SlideShare a Scribd company logo
1 of 10
Download to read offline
Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014
51
FAST VOLTAGE STABILTY INDEX BASED
OPTIMAL REACTIVE POWER PLANNING USING
DIFFERENTIAL EVOLUTION
K.R.Vadivelu1
and Dr.G.V.Marutheswar2
1
Research Scholar,Department of EEE, S.V. University, Tirupati,,India
2
Professor,Department of EEE, S.V. University,Tirupati, India
ABSTRACT
This Article presents an application of Fast Voltage Stability Index (FVSI) to Optimal Reactive Power
Planning (RPP) using Differential Evolution(DE). FVSI is used to identify the weak buses for the Reactive
Power Planning problem which involves process of experimental by voltage stability analysis based on the
load variation. The peak at Fast Voltage Stabilty Index secure to 1 indicates the greatest feasible connected
load and the bus with least connected load is identified as the weakest bus at the point of bifurcation. This
technique is tested on the IEEE 30-bus system. The outcome confirm significant decrease in system losses
and enhancementt of voltage stability with the use of Fast Voltage Stability Index based optimal Reactive
Power Planning using Differential Evolution and compared with Evalutionary Programming
KEYWORDS
Power Systems, Optimal Reactive Power Planning, Fast Voltage Stabilityindex, Differential Evolution.
1.INTRODUCTION
One of the most challenging issues in power system research, Reactive Power Planning
(RPP).Reactive power planning could be formulated with different objective functions[6] such as
cost based objectives considering system operating conditions.Objecives can be changeable and
unchanginh Reactive power(VAr)installation cost,real power loss cost and maximizing voltage
stability margin.The objective function of the Reactive power planning means to minimize the
real power loss and fixed VAr installation cost and deals different constraints are security and
voltage stability constraints [1-7]. This different constraints are the key of various classification of
optimization models[1-4]. Recently new methods[7] on artificial intelligence have been used in
reactive power planning.Conventional optimization methods are based on successive
linearization[13] and use the I and II order derivatives of goal function. Since the formulae of RPP
problem are hyper quadric functions, linear and quadratic treatment induce lots of restricted
minima.The rapid development of power electronics technology provides exciting opportunities to
develop new power system equipment for better utilization of existing systems.
This Article Presents an application of Fast Voltage Stabilty Index(FVSI) to identify the weak
buses for the RPP problem using soft computing technique based Differential Evolution(DE) [15].
Differential Evolution is a method that optimizes a problem by iteratively trying to improve the
candidate solution by most versatile implementation maintains a pair of vector population [8, 10,
11,17]. Here, computationally fast indicator of voltage stability index is presented which can be
made as direct adjustment to load flow studies called as Fast Voltage Stability Index FVSI [9,
15,16]. The method of determining Fast voltage stability index has been used in the Reactive
Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014
52
Power Planning problems for the test system and it consists of 6 PV buses, 21 PQ buses and 41
branches.The under[3] load tap setting four branches are (6-9), (6-10), (4-12) and (27-28). The
VAr source installation buses are 30, 26, 29 and 25 which are identified based on the proposed
technique.
2. NOMENCLATURE
List of Symbols
Nl = total no of load level durations
Nc = total no of possible Reactive Power source installment bus
Ni = total no of f buses adjacent to bus i including bus i
NPQ = no of of PQ - bus numbers
Ng = no of generator bus numbers
NT = no of tap - setting transformer branches
NB = no of total buses
h= energy cost(p.u)
dl= duration of load level 1
gk= conductance of branch k
Vi= voltage magnitude at bus i
θij= voltage angle difference between bus I and bus j
ei= fixed VAR source installment cost at busi
Cci= per unit VAR source purchase cost at busi
Qci= VAR source installed at bus i
Qi= reactive power injected into network at busi
Gij= mutual conductance between bus i and bus j
Bij= mutual susceptance between bus i and bus j
Gii,Bii= self conductance and susceptance of bus i
Qgi= reactive power generation at bus i
Tk= tap setting of transformer branch k
NVlim= set of numbers of buses in which voltage over limits
NQglim= set of numbers of buses in which VAr over limits
3. PROBLEM FORMULATION
It is aimed in this objective function in Reactive Power planning that minimizing of the real power
loss (Ploss) in transmission lines of a power system. This is mathematically stated as follows.
WC= h ∑ dl ploss,l (1)
																																																																														
Where, (Ploss) , denotes the network real power loss during the period of load level 1. It can be
can be expressed in the following equation in the[6] duration dl:
Ploss = ∑	݃݇	൫ܸ௜
ଶ
+ ܸ௝
ଶ
− 2ܸ௜ܸ௝ܿ‫ߐݏ݋‬௜௝൯														 (2)
The second term represents the cost of Reactive Power source installments which has two
components, namely, fixed installment cost and purchase cost:
					‫ܫ‬஼= ∑ሺ݁௜ + ‫ܥ‬஼௜|ܳ஼௜|ሻ																																						 (3)
The goal meaning can be expressed as follows:
Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014
53
Min ݂௖= IC + WC, (4)
Subjected to
The functions should satisfy the real and reactive power constraints (equality constraints)
(i) Load Flow Constraints:
0 = Pi –Vi ∑ Vj (GijCosθij + BijSinθij)
0 = Qi –Vi ∑ Vj (GijSinθij - BijCosθij)
And also satisfy the inequality constraints like reactive power generation,bus voltage and
transformer tap setting limit as follows
(ii) Generator Reactive Power Capabilty Limit:
ܳ௚௜
௠௜௡
≤ ܳ௚௜ ≤ ܳ௚௜
௠௔௫
(iii) Voltage Constraints:
ܸ௜
௠௜௡
≤ ܸ௜ ≤ V୧
୫ୟ୶
(iv) Transformer Tap Limit
ܶ௞
௠௜௡
≤ ܶ௞≤ ܶ௞
௠௔௫
i€்ܰ
Equation (4) is therefore changed to the following generalized objective function:
Min ‫ܨ‬஼ = ‫ܨ‬஼+ ∑			ߙ௏௜൫ܸ௜ − ܸ௜
௟௜௠
൯2 +
∑ߚொ௚௜൫ܳ௚௜ିܳ௚௜
௟௜௠
൯2
(5)
i€NVlim i€NQglim
Subjected to
0 = ܲ௜ - ܸ௜ ∑	ܸ௝൫‫ܩ‬௜௝ܿ‫ߐݏ݋‬௜௝ + ‫ܤ‬௜௝sin	ߐ௜௝൯
i € ܰ஻ି௟
j€ܰ௟
0 = ܳ௜ - ܸ௜ ∑ ܸ௝൫‫ܩ‬௜௝‫ߐ݊݅ݏ‬௜௝ − ‫ܤ‬௜௝ܿ‫ߐݏ݋‬௜௝൯
i € ܰ௉ொ
j€ܰ௟
Where,αvi and βQgi are the penalty factors which can be increased in the optimization
procedure;ܸ௜
௟௜௠
and 	ܳ௚௜
௟௜௠
are defined in the following equations:
ܸ௜
௟௜௠
=	{
ܸ௜
௠௜௡
		݂݅	ܸ௜ < ܸ௜
௠௜௡
ܸ௜
௠௔௫
	݂݅	ܸ௜ > ܸ௜
௠௔௫
						ܳ௚௜
௟௜௠
={ܳ௚௜
௠௜௡
			݂݅					ܳ௚௜
௠௜௡<
ܳ௚௜
௠௜௡
																																															ܳ௚௜
௠௔௫
if						ܳ௚௜
௠௔௫
>ܳ௚௜
௠௔௫
																					(6)
Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014
54
4.FVSI FORMULATION
The Fast Voltage Stability Index is resulting from the voltage quadratic equation at the receiving
bus on a two-bus system [12,14,15]. The general 2-bus representation is illustrated in Figure 1.
Figure 1.Model of Two bus system
From the figure, the voltage quadratic equation at the receiving bus is written as
ܸଶ
ଶ
-	ቂ
ோ
௑
sinδ + cosδቃ ܸଵܸଶ+	ቀܺ +
ோమ
௑
ቁ	Q2 = 0 (7)
set the equation of discriminator be larger than or equal to zero yields
ቀቂ
ோ
௑
sinδ + cosδቃ ܸଵቁ
ଶ
- 4ቀܺ +
ோమ
௑
ቁQ2 ≥ 0 (8)
Rearranging (2), we obtain
ସೋ
మ
ொమ௑
௏భ
మሺோ ௦௜௡ ఋା௑ ௖௢௦ ఋሻమ < 1 (9)
since“i”as the sending bus and “j” as the receiving end bus,Since δ is normally very small, then,
δ≈0, R Sinδ ≈0 and X receiving bus, Fast Voltage Stabilty Index (FVSI) can be calculated
FVSIij=
					ସ௭మொೕ
௏೔
మ
௑
																																																														 (10)
Where ,Z,X are the Impedance and reactance of the line.Where as Qj ,V are the Reactive power at
the receiving end and the sending end voltage.
4.1. Procedure For Determining The Maximum Loadability For Weak Bus
Identification Using Fvsi
1. Using Newton-Raphson method ,Run the load flow program for the base case.
2. Estimate Fast voltage stability Index value for all line in the system.
3. Progresively increase the Qj at chosen load bus until the load flow fails to give the
results.Calculate Fast Voltage Stabilty Index Values for every load variation.
4. Plot the graph of FVSI versus Q.
5. Take out the line index that has the highest value be s the most critical line with respect to a
bus.
6. Select another load bus repeat steps up to 5.
Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014
55
7. Obtain the voltage at the maximum computable FVSI prior to the divergence of the Load flow
.It can be obtained from step 3.This determines the critical Voltage of a Particular bus.
8. Take out the maximum Qj loading for the maximum calculable FVSI for all test bus. It can be
obtained from 5.The greatest VAr loading is referred to as the most loadability of a Particular
bus.
9. Sort the greatest loadability obtained from step 8 in ascending order and the least loadability
maximum is ranked the utmost imply the Weakest bus in the system.
10.Select the feeble buses as the reactive power installation site for the Reactive Power Planning .
5.DIFFERENTIAL EVOLUTION (DE)
Differential Evolution is first proposed over 1994-1996 by Storn and Price at Berkeley.
Differential evolution (DE) is a population based and parallel search algorithm that operate on the
populations of the possible solution vectors { G
iX : i=1,2,3………,Np} at each generation G
[8,10.11]. Each individual element of the solution vector is composed of D-parameters, namely
G
iX := G
jix , : j= 1,2…… D. Various steps in DE are mutation, crossover and selection. The outline
of the DE algorithm is as follows:
1. Initialize the population:
G
jix , = x L
j + )( L
j
U
ij xxR − , j= 1,2……D where L
jx and U
jx are the lower And upper bounds of
the parameter j respectively, and Rj is a random number ,uniformly distributed between [0,1].
2. Evaluate the population using an objective function.
3. Generate a new population where each new vector is created according to:
(a) Generate a trial vector G
iv , for each solution vector as G
ix
)( G
n
G
m
G
BEST
G
i xxPxv −+= ,i=1,2,…….Np (11)
Where G
BESTx represents the best solution and { G
n
G
m xx , } are two arbitrary vectors at generation G
such that{ G
BESTx G
n
G
m xx , } are mutually different. The constant P is a mutation factor.
(b) Crossover the trial vector and the current vector with crossover probability CR to deliver a
baby vector
G
iu i.e.,



