 6 1 1 1 n n n C C C − = ; ( )2 4 4 2 1 1 4 1n n n n nn C xC x C− − − −+ = + ; 1 1 2 2 13 2n n n nC C− − += ; 3 2 1 14 n n n nA C C − + = 2. Gi i các b t phương trình sau ây: ( ) 4 4 42 2 ! n n A Pn + ≤ + ; ( ) 4 4 143 42 ! n n A Pn + ≤ + ; 2 1 2 1 2 n n n n A P C − + − ≥ ; 3 3 1 195 0 4 n n n A P P + + − > ; 4 4 2 143 0 4 n n n A P P + + − > ; 2 2 3 2 61 10 2 n n nA A C x − ≤ + ; 11 13 13 n m C C − ≥ ; 4 3 2 1 1 2 5 0 4n n nC C A− − −− − = ; 1 1 112 162n nC C− ++ ≥ ; 1 3 172 72n nA A +− ≤ ; 2 2 12 3 30n nC A+ + < ; 3 1 1 1100 n n nC C − + +≥ + 3. Gi i các h phương trình sau ây: 2 5 90 5 2 80 y y x x y y x x A C A C  + =   − = ; ( ) ( ) ( ) 221 1 1 1 31 1 2 3 2 1 x y x y x y x y x y x y C C A C C A − − − − − −  + =    = + ; ( ) ( )( ) 1 1 1 1 3 2 3 2 1 1 6 14 32 1 x y x y x y x y y yx x C A C A C x C y y − − − − − −  − = −     = + + − −