SlideShare a Scribd company logo
1 of 12
Download to read offline
Asian Journal of Applied Science and Technology (AJAST)
Volume 6, Issue 1, Pages 38-49, January-March 2022
ISSN: 2456-883X www.ajast.net
38
Influence of Integrated Nutrient Management on Yield of Coconut (Cocos Nucifera) on
Sandy Soils
Ismail K.1*
, Ismail A.A.2
& Husin M.A.3
1,3
Industrial Crop Research Centre, MARDI Bagan Datuk, 36307 Sg. Sumun, Perak, Malaysia.
2
Industrial Crop Research Centre, MARDI Jerangau, 21820, Ajil, Terengganu, Malaysia.
Corresponding Author Email: khairol.mardi@gmail.com1*
DOI: http://doi.org/10.38177/ajast.2022.6106
Copyright: Β© 2022 Ismail K. et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Article Received: 25 October 2021 Article Accepted: 28 January 2022 Article Published: 22 February 2022
1. Introduction
Coconut is a versatile tree and is the most popular home garden crop in the world and very beneficial for health
because of its high nutrient status (Parwaiz et.al. 2014). Coconut is grown under highly heterogeneous soil
conditions ranging from coastal sand to clay, from poorly drained uplands to hill slopes and strongly acidic to
highly calcareous soils (Khan et al., 1978). Nutrient management in coconut is a continuous battle against soil
limiting factors and it assumes significance because coconut requires a continuous supply of nutrients throughout
the year for sustained productivity (Khan, 1993). For better growth and productivity of coconut palms balanced and
integrated nutrient management is essential.
Integrated Nutrient Management includes the intelligent use of organic, inorganic, and biological resources to
sustain optimum yields, improve or maintain soil chemical and physical properties (Tandon, 1990). Plantation
crops have sufficient potential to benefit from natural farming and sustain their yield with low external input as they
produce considerable quantities of biomass (Nampoothiri, 2001). Being a perennial crop, the coconut palm
produces huge quantities of organic wastes throughout the year.
The availability of organic recyclable biomass from a hectare of well-managed coconut garden has been estimated
to be about 14–16 tons annually in the form of leaves, spathe, bunch waste, and husk. Sustainable agricultural
production incorporates the idea that natural resources should be used to generate increased output and incomes,
without depleting the natural resources (Parwaiz et.al. 2014).
The use of these waste materials as domestic fuel and thatching material is now limited due to the change in the
lifestyle of the rural population. The waste biomass from coconut palm differs significantly in the chemical
ABSTRACT
The study mainly to find out the effect of activated biomass on the yield of 10 years of Ceylon tall coconut plants at bris soil to develop a fertilizer
mixture that supports plant productivity. The activated biomass was derived from coconut fronds and empty fruit bunch which were air-dried and
carbonized in a stainless steel fabricated kiln at a temperature between 250o
C-350o
C for 4 h to develop the activated biomass. Seven treatments
including control were selected. Measurements of yield parameters viz., fruit weight, nut weight, husk weight, water volume, fruit perimeter, fruit
length, flesh thickness and the number of nuts increased were conducted every 2 months. There are significant differences at (P<0.05) were observed
in some yield parameters, percent of nut increased, flesh thickness and fruits parameter were highest at T3. The treatment of T6 shows the highest
records of fruits length, water volume, the weight of fruits, and husks weight. T7 recorded the highest reading of stem diameter. Further field
evaluations are needed to determine the relationship of the level of activated biomass with the different level amount of NPK supply in inducing the
nutrient availability and soil microbial.
Keywords: Coconuts, Nutrient management, Empty fruit bunch, Coconut fronds, Activated biomass, Coconut yields, Sandy soil.
Asian Journal of Applied Science and Technology (AJAST)
Volume 6, Issue 1, Pages 38-49, January-March 2022
ISSN: 2456-883X www.ajast.net
39
composition (Thomas et al., 1998). The application of biomass organic integrated with Nitrogen, Phosphorus and
Potassium (NPK) will enhance for best growth performance of coconut. The conjunctive use of organic and
inorganic sources improves soil health and helps in maximizing production as it involves the utilization of local
sources and, hence, turned to be a rational, realistic and economically viable way of supply of nutrients (Parwaiz
et.al. 2014). The application of biomass organic from coconut waste will increase the nutrient contents for plants
uptake (Khairol. I and Mohammad. A. H., 2019). The research work was initiated to study the impact of activated
biomass from palm wastes on the yield of coconut planted on marginal bris soil.
2. Methodology
2.1. Experimental site
The experiment was carried out for two years in a plot of 10 years old coconut palm of Ceylon tall cultivar at
Malaysian Agriculture Research And Development Institute (MARDI) Station in Cherating, Pahang, Malaysia.
The daily temperature during the experiment was in the range of 30–40Β°C. The research station received an annual
average rainfall of 600 mm on 30 rainy days distributed from September to November. The soil was Beach ridges
interspersed with swale (BRIS) with low pH and low availability of Nitrogen (N), Phosphorus (P) & Potassium (K).
2.2. Planting materials
Ceylon tall of coconuts at the age of 10 years were used in a fully randomized design horizontally on raised plots at
a spacing of 9.0 m between seedlings and 9.0 m between rows triangularly.
2.3. Activated biomass development
The activated biomass was derived from coconut fronds (CF) and empty fruit bunch (EFB). Raw of CF was
collected from MARDI Bagan Datuk Field and EFB biomass was collected from Sg Sumun Oil Palm Mill, Sime
Darby Bhd, located in Bagan Datuk, Perak, Malaysia. The Biomass samples were air-dried for one week to
eliminate excessive moisture. The biomass was then chopped in the size of < 50 mm. The biomass sample was
carbonized in the stainless steel fabricated kiln at a temperature between 250o
C - 350o
C for 4 h to develop the
activated biomass. The activated biomass was shredded to the size < 5 mm before apply to the experimental plots.
2.4. Treatments
Seven rates of activated biomass were applied in the experiment and it was combined with 4.50 kg/palms of
Nitrogen, Phosphorus and Potassium (NPK) 12:12:17:2 compound for each plant. The activated biomass was
applied at the basin of palm within 2 meters from the stem of coconuts. The NPK was applied above the activation
that was applied before. The treatments are as follows: T1- Control (NPK only), T2- CF 3.0kg/plant + 4.5 kg/plant
of NPK, T3-CF 6.0kg/plant + 4.5 kg/plant of NPK, T4- CF 9.0kg/plant + 4.5 kg/plant of NPK, T5- EFB 3.0kg/plant
+ 4.5 kg/plant of NPK, T6- EFB 6.0kg/plant + 4.5 kg/plant of NPK, T7- EFB 9.0kg/plant + 4.5 kg/plant of NPK.
2.5. Data of yield characters
The number of fruits and copra weight per palm were recorded each year from the middle of 2019 to the middle of
2021. The yield parameters viz., fruit weight (gm), nut weight (gm), and husk weight (gm) were measured using a
Asian Journal of Applied Science and Technology (AJAST)
Volume 6, Issue 1, Pages 38-49, January-March 2022
ISSN: 2456-883X www.ajast.net
40
digital scale. Flesh thickness (mm), fruit length (cm) and fruit perimeter (cm) were measured using a calliper and
measuring tape. Water volume (ml) and Brix were measured using a measuring cylinder and portable Brix meter
while yield increased (%) recorded every two months year wise from 2019 - 2021. The results of the study were
analyzed and discussed in the paper.
2.6. Experimental design and data analysis
The experimental design was a Complete Randomized Design. Analysis of variance tests was carried out to detect
significant differences between the parameters collected with 2 replication. Means of the measured variables were
compared by using the appropriate ANOVA procedure (SAS Institute 1989) and the Duncan test (P<0.05).
3. Results and Discussions
3.1. ANOVA analysis of parameters
The ANOVA analysis suggested that parameters collected (fruit weight, husk weight, water volume, fruit length,
and yield increased) were significantly affected by treatments (Table 1). On the other hand, fruits perimeter and nut
weight does not significantly affect the treatments.
3.2. Effect of activated biomass on yield of coconut increasing
Yield data of the increasing nuts at parameter number of fruits per plant/year was mentioned in table 2. A
significant difference at (P<0.05) in the yield of nuts/plants was observed between the activated biomass
treatments. Treatment T3 shows the highest percent of nut increment with 44.8%, while T1 shows the lowest nut
increment with 9.4%. It is a significant difference in yield increases at (P<0.05) due to effected by activated
biomass applied. This in turn helped the palms in increasing the nutrient content which eventually influenced the
reproductive behaviour of the coconut palms and ultimately reflected in the nut yield (Shinde et al. 2021). Burying
a thousand coconut husks per palm plus coconut leaves in the trenches between rows raised yield by 44.6% over the
control (Balasubramanian et al. 1985).
Table 1. Analysis of mean square ANOVA on effect of activated biomass to the yield components of coconuts
Source of
variance
Parameters
Fruit
weight
(gm)
Nut
weight
(gm)
Husk
weight (gm)
Water
volume
(ml)
Fruit
perimeter
(cm)
Fruit
length
(cm)
Yield
Increased
(%)
Flesh
Thickness
(mm)
Treatment 149506.67* 7028.84 117641.63* 2610.15* 7.72 2.31* 321.77 * 2.91*
Rep 128918.42 17955.13 50649.91 942.34 12.50 0.07 369.26 0.36
Grand mean 1462.39 705.45 756.94 169.06 54.39 20.70 26.78 12.75
Coefficient of
variation (%)
9.75 12.64 13.99 12.00 2.90 2.79 13.90 10.89
Note: mean along with * shows the significant difference at p < 0.05
: mean along with ** shows the significant difference at p <0.01
Asian Journal of Applied Science and Technology (AJAST)
Volume 6, Issue 1, Pages 38-49, January-March 2022
ISSN: 2456-883X www.ajast.net
41
Table 2. Yield performance on number of fruits/plant/year at different activated biomass rate
Treatments
No of fruits/plant/year
Pre-treatment Post-treatment Percent increase %
T1 35 38 9.4 d
T2 27 33 24.6 bc
T3 20 29 44.8 a
T4 24 34 40.6 ab
T5 29 33 15.1 c
T6 16 19 27.8 bc
T7 28 36 25.3 bc
Grand mean 25 32 26.78
C.V. (%) - - 13.90
Mean value with the same letter for each treatment are significantly different at P < 0.05
3.3. Effect of activated biomass on physical characters of nuts
3.3.1. Fruits and Husks weight
A brief description of fruits weight parameters were given in figure 1. It shows a significant difference in the weight
of the fruit at (P<0.05) that was observed between the activated biomass treatments. The treatment of T6 shows the
highest weight of fruits significantly compare to other treatments, while T1 shows the lowest weight of fruits
affected by activated biomass applied. Yield parameters of husk weight were mentioned in figure 2.
Fig.1. Effect of activated biomass rate to the relationship between treatment and fruits weight. Bar with the same
letter for each treatment are significantly different at P < 0.05
d
cd
ab
bc
ab
a
ab
0.0
400.0
800.0
1200.0
1600.0
2000.0
T1 T2 T3 T4 T5 T6 T7
Fruit
weight
(gm)
Treatments
Asian Journal of Applied Science and Technology (AJAST)
Volume 6, Issue 1, Pages 38-49, January-March 2022
ISSN: 2456-883X www.ajast.net
42
Fig.2. Effect of activated biomass rate to the relationship between treatment and husk weight. Bar with the same
letter for each treatment are significantly different at P < 0.05
There is a significant difference in the husk weight observed at (P<0.05) affected by different rates and types of
activated biomass applied. The treatment of T6 shows the highest weight of husk, followed by T5 and T3, while T1
shows the lowest husk weight parameters compared to other treatments. These results indicate that different
amendments affect yield characters differently. Similar results were obtained in the case of other plants that it is
suggested that amendment of BRIS soil increased BRIS soil health therefore yield of vegetable plants increased
(Khandaker, et. al 2014). Integrated nutrient management affects its growth and yield characteristics to a great
extent (Parwaiz et.al. 2014). Therefore the yield increased in BRIS soil under amendment-BRIS soil conditions
than only BRIS soil conditions (Khandaker, et. al 2014).
3.3.2. Nut weight and fruits perimeters
Nut weight was not significantly affected by treatments. Nevertheless, T7 recorded the highest reading of nut
weight while T2 was the lowest (Table 3).
Table 3. Nut weight and fruit perimeter effect at different activated biomass rate
Treatments
Parameter
Nut weight (gm) Fruit perimeter (cm)
T1 672.4 a 52.4 a
T2 641.6 a 52.1 a
T3 725.8 a 56.9 a
T4 668.7 a 54.6 a
T5 666.1 a 53.4 a
d
cd
ab
b
ab
a
bc
0
200
400
600
800
1000
1200
T1 T2 T3 T4 T5 T6 T7
Husk
weight
(gm)
Treatments
Asian Journal of Applied Science and Technology (AJAST)
Volume 6, Issue 1, Pages 38-49, January-March 2022
ISSN: 2456-883X www.ajast.net
43
T6 760.1 a 56.9 a
T7 803.5 a 54.5 a
Grand mean 705.5 54.4
C.V. (%) 12.64 2.9
Mean value with the same letter for each treatment are not significantly different at P < 0.05
Fruits perimeter also shows a similar pattern whereby T3 and T6 recorded the highest reading while T2 was the
lowest. However, no significant impact was established. An increase in yield under these treatments might be
owing to better availability of required nutrients which resulted in improvement in yield (Maheswarappa. et al
2014) and (Maheswarappa. et al 2011). When the nut yields after imposition of treatments are compared with the
figures before the experimentation, there was a considerable increase in yield as affected by integrated nutrient
management treatments (Chellappa, 2008).
3.3.3. Water volume
Yield parameters of water volume were described in figure 3. There is a significant difference in the water volume
observed at (P<0.05) affected by activated biomass applied. Treatment T6 shows the highest reading of water
volume while T3 and T7 were at par. T1 shows the lowest significant reading. The organoleptic evaluation of
tender nut water revealed that the treatments which received more organic fertilizers recorded very good taste
(Chellappa, 2008). High-temperature biochar’s' porous structures can accommodate appropriate
soil-microorganism activities, increase water sorption, and increase soil density. Furthermore, the biochar’s' high