 <
=
otherwisex
CRforRv
u G
ji
j
G
jiG
i
,
,
(12)
(c) Evaluate the baby vector.
(d) Use the baby in the new generation if it is at least as good as the current vector;
otherwise, the old vector is retained.
(13)
4. Repeat step 3 until the termination condition is satisfied.


 <
=+
otherwisex
xfuforfu
x G
i
G
i
G
i
G
iG
i
)()(1
Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014
56
6. NUMERICAL RESULTS
The buses for possible VAR source installation is identified using FVSI and the buses are 25, 26,
29 and 30. The greatest loadability and FVSI values for the IEEE 30 bus system are given in Table
I.
TABLE I.Bus Ranking and FVSI Values
Rank Bus No Qmax(p.u) FVSI
1 30 0.29 1.014
2 26 0.34 1.042
3 29 0.38 1.043
4 25 0.6 1.020
5 27 0.74 1.071
6 15 0.76 1.007
7 24 0.79 1.014
8 10 0.84 1.003
9 14 0.88 1.012
10 18 0.91 1.018
The parameters and variable limits are listed in Tables II and III. All power and voltage quantities
are p.u. value and the base power is used to work out the energy cost.
TABLE II.Parameters.
SB (MVA) h ($/puWh) ei($) Cci ($/puVAR)
100 6000 1000 30,00,000
TABLE III.Limits
Qc Vg V load Tg
min max min max min max min max
- 0.12 0.35 0.9 1.1 0.96 1.05 0.96 1.05
6.1 Case Study
Three cases [3] have been studied. Case 1,. Case 2 and 3 are the normal load and heavy
loads.The heavy loads are 1.25% and 1.5%.. The period of the load level is 8760 hours in
normal,1.25% and 1.5 loading [6].The initial generator bus voltages and transformer taps are set to
1.0 pu. The loads are given as,
Case 1: Pload = 2.834 and Qload = 1.262
Case 2: Pload = 3.542 and Qload = 1.577
Case 3 : Pload = 4.251 and Qload = 1.893
TABLE IV..Initial generations and power losses
Pg Qg Ploss Qloss
Case 1 3.008 1.354 0.176 0.323
Case 2 3.840 2.192 0.314 0.854
Case 3 4.721 3.153 0.461 1.498
Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014
57
TABLE V..Optimal generator bus voltages.
Bus 1 2 5 8 11 13
Case 1 1.10 1.09 1.05 1.09 1.10 1.10
Case 2 1.10 1.10 1.09 1.10 1.10 1.10
Case 3 1.10 1.10 1.08 1.09 1.09 1.09
TABLE VI.Optimal transformer tap settings.
Branch (6-9) (6-10) (4-12) (27-28)
Case 1 1.0433 0.9540 1.0118 0.9627
Case 2 1.0133 0.9460 0.9872 0.9862
Case 3 1.0131 0.9534 0.9737 0.9712
TABLE VII.Optimalvar source installments.
Bus 26 28 29 30
Case 1 0 0 0 0
Case 2 0.0527 0.030 0.022 0.031
Case 3 0.0876 0.029 0.027 0.047
TABLE VIII.Optimal generations and power losses
Pg Qg Ploss Qloss
Case 1 2.989 1.288 0.159 0.266
Case 2 3.808 1.867 0.266 0.652
Case 3 4.659 2.657 0.417 1.190
TABLE IX.Cost comparison
PCsave% WC
save
($) fC($)
Case 1 8.644 7,98,070.94 8.4225*106
Case 2 12.452 19,92,758.84 1.4408*107
Case 3 13.311 32,98,528.48 2.2017*107
TABLE X.Comparision Results
Variables Case-1 Case-3
EP[6] DE EP[6] DE
V1 1.05 1.05 1.05 1.05
V2 1.044 1.044 1.022 1.022
T6-9 1.05 1.0433 0.9 1.013
T4-12 0.975 1.031 0.95 0.973
QC 17 0 0 0.0229 0.297
QC 27 0 0 0.196 0.297
PG 2.866 2.989 5.901 4.659
QG 0.926 1.288 2.204 2.657
Ploss 0.052 0.159 0.233 0.417
Qloss 0.036 0.266 0.436 1.190
As shown in Table X,Similar results were obtained both approaches for the normal and 1.5%
loading.Differential Evolution algorithm has adjusted the voltage magnitude of all load buses
and transformer tap settings such that total losses decreased.
7. OPTIMAL RESULTS AND COMPARISION
The optimal generator bus voltages, transformer tap settings, VAR source installments,
generations , power losses and comparision of cost saving in three cases are obtained as in tables
5 – 9.The real power savings, annual cost savings and the total costs are calculated as,
Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014
58
																																														ܲ஼
ௌ௔௩௘
% =
௉೗೚ೞೞ
೔೙೟
ି௉೗೚ೞೞ
೚೛೟
௉೗೚ೞೞ
೔೙೟ x 100 % (14)
ܹ஼
௦௔௩௘
= hdl ( ܲ௟௢௦௦
௜௡௧
− ܲ௟௢௦௦
௢௣௧
)
‫ܨ‬஼= ‫ܫ‬஼ + ܹ஼
Figure 2. Converence Rate of DE Algorithm without VAR(100 % Loading)
Figure 3. Converence Rate of DE Algorithm witht VAR(1.25 % Loading)
Figure 4. Converence Rate of DE Algorithm with VAR(1.5% Loading)
0 20 40 60 80 100 120 140 160 180 200
16
16.5
17
17.5
18
18.5
--> No. of iterations
-->Transmissionlineloss(inMW)
Convergence Rate of the DE Algorithm
Loss Value at Iteration
0 20 40 60 80 100 120 140 160 180 200
26.5
27
27.5
28
28.5
29
--> No. of iterations
-->Transmissionlineloss(inMW)
Convergence Rate of the DE Algorithm
Loss Value at Iteration
0 20 40 60 80 100 120 140 160 180 200
40
41
42
43
44
45
46
47
--> No. of iterations
-->Transmissionlineloss(inMW)
Convergence Rate of the DE Algorithm
Loss Value at Iteration
Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014
59
Figure 5.The convergenge characteristic of Normal DE(Case-1) in optimal situation in terms of cost
Figure 6.The convergenge characteristic of DE(Case-3) in optimal situation in terms of cost
Figures 2, 3 and 4.show the Convergence Rate of Differential Evolution Algorithm with VAR.For
normal,1.25% and 1.5 % loading.It can be seen that Convergenge Rate of Differential Evolution
Algorithm is capable to arrive at the close vicinity of final solution with in the respective iteration
[17]Comparing Differential Evolution Algorithm. Figure 5 and 6..show the convergence rate of
Differential Evolution for optimal situation in terms of cost for normal and 1.25% loading.
8.CONCLUSION
FVSI based approach has been developed for solving the weak bus oriented RPP problem. Based
on FVSI, the locations of reactive power devices for voltage control are determined. The
individual greatest loadability obtained from the load buses will be sorted in rising order with the
least value being ranked uppermost The highest rank implies the weakest bus in the system with
low sustainable load. These are the possible locations for reactive power devices to maintain
0 20 40 60 80 100 120 140 160 180 200
8.4
8.5
8.6
8.7
8.8
8.9
9
9.1
x 10
6
--> No. of iterations
-->totalcost
Convergence Rate of the DE Algorithm
cost Value at Iteration
0 20 40 60 80 100 120 140 160 180 200
2.15
2.2
2.25
2.3
2.35
2.4
2.45
2.5
x 10
7
--> No. of iterations
-->obj
f
unction
t
otal
c
ost
Convergence Rate of the DE Algorithm
cost Value at Iteration
Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014
60
stability of the system. The application studies on the IEEE 30-bus system shows that the optimum
Differential Evolution approach gives more savings on real power, annual and the total costs for
different loading conditions after transformer tappings are modeled as discrete variables.DE was
capable for solving the RPP problem successfully for the case studies,providing a considerable
reduction in system losses and an improvement on the voltage profile over the system.The
proposed approach a proper planning can be done according to the bus capacity to avoid voltage
collapse of the system
REFERENCES
[1] A. Kishore and E.F. Hill, 1971, “Static optimization of reactive power sources by use of sensitivity
parameters,” IEEE Transactions on Power Apparatus andSystems, PAS-90, pp.1166-1173.
[2] S.S. Sachdeva and R. Billinton, 1973, “Optimum network VAR planning by nonlinear programming,
IEEE Transactions on Power Apparatus and Systems,PAS-92, pp.1217- 1225.
[3] K.Y.Lee, Y.M.Park and J.L.Ortiz, 1985, “A united approach to optimal real and reactive power
dispatch”, IEEE Transactions on Power Apparatus andSystems,Vol. PAS-104,No.5, pp.1147–1153.
[4] Y.Y. Hong, D.I. Sun, S.Y. Lin and C.J. Lin, 1990, “Multi-year multi-case optimal VAR planning”,
IEEE Transactions on Power Systems, PWRS-5, No.4, pp.1294-1301
[5] Kenji Iba, 1994, “Reactive Power Optimization by Genetic Algorithm”, IEEETransactions on Power
Systems, Vol. 9, No, 2, pp. 685 – 692.
[6] L.L.Lai 997, “Application of Evolutionary Programming to Reactive Power Planning - Comparison
with nonlinear programming approach”, IEEE Transactions on Power Systems, Vol. 12, No.1, pp.
198 – 206.
[7] Wenjuan Zhang, Fangxing Li, Leon M. Tolbert, 2007, “Review of Reactive Power Planning:
Objectives, Constraints, and Algorithms”, IEEE Transactionson Power Systems, Vol. 22, No. 4
[8] Zouyiqin,”Optimal Reactive Power Planning Based on Improved Tabu Search Algorithm”, 2010
International Conference on Electr ical and Control Engineering, June 25-June 27 ISBN: 978-0-7695-
4031-3
[9] D.E.Goldberg.Gentic Algorithm in Search,optimization and machine learning,AditionWesley,New
York,1989
[10] Jani Ronkkonen , SakuKukkonen, Kenneth V. Price, 2005, “Real-Parameter Optimization with
Differential Evolution”, IEEE Proceedings, pp. 506-513
[11] H. Yahia, N. Liouane, R. Dhifaoui, 2010, “Weighted Differential Evolution Based PWM
Optimization for Single Phase Voltage Source Inverter”, International Review of Electrical
Engineering, Vol. 5, Issue. 5, pp. 1956 –1962.
[12] A.Mohamed and G.B. Jasmon, 1989, “Voltage contingency selection technique for security
assessment,” IEE Proc., vol. 136, pp. 24-28.
[13] Lonescu,C.F.Bulac.C,“Evolutionary Techniues,a sensitivity based approach for handling discrete
variables in Reactive Power Planning,”IEEE Tansaction on Power Engineering,pp.476-480,2012
[14] M. Moghavemmi and F.M. Omar, 1998, “Technique for contingency monitoring and voltage collapse
prediction,” IEE Proc. Generation,Transmission and Distribution, vol. 145, pp. 634-640.
[15] Bikasc.pal,SamiKaraki,“Contigency constrained VAr planning using penalty successive conic
programming”,IEEE Transactions on power systems ,Vol.27,No.1,pp.545-553,Feb-2012
[16] I. Musirin, T.K.Abdul Rahman, 2002, “Estimating Maximum Loadability for Weak Bus Identification
using FVSI”, IEEE Power Engineering Review, pp. 50-52.
[17] KkitPo Wong ,Zhao Wong, ”Differntial Algorithm, An Alternative approach to
Evolutionary Algorithm”, IEEE Transaction on Power systems,Vol.12.No.3,2005
[18] Z.Caiand Y.Wang,“ A multi-objective optimization based evolutionary algorithm for constrained
optimization,”IEEE.Trans.evolution omputor,vol.10,no.6.p.p.678-675.Dec.2001

More Related Content

What's hot

Asymmetric quasi impedance source buck-boost converter
Asymmetric quasi impedance source buck-boost converterAsymmetric quasi impedance source buck-boost converter
Asymmetric quasi impedance source buck-boost converterIJECEIAES
 
Representing Tap-changer Transformers in Conic Relaxation Optimal Power Flows
Representing Tap-changer Transformers in Conic Relaxation Optimal Power FlowsRepresenting Tap-changer Transformers in Conic Relaxation Optimal Power Flows
Representing Tap-changer Transformers in Conic Relaxation Optimal Power Flowsinventionjournals
 
LOAD FLOW ANALYSIS FOR A 220KV LINE – CASE STUDY
LOAD FLOW ANALYSIS FOR A 220KV LINE – CASE STUDYLOAD FLOW ANALYSIS FOR A 220KV LINE – CASE STUDY
LOAD FLOW ANALYSIS FOR A 220KV LINE – CASE STUDYijiert bestjournal
 
Comparison of Multilevel Inverter Topologies for STATCOM Applications
Comparison of Multilevel Inverter Topologies for STATCOM ApplicationsComparison of Multilevel Inverter Topologies for STATCOM Applications
Comparison of Multilevel Inverter Topologies for STATCOM ApplicationsIJERA Editor
 
A Novel Distribution System Power Flow Algorithm using Forward Backward Matri...
A Novel Distribution System Power Flow Algorithm using Forward Backward Matri...A Novel Distribution System Power Flow Algorithm using Forward Backward Matri...
A Novel Distribution System Power Flow Algorithm using Forward Backward Matri...iosrjce
 
COMPREHENSIVE ANALYSIS AND SIMULATION OF MULTILEVEL POWER CONVERTERS TO CURTA...
COMPREHENSIVE ANALYSIS AND SIMULATION OF MULTILEVEL POWER CONVERTERS TO CURTA...COMPREHENSIVE ANALYSIS AND SIMULATION OF MULTILEVEL POWER CONVERTERS TO CURTA...
COMPREHENSIVE ANALYSIS AND SIMULATION OF MULTILEVEL POWER CONVERTERS TO CURTA...ecij
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
HARMONIC MITIGATION USING D STATCOM THROUGH A CURRENT CONTROL TECHNIQUE
HARMONIC MITIGATION USING D STATCOM THROUGH A CURRENT CONTROL TECHNIQUEHARMONIC MITIGATION USING D STATCOM THROUGH A CURRENT CONTROL TECHNIQUE
HARMONIC MITIGATION USING D STATCOM THROUGH A CURRENT CONTROL TECHNIQUEJournal For Research
 
Reconfigurable of current-mode differentiator and integrator based-on current...
Reconfigurable of current-mode differentiator and integrator based-on current...Reconfigurable of current-mode differentiator and integrator based-on current...
Reconfigurable of current-mode differentiator and integrator based-on current...IJECEIAES
 