alkalinity can help to neutralise acidic soil, increasing soil fertility and plant development (Dhar et al. 2020).
3.3.4. Fruit length
A significant difference in the fruit length at (P<0.05) was observed between the treatment (Figure 4).
Fig.3. Effect of activated biomass rate to the relationship between treatment and water volume. Bar with the same
letter for each treatment are significantly different at P < 0.05
c
c
ab
bc bc
a
ab
0.0
50.0
100.0
150.0
200.0
250.0
T1 T2 T3 T4 T5 T6 T7
Water
volume
(ml)
Treatments
Asian Journal of Applied Science and Technology (AJAST)
Volume 6, Issue 1, Pages 38-49, January-March 2022
ISSN: 2456-883X www.ajast.net
44
Fig.4. Effect of activated biomass rate to the relationship between treatment and fruit length. Bar with the same
letter for each treatment are significantly different at P < 0.05
The palm at treatment T4, T5, and T6 contribute to the highest reading of fruits length. Unfortunately, T1 was
observed as the lowest significant reading. It can be discussed that the activated biomass applied were contributed
the most yield and differences among treatments to the parameter different of fruit length. This biomass may be
recycled back into the system, improving soil fertility and crop yield in a sustainable manner. Productivity is also
affected by different nutrient management practices. The combination of organic and inorganic sources, bio
fertilizers, and specific plant growth regulators boosted plant growth and hence biomass output (Sainath et al.
2021).
3.3.5. Flesh thickness
The flesh thickness of coconut was described in figure 5.
Fig.5. Effect of activated biomass rate to the relationship between treatment and flesh thickness. Bar with the same
letter for each treatment are significantly different at P < 0.05
c
bc ab
a a a ab
0.0
5.0
10.0
15.0
20.0
25.0
T1 T2 T3 T4 T5 T6 T7
Fuit
lenght
(cm)
Treatments
c
ab
a
bc bc
abc
bc
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
T1 T2 T3 T4 T5 T6 T7
Flesh
thickness
(mm)
Rawatan
Asian Journal of Applied Science and Technology (AJAST)
Volume 6, Issue 1, Pages 38-49, January-March 2022
ISSN: 2456-883X www.ajast.net
45
There is a significant difference in the thickness of coconut fleshes at (P<0.05) affected by activated biomass
applied. Treatment T3 shows the highest significant reading of fleshes thickness while T1 shows the lowest
significantly. However, T2 and T6 revealed equivalence among the highest readings. Bavappa (1986) noted
additional benefits of organic materials (coir dust, coconut shredding, forest leaves, and cattle manure) plus the
recommended dose of NPK improved the initial growth and reduced the mortality of coconut seedlings in coastal
sandy soil. To minimize damaging effects of drought through the association of organic fertilization which using
mulching – covering the soil around the palm by a layer, e.g., coconut fronds, husks, lopping
of Gliricidia, ipil-ipil and sun-hemp (Abeywickrama et al. 1983).
3.4. Correlation analysis between parameters collected
The findings show in table 4 the strength of the positive relationship between parameters. Fruit weight had a
significant positive correlation with all the parameters evaluated in this study (Table 4). However, only nut weight,
husk weight, water volume, and fruit length were significantly affected by the treatment shared a significant
positive correlation with fruit weight. Therefore, increasing the readings of these parameters has the potential to
increase the fruit weights. The recycling of biomass by vermicomposting and field application will reduce the
chemical fertilizer requirement of coconut and the cost of cultivation (Shinde et al. 2021). The promise of pyrolysis
as a novel method for the rapid recycling of highly resistzant coconut palm biomass leftovers to biochar as a locally
available source of soil amendment to promote regenerative agriculture in humid tropics (Gopal et al. 2020).
Table 4. Analysis of mean correlation on the yield components of coconuts
Nut
weight
(gm)
Husk
weight
(gm)
Water
volume
(ml)
Fruit
perimeter
(cm)
Fruit
length
(cm)
Fruit
weight
(gm)
Flesh
Thickness
(mm)
Nut weight (gm) 1
0.36 0.73 0.69 0.23 0.61 0.23
Ns * * ns ** ns
Husk weight (gm) 1
0.73 0.77 0.78 0.96 0.25
* ** ** ** ns
Water volume (ml) 1
0.80 0.55 0.84 0.54
** * ** *
Fruit perimeter (cm) 1
0.45 0.86 0.38
ns ** ns
Fruit length (cm) 1
0.73 0.15
* ns
Fruit weight (gm) 1
0.28
ns
Flesh Thickness (mm) 1
Note: mean along with * shows the significant difference at p < 0.05,
: mean along with ** shows the significant difference at p <0.01
Asian Journal of Applied Science and Technology (AJAST)
Volume 6, Issue 1, Pages 38-49, January-March 2022
ISSN: 2456-883X www.ajast.net
46
4. Conclusion & Future Recommendations
According to the findings of the preceding study, the use of activated biomass in conjunction with inorganic
fertilizer of NPK combination was found to be beneficial in increasing coconut yield. Considering the increased
mean nut yield as well as yield character components parameters such as nut weight, husk weight, water volume,
fruit perimeter, fruit length, and fruit weight, it can be concluded that the use of INM treatments such as T3 (T3- CF
6.0kg/plant + 4.5 kg/plant of NPK) and T6 (T3- EFB 6.0kg/plant + 4.5 kg/plant of NPK) were found promising and
produced higher readings. It is the system that envisions judicious combinations of organic wastes, bio-fertilizers,
and inorganic fertilizers to sustain soil productivity. As a result, the discovery could aid in the recommendation of
coconut farmers under coastal ecosystems where the expenditure on chemical fertilizers can be saved. It can be
concluded that the application of organic biomass integrated with NPK will enhance for best yield performance of
coconut. Amended soil boosted plant physiological indicators, indicating increased BRIS soil health and improving
not just soil condition but also plant variables. The usage of organic biomass obtained from coconut trash will boost
nutritional content for plant uptake. If applied, the approach may cover the nutritional demands of seedlings at the
field stage, considerably cutting the cost of field maintenance production and creating well-healthy plants for
planting. Incorporating organic compost into INM methods can aid not only incompletely or partially substituting
inorganic fertilisers, but also in helping farmers to recycle various agricultural waste into a more sustainable,
cost-effective, and environmentally friendly.
The study also has limitations because information on the activated carbon biomass study for field stages of
coconuts in Malaysia is limited. Further field studies are required to determine the relationship between the level of
organic biomass and the total amount of NPK supply in inducing the growth and yield of coconut planted in other
marginal soil i.e. peat. tin-tailing and acid sulphate soil.
Acknowledgement
The authors are grateful to the RMK-12 Fund Project under the Ministry of Agriculture & Food Industry Malaysia
(MAFI) and Malaysia Agriculture Research & Development Institute (MARDI) for providing the fund for the
project. The authors were also grateful to all the support staff of MARDI Cherating and their management team for
assisting in experimental site preparation, data collection, and logistic accommodation.
Declarations
Source of Funding
This research was funded by RMK-12 Fund Project under the Ministry of Agriculture & Food Industry Malaysia
(MAFI) and Malaysia Agriculture Research & Development Institute (MARDI).
Competing Interests Statement
The authors declare no competing financial, professional and personal interests.
Consent for publication
Authors declare that they consented for the publication of this research work.
Asian Journal of Applied Science and Technology (AJAST)
Volume 6, Issue 1, Pages 38-49, January-March 2022
ISSN: 2456-883X www.ajast.net
47
References
1) Abeywickrama, B., D.V. Liyanage And P.R. Wijewardane. 1983. Measures To Minimize Drought Damage In
Coconut Plantation. Ministry Of Coconut Industries, Colombo, Sri Lanka.
2) Ahmad R.K., Sulaiman S.A., Inayat M., Umar H.A. (2020). Effects Of Process Conditions On Calorific Value
And Yield Of Charcoal Produced From Pyrolysis Of Coconut Shells. In: Emamian S.S., Awang M., Yusof F. (eds)
Advances in Manufacturing Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore.
https://doi.org/10.1007/978-981-15-5753-8_24.
3) Balasubramanian, R., T. Ramanathan And H. Vijayaraghavan. 1985. Certain Aspects Of Moisture Conservation
In Coconut Gardens. Indian Coconut J. 16(2):13-15.
4) Bavappa, K.V.A. 1986. Research At Cpcri. Kerala, India.
5) Che Lah, Mohd & Nordin, Mohd Nozulaidi & Isa, Musliania & Yusop, Mohd & Jahan, Md. (2011). Composting
increses BRIS soil health and sustains rice production. ScienceAsia. 37. 291-295.
6) Chellappa, Jayabose. (2008). Impact of integrated nutrient management on nut yield and quality of coconut
under coastal ecosystem. Journal of Plantation Crops, 2008, 36 (3): 249-253.
7) Dhar, S.A., Sakib, T.U. & Hilary, L.N. (2020). Effects Of Pyrolysis Temperature On Production And
Physicochemical Characterization Of Biochar Derived From Coconut Fiber Biomass Through Slow Pyrolysis
Process. Biomass Conv. Bioref. Https://Doi.Org/10.1007/S13399-020-01116-Y.
8) Gopal, M., Gupta, A., Shahul Hameed, K., Sathyaseelan, N., Khadeejath Rajeela. T. H and Thomas., G. V.
(2020). Biochars Produced From Coconut Palm Biomass Residues Can Aid Regenerative Agriculture By
Improving Soil Properties And Plant Yield In Humid Tropics. Biochar 2, 211–226. https://doi.org/10.1007/s42773-
020-00043-5.
9) Herviyanti. H,. Maulana. A,. Prima. S,. Aprisal. A,. Crisna. S. D, and Lita. A. L. (2020). Effect Of Biochar From
Young Coconut Waste To Improve Chemical Properties Of Ultisols And Growth Coffee [Coffea Arabica L.] Plant
Seeds. International Conference Of Bio-Based Economy And Agricultural Utilization 2019. IOP Conf. Series:
Earth And Environmental Science 497 (2020) 012038. Doi:10.1088/1755-1315/497/1/012038 1.
10) Khairol. I. and Mohammad. A. H. (2019). Utilization of coconut waste to enhance the growth and vigour of
coconut cultivation on sandy soils. Proceeding of Soil Science Conference Of Malaysia 2019, 16-18 April 2019,
Hotel Equatorial, Melaka, Malaysia. pp 163-169.
11) Khan, H.H. 1993. Fertilizer management in coconut In: Tandon, H.L.S. (Ed) Fertilizer management in
commercial crops. Fertilizer Development and Consultation Organization, New Delhi, India. pp.176.
12) Khan, H.H. Sankaranarayanan, M.P. and Narayanan, K.B. 1978. Characteristics of Coconut Soils of India. 1.
Morphology, Some physico – chemical, Characteristics and Taxonomy. Proceedings of PLACROSYM I: 54-79.
ISPC, Kasargod, India.
Asian Journal of Applied Science and Technology (AJAST)
Volume 6, Issue 1, Pages 38-49, January-March 2022
ISSN: 2456-883X www.ajast.net
48
13) Khandaker, Mohammad & Jahan, Md & Muslianie, Isa. (2014). Effects of Soil Amendments on BRIS Soil
Health, Crop Physiology and Production. International Journal of Research and Innovations in Earth Sci. 1. 6-9.
14) Maheswarappa. H.P, & Thomas, George & Gupta, Alka & Ravi, Bhat & Palaniswami, C. (2014). Productivity
and nutrient status of coconut (Cocos nucifera) as influenced by integrated nutrient management with
vermicomposted coconut leaves. Indian Journal of Agronomy. 59. 455-459.
15) Maheswarappa. H.P, Thomas George, Ravi Bhat, Palaniswami C. & Jayasekhar, S. (2011). Impact of inorganic
fertilizer substitutions by vermicomposted coconut leaves on productivity and economics of coconut. 30-34.
16) Marimuthu. R. & C. Natarajan. (2005). Sand Curing Is Essential For Obtaining More Recovery Of Quality
Seedlings In Coconut. Indian Coconut J., 35(12): 325-340.
17) Nampoothiri, K .U. K. 2001. Organic Farming-Its relevance to plantation crops. J.Plantn. Crops 29(1): 1-9.
18) Parwaiz, A, B. Inayatullah, R, And Ubedullah, A, T. (2014). Effect Of Integrated Nutrient Management On Nut
Production Of Coconut (Cocos Nucifera L.) And Soil Environment. A Review. Baloch Et Al., 2014. Sci. Tech. and
Dev., 33 (1): 14-21.
19) Ranaweera, S.R.M. & Nanayakkara, Chandrika & Tennakoon, N.A. (2012). Comparison Of The Effects Of
Organic Fertilizers With Inorganic Fertilizers On The Growth Of Eight Months Old Coconut Seedlings And The
Nutrient Availability And Soil Microbial Activity Of Soils. Proc. of Int. Forestry and Env. Symposium.
20) Sainath. N, Usha. P., Manorama. T. And Biju. J. (2021). Tender Coconut Husk Derived Biochar Impact On Soil
Properties, Yield And Fruit Quality Of Banana. Journal Of The Indian Society Of Soil Science, Vol. 69, No. 3, pp
334-338 (2021) DOI: 10.5958/0974-0228.2021.00050.5.
21) Senjaliya, Hitesh & Vala, Gambhirsinh & Mangroliya, G.S. (2015). Nutrient Management Through Organic
And Inorganic Manures In Coconut (Cocos Nucifera L.) Garden. An Asian Journal Of Soil Science. 10. 59-62.
10.15740/HAS/AJSS/10.1/59-62. Edward. J. P., 2009. β€œSoil Science And Management. 5th Ed. United States:
Delmar Cengage Learning,” P. 40-250.
22) Shinde, V., Sumitha, S., & Maheswarappa, H. (2021). Soil fertility properties, leaf nutrient status and yield of
coconut and intercrops as influenced and coconut based cropping system in coastal plain of western India.
Bangladesh Journal of Botany, 50(4), 1067–1075. https://doi.org/10.3329/bjb.v50i4.57074.
23) Srinivasa Reddy, D.V. and Upadhyay, A.K. 2002. Impact of integrated nutrient management on the mineral
nutrition and yield of WCT coconut in littoral sandy soil at Kasaragod. pp. 274-251.
24) Subramanian, P et al. 2005. Glyricidia (Gliricidia sepium) as green manure in improving soil fertility and
productivity of coconut under coastal littoral sandy soil. J.Plantn. Crops 33 (3): 185-189.
25) Syed, Manzar-ul-Alam & Shah, Syed & Ali, Sikander & Iqbal, Muhammad. (2005). Yield and
phosphorus-uptake by crops as influenced by chemical fertilizer and integrated use of industrial by-products.
Songklanakarin Journal of Science and Technology. 27.
Asian Journal of Applied Science and Technology (AJAST)
Volume 6, Issue 1, Pages 38-49, January-March 2022
ISSN: 2456-883X www.ajast.net
49
26) Tandon, H.L.S. 1990. In: Proceedings of the International Symposium on Natural Resources Management for a
Sustainable Agriculture (R.P.Singh, Ed.) 16th -10th February, 1990, New Delhi, pp 203-222.
27) Thomas, G.V., Prabhu, S.R., Subramanium, P., Iyer, R. (1998): Organic Farming Technologies in Coconut.
ATIC series Publication No. 4. Central Plantation Crop Research Institute, Kasaragod, Kerala.
28) Upadhyay, A.K., Maheswarappa, H.P., Palaniswami, C., Ravi Bhat, Subramanian, P. and George V. Thomas.
2009. Impact of composted coir pith on the nutrition and productivity of coconut. Indian Coconut J. 51(9): 2-5.

More Related Content

What's hot

Curcumin extract nanoparticles: preparation, characterization and antimicrobi...
Curcumin extract nanoparticles: preparation, characterization and antimicrobi...Curcumin extract nanoparticles: preparation, characterization and antimicrobi...
Curcumin extract nanoparticles: preparation, characterization and antimicrobi...Innspub Net
Β 
NOVEL ELECTROSPUN NANOFIBERS IN DRUG DELIVERY
NOVEL ELECTROSPUN NANOFIBERS  IN  DRUG DELIVERYNOVEL ELECTROSPUN NANOFIBERS  IN  DRUG DELIVERY
NOVEL ELECTROSPUN NANOFIBERS IN DRUG DELIVERYVenkatesh Reddy
Β 
jute degumming process
jute degumming processjute degumming process
jute degumming processPranob Bappy
Β 
FLAMMABILITY CHARACTERISTICS OF CHEMICAL TREATED WOVEN HEMP FABRIC
FLAMMABILITY CHARACTERISTICS OF CHEMICAL TREATED WOVEN HEMP FABRICFLAMMABILITY CHARACTERISTICS OF CHEMICAL TREATED WOVEN HEMP FABRIC
FLAMMABILITY CHARACTERISTICS OF CHEMICAL TREATED WOVEN HEMP FABRICmsejjournal
Β 
Biosynthesis of Silver Nanoparticles using Plants and its Application on the ...
Biosynthesis of Silver Nanoparticles using Plants and its Application on the ...Biosynthesis of Silver Nanoparticles using Plants and its Application on the ...
Biosynthesis of Silver Nanoparticles using Plants and its Application on the ...IRJET Journal
Β 
Filter to protect building
Filter to protect buildingFilter to protect building
Filter to protect buildingPranav Mazumdar
Β 
IRJET- Multifinishing of Cotton using Reduced Graphene Oxide
IRJET- Multifinishing of Cotton using Reduced Graphene OxideIRJET- Multifinishing of Cotton using Reduced Graphene Oxide
IRJET- Multifinishing of Cotton using Reduced Graphene OxideIRJET Journal
Β 
Fabrication and characterization of graphene oxide nanoparticles incorporated...
Fabrication and characterization of graphene oxide nanoparticles incorporated...Fabrication and characterization of graphene oxide nanoparticles incorporated...
Fabrication and characterization of graphene oxide nanoparticles incorporated...Vinod kumar
Β 
The Influence of Cationization on the Dyeing Performance of Cotton Fabrics wi...
The Influence of Cationization on the Dyeing Performance of Cotton Fabrics wi...The Influence of Cationization on the Dyeing Performance of Cotton Fabrics wi...
The Influence of Cationization on the Dyeing Performance of Cotton Fabrics wi...IJERA Editor
Β 
MoO3 Nanoparticles: Synthesis, Characterization and Its Hindering Effect on G...
MoO3 Nanoparticles: Synthesis, Characterization and Its Hindering Effect on G...MoO3 Nanoparticles: Synthesis, Characterization and Its Hindering Effect on G...
MoO3 Nanoparticles: Synthesis, Characterization and Its Hindering Effect on G...IJERA Editor
Β 
Evaluation of change in color of denim fabric after various
Evaluation of change in color of denim fabric after various Evaluation of change in color of denim fabric after various
Evaluation of change in color of denim fabric after various Muhammad Mushtaq Mangat
Β 
Nanotechnology in food processing and food packaging
Nanotechnology in food processing and food packagingNanotechnology in food processing and food packaging
Nanotechnology in food processing and food packagingYAMUNA KURIAN
Β 
Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...
Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...
Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...Apeksha singh
Β 
Silica Nanoparticles
Silica Nanoparticles Silica Nanoparticles
Silica Nanoparticles PankajGujjar
Β 
Radiation indicator ink. 1. photogravure ink (vip)
Radiation indicator ink. 1. photogravure ink (vip)Radiation indicator ink. 1. photogravure ink (vip)
Radiation indicator ink. 1. photogravure ink (vip)Mozierlan Li
Β 
Removal of Lignin from aqueous solution using Fe3O4 Nanoparticles as an effec...
Removal of Lignin from aqueous solution using Fe3O4 Nanoparticles as an effec...Removal of Lignin from aqueous solution using Fe3O4 Nanoparticles as an effec...
Removal of Lignin from aqueous solution using Fe3O4 Nanoparticles as an effec...IJERA Editor
Β 
2011 3-82-study on-the_modification_of_pp_nonwoven_fabric
2011 3-82-study on-the_modification_of_pp_nonwoven_fabric2011 3-82-study on-the_modification_of_pp_nonwoven_fabric
2011 3-82-study on-the_modification_of_pp_nonwoven_fabricThang Tran
Β 

What's hot (20)