Convergence analysis of the triangular-based power flow method for AC distribu...
Convergence analysis of the triangular-based power flow method for AC distribu...Convergence analysis of the triangular-based power flow method for AC distribu...
Convergence analysis of the triangular-based power flow method for AC distribu...IJECEIAES
 

What's hot (18)

Asymmetric quasi impedance source buck-boost converter
Asymmetric quasi impedance source buck-boost converterAsymmetric quasi impedance source buck-boost converter
Asymmetric quasi impedance source buck-boost converter
 
Representing Tap-changer Transformers in Conic Relaxation Optimal Power Flows
Representing Tap-changer Transformers in Conic Relaxation Optimal Power FlowsRepresenting Tap-changer Transformers in Conic Relaxation Optimal Power Flows
Representing Tap-changer Transformers in Conic Relaxation Optimal Power Flows
 
LOAD FLOW ANALYSIS FOR A 220KV LINE – CASE STUDY
LOAD FLOW ANALYSIS FOR A 220KV LINE – CASE STUDYLOAD FLOW ANALYSIS FOR A 220KV LINE – CASE STUDY
LOAD FLOW ANALYSIS FOR A 220KV LINE – CASE STUDY
 
Predictive_uni
Predictive_uniPredictive_uni
Predictive_uni
 
Harmonic Mitigation in Traction Supply Substation Using Cascaded H-Bridge Con...
Harmonic Mitigation in Traction Supply Substation Using Cascaded H-Bridge Con...Harmonic Mitigation in Traction Supply Substation Using Cascaded H-Bridge Con...
Harmonic Mitigation in Traction Supply Substation Using Cascaded H-Bridge Con...
 
Comparison of Multilevel Inverter Topologies for STATCOM Applications
Comparison of Multilevel Inverter Topologies for STATCOM ApplicationsComparison of Multilevel Inverter Topologies for STATCOM Applications
Comparison of Multilevel Inverter Topologies for STATCOM Applications
 
A Novel Distribution System Power Flow Algorithm using Forward Backward Matri...
A Novel Distribution System Power Flow Algorithm using Forward Backward Matri...A Novel Distribution System Power Flow Algorithm using Forward Backward Matri...
A Novel Distribution System Power Flow Algorithm using Forward Backward Matri...
 
Comparison of Multicarrier PWM Techniques for Cascaded H-Bridge Multilevel In...
Comparison of Multicarrier PWM Techniques for Cascaded H-Bridge Multilevel In...Comparison of Multicarrier PWM Techniques for Cascaded H-Bridge Multilevel In...
Comparison of Multicarrier PWM Techniques for Cascaded H-Bridge Multilevel In...
 
[IJET-V2I3P17] Authors: R.C.Rohini, G.Srividhya
[IJET-V2I3P17] Authors: R.C.Rohini, G.Srividhya[IJET-V2I3P17] Authors: R.C.Rohini, G.Srividhya
[IJET-V2I3P17] Authors: R.C.Rohini, G.Srividhya
 
J026055062
J026055062J026055062
J026055062
 
COMPREHENSIVE ANALYSIS AND SIMULATION OF MULTILEVEL POWER CONVERTERS TO CURTA...
COMPREHENSIVE ANALYSIS AND SIMULATION OF MULTILEVEL POWER CONVERTERS TO CURTA...COMPREHENSIVE ANALYSIS AND SIMULATION OF MULTILEVEL POWER CONVERTERS TO CURTA...
COMPREHENSIVE ANALYSIS AND SIMULATION OF MULTILEVEL POWER CONVERTERS TO CURTA...
 
Dual_inverter_uni
Dual_inverter_uniDual_inverter_uni
Dual_inverter_uni
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Experimental Verification of Three phase quasi Switched Boost Inverter with a...
Experimental Verification of Three phase quasi Switched Boost Inverter with a...Experimental Verification of Three phase quasi Switched Boost Inverter with a...
Experimental Verification of Three phase quasi Switched Boost Inverter with a...
 
HARMONIC MITIGATION USING D STATCOM THROUGH A CURRENT CONTROL TECHNIQUE
HARMONIC MITIGATION USING D STATCOM THROUGH A CURRENT CONTROL TECHNIQUEHARMONIC MITIGATION USING D STATCOM THROUGH A CURRENT CONTROL TECHNIQUE
HARMONIC MITIGATION USING D STATCOM THROUGH A CURRENT CONTROL TECHNIQUE
 
Reconfigurable of current-mode differentiator and integrator based-on current...
Reconfigurable of current-mode differentiator and integrator based-on current...Reconfigurable of current-mode differentiator and integrator based-on current...
Reconfigurable of current-mode differentiator and integrator based-on current...
 
Convergence analysis of the triangular-based power flow method for AC distribu...
Convergence analysis of the triangular-based power flow method for AC distribu...Convergence analysis of the triangular-based power flow method for AC distribu...
Convergence analysis of the triangular-based power flow method for AC distribu...
 

Viewers also liked

FUZZY NUMBERS BASED ON ENERGY INDICATORS OF RELIABILITY POWER SYSTEM
FUZZY NUMBERS BASED ON ENERGY INDICATORS OF RELIABILITY POWER SYSTEMFUZZY NUMBERS BASED ON ENERGY INDICATORS OF RELIABILITY POWER SYSTEM
FUZZY NUMBERS BASED ON ENERGY INDICATORS OF RELIABILITY POWER SYSTEMelelijjournal
 
Contactstrategieën voor talentpools | #influx14
Contactstrategieën voor talentpools | #influx14Contactstrategieën voor talentpools | #influx14
Contactstrategieën voor talentpools | #influx14Recruiting Academy
 
Effectiviteit van doelgroepmarketing | #influx14
Effectiviteit van doelgroepmarketing | #influx14Effectiviteit van doelgroepmarketing | #influx14
Effectiviteit van doelgroepmarketing | #influx14Recruiting Academy
 
Comparative study of methods for optimal reactive power dispatch
Comparative study of methods for optimal reactive power dispatchComparative study of methods for optimal reactive power dispatch
Comparative study of methods for optimal reactive power dispatchelelijjournal
 
techInvestigation of closed loop current control strategies for bridgeless in...
techInvestigation of closed loop current control strategies for bridgeless in...techInvestigation of closed loop current control strategies for bridgeless in...
techInvestigation of closed loop current control strategies for bridgeless in...elelijjournal
 
Enhancing phase margin of ota using self biasing
Enhancing phase margin of ota using self biasingEnhancing phase margin of ota using self biasing
Enhancing phase margin of ota using self biasingelelijjournal
 
Big data en arbeidsmarketing | #influx14
Big data en arbeidsmarketing | #influx14Big data en arbeidsmarketing | #influx14
Big data en arbeidsmarketing | #influx14Recruiting Academy
 
OPTIMAL LOCATION OF SVC FOR DYNAMIC STABILITY ENHANCEMENT BASED ON EIGENVALUE...
OPTIMAL LOCATION OF SVC FOR DYNAMIC STABILITY ENHANCEMENT BASED ON EIGENVALUE...OPTIMAL LOCATION OF SVC FOR DYNAMIC STABILITY ENHANCEMENT BASED ON EIGENVALUE...
OPTIMAL LOCATION OF SVC FOR DYNAMIC STABILITY ENHANCEMENT BASED ON EIGENVALUE...elelijjournal
 
Design and Performance Study of MMDWDM Systems
Design and Performance Study of MMDWDM SystemsDesign and Performance Study of MMDWDM Systems
Design and Performance Study of MMDWDM Systemselelijjournal
 
MUTUAL EFFECT BETWEEN LFC AND AVR LOOPS IN POWER PLANT
MUTUAL EFFECT BETWEEN LFC AND AVR LOOPS IN POWER PLANTMUTUAL EFFECT BETWEEN LFC AND AVR LOOPS IN POWER PLANT
MUTUAL EFFECT BETWEEN LFC AND AVR LOOPS IN POWER PLANTelelijjournal
 
Comparison of upqc and dvr in wind turbine fed fsig under asymmetric faults
Comparison of upqc and dvr in wind turbine fed fsig under asymmetric faultsComparison of upqc and dvr in wind turbine fed fsig under asymmetric faults
Comparison of upqc and dvr in wind turbine fed fsig under asymmetric faultselelijjournal
 
Arbeidsmarketing voor flexibele medewerkers | influx14
Arbeidsmarketing voor flexibele medewerkers | influx14Arbeidsmarketing voor flexibele medewerkers | influx14
Arbeidsmarketing voor flexibele medewerkers | influx14Recruiting Academy
 
techInvestigations with mode division multiplexed transmission
techInvestigations with mode division multiplexed transmissiontechInvestigations with mode division multiplexed transmission
techInvestigations with mode division multiplexed transmissionelelijjournal
 