Curcumin extract nanoparticles: preparation, characterization and antimicrobi...
Curcumin extract nanoparticles: preparation, characterization and antimicrobi...Curcumin extract nanoparticles: preparation, characterization and antimicrobi...
Curcumin extract nanoparticles: preparation, characterization and antimicrobi...
Β 
NOVEL ELECTROSPUN NANOFIBERS IN DRUG DELIVERY
NOVEL ELECTROSPUN NANOFIBERS  IN  DRUG DELIVERYNOVEL ELECTROSPUN NANOFIBERS  IN  DRUG DELIVERY
NOVEL ELECTROSPUN NANOFIBERS IN DRUG DELIVERY
Β 
30320130402003
3032013040200330320130402003
30320130402003
Β 
jute degumming process
jute degumming processjute degumming process
jute degumming process
Β 
On The Efficacy of Activated Carbon Derived From Bamboo in the Adsorption of ...
On The Efficacy of Activated Carbon Derived From Bamboo in the Adsorption of ...On The Efficacy of Activated Carbon Derived From Bamboo in the Adsorption of ...
On The Efficacy of Activated Carbon Derived From Bamboo in the Adsorption of ...
Β 
FLAMMABILITY CHARACTERISTICS OF CHEMICAL TREATED WOVEN HEMP FABRIC
FLAMMABILITY CHARACTERISTICS OF CHEMICAL TREATED WOVEN HEMP FABRICFLAMMABILITY CHARACTERISTICS OF CHEMICAL TREATED WOVEN HEMP FABRIC
FLAMMABILITY CHARACTERISTICS OF CHEMICAL TREATED WOVEN HEMP FABRIC
Β 
Biosynthesis of Silver Nanoparticles using Plants and its Application on the ...
Biosynthesis of Silver Nanoparticles using Plants and its Application on the ...Biosynthesis of Silver Nanoparticles using Plants and its Application on the ...
Biosynthesis of Silver Nanoparticles using Plants and its Application on the ...
Β 
Filter to protect building
Filter to protect buildingFilter to protect building
Filter to protect building
Β 
IRJET- Multifinishing of Cotton using Reduced Graphene Oxide
IRJET- Multifinishing of Cotton using Reduced Graphene OxideIRJET- Multifinishing of Cotton using Reduced Graphene Oxide
IRJET- Multifinishing of Cotton using Reduced Graphene Oxide
Β 
Fabrication and characterization of graphene oxide nanoparticles incorporated...
Fabrication and characterization of graphene oxide nanoparticles incorporated...Fabrication and characterization of graphene oxide nanoparticles incorporated...
Fabrication and characterization of graphene oxide nanoparticles incorporated...
Β 
The Influence of Cationization on the Dyeing Performance of Cotton Fabrics wi...
The Influence of Cationization on the Dyeing Performance of Cotton Fabrics wi...The Influence of Cationization on the Dyeing Performance of Cotton Fabrics wi...
The Influence of Cationization on the Dyeing Performance of Cotton Fabrics wi...
Β 
1st assessment ph d 30 dec dr zaharah
1st assessment ph d 30 dec dr zaharah1st assessment ph d 30 dec dr zaharah
1st assessment ph d 30 dec dr zaharah
Β 
MoO3 Nanoparticles: Synthesis, Characterization and Its Hindering Effect on G...
MoO3 Nanoparticles: Synthesis, Characterization and Its Hindering Effect on G...MoO3 Nanoparticles: Synthesis, Characterization and Its Hindering Effect on G...
MoO3 Nanoparticles: Synthesis, Characterization and Its Hindering Effect on G...
Β 
Evaluation of change in color of denim fabric after various
Evaluation of change in color of denim fabric after various Evaluation of change in color of denim fabric after various
Evaluation of change in color of denim fabric after various
Β 
Nanotechnology in food processing and food packaging
Nanotechnology in food processing and food packagingNanotechnology in food processing and food packaging
Nanotechnology in food processing and food packaging
Β 
Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...
Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...
Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...
Β 
Silica Nanoparticles
Silica Nanoparticles Silica Nanoparticles
Silica Nanoparticles
Β 
Radiation indicator ink. 1. photogravure ink (vip)
Radiation indicator ink. 1. photogravure ink (vip)Radiation indicator ink. 1. photogravure ink (vip)
Radiation indicator ink. 1. photogravure ink (vip)
Β 
Removal of Lignin from aqueous solution using Fe3O4 Nanoparticles as an effec...
Removal of Lignin from aqueous solution using Fe3O4 Nanoparticles as an effec...Removal of Lignin from aqueous solution using Fe3O4 Nanoparticles as an effec...
Removal of Lignin from aqueous solution using Fe3O4 Nanoparticles as an effec...
Β 
2011 3-82-study on-the_modification_of_pp_nonwoven_fabric
2011 3-82-study on-the_modification_of_pp_nonwoven_fabric2011 3-82-study on-the_modification_of_pp_nonwoven_fabric
2011 3-82-study on-the_modification_of_pp_nonwoven_fabric
Β 

Similar to Influence of Integrated Nutrient Management on Yield of Coconut (Cocos Nucifera) on Sandy Soils

Utilization of Banana Peel Powder in Concrete A Result
Utilization of Banana Peel Powder in Concrete A ResultUtilization of Banana Peel Powder in Concrete A Result
Utilization of Banana Peel Powder in Concrete A Resultijtsrd
Β 
Effect of different Mulching Materials on the Yield of Quality Protein Maize ...
Effect of different Mulching Materials on the Yield of Quality Protein Maize ...Effect of different Mulching Materials on the Yield of Quality Protein Maize ...
Effect of different Mulching Materials on the Yield of Quality Protein Maize ...Agriculture Journal IJOEAR
Β 
IRJET - Vermicomposting with Cow Dung Banana Plant and Vegetable Wastes
IRJET - Vermicomposting with Cow Dung Banana Plant and Vegetable WastesIRJET - Vermicomposting with Cow Dung Banana Plant and Vegetable Wastes
IRJET - Vermicomposting with Cow Dung Banana Plant and Vegetable WastesIRJET Journal
Β 
Fertility Levels of Soils under Selected Tree Vegetations for Efficient Agro-...
Fertility Levels of Soils under Selected Tree Vegetations for Efficient Agro-...Fertility Levels of Soils under Selected Tree Vegetations for Efficient Agro-...
Fertility Levels of Soils under Selected Tree Vegetations for Efficient Agro-...AI Publications
Β 
journals in research
journals in researchjournals in research
journals in researchchaitanya451336
Β 
Controlled environment system and method for rapid propagation of saba banana...
Controlled environment system and method for rapid propagation of saba banana...Controlled environment system and method for rapid propagation of saba banana...
Controlled environment system and method for rapid propagation of saba banana...Innspub Net
Β 
INM in Fruit crops.pdf
INM in Fruit crops.pdfINM in Fruit crops.pdf
INM in Fruit crops.pdfPoojaYaddanapudi3
Β 
Utilization of Banana Peel Powder in Concrete
Utilization of Banana Peel Powder in ConcreteUtilization of Banana Peel Powder in Concrete
Utilization of Banana Peel Powder in ConcreteYogeshIJTSRD
Β 
Clay as Potassium Permanganate Carrier for Banana Storage in Indonesia
Clay as Potassium Permanganate Carrier for Banana Storage in IndonesiaClay as Potassium Permanganate Carrier for Banana Storage in Indonesia
Clay as Potassium Permanganate Carrier for Banana Storage in IndonesiaRepository Ipb
Β 
Short term response of soil physical properties of an ultisol, and nutrient c...
Short term response of soil physical properties of an ultisol, and nutrient c...Short term response of soil physical properties of an ultisol, and nutrient c...
Short term response of soil physical properties of an ultisol, and nutrient c...Alexander Decker
Β 
C032017020
C032017020C032017020
C032017020inventy
Β 
Cassava (mannihot esculenta cranz) varieties and harvesting stages influenced...
Cassava (mannihot esculenta cranz) varieties and harvesting stages influenced...Cassava (mannihot esculenta cranz) varieties and harvesting stages influenced...
Cassava (mannihot esculenta cranz) varieties and harvesting stages influenced...Alexander Decker
Β 
Growth and Nutritive Response of Guinea Grass (Panicum maximum) to Different ...
Growth and Nutritive Response of Guinea Grass (Panicum maximum) to Different ...Growth and Nutritive Response of Guinea Grass (Panicum maximum) to Different ...
Growth and Nutritive Response of Guinea Grass (Panicum maximum) to Different ...U.W. Lahiru Madhushanka Kumarasiri
Β 
Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...
Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...
Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...Innspub Net
Β 
Carbon neutral - Dr. Ranjan Bera
Carbon neutral - Dr. Ranjan BeraCarbon neutral - Dr. Ranjan Bera
Carbon neutral - Dr. Ranjan BeraRanjan Bera
Β 
Adaptation, biomass and ethanol yields of sweet sorghum (sorghum bicolor (l....
Adaptation, biomass and ethanol yields of sweet sorghum (sorghum bicolor  (l....Adaptation, biomass and ethanol yields of sweet sorghum (sorghum bicolor  (l....
Adaptation, biomass and ethanol yields of sweet sorghum (sorghum bicolor (l....Alexander Decker
Β 
Performance of different substrates on growth, yield and biological efficienc...
Performance of different substrates on growth, yield and biological efficienc...Performance of different substrates on growth, yield and biological efficienc...
Performance of different substrates on growth, yield and biological efficienc...svchandran01
Β 
Effects of varying levels of inorganic fertilizer application on the undergro...
Effects of varying levels of inorganic fertilizer application on the undergro...Effects of varying levels of inorganic fertilizer application on the undergro...
Effects of varying levels of inorganic fertilizer application on the undergro...Alexander Decker
Β 
Jdsa 12 45
Jdsa 12 45Jdsa 12 45
Jdsa 12 45Surat Man
Β 
Evaluation of Fertilizer Management on Yield and Yield Components and Product...
Evaluation of Fertilizer Management on Yield and Yield Components and Product...Evaluation of Fertilizer Management on Yield and Yield Components and Product...
Evaluation of Fertilizer Management on Yield and Yield Components and Product...Premier Publishers
Β 

Similar to Influence of Integrated Nutrient Management on Yield of Coconut (Cocos Nucifera) on Sandy Soils (20)

Utilization of Banana Peel Powder in Concrete A Result
Utilization of Banana Peel Powder in Concrete A ResultUtilization of Banana Peel Powder in Concrete A Result
Utilization of Banana Peel Powder in Concrete A Result
Β 
Effect of different Mulching Materials on the Yield of Quality Protein Maize ...
Effect of different Mulching Materials on the Yield of Quality Protein Maize ...Effect of different Mulching Materials on the Yield of Quality Protein Maize ...
Effect of different Mulching Materials on the Yield of Quality Protein Maize ...
Β 
IRJET - Vermicomposting with Cow Dung Banana Plant and Vegetable Wastes
IRJET - Vermicomposting with Cow Dung Banana Plant and Vegetable WastesIRJET - Vermicomposting with Cow Dung Banana Plant and Vegetable Wastes
IRJET - Vermicomposting with Cow Dung Banana Plant and Vegetable Wastes
Β 
Fertility Levels of Soils under Selected Tree Vegetations for Efficient Agro-...
Fertility Levels of Soils under Selected Tree Vegetations for Efficient Agro-...Fertility Levels of Soils under Selected Tree Vegetations for Efficient Agro-...
Fertility Levels of Soils under Selected Tree Vegetations for Efficient Agro-...
Β 
journals in research
journals in researchjournals in research
journals in research
Β 
Controlled environment system and method for rapid propagation of saba banana...
Controlled environment system and method for rapid propagation of saba banana...Controlled environment system and method for rapid propagation of saba banana...
Controlled environment system and method for rapid propagation of saba banana...
Β 
INM in Fruit crops.pdf
INM in Fruit crops.pdfINM in Fruit crops.pdf
INM in Fruit crops.pdf
Β 
Utilization of Banana Peel Powder in Concrete
Utilization of Banana Peel Powder in ConcreteUtilization of Banana Peel Powder in Concrete
Utilization of Banana Peel Powder in Concrete
Β 
Clay as Potassium Permanganate Carrier for Banana Storage in Indonesia
Clay as Potassium Permanganate Carrier for Banana Storage in IndonesiaClay as Potassium Permanganate Carrier for Banana Storage in Indonesia
Clay as Potassium Permanganate Carrier for Banana Storage in Indonesia
Β 
Short term response of soil physical properties of an ultisol, and nutrient c...
Short term response of soil physical properties of an ultisol, and nutrient c...Short term response of soil physical properties of an ultisol, and nutrient c...
Short term response of soil physical properties of an ultisol, and nutrient c...
Β 
C032017020
C032017020C032017020
C032017020
Β 
Cassava (mannihot esculenta cranz) varieties and harvesting stages influenced...
Cassava (mannihot esculenta cranz) varieties and harvesting stages influenced...Cassava (mannihot esculenta cranz) varieties and harvesting stages influenced...
Cassava (mannihot esculenta cranz) varieties and harvesting stages influenced...
Β 
Growth and Nutritive Response of Guinea Grass (Panicum maximum) to Different ...
Growth and Nutritive Response of Guinea Grass (Panicum maximum) to Different ...Growth and Nutritive Response of Guinea Grass (Panicum maximum) to Different ...
Growth and Nutritive Response of Guinea Grass (Panicum maximum) to Different ...
Β 
Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...
Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...
Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...
Β 
Carbon neutral - Dr. Ranjan Bera
Carbon neutral - Dr. Ranjan BeraCarbon neutral - Dr. Ranjan Bera
Carbon neutral - Dr. Ranjan Bera
Β 
Adaptation, biomass and ethanol yields of sweet sorghum (sorghum bicolor (l....
Adaptation, biomass and ethanol yields of sweet sorghum (sorghum bicolor  (l....Adaptation, biomass and ethanol yields of sweet sorghum (sorghum bicolor  (l....
Adaptation, biomass and ethanol yields of sweet sorghum (sorghum bicolor (l....
Β 
Performance of different substrates on growth, yield and biological efficienc...
Performance of different substrates on growth, yield and biological efficienc...Performance of different substrates on growth, yield and biological efficienc...
Performance of different substrates on growth, yield and biological efficienc...
Β 
Effects of varying levels of inorganic fertilizer application on the undergro...
Effects of varying levels of inorganic fertilizer application on the undergro...Effects of varying levels of inorganic fertilizer application on the undergro...
Effects of varying levels of inorganic fertilizer application on the undergro...
Β 
Jdsa 12 45
Jdsa 12 45Jdsa 12 45
Jdsa 12 45
Β 
Evaluation of Fertilizer Management on Yield and Yield Components and Product...
Evaluation of Fertilizer Management on Yield and Yield Components and Product...Evaluation of Fertilizer Management on Yield and Yield Components and Product...
Evaluation of Fertilizer Management on Yield and Yield Components and Product...
Β 

More from Associate Professor in VSB Coimbatore

Usmonkhoja Polatkhoja’s Son and His Role in National Liberation Movements of ...
Usmonkhoja Polatkhoja’s Son and His Role in National Liberation Movements of ...Usmonkhoja Polatkhoja’s Son and His Role in National Liberation Movements of ...
Usmonkhoja Polatkhoja’s Son and His Role in National Liberation Movements of ...Associate Professor in VSB Coimbatore
Β 
Flood Vulnerability Mapping using Geospatial Techniques: Case Study of Lagos ...
Flood Vulnerability Mapping using Geospatial Techniques: Case Study of Lagos ...Flood Vulnerability Mapping using Geospatial Techniques: Case Study of Lagos ...
Flood Vulnerability Mapping using Geospatial Techniques: Case Study of Lagos ...Associate Professor in VSB Coimbatore
Β 
Improvement in Taif Roses’ Perfume Manufacturing Process by Using Work Study ...
Improvement in Taif Roses’ Perfume Manufacturing Process by Using Work Study ...Improvement in Taif Roses’ Perfume Manufacturing Process by Using Work Study ...
Improvement in Taif Roses’ Perfume Manufacturing Process by Using Work Study ...Associate Professor in VSB Coimbatore
Β 
A Systematic Review on Various Factors Influencing Employee Retention
A Systematic Review on Various Factors Influencing Employee RetentionA Systematic Review on Various Factors Influencing Employee Retention
A Systematic Review on Various Factors Influencing Employee RetentionAssociate Professor in VSB Coimbatore
Β 
Methodologies for Resolving Data Security and Privacy Protection Issues in Cl...
Methodologies for Resolving Data Security and Privacy Protection Issues in Cl...Methodologies for Resolving Data Security and Privacy Protection Issues in Cl...
Methodologies for Resolving Data Security and Privacy Protection Issues in Cl...Associate Professor in VSB Coimbatore
Β 
Determine the Importance Level of Criteria in Creating Cultural Resources’ At...
Determine the Importance Level of Criteria in Creating Cultural Resources’ At...Determine the Importance Level of Criteria in Creating Cultural Resources’ At...
Determine the Importance Level of Criteria in Creating Cultural Resources’ At...Associate Professor in VSB Coimbatore
Β 
New One-Pot Synthetic Route and Spectroscopic Characterization of Hydroxo-Bri...
New One-Pot Synthetic Route and Spectroscopic Characterization of Hydroxo-Bri...New One-Pot Synthetic Route and Spectroscopic Characterization of Hydroxo-Bri...
New One-Pot Synthetic Route and Spectroscopic Characterization of Hydroxo-Bri...Associate Professor in VSB Coimbatore
Β 
A Review on the Distribution, Nutritional Status and Biological Activity of V...
A Review on the Distribution, Nutritional Status and Biological Activity of V...A Review on the Distribution, Nutritional Status and Biological Activity of V...
A Review on the Distribution, Nutritional Status and Biological Activity of V...Associate Professor in VSB Coimbatore
Β 
Psoralen Promotes Myogenic Differentiation of Muscle Cells to Repair Fracture
Psoralen Promotes Myogenic Differentiation of Muscle Cells to Repair Fracture Psoralen Promotes Myogenic Differentiation of Muscle Cells to Repair Fracture
Psoralen Promotes Myogenic Differentiation of Muscle Cells to Repair Fracture Associate Professor in VSB Coimbatore
Β 
Saliva: An Economic and Reliable Alternative for the Detection of SARS-CoV-2 ...
Saliva: An Economic and Reliable Alternative for the Detection of SARS-CoV-2 ...Saliva: An Economic and Reliable Alternative for the Detection of SARS-CoV-2 ...
Saliva: An Economic and Reliable Alternative for the Detection of SARS-CoV-2 ...Associate Professor in VSB Coimbatore
Β 
Ecological Footprint of Food Consumption in Ijebu Ode, Nigeria
Ecological Footprint of Food Consumption in Ijebu Ode, NigeriaEcological Footprint of Food Consumption in Ijebu Ode, Nigeria
Ecological Footprint of Food Consumption in Ijebu Ode, NigeriaAssociate Professor in VSB Coimbatore
Β 
Biocompatible Molybdenum Complexes Based on Terephthalic Acid and Derived fro...
Biocompatible Molybdenum Complexes Based on Terephthalic Acid and Derived fro...Biocompatible Molybdenum Complexes Based on Terephthalic Acid and Derived fro...
Biocompatible Molybdenum Complexes Based on Terephthalic Acid and Derived fro...Associate Professor in VSB Coimbatore
Β 
Influence of Low Intensity Aerobic Exercise Training on the Vo2 Max in 11 to ...
Influence of Low Intensity Aerobic Exercise Training on the Vo2 Max in 11 to ...Influence of Low Intensity Aerobic Exercise Training on the Vo2 Max in 11 to ...
Influence of Low Intensity Aerobic Exercise Training on the Vo2 Max in 11 to ...Associate Professor in VSB Coimbatore
Β 
Effects of Planting Ratio and Planting Distance on Kadaria 1 Hybrid Rice Seed...
Effects of Planting Ratio and Planting Distance on Kadaria 1 Hybrid Rice Seed...Effects of Planting Ratio and Planting Distance on Kadaria 1 Hybrid Rice Seed...
Effects of Planting Ratio and Planting Distance on Kadaria 1 Hybrid Rice Seed...Associate Professor in VSB Coimbatore
Β 
Study of the Cassava Production System in the Department of Tivaouane, Senegal
Study of the Cassava Production System in the Department of Tivaouane, Senegal  Study of the Cassava Production System in the Department of Tivaouane, Senegal
Study of the Cassava Production System in the Department of Tivaouane, Senegal Associate Professor in VSB Coimbatore
Β 
Study of the Cassava Production System in the Department of Tivaouane, Senegal
Study of the Cassava Production System in the Department of Tivaouane, Senegal  Study of the Cassava Production System in the Department of Tivaouane, Senegal
Study of the Cassava Production System in the Department of Tivaouane, Senegal Associate Professor in VSB Coimbatore
Β 
Burnout of Nurses in Nursing Homes: To What Extent Age, Education, Length of ...
Burnout of Nurses in Nursing Homes: To What Extent Age, Education, Length of ...Burnout of Nurses in Nursing Homes: To What Extent Age, Education, Length of ...
Burnout of Nurses in Nursing Homes: To What Extent Age, Education, Length of ...Associate Professor in VSB Coimbatore
Β 

More from Associate Professor in VSB Coimbatore (20)

Usmonkhoja Polatkhoja’s Son and His Role in National Liberation Movements of ...
Usmonkhoja Polatkhoja’s Son and His Role in National Liberation Movements of ...Usmonkhoja Polatkhoja’s Son and His Role in National Liberation Movements of ...
Usmonkhoja Polatkhoja’s Son and His Role in National Liberation Movements of ...
Β 
Flood Vulnerability Mapping using Geospatial Techniques: Case Study of Lagos ...
Flood Vulnerability Mapping using Geospatial Techniques: Case Study of Lagos ...Flood Vulnerability Mapping using Geospatial Techniques: Case Study of Lagos ...
Flood Vulnerability Mapping using Geospatial Techniques: Case Study of Lagos ...
Β 
Improvement in Taif Roses’ Perfume Manufacturing Process by Using Work Study ...
Improvement in Taif Roses’ Perfume Manufacturing Process by Using Work Study ...Improvement in Taif Roses’ Perfume Manufacturing Process by Using Work Study ...
Improvement in Taif Roses’ Perfume Manufacturing Process by Using Work Study ...
Β 
A Systematic Review on Various Factors Influencing Employee Retention
A Systematic Review on Various Factors Influencing Employee RetentionA Systematic Review on Various Factors Influencing Employee Retention
A Systematic Review on Various Factors Influencing Employee Retention
Β 
Digital Planting Pot for Smart Irrigation
Digital Planting Pot for Smart Irrigation  Digital Planting Pot for Smart Irrigation
Digital Planting Pot for Smart Irrigation
Β 
Methodologies for Resolving Data Security and Privacy Protection Issues in Cl...
Methodologies for Resolving Data Security and Privacy Protection Issues in Cl...Methodologies for Resolving Data Security and Privacy Protection Issues in Cl...
Methodologies for Resolving Data Security and Privacy Protection Issues in Cl...
Β 
Determine the Importance Level of Criteria in Creating Cultural Resources’ At...
Determine the Importance Level of Criteria in Creating Cultural Resources’ At...Determine the Importance Level of Criteria in Creating Cultural Resources’ At...
Determine the Importance Level of Criteria in Creating Cultural Resources’ At...
Β 
New One-Pot Synthetic Route and Spectroscopic Characterization of Hydroxo-Bri...
New One-Pot Synthetic Route and Spectroscopic Characterization of Hydroxo-Bri...New One-Pot Synthetic Route and Spectroscopic Characterization of Hydroxo-Bri...
New One-Pot Synthetic Route and Spectroscopic Characterization of Hydroxo-Bri...
Β 
A Review on the Distribution, Nutritional Status and Biological Activity of V...
A Review on the Distribution, Nutritional Status and Biological Activity of V...A Review on the Distribution, Nutritional Status and Biological Activity of V...
A Review on the Distribution, Nutritional Status and Biological Activity of V...
Β 
Psoralen Promotes Myogenic Differentiation of Muscle Cells to Repair Fracture
Psoralen Promotes Myogenic Differentiation of Muscle Cells to Repair Fracture Psoralen Promotes Myogenic Differentiation of Muscle Cells to Repair Fracture
Psoralen Promotes Myogenic Differentiation of Muscle Cells to Repair Fracture
Β 
Saliva: An Economic and Reliable Alternative for the Detection of SARS-CoV-2 ...
Saliva: An Economic and Reliable Alternative for the Detection of SARS-CoV-2 ...Saliva: An Economic and Reliable Alternative for the Detection of SARS-CoV-2 ...
Saliva: An Economic and Reliable Alternative for the Detection of SARS-CoV-2 ...
Β 
Ecological Footprint of Food Consumption in Ijebu Ode, Nigeria
Ecological Footprint of Food Consumption in Ijebu Ode, NigeriaEcological Footprint of Food Consumption in Ijebu Ode, Nigeria
Ecological Footprint of Food Consumption in Ijebu Ode, Nigeria
Β 
Mass & Quark Symmetry
Mass & Quark SymmetryMass & Quark Symmetry
Mass & Quark Symmetry
Β 
Biocompatible Molybdenum Complexes Based on Terephthalic Acid and Derived fro...
Biocompatible Molybdenum Complexes Based on Terephthalic Acid and Derived fro...Biocompatible Molybdenum Complexes Based on Terephthalic Acid and Derived fro...
Biocompatible Molybdenum Complexes Based on Terephthalic Acid and Derived fro...
Β 
Influence of Low Intensity Aerobic Exercise Training on the Vo2 Max in 11 to ...
Influence of Low Intensity Aerobic Exercise Training on the Vo2 Max in 11 to ...Influence of Low Intensity Aerobic Exercise Training on the Vo2 Max in 11 to ...
Influence of Low Intensity Aerobic Exercise Training on the Vo2 Max in 11 to ...
Β 
Effects of Planting Ratio and Planting Distance on Kadaria 1 Hybrid Rice Seed...
Effects of Planting Ratio and Planting Distance on Kadaria 1 Hybrid Rice Seed...Effects of Planting Ratio and Planting Distance on Kadaria 1 Hybrid Rice Seed...
Effects of Planting Ratio and Planting Distance on Kadaria 1 Hybrid Rice Seed...
Β 
Study of the Cassava Production System in the Department of Tivaouane, Senegal
Study of the Cassava Production System in the Department of Tivaouane, Senegal  Study of the Cassava Production System in the Department of Tivaouane, Senegal
Study of the Cassava Production System in the Department of Tivaouane, Senegal
Β 
Study of the Cassava Production System in the Department of Tivaouane, Senegal
Study of the Cassava Production System in the Department of Tivaouane, Senegal  Study of the Cassava Production System in the Department of Tivaouane, Senegal
Study of the Cassava Production System in the Department of Tivaouane, Senegal
Β 
Burnout of Nurses in Nursing Homes: To What Extent Age, Education, Length of ...
Burnout of Nurses in Nursing Homes: To What Extent Age, Education, Length of ...Burnout of Nurses in Nursing Homes: To What Extent Age, Education, Length of ...
Burnout of Nurses in Nursing Homes: To What Extent Age, Education, Length of ...
Β 
Hepatitis and its Transmission Through Needlestick Injuries
Hepatitis and its Transmission Through Needlestick Injuries Hepatitis and its Transmission Through Needlestick Injuries
Hepatitis and its Transmission Through Needlestick Injuries
Β 