Power system transient stability margin estimation using artificial neural ne...
Power system transient stability margin estimation using artificial neural ne...Power system transient stability margin estimation using artificial neural ne...
Power system transient stability margin estimation using artificial neural ne...elelijjournal
 

Viewers also liked (15)

FUZZY NUMBERS BASED ON ENERGY INDICATORS OF RELIABILITY POWER SYSTEM
FUZZY NUMBERS BASED ON ENERGY INDICATORS OF RELIABILITY POWER SYSTEMFUZZY NUMBERS BASED ON ENERGY INDICATORS OF RELIABILITY POWER SYSTEM
FUZZY NUMBERS BASED ON ENERGY INDICATORS OF RELIABILITY POWER SYSTEM
 
Contactstrategieën voor talentpools | #influx14
Contactstrategieën voor talentpools | #influx14Contactstrategieën voor talentpools | #influx14
Contactstrategieën voor talentpools | #influx14
 
Effectiviteit van doelgroepmarketing | #influx14
Effectiviteit van doelgroepmarketing | #influx14Effectiviteit van doelgroepmarketing | #influx14
Effectiviteit van doelgroepmarketing | #influx14
 
Hardware Input
Hardware InputHardware Input
Hardware Input
 
Comparative study of methods for optimal reactive power dispatch
Comparative study of methods for optimal reactive power dispatchComparative study of methods for optimal reactive power dispatch
Comparative study of methods for optimal reactive power dispatch
 
techInvestigation of closed loop current control strategies for bridgeless in...
techInvestigation of closed loop current control strategies for bridgeless in...techInvestigation of closed loop current control strategies for bridgeless in...
techInvestigation of closed loop current control strategies for bridgeless in...
 
Enhancing phase margin of ota using self biasing
Enhancing phase margin of ota using self biasingEnhancing phase margin of ota using self biasing
Enhancing phase margin of ota using self biasing
 
Big data en arbeidsmarketing | #influx14
Big data en arbeidsmarketing | #influx14Big data en arbeidsmarketing | #influx14
Big data en arbeidsmarketing | #influx14
 
OPTIMAL LOCATION OF SVC FOR DYNAMIC STABILITY ENHANCEMENT BASED ON EIGENVALUE...
OPTIMAL LOCATION OF SVC FOR DYNAMIC STABILITY ENHANCEMENT BASED ON EIGENVALUE...OPTIMAL LOCATION OF SVC FOR DYNAMIC STABILITY ENHANCEMENT BASED ON EIGENVALUE...
OPTIMAL LOCATION OF SVC FOR DYNAMIC STABILITY ENHANCEMENT BASED ON EIGENVALUE...
 
Design and Performance Study of MMDWDM Systems
Design and Performance Study of MMDWDM SystemsDesign and Performance Study of MMDWDM Systems
Design and Performance Study of MMDWDM Systems
 
MUTUAL EFFECT BETWEEN LFC AND AVR LOOPS IN POWER PLANT
MUTUAL EFFECT BETWEEN LFC AND AVR LOOPS IN POWER PLANTMUTUAL EFFECT BETWEEN LFC AND AVR LOOPS IN POWER PLANT
MUTUAL EFFECT BETWEEN LFC AND AVR LOOPS IN POWER PLANT
 
Comparison of upqc and dvr in wind turbine fed fsig under asymmetric faults
Comparison of upqc and dvr in wind turbine fed fsig under asymmetric faultsComparison of upqc and dvr in wind turbine fed fsig under asymmetric faults
Comparison of upqc and dvr in wind turbine fed fsig under asymmetric faults
 
Arbeidsmarketing voor flexibele medewerkers | influx14
Arbeidsmarketing voor flexibele medewerkers | influx14Arbeidsmarketing voor flexibele medewerkers | influx14
Arbeidsmarketing voor flexibele medewerkers | influx14
 
techInvestigations with mode division multiplexed transmission
techInvestigations with mode division multiplexed transmissiontechInvestigations with mode division multiplexed transmission
techInvestigations with mode division multiplexed transmission
 
Power system transient stability margin estimation using artificial neural ne...
Power system transient stability margin estimation using artificial neural ne...Power system transient stability margin estimation using artificial neural ne...
Power system transient stability margin estimation using artificial neural ne...
 

Similar to FAST VOLTAGE STABILTY INDEX BASED OPTIMAL REACTIVE POWER PLANNING USING DIFFERENTIAL EVOLUTION

Influence of Static VAR Compensator for Undervoltage Load Shedding to Avoid V...
Influence of Static VAR Compensator for Undervoltage Load Shedding to Avoid V...Influence of Static VAR Compensator for Undervoltage Load Shedding to Avoid V...
Influence of Static VAR Compensator for Undervoltage Load Shedding to Avoid V...IJAPEJOURNAL
 
Selective localization of capacitor banks considering stability aspects in po...
Selective localization of capacitor banks considering stability aspects in po...Selective localization of capacitor banks considering stability aspects in po...
Selective localization of capacitor banks considering stability aspects in po...IAEME Publication
 
Application of SVC on IEEE 6 Bus System for Optimization of Voltage Stability
Application of SVC on IEEE 6 Bus System for Optimization of Voltage StabilityApplication of SVC on IEEE 6 Bus System for Optimization of Voltage Stability
Application of SVC on IEEE 6 Bus System for Optimization of Voltage Stabilityijeei-iaes
 
Voltage Stability Assessment Using the Concept of GVSM
Voltage Stability Assessment Using the Concept of GVSMVoltage Stability Assessment Using the Concept of GVSM
Voltage Stability Assessment Using the Concept of GVSMiosrjce
 
IRJET- Comparative Analysis of Load Flow Methods on Standard Bus System
IRJET- Comparative Analysis of Load Flow Methods on Standard Bus SystemIRJET- Comparative Analysis of Load Flow Methods on Standard Bus System
IRJET- Comparative Analysis of Load Flow Methods on Standard Bus SystemIRJET Journal
 
Ann based voltage stability margin assessment
Ann based voltage stability margin assessmentAnn based voltage stability margin assessment
Ann based voltage stability margin assessmentNaganathan G Sesaiyan
 
Optimal Placement of Static Series Voltage Regulator (SSVR) in Distribution S...
Optimal Placement of Static Series Voltage Regulator (SSVR) in Distribution S...Optimal Placement of Static Series Voltage Regulator (SSVR) in Distribution S...
Optimal Placement of Static Series Voltage Regulator (SSVR) in Distribution S...IJERA Editor
 
Online Voltage Stability Analysis using Synchrophasor Technology
Online Voltage Stability Analysis using Synchrophasor TechnologyOnline Voltage Stability Analysis using Synchrophasor Technology
Online Voltage Stability Analysis using Synchrophasor Technologyijsrd.com
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
IRJET- Particle Swarm Optimization based Reactive Power Optimization of U...
IRJET-  	  Particle Swarm Optimization based Reactive Power Optimization of U...IRJET-  	  Particle Swarm Optimization based Reactive Power Optimization of U...
IRJET- Particle Swarm Optimization based Reactive Power Optimization of U...IRJET Journal
 
Moth Flame Optimization Method for Unified Power Quality Conditioner Allocati...
Moth Flame Optimization Method for Unified Power Quality Conditioner Allocati...Moth Flame Optimization Method for Unified Power Quality Conditioner Allocati...
Moth Flame Optimization Method for Unified Power Quality Conditioner Allocati...IJECEIAES
 
International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER) International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER) ijceronline
 
Performance Improvement of the Radial Distribution System by using Switched C...
Performance Improvement of the Radial Distribution System by using Switched C...Performance Improvement of the Radial Distribution System by using Switched C...
Performance Improvement of the Radial Distribution System by using Switched C...idescitation
 
Power Flow & Voltage Stability Analysis using MATLAB
Power Flow & Voltage Stability Analysis using MATLAB Power Flow & Voltage Stability Analysis using MATLAB
Power Flow & Voltage Stability Analysis using MATLAB IRJET Journal
 

Similar to FAST VOLTAGE STABILTY INDEX BASED OPTIMAL REACTIVE POWER PLANNING USING DIFFERENTIAL EVOLUTION (20)

Load flow analysis of 10 bus loop distribution network excited by a generator...
Load flow analysis of 10 bus loop distribution network excited by a generator...Load flow analysis of 10 bus loop distribution network excited by a generator...
Load flow analysis of 10 bus loop distribution network excited by a generator...
 
Influence of Static VAR Compensator for Undervoltage Load Shedding to Avoid V...
Influence of Static VAR Compensator for Undervoltage Load Shedding to Avoid V...Influence of Static VAR Compensator for Undervoltage Load Shedding to Avoid V...
Influence of Static VAR Compensator for Undervoltage Load Shedding to Avoid V...
 
Selective localization of capacitor banks considering stability aspects in po...
Selective localization of capacitor banks considering stability aspects in po...Selective localization of capacitor banks considering stability aspects in po...
Selective localization of capacitor banks considering stability aspects in po...
 
Application of SVC on IEEE 6 Bus System for Optimization of Voltage Stability
Application of SVC on IEEE 6 Bus System for Optimization of Voltage StabilityApplication of SVC on IEEE 6 Bus System for Optimization of Voltage Stability
Application of SVC on IEEE 6 Bus System for Optimization of Voltage Stability
 
Voltage Stability Assessment Using the Concept of GVSM
Voltage Stability Assessment Using the Concept of GVSMVoltage Stability Assessment Using the Concept of GVSM
Voltage Stability Assessment Using the Concept of GVSM
 
D010612126
D010612126D010612126
D010612126
 
IRJET- Comparative Analysis of Load Flow Methods on Standard Bus System
IRJET- Comparative Analysis of Load Flow Methods on Standard Bus SystemIRJET- Comparative Analysis of Load Flow Methods on Standard Bus System
IRJET- Comparative Analysis of Load Flow Methods on Standard Bus System
 
Ann based voltage stability margin assessment
Ann based voltage stability margin assessmentAnn based voltage stability margin assessment
Ann based voltage stability margin assessment
 
Optimal Placement of Static Series Voltage Regulator (SSVR) in Distribution S...
Optimal Placement of Static Series Voltage Regulator (SSVR) in Distribution S...Optimal Placement of Static Series Voltage Regulator (SSVR) in Distribution S...
Optimal Placement of Static Series Voltage Regulator (SSVR) in Distribution S...
 
Online Voltage Stability Analysis using Synchrophasor Technology
Online Voltage Stability Analysis using Synchrophasor TechnologyOnline Voltage Stability Analysis using Synchrophasor Technology
Online Voltage Stability Analysis using Synchrophasor Technology
 
Gd3310901094
Gd3310901094Gd3310901094
Gd3310901094
 
Gd3310901094
Gd3310901094Gd3310901094
Gd3310901094
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
IRJET- Particle Swarm Optimization based Reactive Power Optimization of U...
IRJET-  	  Particle Swarm Optimization based Reactive Power Optimization of U...IRJET-  	  Particle Swarm Optimization based Reactive Power Optimization of U...
IRJET- Particle Swarm Optimization based Reactive Power Optimization of U...
 
20120140504018
2012014050401820120140504018
20120140504018
 
Moth Flame Optimization Method for Unified Power Quality Conditioner Allocati...
Moth Flame Optimization Method for Unified Power Quality Conditioner Allocati...Moth Flame Optimization Method for Unified Power Quality Conditioner Allocati...
Moth Flame Optimization Method for Unified Power Quality Conditioner Allocati...
 
40220140501004
4022014050100440220140501004
40220140501004
 
International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER) International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER)
 
Performance Improvement of the Radial Distribution System by using Switched C...
Performance Improvement of the Radial Distribution System by using Switched C...Performance Improvement of the Radial Distribution System by using Switched C...
Performance Improvement of the Radial Distribution System by using Switched C...
 
Power Flow & Voltage Stability Analysis using MATLAB
Power Flow & Voltage Stability Analysis using MATLAB Power Flow & Voltage Stability Analysis using MATLAB
Power Flow & Voltage Stability Analysis using MATLAB
 

Recently uploaded

Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDGMarianaLemus7
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Neo4j
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
 
Bluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfBluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfngoud9212
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsPrecisely
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 

Recently uploaded (20)

Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDG
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
 
Bluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfBluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdf
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power Systems
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 