Recently uploaded

Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur Escorts
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur EscortsCall Girl Nagpur Roshni Call 7001035870 Meet With Nagpur Escorts
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
Mumbai Call Girls, πŸ’ž Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, πŸ’ž  Prity 9892124323, Navi Mumbai Call girlsMumbai Call Girls, πŸ’ž  Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, πŸ’ž Prity 9892124323, Navi Mumbai Call girlsPooja Nehwal
Β 
Freegle User Survey as visual display - BH
Freegle User Survey as visual display - BHFreegle User Survey as visual display - BH
Freegle User Survey as visual display - BHbill846304
Β 
NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...
NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...
NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...Amil baba
Β 
(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Service
(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Service(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Service
(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
Β 
DENR EPR Law Compliance Updates April 2024
DENR EPR Law Compliance Updates April 2024DENR EPR Law Compliance Updates April 2024
DENR EPR Law Compliance Updates April 2024itadmin50
Β 
Sustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and ChallengesSustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and ChallengesDr. Salem Baidas
Β 
Call Girls In Yamuna Vihar꧁❀ πŸ” 9953056974πŸ”β€κ§‚ Escort ServiCe
Call Girls In Yamuna Vihar꧁❀ πŸ” 9953056974πŸ”β€κ§‚ Escort ServiCeCall Girls In Yamuna Vihar꧁❀ πŸ” 9953056974πŸ”β€κ§‚ Escort ServiCe
Call Girls In Yamuna Vihar꧁❀ πŸ” 9953056974πŸ”β€κ§‚ Escort ServiCe9953056974 Low Rate Call Girls In Saket, Delhi NCR
Β 
The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...ranjana rawat
Β 
CSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting DayCSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting DayGeorgeDiamandis11
Β 
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | β‚Ή5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | β‚Ή5k To 25k ...VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | β‚Ή5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | β‚Ή5k To 25k ...Suhani Kapoor
Β 
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Services
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts ServicesBOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Services
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Servicesdollysharma2066
Β 
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
Β 
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashik
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service NashikRussian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashik
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashikranjana rawat
Β 
Verified Trusted Kalyani Nagar Call Girls 8005736733 πˆππƒπ„ππ„ππƒπ„ππ“ Call π†πˆπ‘π‹ 𝐕...
Verified Trusted Kalyani Nagar Call Girls  8005736733 πˆππƒπ„ππ„ππƒπ„ππ“ Call π†πˆπ‘π‹ 𝐕...Verified Trusted Kalyani Nagar Call Girls  8005736733 πˆππƒπ„ππ„ππƒπ„ππ“ Call π†πˆπ‘π‹ 𝐕...
Verified Trusted Kalyani Nagar Call Girls 8005736733 πˆππƒπ„ππ„ππƒπ„ππ“ Call π†πˆπ‘π‹ 𝐕...tanu pandey
Β 
Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999
Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999
Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999Tina Ji
Β 
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130Suhani Kapoor
Β 
Booking open Available Pune Call Girls Parvati Darshan 6297143586 Call Hot I...
Booking open Available Pune Call Girls Parvati Darshan  6297143586 Call Hot I...Booking open Available Pune Call Girls Parvati Darshan  6297143586 Call Hot I...
Booking open Available Pune Call Girls Parvati Darshan 6297143586 Call Hot I...Call Girls in Nagpur High Profile
Β 
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...ranjana rawat
Β 
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
Β 

Recently uploaded (20)

Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur Escorts
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur EscortsCall Girl Nagpur Roshni Call 7001035870 Meet With Nagpur Escorts
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur Escorts
Β 
Mumbai Call Girls, πŸ’ž Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, πŸ’ž  Prity 9892124323, Navi Mumbai Call girlsMumbai Call Girls, πŸ’ž  Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, πŸ’ž Prity 9892124323, Navi Mumbai Call girls
Β 
Freegle User Survey as visual display - BH
Freegle User Survey as visual display - BHFreegle User Survey as visual display - BH
Freegle User Survey as visual display - BH
Β 
NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...
NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...
NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...
Β 
(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Service
(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Service(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Service
(DIYA) Call Girls Sinhagad Road ( 7001035870 ) HI-Fi Pune Escorts Service
Β 
DENR EPR Law Compliance Updates April 2024
DENR EPR Law Compliance Updates April 2024DENR EPR Law Compliance Updates April 2024
DENR EPR Law Compliance Updates April 2024
Β 
Sustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and ChallengesSustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and Challenges
Β 
Call Girls In Yamuna Vihar꧁❀ πŸ” 9953056974πŸ”β€κ§‚ Escort ServiCe
Call Girls In Yamuna Vihar꧁❀ πŸ” 9953056974πŸ”β€κ§‚ Escort ServiCeCall Girls In Yamuna Vihar꧁❀ πŸ” 9953056974πŸ”β€κ§‚ Escort ServiCe
Call Girls In Yamuna Vihar꧁❀ πŸ” 9953056974πŸ”β€κ§‚ Escort ServiCe
Β 
The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...
Β 
CSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting DayCSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting Day
Β 
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | β‚Ή5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | β‚Ή5k To 25k ...VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | β‚Ή5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | β‚Ή5k To 25k ...
Β 
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Services
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts ServicesBOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Services
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Services
Β 
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Β 
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashik
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service NashikRussian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashik
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashik
Β 
Verified Trusted Kalyani Nagar Call Girls 8005736733 πˆππƒπ„ππ„ππƒπ„ππ“ Call π†πˆπ‘π‹ 𝐕...
Verified Trusted Kalyani Nagar Call Girls  8005736733 πˆππƒπ„ππ„ππƒπ„ππ“ Call π†πˆπ‘π‹ 𝐕...Verified Trusted Kalyani Nagar Call Girls  8005736733 πˆππƒπ„ππ„ππƒπ„ππ“ Call π†πˆπ‘π‹ 𝐕...
Verified Trusted Kalyani Nagar Call Girls 8005736733 πˆππƒπ„ππ„ππƒπ„ππ“ Call π†πˆπ‘π‹ 𝐕...
Β 
Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999
Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999
Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999
Β 
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130
Β 
Booking open Available Pune Call Girls Parvati Darshan 6297143586 Call Hot I...
Booking open Available Pune Call Girls Parvati Darshan  6297143586 Call Hot I...Booking open Available Pune Call Girls Parvati Darshan  6297143586 Call Hot I...
Booking open Available Pune Call Girls Parvati Darshan 6297143586 Call Hot I...
Β 
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
Β 
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Β 

Influence of Integrated Nutrient Management on Yield of Coconut (Cocos Nucifera) on Sandy Soils

  • 1. Asian Journal of Applied Science and Technology (AJAST) Volume 6, Issue 1, Pages 38-49, January-March 2022 ISSN: 2456-883X www.ajast.net 38 Influence of Integrated Nutrient Management on Yield of Coconut (Cocos Nucifera) on Sandy Soils Ismail K.1* , Ismail A.A.2 & Husin M.A.3 1,3 Industrial Crop Research Centre, MARDI Bagan Datuk, 36307 Sg. Sumun, Perak, Malaysia. 2 Industrial Crop Research Centre, MARDI Jerangau, 21820, Ajil, Terengganu, Malaysia. Corresponding Author Email: khairol.mardi@gmail.com1* DOI: http://doi.org/10.38177/ajast.2022.6106 Copyright: Β© 2022 Ismail K. et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Article Received: 25 October 2021 Article Accepted: 28 January 2022 Article Published: 22 February 2022 1. Introduction Coconut is a versatile tree and is the most popular home garden crop in the world and very beneficial for health because of its high nutrient status (Parwaiz et.al. 2014). Coconut is grown under highly heterogeneous soil conditions ranging from coastal sand to clay, from poorly drained uplands to hill slopes and strongly acidic to highly calcareous soils (Khan et al., 1978). Nutrient management in coconut is a continuous battle against soil limiting factors and it assumes significance because coconut requires a continuous supply of nutrients throughout the year for sustained productivity (Khan, 1993). For better growth and productivity of coconut palms balanced and integrated nutrient management is essential. Integrated Nutrient Management includes the intelligent use of organic, inorganic, and biological resources to sustain optimum yields, improve or maintain soil chemical and physical properties (Tandon, 1990). Plantation crops have sufficient potential to benefit from natural farming and sustain their yield with low external input as they produce considerable quantities of biomass (Nampoothiri, 2001). Being a perennial crop, the coconut palm produces huge quantities of organic wastes throughout the year. The availability of organic recyclable biomass from a hectare of well-managed coconut garden has been estimated to be about 14–16 tons annually in the form of leaves, spathe, bunch waste, and husk. Sustainable agricultural production incorporates the idea that natural resources should be used to generate increased output and incomes, without depleting the natural resources (Parwaiz et.al. 2014). The use of these waste materials as domestic fuel and thatching material is now limited due to the change in the lifestyle of the rural population. The waste biomass from coconut palm differs significantly in the chemical ABSTRACT The study mainly to find out the effect of activated biomass on the yield of 10 years of Ceylon tall coconut plants at bris soil to develop a fertilizer mixture that supports plant productivity. The activated biomass was derived from coconut fronds and empty fruit bunch which were air-dried and carbonized in a stainless steel fabricated kiln at a temperature between 250o C-350o C for 4 h to develop the activated biomass. Seven treatments including control were selected. Measurements of yield parameters viz., fruit weight, nut weight, husk weight, water volume, fruit perimeter, fruit length, flesh thickness and the number of nuts increased were conducted every 2 months. There are significant differences at (P<0.05) were observed in some yield parameters, percent of nut increased, flesh thickness and fruits parameter were highest at T3. The treatment of T6 shows the highest records of fruits length, water volume, the weight of fruits, and husks weight. T7 recorded the highest reading of stem diameter. Further field evaluations are needed to determine the relationship of the level of activated biomass with the different level amount of NPK supply in inducing the nutrient availability and soil microbial. Keywords: Coconuts, Nutrient management, Empty fruit bunch, Coconut fronds, Activated biomass, Coconut yields, Sandy soil.
  • 2. Asian Journal of Applied Science and Technology (AJAST) Volume 6, Issue 1, Pages 38-49, January-March 2022 ISSN: 2456-883X www.ajast.net 39 composition (Thomas et al., 1998). The application of biomass organic integrated with Nitrogen, Phosphorus and Potassium (NPK) will enhance for best growth performance of coconut. The conjunctive use of organic and inorganic sources improves soil health and helps in maximizing production as it involves the utilization of local sources and, hence, turned to be a rational, realistic and economically viable way of supply of nutrients (Parwaiz et.al. 2014). The application of biomass organic from coconut waste will increase the nutrient contents for plants uptake (Khairol. I and Mohammad. A. H., 2019). The research work was initiated to study the impact of activated biomass from palm wastes on the yield of coconut planted on marginal bris soil. 2. Methodology 2.1. Experimental site The experiment was carried out for two years in a plot of 10 years old coconut palm of Ceylon tall cultivar at Malaysian Agriculture Research And Development Institute (MARDI) Station in Cherating, Pahang, Malaysia. The daily temperature during the experiment was in the range of 30–40Β°C. The research station received an annual average rainfall of 600 mm on 30 rainy days distributed from September to November. The soil was Beach ridges interspersed with swale (BRIS) with low pH and low availability of Nitrogen (N), Phosphorus (P) & Potassium (K). 2.2. Planting materials Ceylon tall of coconuts at the age of 10 years were used in a fully randomized design horizontally on raised plots at a spacing of 9.0 m between seedlings and 9.0 m between rows triangularly. 2.3. Activated biomass development The activated biomass was derived from coconut fronds (CF) and empty fruit bunch (EFB). Raw of CF was collected from MARDI Bagan Datuk Field and EFB biomass was collected from Sg Sumun Oil Palm Mill, Sime Darby Bhd, located in Bagan Datuk, Perak, Malaysia. The Biomass samples were air-dried for one week to eliminate excessive moisture. The biomass was then chopped in the size of < 50 mm. The biomass sample was carbonized in the stainless steel fabricated kiln at a temperature between 250o C - 350o C for 4 h to develop the activated biomass. The activated biomass was shredded to the size < 5 mm before apply to the experimental plots. 2.4. Treatments Seven rates of activated biomass were applied in the experiment and it was combined with 4.50 kg/palms of Nitrogen, Phosphorus and Potassium (NPK) 12:12:17:2 compound for each plant. The activated biomass was applied at the basin of palm within 2 meters from the stem of coconuts. The NPK was applied above the activation that was applied before. The treatments are as follows: T1- Control (NPK only), T2- CF 3.0kg/plant + 4.5 kg/plant of NPK, T3-CF 6.0kg/plant + 4.5 kg/plant of NPK, T4- CF 9.0kg/plant + 4.5 kg/plant of NPK, T5- EFB 3.0kg/plant + 4.5 kg/plant of NPK, T6- EFB 6.0kg/plant + 4.5 kg/plant of NPK, T7- EFB 9.0kg/plant + 4.5 kg/plant of NPK. 2.5. Data of yield characters The number of fruits and copra weight per palm were recorded each year from the middle of 2019 to the middle of 2021. The yield parameters viz., fruit weight (gm), nut weight (gm), and husk weight (gm) were measured using a
  • 3. Asian Journal of Applied Science and Technology (AJAST) Volume 6, Issue 1, Pages 38-49, January-March 2022 ISSN: 2456-883X www.ajast.net 40 digital scale. Flesh thickness (mm), fruit length (cm) and fruit perimeter (cm) were measured using a calliper and measuring tape. Water volume (ml) and Brix were measured using a measuring cylinder and portable Brix meter while yield increased (%) recorded every two months year wise from 2019 - 2021. The results of the study were analyzed and discussed in the paper. 2.6. Experimental design and data analysis The experimental design was a Complete Randomized Design. Analysis of variance tests was carried out to detect significant differences between the parameters collected with 2 replication. Means of the measured variables were compared by using the appropriate ANOVA procedure (SAS Institute 1989) and the Duncan test (P<0.05). 3. Results and Discussions 3.1. ANOVA analysis of parameters The ANOVA analysis suggested that parameters collected (fruit weight, husk weight, water volume, fruit length, and yield increased) were significantly affected by treatments (Table 1). On the other hand, fruits perimeter and nut weight does not significantly affect the treatments. 3.2. Effect of activated biomass on yield of coconut increasing Yield data of the increasing nuts at parameter number of fruits per plant/year was mentioned in table 2. A significant difference at (P<0.05) in the yield of nuts/plants was observed between the activated biomass treatments. Treatment T3 shows the highest percent of nut increment with 44.8%, while T1 shows the lowest nut increment with 9.4%. It is a significant difference in yield increases at (P<0.05) due to effected by activated biomass applied. This in turn helped the palms in increasing the nutrient content which eventually influenced the reproductive behaviour of the coconut palms and ultimately reflected in the nut yield (Shinde et al. 2021). Burying a thousand coconut husks per palm plus coconut leaves in the trenches between rows raised yield by 44.6% over the control (Balasubramanian et al. 1985). Table 1. Analysis of mean square ANOVA on effect of activated biomass to the yield components of coconuts Source of variance Parameters Fruit weight (gm) Nut weight (gm) Husk weight (gm) Water volume (ml) Fruit perimeter (cm) Fruit length (cm) Yield Increased (%) Flesh Thickness (mm) Treatment 149506.67* 7028.84 117641.63* 2610.15* 7.72 2.31* 321.77 * 2.91* Rep 128918.42 17955.13 50649.91 942.34 12.50 0.07 369.26 0.36 Grand mean 1462.39 705.45 756.94 169.06 54.39 20.70 26.78 12.75 Coefficient of variation (%) 9.75 12.64 13.99 12.00 2.90 2.79 13.90 10.89 Note: mean along with * shows the significant difference at p < 0.05 : mean along with ** shows the significant difference at p <0.01
  • 4. Asian Journal of Applied Science and Technology (AJAST) Volume 6, Issue 1, Pages 38-49, January-March 2022 ISSN: 2456-883X www.ajast.net 41 Table 2. Yield performance on number of fruits/plant/year at different activated biomass rate Treatments No of fruits/plant/year Pre-treatment Post-treatment Percent increase % T1 35 38 9.4 d T2 27 33 24.6 bc T3 20 29 44.8 a T4 24 34 40.6 ab T5 29 33 15.1 c T6 16 19 27.8 bc T7 28 36 25.3 bc Grand mean 25 32 26.78 C.V. (%) - - 13.90 Mean value with the same letter for each treatment are significantly different at P < 0.05 3.3. Effect of activated biomass on physical characters of nuts 3.3.1. Fruits and Husks weight A brief description of fruits weight parameters were given in figure 1. It shows a significant difference in the weight of the fruit at (P<0.05) that was observed between the activated biomass treatments. The treatment of T6 shows the highest weight of fruits significantly compare to other treatments, while T1 shows the lowest weight of fruits affected by activated biomass applied. Yield parameters of husk weight were mentioned in figure 2. Fig.1. Effect of activated biomass rate to the relationship between treatment and fruits weight. Bar with the same letter for each treatment are significantly different at P < 0.05 d cd ab bc ab a ab 0.0 400.0 800.0 1200.0 1600.0 2000.0 T1 T2 T3 T4 T5 T6 T7 Fruit weight (gm) Treatments
  • 5. Asian Journal of Applied Science and Technology (AJAST) Volume 6, Issue 1, Pages 38-49, January-March 2022 ISSN: 2456-883X www.ajast.net 42 Fig.2. Effect of activated biomass rate to the relationship between treatment and husk weight. Bar with the same letter for each treatment are significantly different at P < 0.05 There is a significant difference in the husk weight observed at (P<0.05) affected by different rates and types of activated biomass applied. The treatment of T6 shows the highest weight of husk, followed by T5 and T3, while T1 shows the lowest husk weight parameters compared to other treatments. These results indicate that different amendments affect yield characters differently. Similar results were obtained in the case of other plants that it is suggested that amendment of BRIS soil increased BRIS soil health therefore yield of vegetable plants increased (Khandaker, et. al 2014). Integrated nutrient management affects its growth and yield characteristics to a great extent (Parwaiz et.al. 2014). Therefore the yield increased in BRIS soil under amendment-BRIS soil conditions than only BRIS soil conditions (Khandaker, et. al 2014). 3.3.2. Nut weight and fruits perimeters Nut weight was not significantly affected by treatments. Nevertheless, T7 recorded the highest reading of nut weight while T2 was the lowest (Table 3). Table 3. Nut weight and fruit perimeter effect at different activated biomass rate Treatments Parameter Nut weight (gm) Fruit perimeter (cm) T1 672.4 a 52.4 a T2 641.6 a 52.1 a T3 725.8 a 56.9 a T4 668.7 a 54.6 a T5 666.1 a 53.4 a d cd ab b ab a bc 0 200 400 600 800 1000 1200 T1 T2 T3 T4 T5 T6 T7 Husk weight (gm) Treatments
  • 6. Asian Journal of Applied Science and Technology (AJAST) Volume 6, Issue 1, Pages 38-49, January-March 2022 ISSN: 2456-883X www.ajast.net 43 T6 760.1 a 56.9 a T7 803.5 a 54.5 a Grand mean 705.5 54.4 C.V. (%) 12.64 2.9 Mean value with the same letter for each treatment are not significantly different at P < 0.05 Fruits perimeter also shows a similar pattern whereby T3 and T6 recorded the highest reading while T2 was the lowest. However, no significant impact was established. An increase in yield under these treatments might be owing to better availability of required nutrients which resulted in improvement in yield (Maheswarappa. et al 2014) and (Maheswarappa. et al 2011). When the nut yields after imposition of treatments are compared with the figures before the experimentation, there was a considerable increase in yield as affected by integrated nutrient management treatments (Chellappa, 2008). 3.3.3. Water volume Yield parameters of water volume were described in figure 3. There is a significant difference in the water volume observed at (P<0.05) affected by activated biomass applied. Treatment T6 shows the highest reading of water volume while T3 and T7 were at par. T1 shows the lowest significant reading. The organoleptic evaluation of tender nut water revealed that the treatments which received more organic fertilizers recorded very good taste (Chellappa, 2008). High-temperature biochar’s' porous structures can accommodate appropriate soil-microorganism activities, increase water sorption, and increase soil density. Furthermore, the biochar’s' high alkalinity can help to neutralise acidic soil, increasing soil fertility and plant development (Dhar et al. 2020). 3.3.4. Fruit length A significant difference in the fruit length at (P<0.05) was observed between the treatment (Figure 4). Fig.3. Effect of activated biomass rate to the relationship between treatment and water volume. Bar with the same letter for each treatment are significantly different at P < 0.05 c c ab bc bc a ab 0.0 50.0 100.0 150.0 200.0 250.0 T1 T2 T3 T4 T5 T6 T7 Water volume (ml) Treatments