FAST VOLTAGE STABILTY INDEX BASED OPTIMAL REACTIVE POWER PLANNING USING DIFFERENTIAL EVOLUTION

  • 1. Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014 51 FAST VOLTAGE STABILTY INDEX BASED OPTIMAL REACTIVE POWER PLANNING USING DIFFERENTIAL EVOLUTION K.R.Vadivelu1 and Dr.G.V.Marutheswar2 1 Research Scholar,Department of EEE, S.V. University, Tirupati,,India 2 Professor,Department of EEE, S.V. University,Tirupati, India ABSTRACT This Article presents an application of Fast Voltage Stability Index (FVSI) to Optimal Reactive Power Planning (RPP) using Differential Evolution(DE). FVSI is used to identify the weak buses for the Reactive Power Planning problem which involves process of experimental by voltage stability analysis based on the load variation. The peak at Fast Voltage Stabilty Index secure to 1 indicates the greatest feasible connected load and the bus with least connected load is identified as the weakest bus at the point of bifurcation. This technique is tested on the IEEE 30-bus system. The outcome confirm significant decrease in system losses and enhancementt of voltage stability with the use of Fast Voltage Stability Index based optimal Reactive Power Planning using Differential Evolution and compared with Evalutionary Programming KEYWORDS Power Systems, Optimal Reactive Power Planning, Fast Voltage Stabilityindex, Differential Evolution. 1.INTRODUCTION One of the most challenging issues in power system research, Reactive Power Planning (RPP).Reactive power planning could be formulated with different objective functions[6] such as cost based objectives considering system operating conditions.Objecives can be changeable and unchanginh Reactive power(VAr)installation cost,real power loss cost and maximizing voltage stability margin.The objective function of the Reactive power planning means to minimize the real power loss and fixed VAr installation cost and deals different constraints are security and voltage stability constraints [1-7]. This different constraints are the key of various classification of optimization models[1-4]. Recently new methods[7] on artificial intelligence have been used in reactive power planning.Conventional optimization methods are based on successive linearization[13] and use the I and II order derivatives of goal function. Since the formulae of RPP problem are hyper quadric functions, linear and quadratic treatment induce lots of restricted minima.The rapid development of power electronics technology provides exciting opportunities to develop new power system equipment for better utilization of existing systems. This Article Presents an application of Fast Voltage Stabilty Index(FVSI) to identify the weak buses for the RPP problem using soft computing technique based Differential Evolution(DE) [15]. Differential Evolution is a method that optimizes a problem by iteratively trying to improve the candidate solution by most versatile implementation maintains a pair of vector population [8, 10, 11,17]. Here, computationally fast indicator of voltage stability index is presented which can be made as direct adjustment to load flow studies called as Fast Voltage Stability Index FVSI [9, 15,16]. The method of determining Fast voltage stability index has been used in the Reactive
  • 2. Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014 52 Power Planning problems for the test system and it consists of 6 PV buses, 21 PQ buses and 41 branches.The under[3] load tap setting four branches are (6-9), (6-10), (4-12) and (27-28). The VAr source installation buses are 30, 26, 29 and 25 which are identified based on the proposed technique. 2. NOMENCLATURE List of Symbols Nl = total no of load level durations Nc = total no of possible Reactive Power source installment bus Ni = total no of f buses adjacent to bus i including bus i NPQ = no of of PQ - bus numbers Ng = no of generator bus numbers NT = no of tap - setting transformer branches NB = no of total buses h= energy cost(p.u) dl= duration of load level 1 gk= conductance of branch k Vi= voltage magnitude at bus i θij= voltage angle difference between bus I and bus j ei= fixed VAR source installment cost at busi Cci= per unit VAR source purchase cost at busi Qci= VAR source installed at bus i Qi= reactive power injected into network at busi Gij= mutual conductance between bus i and bus j Bij= mutual susceptance between bus i and bus j Gii,Bii= self conductance and susceptance of bus i Qgi= reactive power generation at bus i Tk= tap setting of transformer branch k NVlim= set of numbers of buses in which voltage over limits NQglim= set of numbers of buses in which VAr over limits 3. PROBLEM FORMULATION It is aimed in this objective function in Reactive Power planning that minimizing of the real power loss (Ploss) in transmission lines of a power system. This is mathematically stated as follows. WC= h ∑ dl ploss,l (1) Where, (Ploss) , denotes the network real power loss during the period of load level 1. It can be can be expressed in the following equation in the[6] duration dl: Ploss = ∑ ݃݇ ൫ܸ௜ ଶ + ܸ௝ ଶ − 2ܸ௜ܸ௝ܿ‫ߐݏ݋‬௜௝൯ (2) The second term represents the cost of Reactive Power source installments which has two components, namely, fixed installment cost and purchase cost: ‫ܫ‬஼= ∑ሺ݁௜ + ‫ܥ‬஼௜|ܳ஼௜|ሻ (3) The goal meaning can be expressed as follows:
  • 3. Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014 53 Min ݂௖= IC + WC, (4) Subjected to The functions should satisfy the real and reactive power constraints (equality constraints) (i) Load Flow Constraints: 0 = Pi –Vi ∑ Vj (GijCosθij + BijSinθij) 0 = Qi –Vi ∑ Vj (GijSinθij - BijCosθij) And also satisfy the inequality constraints like reactive power generation,bus voltage and transformer tap setting limit as follows (ii) Generator Reactive Power Capabilty Limit: ܳ௚௜ ௠௜௡ ≤ ܳ௚௜ ≤ ܳ௚௜ ௠௔௫ (iii) Voltage Constraints: ܸ௜ ௠௜௡ ≤ ܸ௜ ≤ V୧ ୫ୟ୶ (iv) Transformer Tap Limit ܶ௞ ௠௜௡ ≤ ܶ௞≤ ܶ௞ ௠௔௫ i€்ܰ Equation (4) is therefore changed to the following generalized objective function: Min ‫ܨ‬஼ = ‫ܨ‬஼+ ∑ ߙ௏௜൫ܸ௜ − ܸ௜ ௟௜௠ ൯2 + ∑ߚொ௚௜൫ܳ௚௜ିܳ௚௜ ௟௜௠ ൯2 (5) i€NVlim i€NQglim Subjected to 0 = ܲ௜ - ܸ௜ ∑ ܸ௝൫‫ܩ‬௜௝ܿ‫ߐݏ݋‬௜௝ + ‫ܤ‬௜௝sin ߐ௜௝൯ i € ܰ஻ି௟ j€ܰ௟ 0 = ܳ௜ - ܸ௜ ∑ ܸ௝൫‫ܩ‬௜௝‫ߐ݊݅ݏ‬௜௝ − ‫ܤ‬௜௝ܿ‫ߐݏ݋‬௜௝൯ i € ܰ௉ொ j€ܰ௟ Where,αvi and βQgi are the penalty factors which can be increased in the optimization procedure;ܸ௜ ௟௜௠ and ܳ௚௜ ௟௜௠ are defined in the following equations: ܸ௜ ௟௜௠ = { ܸ௜ ௠௜௡ ݂݅ ܸ௜ < ܸ௜ ௠௜௡ ܸ௜ ௠௔௫ ݂݅ ܸ௜ > ܸ௜ ௠௔௫ ܳ௚௜ ௟௜௠ ={ܳ௚௜ ௠௜௡ ݂݅ ܳ௚௜ ௠௜௡< ܳ௚௜ ௠௜௡ ܳ௚௜ ௠௔௫ if ܳ௚௜ ௠௔௫ >ܳ௚௜ ௠௔௫ (6)
  • 4. Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014 54 4.FVSI FORMULATION The Fast Voltage Stability Index is resulting from the voltage quadratic equation at the receiving bus on a two-bus system [12,14,15]. The general 2-bus representation is illustrated in Figure 1. Figure 1.Model of Two bus system From the figure, the voltage quadratic equation at the receiving bus is written as ܸଶ ଶ - ቂ ோ ௑ sinδ + cosδቃ ܸଵܸଶ+ ቀܺ + ோమ ௑ ቁ Q2 = 0 (7) set the equation of discriminator be larger than or equal to zero yields ቀቂ ோ ௑ sinδ + cosδቃ ܸଵቁ ଶ - 4ቀܺ + ோమ ௑ ቁQ2 ≥ 0 (8) Rearranging (2), we obtain ସೋ మ ொమ௑ ௏భ మሺோ ௦௜௡ ఋା௑ ௖௢௦ ఋሻమ < 1 (9) since“i”as the sending bus and “j” as the receiving end bus,Since δ is normally very small, then, δ≈0, R Sinδ ≈0 and X receiving bus, Fast Voltage Stabilty Index (FVSI) can be calculated FVSIij= ସ௭మொೕ ௏೔ మ ௑ (10) Where ,Z,X are the Impedance and reactance of the line.Where as Qj ,V are the Reactive power at the receiving end and the sending end voltage. 4.1. Procedure For Determining The Maximum Loadability For Weak Bus Identification Using Fvsi 1. Using Newton-Raphson method ,Run the load flow program for the base case. 2. Estimate Fast voltage stability Index value for all line in the system. 3. Progresively increase the Qj at chosen load bus until the load flow fails to give the results.Calculate Fast Voltage Stabilty Index Values for every load variation. 4. Plot the graph of FVSI versus Q. 5. Take out the line index that has the highest value be s the most critical line with respect to a bus. 6. Select another load bus repeat steps up to 5.
  • 5. Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014 55 7. Obtain the voltage at the maximum computable FVSI prior to the divergence of the Load flow .It can be obtained from step 3.This determines the critical Voltage of a Particular bus. 8. Take out the maximum Qj loading for the maximum calculable FVSI for all test bus. It can be obtained from 5.The greatest VAr loading is referred to as the most loadability of a Particular bus. 9. Sort the greatest loadability obtained from step 8 in ascending order and the least loadability maximum is ranked the utmost imply the Weakest bus in the system. 10.Select the feeble buses as the reactive power installation site for the Reactive Power Planning . 5.DIFFERENTIAL EVOLUTION (DE) Differential Evolution is first proposed over 1994-1996 by Storn and Price at Berkeley. Differential evolution (DE) is a population based and parallel search algorithm that operate on the populations of the possible solution vectors { G iX : i=1,2,3………,Np} at each generation G [8,10.11]. Each individual element of the solution vector is composed of D-parameters, namely G iX := G jix , : j= 1,2…… D. Various steps in DE are mutation, crossover and selection. The outline of the DE algorithm is as follows: 1. Initialize the population: G jix , = x L j + )( L j U ij xxR − , j= 1,2……D where L jx and U jx are the lower And upper bounds of the parameter j respectively, and Rj is a random number ,uniformly distributed between [0,1]. 2. Evaluate the population using an objective function. 3. Generate a new population where each new vector is created according to: (a) Generate a trial vector G iv , for each solution vector as G ix )( G n G m G BEST G i xxPxv −+= ,i=1,2,…….Np (11) Where G BESTx represents the best solution and { G n G m xx , } are two arbitrary vectors at generation G such that{ G BESTx G n G m xx , } are mutually different. The constant P is a mutation factor. (b) Crossover the trial vector and the current vector with crossover probability CR to deliver a baby vector G iu i.e.,     < = otherwisex CRforRv u G ji j G jiG i , , (12) (c) Evaluate the baby vector. (d) Use the baby in the new generation if it is at least as good as the current vector; otherwise, the old vector is retained. (13) 4. Repeat step 3 until the termination condition is satisfied.    < =+ otherwisex xfuforfu x G i G i G i G iG i )()(1
  • 6. Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014 56 6. NUMERICAL RESULTS The buses for possible VAR source installation is identified using FVSI and the buses are 25, 26, 29 and 30. The greatest loadability and FVSI values for the IEEE 30 bus system are given in Table I. TABLE I.Bus Ranking and FVSI Values Rank Bus No Qmax(p.u) FVSI 1 30 0.29 1.014 2 26 0.34 1.042 3 29 0.38 1.043 4 25 0.6 1.020 5 27 0.74 1.071 6 15 0.76 1.007 7 24 0.79 1.014 8 10 0.84 1.003 9 14 0.88 1.012 10 18 0.91 1.018 The parameters and variable limits are listed in Tables II and III. All power and voltage quantities are p.u. value and the base power is used to work out the energy cost. TABLE II.Parameters. SB (MVA) h ($/puWh) ei($) Cci ($/puVAR) 100 6000 1000 30,00,000 TABLE III.Limits Qc Vg V load Tg min max min max min max min max - 0.12 0.35 0.9 1.1 0.96 1.05 0.96 1.05 6.1 Case Study Three cases [3] have been studied. Case 1,. Case 2 and 3 are the normal load and heavy loads.The heavy loads are 1.25% and 1.5%.. The period of the load level is 8760 hours in normal,1.25% and 1.5 loading [6].The initial generator bus voltages and transformer taps are set to 1.0 pu. The loads are given as, Case 1: Pload = 2.834 and Qload = 1.262 Case 2: Pload = 3.542 and Qload = 1.577 Case 3 : Pload = 4.251 and Qload = 1.893 TABLE IV..Initial generations and power losses Pg Qg Ploss Qloss Case 1 3.008 1.354 0.176 0.323 Case 2 3.840 2.192 0.314 0.854 Case 3 4.721 3.153 0.461 1.498
  • 7. Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014 57 TABLE V..Optimal generator bus voltages. Bus 1 2 5 8 11 13 Case 1 1.10 1.09 1.05 1.09 1.10 1.10 Case 2 1.10 1.10 1.09 1.10 1.10 1.10 Case 3 1.10 1.10 1.08 1.09 1.09 1.09 TABLE VI.Optimal transformer tap settings. Branch (6-9) (6-10) (4-12) (27-28) Case 1 1.0433 0.9540 1.0118 0.9627 Case 2 1.0133 0.9460 0.9872 0.9862 Case 3 1.0131 0.9534 0.9737 0.9712 TABLE VII.Optimalvar source installments. Bus 26 28 29 30 Case 1 0 0 0 0 Case 2 0.0527 0.030 0.022 0.031 Case 3 0.0876 0.029 0.027 0.047 TABLE VIII.Optimal generations and power losses Pg Qg Ploss Qloss Case 1 2.989 1.288 0.159 0.266 Case 2 3.808 1.867 0.266 0.652 Case 3 4.659 2.657 0.417 1.190 TABLE IX.Cost comparison PCsave% WC save ($) fC($) Case 1 8.644 7,98,070.94 8.4225*106 Case 2 12.452 19,92,758.84 1.4408*107 Case 3 13.311 32,98,528.48 2.2017*107 TABLE X.Comparision Results Variables Case-1 Case-3 EP[6] DE EP[6] DE V1 1.05 1.05 1.05 1.05 V2 1.044 1.044 1.022 1.022 T6-9 1.05 1.0433 0.9 1.013 T4-12 0.975 1.031 0.95 0.973 QC 17 0 0 0.0229 0.297 QC 27 0 0 0.196 0.297 PG 2.866 2.989 5.901 4.659 QG 0.926 1.288 2.204 2.657 Ploss 0.052 0.159 0.233 0.417 Qloss 0.036 0.266 0.436 1.190 As shown in Table X,Similar results were obtained both approaches for the normal and 1.5% loading.Differential Evolution algorithm has adjusted the voltage magnitude of all load buses and transformer tap settings such that total losses decreased. 7. OPTIMAL RESULTS AND COMPARISION The optimal generator bus voltages, transformer tap settings, VAR source installments, generations , power losses and comparision of cost saving in three cases are obtained as in tables 5 – 9.The real power savings, annual cost savings and the total costs are calculated as,
  • 8. Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014 58 ܲ஼ ௌ௔௩௘ % = ௉೗೚ೞೞ ೔೙೟ ି௉೗೚ೞೞ ೚೛೟ ௉೗೚ೞೞ ೔೙೟ x 100 % (14) ܹ஼ ௦௔௩௘ = hdl ( ܲ௟௢௦௦ ௜௡௧ − ܲ௟௢௦௦ ௢௣௧ ) ‫ܨ‬஼= ‫ܫ‬஼ + ܹ஼ Figure 2. Converence Rate of DE Algorithm without VAR(100 % Loading) Figure 3. Converence Rate of DE Algorithm witht VAR(1.25 % Loading) Figure 4. Converence Rate of DE Algorithm with VAR(1.5% Loading) 0 20 40 60 80 100 120 140 160 180 200 16 16.5 17 17.5 18 18.5 --> No. of iterations -->Transmissionlineloss(inMW) Convergence Rate of the DE Algorithm Loss Value at Iteration 0 20 40 60 80 100 120 140 160 180 200 26.5 27 27.5 28 28.5 29 --> No. of iterations -->Transmissionlineloss(inMW) Convergence Rate of the DE Algorithm Loss Value at Iteration 0 20 40 60 80 100 120 140 160 180 200 40 41 42 43 44 45 46 47 --> No. of iterations -->Transmissionlineloss(inMW) Convergence Rate of the DE Algorithm Loss Value at Iteration
  • 9. Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014 59 Figure 5.The convergenge characteristic of Normal DE(Case-1) in optimal situation in terms of cost Figure 6.The convergenge characteristic of DE(Case-3) in optimal situation in terms of cost Figures 2, 3 and 4.show the Convergence Rate of Differential Evolution Algorithm with VAR.For normal,1.25% and 1.5 % loading.It can be seen that Convergenge Rate of Differential Evolution Algorithm is capable to arrive at the close vicinity of final solution with in the respective iteration [17]Comparing Differential Evolution Algorithm. Figure 5 and 6..show the convergence rate of Differential Evolution for optimal situation in terms of cost for normal and 1.25% loading. 8.CONCLUSION FVSI based approach has been developed for solving the weak bus oriented RPP problem. Based on FVSI, the locations of reactive power devices for voltage control are determined. The individual greatest loadability obtained from the load buses will be sorted in rising order with the least value being ranked uppermost The highest rank implies the weakest bus in the system with low sustainable load. These are the possible locations for reactive power devices to maintain 0 20 40 60 80 100 120 140 160 180 200 8.4 8.5 8.6 8.7 8.8 8.9 9 9.1 x 10 6 --> No. of iterations -->totalcost Convergence Rate of the DE Algorithm cost Value at Iteration 0 20 40 60 80 100 120 140 160 180 200 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 x 10 7 --> No. of iterations -->obj f unction t otal c ost Convergence Rate of the DE Algorithm cost Value at Iteration
  • 10. Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 3, No 1, February 2014 60 stability of the system. The application studies on the IEEE 30-bus system shows that the optimum Differential Evolution approach gives more savings on real power, annual and the total costs for different loading conditions after transformer tappings are modeled as discrete variables.DE was capable for solving the RPP problem successfully for the case studies,providing a considerable reduction in system losses and an improvement on the voltage profile over the system.The proposed approach a proper planning can be done according to the bus capacity to avoid voltage collapse of the system REFERENCES [1] A. Kishore and E.F. Hill, 1971, “Static optimization of reactive power sources by use of sensitivity parameters,” IEEE Transactions on Power Apparatus andSystems, PAS-90, pp.1166-1173. [2] S.S. Sachdeva and R. Billinton, 1973, “Optimum network VAR planning by nonlinear programming, IEEE Transactions on Power Apparatus and Systems,PAS-92, pp.1217- 1225. [3] K.Y.Lee, Y.M.Park and J.L.Ortiz, 1985, “A united approach to optimal real and reactive power dispatch”, IEEE Transactions on Power Apparatus andSystems,Vol. PAS-104,No.5, pp.1147–1153. [4] Y.Y. Hong, D.I. Sun, S.Y. Lin and C.J. Lin, 1990, “Multi-year multi-case optimal VAR planning”, IEEE Transactions on Power Systems, PWRS-5, No.4, pp.1294-1301 [5] Kenji Iba, 1994, “Reactive Power Optimization by Genetic Algorithm”, IEEETransactions on Power Systems, Vol. 9, No, 2, pp. 685 – 692. [6] L.L.Lai 997, “Application of Evolutionary Programming to Reactive Power Planning - Comparison with nonlinear programming approach”, IEEE Transactions on Power Systems, Vol. 12, No.1, pp. 198 – 206. [7] Wenjuan Zhang, Fangxing Li, Leon M. Tolbert, 2007, “Review of Reactive Power Planning: Objectives, Constraints, and Algorithms”, IEEE Transactionson Power Systems, Vol. 22, No. 4 [8] Zouyiqin,”Optimal Reactive Power Planning Based on Improved Tabu Search Algorithm”, 2010 International Conference on Electr ical and Control Engineering, June 25-June 27 ISBN: 978-0-7695- 4031-3 [9] D.E.Goldberg.Gentic Algorithm in Search,optimization and machine learning,AditionWesley,New York,1989 [10] Jani Ronkkonen , SakuKukkonen, Kenneth V. Price, 2005, “Real-Parameter Optimization with Differential Evolution”, IEEE Proceedings, pp. 506-513 [11] H. Yahia, N. Liouane, R. Dhifaoui, 2010, “Weighted Differential Evolution Based PWM Optimization for Single Phase Voltage Source Inverter”, International Review of Electrical Engineering, Vol. 5, Issue. 5, pp. 1956 –1962. [12] A.Mohamed and G.B. Jasmon, 1989, “Voltage contingency selection technique for security assessment,” IEE Proc., vol. 136, pp. 24-28. [13] Lonescu,C.F.Bulac.C,“Evolutionary Techniues,a sensitivity based approach for handling discrete variables in Reactive Power Planning,”IEEE Tansaction on Power Engineering,pp.476-480,2012 [14] M. Moghavemmi and F.M. Omar, 1998, “Technique for contingency monitoring and voltage collapse prediction,” IEE Proc. Generation,Transmission and Distribution, vol. 145, pp. 634-640. [15] Bikasc.pal,SamiKaraki,“Contigency constrained VAr planning using penalty successive conic programming”,IEEE Transactions on power systems ,Vol.27,No.1,pp.545-553,Feb-2012 [16] I. Musirin, T.K.Abdul Rahman, 2002, “Estimating Maximum Loadability for Weak Bus Identification using FVSI”, IEEE Power Engineering Review, pp. 50-52. [17] KkitPo Wong ,Zhao Wong, ”Differntial Algorithm, An Alternative approach to Evolutionary Algorithm”, IEEE Transaction on Power systems,Vol.12.No.3,2005 [18] Z.Caiand Y.Wang,“ A multi-objective optimization based evolutionary algorithm for constrained optimization,”IEEE.Trans.evolution omputor,vol.10,no.6.p.p.678-675.Dec.2001