  • 7. Asian Journal of Applied Science and Technology (AJAST) Volume 6, Issue 1, Pages 38-49, January-March 2022 ISSN: 2456-883X www.ajast.net 44 Fig.4. Effect of activated biomass rate to the relationship between treatment and fruit length. Bar with the same letter for each treatment are significantly different at P < 0.05 The palm at treatment T4, T5, and T6 contribute to the highest reading of fruits length. Unfortunately, T1 was observed as the lowest significant reading. It can be discussed that the activated biomass applied were contributed the most yield and differences among treatments to the parameter different of fruit length. This biomass may be recycled back into the system, improving soil fertility and crop yield in a sustainable manner. Productivity is also affected by different nutrient management practices. The combination of organic and inorganic sources, bio fertilizers, and specific plant growth regulators boosted plant growth and hence biomass output (Sainath et al. 2021). 3.3.5. Flesh thickness The flesh thickness of coconut was described in figure 5. Fig.5. Effect of activated biomass rate to the relationship between treatment and flesh thickness. Bar with the same letter for each treatment are significantly different at P < 0.05 c bc ab a a a ab 0.0 5.0 10.0 15.0 20.0 25.0 T1 T2 T3 T4 T5 T6 T7 Fuit lenght (cm) Treatments c ab a bc bc abc bc 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 T1 T2 T3 T4 T5 T6 T7 Flesh thickness (mm) Rawatan
  • 8. Asian Journal of Applied Science and Technology (AJAST) Volume 6, Issue 1, Pages 38-49, January-March 2022 ISSN: 2456-883X www.ajast.net 45 There is a significant difference in the thickness of coconut fleshes at (P<0.05) affected by activated biomass applied. Treatment T3 shows the highest significant reading of fleshes thickness while T1 shows the lowest significantly. However, T2 and T6 revealed equivalence among the highest readings. Bavappa (1986) noted additional benefits of organic materials (coir dust, coconut shredding, forest leaves, and cattle manure) plus the recommended dose of NPK improved the initial growth and reduced the mortality of coconut seedlings in coastal sandy soil. To minimize damaging effects of drought through the association of organic fertilization which using mulching – covering the soil around the palm by a layer, e.g., coconut fronds, husks, lopping of Gliricidia, ipil-ipil and sun-hemp (Abeywickrama et al. 1983). 3.4. Correlation analysis between parameters collected The findings show in table 4 the strength of the positive relationship between parameters. Fruit weight had a significant positive correlation with all the parameters evaluated in this study (Table 4). However, only nut weight, husk weight, water volume, and fruit length were significantly affected by the treatment shared a significant positive correlation with fruit weight. Therefore, increasing the readings of these parameters has the potential to increase the fruit weights. The recycling of biomass by vermicomposting and field application will reduce the chemical fertilizer requirement of coconut and the cost of cultivation (Shinde et al. 2021). The promise of pyrolysis as a novel method for the rapid recycling of highly resistzant coconut palm biomass leftovers to biochar as a locally available source of soil amendment to promote regenerative agriculture in humid tropics (Gopal et al. 2020). Table 4. Analysis of mean correlation on the yield components of coconuts Nut weight (gm) Husk weight (gm) Water volume (ml) Fruit perimeter (cm) Fruit length (cm) Fruit weight (gm) Flesh Thickness (mm) Nut weight (gm) 1 0.36 0.73 0.69 0.23 0.61 0.23 Ns * * ns ** ns Husk weight (gm) 1 0.73 0.77 0.78 0.96 0.25 * ** ** ** ns Water volume (ml) 1 0.80 0.55 0.84 0.54 ** * ** * Fruit perimeter (cm) 1 0.45 0.86 0.38 ns ** ns Fruit length (cm) 1 0.73 0.15 * ns Fruit weight (gm) 1 0.28 ns Flesh Thickness (mm) 1 Note: mean along with * shows the significant difference at p < 0.05, : mean along with ** shows the significant difference at p <0.01
  • 9. Asian Journal of Applied Science and Technology (AJAST) Volume 6, Issue 1, Pages 38-49, January-March 2022 ISSN: 2456-883X www.ajast.net 46 4. Conclusion & Future Recommendations According to the findings of the preceding study, the use of activated biomass in conjunction with inorganic fertilizer of NPK combination was found to be beneficial in increasing coconut yield. Considering the increased mean nut yield as well as yield character components parameters such as nut weight, husk weight, water volume, fruit perimeter, fruit length, and fruit weight, it can be concluded that the use of INM treatments such as T3 (T3- CF 6.0kg/plant + 4.5 kg/plant of NPK) and T6 (T3- EFB 6.0kg/plant + 4.5 kg/plant of NPK) were found promising and produced higher readings. It is the system that envisions judicious combinations of organic wastes, bio-fertilizers, and inorganic fertilizers to sustain soil productivity. As a result, the discovery could aid in the recommendation of coconut farmers under coastal ecosystems where the expenditure on chemical fertilizers can be saved. It can be concluded that the application of organic biomass integrated with NPK will enhance for best yield performance of coconut. Amended soil boosted plant physiological indicators, indicating increased BRIS soil health and improving not just soil condition but also plant variables. The usage of organic biomass obtained from coconut trash will boost nutritional content for plant uptake. If applied, the approach may cover the nutritional demands of seedlings at the field stage, considerably cutting the cost of field maintenance production and creating well-healthy plants for planting. Incorporating organic compost into INM methods can aid not only incompletely or partially substituting inorganic fertilisers, but also in helping farmers to recycle various agricultural waste into a more sustainable, cost-effective, and environmentally friendly. The study also has limitations because information on the activated carbon biomass study for field stages of coconuts in Malaysia is limited. Further field studies are required to determine the relationship between the level of organic biomass and the total amount of NPK supply in inducing the growth and yield of coconut planted in other marginal soil i.e. peat. tin-tailing and acid sulphate soil. Acknowledgement The authors are grateful to the RMK-12 Fund Project under the Ministry of Agriculture & Food Industry Malaysia (MAFI) and Malaysia Agriculture Research & Development Institute (MARDI) for providing the fund for the project. The authors were also grateful to all the support staff of MARDI Cherating and their management team for assisting in experimental site preparation, data collection, and logistic accommodation. Declarations Source of Funding This research was funded by RMK-12 Fund Project under the Ministry of Agriculture & Food Industry Malaysia (MAFI) and Malaysia Agriculture Research & Development Institute (MARDI). Competing Interests Statement The authors declare no competing financial, professional and personal interests. Consent for publication Authors declare that they consented for the publication of this research work.
  • 10. Asian Journal of Applied Science and Technology (AJAST) Volume 6, Issue 1, Pages 38-49, January-March 2022 ISSN: 2456-883X www.ajast.net 47 References 1) Abeywickrama, B., D.V. Liyanage And P.R. Wijewardane. 1983. Measures To Minimize Drought Damage In Coconut Plantation. Ministry Of Coconut Industries, Colombo, Sri Lanka. 2) Ahmad R.K., Sulaiman S.A., Inayat M., Umar H.A. (2020). Effects Of Process Conditions On Calorific Value And Yield Of Charcoal Produced From Pyrolysis Of Coconut Shells. In: Emamian S.S., Awang M., Yusof F. (eds) Advances in Manufacturing Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5753-8_24. 3) Balasubramanian, R., T. Ramanathan And H. Vijayaraghavan. 1985. Certain Aspects Of Moisture Conservation In Coconut Gardens. Indian Coconut J. 16(2):13-15. 4) Bavappa, K.V.A. 1986. Research At Cpcri. Kerala, India. 5) Che Lah, Mohd & Nordin, Mohd Nozulaidi & Isa, Musliania & Yusop, Mohd & Jahan, Md. (2011). Composting increses BRIS soil health and sustains rice production. ScienceAsia. 37. 291-295. 6) Chellappa, Jayabose. (2008). Impact of integrated nutrient management on nut yield and quality of coconut under coastal ecosystem. Journal of Plantation Crops, 2008, 36 (3): 249-253. 7) Dhar, S.A., Sakib, T.U. & Hilary, L.N. (2020). Effects Of Pyrolysis Temperature On Production And Physicochemical Characterization Of Biochar Derived From Coconut Fiber Biomass Through Slow Pyrolysis Process. Biomass Conv. Bioref. Https://Doi.Org/10.1007/S13399-020-01116-Y. 8) Gopal, M., Gupta, A., Shahul Hameed, K., Sathyaseelan, N., Khadeejath Rajeela. T. H and Thomas., G. V. (2020). Biochars Produced From Coconut Palm Biomass Residues Can Aid Regenerative Agriculture By Improving Soil Properties And Plant Yield In Humid Tropics. Biochar 2, 211–226. https://doi.org/10.1007/s42773- 020-00043-5. 9) Herviyanti. H,. Maulana. A,. Prima. S,. Aprisal. A,. Crisna. S. D, and Lita. A. L. (2020). Effect Of Biochar From Young Coconut Waste To Improve Chemical Properties Of Ultisols And Growth Coffee [Coffea Arabica L.] Plant Seeds. International Conference Of Bio-Based Economy And Agricultural Utilization 2019. IOP Conf. Series: Earth And Environmental Science 497 (2020) 012038. Doi:10.1088/1755-1315/497/1/012038 1. 10) Khairol. I. and Mohammad. A. H. (2019). Utilization of coconut waste to enhance the growth and vigour of coconut cultivation on sandy soils. Proceeding of Soil Science Conference Of Malaysia 2019, 16-18 April 2019, Hotel Equatorial, Melaka, Malaysia. pp 163-169. 11) Khan, H.H. 1993. Fertilizer management in coconut In: Tandon, H.L.S. (Ed) Fertilizer management in commercial crops. Fertilizer Development and Consultation Organization, New Delhi, India. pp.176. 12) Khan, H.H. Sankaranarayanan, M.P. and Narayanan, K.B. 1978. Characteristics of Coconut Soils of India. 1. Morphology, Some physico – chemical, Characteristics and Taxonomy. Proceedings of PLACROSYM I: 54-79. ISPC, Kasargod, India.
  • 11. Asian Journal of Applied Science and Technology (AJAST) Volume 6, Issue 1, Pages 38-49, January-March 2022 ISSN: 2456-883X www.ajast.net 48 13) Khandaker, Mohammad & Jahan, Md & Muslianie, Isa. (2014). Effects of Soil Amendments on BRIS Soil Health, Crop Physiology and Production. International Journal of Research and Innovations in Earth Sci. 1. 6-9. 14) Maheswarappa. H.P, & Thomas, George & Gupta, Alka & Ravi, Bhat & Palaniswami, C. (2014). Productivity and nutrient status of coconut (Cocos nucifera) as influenced by integrated nutrient management with vermicomposted coconut leaves. Indian Journal of Agronomy. 59. 455-459. 15) Maheswarappa. H.P, Thomas George, Ravi Bhat, Palaniswami C. & Jayasekhar, S. (2011). Impact of inorganic fertilizer substitutions by vermicomposted coconut leaves on productivity and economics of coconut. 30-34. 16) Marimuthu. R. & C. Natarajan. (2005). Sand Curing Is Essential For Obtaining More Recovery Of Quality Seedlings In Coconut. Indian Coconut J., 35(12): 325-340. 17) Nampoothiri, K .U. K. 2001. Organic Farming-Its relevance to plantation crops. J.Plantn. Crops 29(1): 1-9. 18) Parwaiz, A, B. Inayatullah, R, And Ubedullah, A, T. (2014). Effect Of Integrated Nutrient Management On Nut Production Of Coconut (Cocos Nucifera L.) And Soil Environment. A Review. Baloch Et Al., 2014. Sci. Tech. and Dev., 33 (1): 14-21. 19) Ranaweera, S.R.M. & Nanayakkara, Chandrika & Tennakoon, N.A. (2012). Comparison Of The Effects Of Organic Fertilizers With Inorganic Fertilizers On The Growth Of Eight Months Old Coconut Seedlings And The Nutrient Availability And Soil Microbial Activity Of Soils. Proc. of Int. Forestry and Env. Symposium. 20) Sainath. N, Usha. P., Manorama. T. And Biju. J. (2021). Tender Coconut Husk Derived Biochar Impact On Soil Properties, Yield And Fruit Quality Of Banana. Journal Of The Indian Society Of Soil Science, Vol. 69, No. 3, pp 334-338 (2021) DOI: 10.5958/0974-0228.2021.00050.5. 21) Senjaliya, Hitesh & Vala, Gambhirsinh & Mangroliya, G.S. (2015). Nutrient Management Through Organic And Inorganic Manures In Coconut (Cocos Nucifera L.) Garden. An Asian Journal Of Soil Science. 10. 59-62. 10.15740/HAS/AJSS/10.1/59-62. Edward. J. P., 2009. β€œSoil Science And Management. 5th Ed. United States: Delmar Cengage Learning,” P. 40-250. 22) Shinde, V., Sumitha, S., & Maheswarappa, H. (2021). Soil fertility properties, leaf nutrient status and yield of coconut and intercrops as influenced and coconut based cropping system in coastal plain of western India. Bangladesh Journal of Botany, 50(4), 1067–1075. https://doi.org/10.3329/bjb.v50i4.57074. 23) Srinivasa Reddy, D.V. and Upadhyay, A.K. 2002. Impact of integrated nutrient management on the mineral nutrition and yield of WCT coconut in littoral sandy soil at Kasaragod. pp. 274-251. 24) Subramanian, P et al. 2005. Glyricidia (Gliricidia sepium) as green manure in improving soil fertility and productivity of coconut under coastal littoral sandy soil. J.Plantn. Crops 33 (3): 185-189. 25) Syed, Manzar-ul-Alam & Shah, Syed & Ali, Sikander & Iqbal, Muhammad. (2005). Yield and phosphorus-uptake by crops as influenced by chemical fertilizer and integrated use of industrial by-products. Songklanakarin Journal of Science and Technology. 27.
  • 12. Asian Journal of Applied Science and Technology (AJAST) Volume 6, Issue 1, Pages 38-49, January-March 2022 ISSN: 2456-883X www.ajast.net 49 26) Tandon, H.L.S. 1990. In: Proceedings of the International Symposium on Natural Resources Management for a Sustainable Agriculture (R.P.Singh, Ed.) 16th -10th February, 1990, New Delhi, pp 203-222. 27) Thomas, G.V., Prabhu, S.R., Subramanium, P., Iyer, R. (1998): Organic Farming Technologies in Coconut. ATIC series Publication No. 4. Central Plantation Crop Research Institute, Kasaragod, Kerala. 28) Upadhyay, A.K., Maheswarappa, H.P., Palaniswami, C., Ravi Bhat, Subramanian, P. and George V. Thomas. 2009. Impact of composted coir pith on the nutrition and productivity of coconut. Indian Coconut J. 51(9): 2-5.